
HAL Id: hal-03084240
https://hal.science/hal-03084240

Submitted on 20 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load-balancing for Multi-skilled Servers with Bernoulli
Routing

Fernando Miguelez, Josu Doncel, Balakrishna Prabhu

To cite this version:
Fernando Miguelez, Josu Doncel, Balakrishna Prabhu. Load-balancing for Multi-skilled Servers with
Bernoulli Routing. Annals of Operations Research, 2022, 312 (2), pp.949-971. �10.1007/s10479-022-
04532-7�. �hal-03084240�

https://hal.science/hal-03084240
https://hal.archives-ouvertes.fr


Load-balancing for Multi-skilled Servers with

Bernoulli Routing

Fernando Migueleza, Josu Doncela, Balakrishna J. Prabhub

a University of the Basque Country, UPV/EHU, Leioa, Spain.
b LAAS-CNRS, Toulouse, France.

December 19, 2020

Abstract

We study the optimal Bernoulli routing in a multiclass queueing sys-
tem with a dedicated server for each class as well as a common (or multi-
skilled) server that can serve jobs of all classes. Jobs of each class arrive
according to a Poisson process. Each server have a holding cost per cus-
tomer and use the processor sharing discipline for service. The objective
is to minimize the weighted mean holding cost.

First, we provide conditions under which classes send their traffic only
to their dedicated server, only to the common server, or to both. A
fixed point algorithm is given for the computation of the optimal solution.
We then specialize to two classes and give explicit expressions for the
optimal loads. Finally, we compare the cost of multiskilled server with
that of only dedicated or all common servers. The theoretical results are
complemented by numerical examples that illustrate the various structural
results as well as the convergence of the fixed point algorithm.

1 Introduction

1.1 Motivation

We investigate the performance of a multiskilled queueing system formed by
parallel servers with Processor Sharing (PS) queues. Jobs of different classes
of customers arrive to the system following a Poisson process. There is one
dedicated server for each class of customer and one multi-skilled server that can
execute jobs of all classes. Furthermore, we assume that jobs are assigned to the
servers according to the Bernoulli policy. Our goal is to find the optimal load
balancing so as to minimize the weighted mean number of jobs in the system.

The main application of our model comes from wireless networks. Consider a
region divided in different subregions. Each dedicated server models an antenna
that provides service to a unique subregion and the multi-skilled server models a

1



2

central antenna that provides service to all the subregions. Using the results of
this article, one can determine how the traffic of each subregion must be shared
between the antenna of that region and the central one in order to minimize the
performance of the system. This architecture has been previously considered by
[1] in a different context where dedicated servers (or microcells in their model)
can be switched on and off so as to minimize the weighted sum of the mean
delay and the mean power consumption in the system.

1.2 Related Work

Load balancing has been widely investigated in different contexts. In data cen-
ters, for example, various policies depending upon the information available to
the dispatcher have been proposed. In general, optimal policies for the typical
performance measures such as mean processing times are not easy to determine
albeit in some specific cases. For example, when no information on the state of
the servers is available, the optimal Bernoulli routing policy was determined in
[2] for mono-skilled servers only. For FCFS servers, a policy based on Sturm
sequences [3] are known to be optimal. With more information on the server
state, a number of heuristics such as Join the Shorter of d queues [4, 5] and Join
the Shortest Queue [6] have been analyzed in the large server asymptotic case.
In addition, there are various pull-based policies such as Join the Idle Queue [7]
that are known to work well in practice. Another important routing policy is
the Size Interval Task Assignment [8] where jobs of different sizes are executed
in different servers and, therefore, the service requirement of incoming tasks
need to be known. This policy has been further studied in [9] and the author in
[10] presented a variation of this policy in which the size of jobs does not need
to be known.

Load balancing has also been investigated for balancing energy costs in data
centers using Energy Packet Networks model [11], whereas in [12] it is considered
that data centers are located in different geographical zones. The above works
are mostly concerned with mono-skilled or homogeneous servers.

In networks with multi-skilled agents or servers, skill-based routing policies
have been proposed and investigated [13, 14]. These works are mainly oriented
towards call-center architectures with Erlang-B or Erlang-C type of queues. An
illustrative example is an overflow-type policy, where each incoming call has
a list of agents ordered by priority, with highest priority given to mono-skilled
ones, and is routed to the first available agent of this list. If no agent is available,
the call can be queued or blocked depending on the architecture. These routing
policies are usually difficult to analyze and the cited works are interested in
approximations for the various performance measures for a given policy. In
these models, obtaining the optimal policy analytically is not easy. We refer to
[15] for a recent survey on multiskilled systems.

Multi-skilled queues appear also in the analysis of redundancy systems [16,
17] in which incoming requests can be sent simultaneously to a subset of queues.
We do not investigate the redundancy aspect.



3

The network topology we consider makes our model different from [2] in
which all servers can execute all type of tasks.

1.3 Contributions

The main contributions of the article are summarized as follows:

• We provide a necessary and sufficient condition for the stability of the
system.

• We show that the optimization problem in terms of probabilities is equiv-
alent to the optimization problem in terms of the loads of the servers.

• We fully characterize the optimal loads on the servers for two classes of
customers. For more than two customers, we provide in Proposition 2
conditions under which each class of traffic satisfies one of the following:
(i) it sends all its traffic to its dedicated server, (ii) it sends all its traffic to
the multi-skilled server and (iii) it shares its traffic among the multi-skilled
and its dedicated server.

• Using the result of Proposition 2, we present a fixed-point algorithm whose
convergence ensures that the optimal loads on the servers are achieved.
This algorithm starts with an initial condition of the set of servers (accord-
ing to one of the three possible traffic sharing policies of Proposition 2)
and its fixed point is given by the partition of the set of servers. Provid-
ing an analytical proof of this convergence on the partition of the set of
servers seems to be an extremely difficult task. However, we illustrate the
convergence of this algorithm using numerical experiments.

• We compare the performance of our model with the performance of two
models. The first model consists of a system where all the servers are
multi-skilled and we show the existence of a switching curve, i.e., when
the arrival rate of one of the traffic increases, the model whose perfor-
mance is better changes. The second model consists of a system with
no sharing, that is, all the servers are dedicated or mono-skilled, and we
provide conditions on the arrival rates such that the performance of the
no-sharing model is larger than the performance of our model.

• We delve into the comparison of the aforementioned models using numer-
ical experiments. First, we show the uniqueness of the switching curve
when we compare our model with a system where all the servers are multi-
skilled. We also observe that, in a system formed by servers with equal
capacity and different (but not extremely large) holding costs, the region
where our model outperforms the all-sharing system is very large.

1.4 Organization

In the next section, we describe the network model and define the optimization
problem. Section 3 gives the stability condition and presents an equivalent



4

Server 1

Server 2

Server C

Server 0

Class 1

Class 2

Class C

Figure 1: The model under study in this article.

problem in terms of loads on the servers. In Section 4, the main results on the
structure of the optimal policy are provided for the model under consideration.
We compare in Section 5 the performance of our model with the performance of
models with other network topologies. We present our numerical experiments
in Section 6. Finally, we discuss our main conclusions in Section 7.

2 Model Description

2.1 Notation

We consider a server farm with Processor Sharing (PS) queues and an input
traffic of different classes. Let K = {1, 2, . . . , C} be the set of classes. We
assume that jobs of class i ∈ K arrive to the system according to a Poisson
process and have generally distributed service times1. Let ηi be the traffic
intensity of jobs of class i. The class of a job defines the set of servers that can
be assigned to this job.

We consider a system with C + 1 servers. Let S = {0, 1, . . . , C} be the set
of servers. For a server j ∈ S, we denote by rj the capacity of Server j and by
cj its holding cost. We denote by Si the set of servers that can execute jobs of
class i and, for A ⊂ K, SA = ∪i∈ASi. For j = 1, . . . , C, Server j executes jobs
of class j, i.e., they are dedicated servers. On the other hand, Server 0 executes
jobs of all the classes, i.e., it is a multiskilled server.

For i = 1, . . . , C, we denote by pi the probability that a class i job is executed
in its dedicated server, i.e., Server i. For j = 1, . . . , C, the load of Server j is

1Since our goal is to analyze the mean number of jobs and, in a M/G/1-PS queue, the
mean number of jobs depends on the arrival rate and on the service time requirements only
through the intensity, we do not specify the arrival rate of each class



5

defined as follows

ρj(p) =
ηjpj
rj

, (1)

whereas for Server 0 as

ρ0(p) =

∑
j∈K ηj(1− pj)

r0
. (2)

2.2 Problem Formulation

For a given routing strategy p = (pi), the mean number of jobs of server j
is denoted by E[Nj(p)]. In this article, we aim to find the routing matrix
that minimizes the total cost of the system. More specifically, we analyze the
following optimization problem:

minp

∑
j∈S

cjE[Nj(p)] (PROB-OPT)

0 ≤ pi ≤ 1, for all i ∈ K; (3)

ηipi < ri, for all i ∈ K ; (4)∑
i∈K

ηi(1− pi) < r0. (5)

The first constraint ensures that pi’s are probabilities. The second and third
constraints ensure that all the servers are stable, that is, that the total incoming
traffic into a server is smaller than its service capacity.

3 Preliminary Results

We first study the existence of a feasible solution of (PROB-OPT). This is the
same as characterizing the conditions under which the system can be stabilized.
In the following proposition, we provide this result.

Proposition 1 (Stability). The system under consideration can be stabilized if
and only if

r0 +
∑
i∈A

ri >
∑
i∈A

ηi, ∀A ⊂ K. (6)

Proof. See Appendix A.

Taking into account that E[Nj(p)] =
ρj

1−ρj , we can reformulate (PROB-OPT)

in terms of the loads on the servers as follows:



6

minρ
∑
j∈S

cj
ρj

1− ρj
(LOAD-OPT)

∑
i∈K

ηi = r0ρ0 +
∑
j∈K

rjρj ; (7)

0 ≤ ρj < 1, for all j ∈ S; (8)∑
i∈A

ηi ≤ r0ρ0 +
∑
j∈A

rjρj , ∀A ⊂ K. (9)

We now show that the optimization problems we have considered so far
are related. More precisely, we show that, if there are routing probabilities that
satisfy (PROB-OPT), then it is possible to find loads that satisfy (LOAD-OPT).

Lemma 1. Let p be a routing strategy that satisfies (3)-(5). Then, for all j ∈ S,
ρj(p) also satisfies the constraints of (LOAD-OPT).

Proof. First, we observe that, if (3)-(5) are satisfied, using (1) and (2), it follows
that 0 ≤ ρj < 1 for all j ∈ S.

We now show that
∑
i∈K ηi = r0ρ0 +

∑
j∈K rjρj in the following way:

r0ρ0 +
∑
j∈K

rjρj =
∑
i∈K

ηi(1− pi) +
∑
i∈K

ηipi =
∑
i∈K

ηi,

where the first equality is given using (1) and (2).
Finally, we focus on the constraint

∑
i∈A ηi ≤ r0ρ0 +

∑
j∈A rjρj , ∀A ⊂ K.

Using again (1) and (2), we have for all A ⊂ K that

r0ρ0 +
∑
j∈A

rjρj =
∑
i∈K

ηi(1− pi) +
∑
i∈A

ηipi ≥
∑
i∈A

ηi(1− pi) +
∑
i∈A

ηipi =
∑
i∈A

ηi.

And the desired result follows.

Note that (LOAD-OPT) is a convex problem with linear constraints and
has an unique solution as long as the stability condition in Proposition 1 is
verified. Moreover, from the above lemma, the solution of (PROB-OPT) can
be obtained by optimizing directly over the loads. Then, the optimal routing
probabilities can be determined later from (1), once the optimal load on each
server is determined.

4 Analysis of the Solution of (LOAD-OPT)

Let δj =
√

cj/rj
c0/r0

for all j ∈ K. We denote by Cb the set of classes that route

traffic to two servers, by C0 the set of classes that routes all the traffic to Server
0 and by Cd the set of classes that send all the traffic to its dedicated server.

In the following proposition, we present the first result of this section. It
gives the conditions under which a class of traffic belongs to Cb, C0 or Cd.



7

Proposition 2. Jobs of class i routes traffic to Server 0 if and only if

δi >
1− ηi

ri

1− ρ∗0
,

and all the traffic of class i is routed to Server 0 if and only if

δi ≥
1

1− ρ∗0
,

where ρ∗0 is the optimal load at Server 0 and is given by

ρ∗0 = 1−
r0 +

∑
j∈Cb rj −

∑
j∈Cb∪C0

ηj

r0 +
∑
j∈Cb δjrj

. (10)

Besides, if j ∈ Cd the optimal load of Server j is
ηj
rj

, if j ∈ Cb the optimal load

of Server j is

ρ∗j = 1− δj(1− ρ∗0) (11)

and if j ∈ C0 the optimal load of Server j is zero.

Proof. See Appendix B.

The above result leads to this corollary which gives a simple sufficient con-
dition to determine when a given class will not send all its traffic to the multi-
skilled server.

Corollary 1. Let j ∈ S. If δj < 1, then j /∈ C0.

Proof. Since δj < 1, we have that the condition δj <
1

1−ρ∗0
is always satisfied

and this implies that j /∈ C0 according to Proposition 2.

From the above corollary, it follows another interesting property that says
that, if δj < 1 for all j ∈ K, then C0 = ∅.

The next result gives an ordering which can help identify classes that use
both the dedicated and the multi-skilled server. This can be seen as a way
to determine, for a given set of input parameters (arrival rate, server speeds,
holding costs, etc.), the skills for which we need to train the multi-skilled servers
in order for the system to be optimal.

Proposition 3. Let δi ≤ δj.

(a) If i ∈ C0, then j ∈ C0.

(b) If i ∈ Cb ∪ C0 and ηi
ri
≤ ηj

rj
, then j ∈ Cb ∪ C0.



8

Proof. We first show (a). We consider that i ∈ C0. Since δj ≥ δi, it follows that
δj ≥ δi ≥ 1

1−ρ∗0
.

Therefore, from Proposition 2, j ∈ C0.
We now show (b). We consider that i ∈ Cb ∪ C0. Since ηi

ri
≤ ηj

rj
and δj ≥ δi, it

follows that

δj ≥ δi ≥
1− ηi

ri

1− ρ∗0
≥

1− ηj
rj

1− ρ∗0
.

Therefore, from Proposition 2, j ∈ Cb ∪ C0.

We note that (b) of the above result can be stated as follows: if class j routes
all the traffic to Server j, class i routes all its traffic to Server i when ηi

ri
≤ ηj

rj

and δi ≤ δj . In the following result, we show that, under similar conditions, the
set of classes that send traffic to two servers can never be {i, j}.

Proposition 4. If δi ≤ δj < 1 and ηi
ri
≤ ηj

r0+rj
, then Cb cannot be {i, j}.

Proof. We assume that Cb = {i, j}. For this case, it follows from (10) that

1

1− ρ∗0
≥ r0 + rjδj + riδi
r0 + rj + ri − ηj − ηi

,

where the above inequality is an equality if C0 = ∅.
Since ηi

ri
≤ ηj

r0+rj
, we have for class i that

δi >
1− ηi

ri

1− ρ∗0
≥
(

1− ηi
ri

) r0 + rjδj + riδi
r0 + rj + ri − ηj − ηi

⇐⇒

δi(r0 + rj + ri − ηj − ηi) >(
1− ηi

ri

)
(r0 + rjδj + riδi) ⇐⇒

δi(r0 + rj − ηj) >
(

1− ηi
ri

)
(r0 + rjδj) ⇐⇒

δi >
1− ηi

ri

1− ηj
r0+rj

r0 + rjδj
r0 + rj

≥ r0 + rjδj
r0 + rj

⇐⇒

δi > δj +
r0(1− δj)
r0 + rj

> δj ,

which is in contradiction with δi ≤ δj .

Let Ti denote the sojourn time of jobs of class i. We now provide an inter-
esting result related to the sojourn time of jobs.

Proposition 5. If δi ≤ δj. Then, ciE[Ti] ≤ cjE[Tj ].



9

Proof. We know that the sojourn time of jobs of class i and of class j follow an
exponential distribution with rate 1

ri(1−ρ∗i )
and 1

rj(1−ρ∗j )
respectively. Therefore,

ciE(Ti) =
ci

ri(1− ρ∗i )

=
ci
riδi

1

1− ρ∗0

=

√
c0
r0

√
ci
ri

1

1− ρ∗0

≤
√
c0
r0

√
cj
rj

1

1− ρ∗0
= cjE(Tj).

And the desired result follows.

4.1 Charaterization of the Solution of (LOAD-OPT) with
C = 2

We now focus on the case C = 2. Throughout this article, we refer to this case
as the M model. Without loss of generality, we assume that δ1 ≤ δ2. The goal
of this section is to fully characterize the solution of (LOAD-OPT) with C = 2.

We first note that, from Proposition 3, it can never be given the following
cases: (i) C0 = {1} and Cd = {2} and (ii) C0 = {1} and Cb = {2}. For the
remaining cases, we have the following options:

1. Cd = {1, 2}. In this case, each class sends all its traffic to the dedicated
server. Therefore, ρ∗i = ηi

ri
for i = 1, 2 and ρ∗0 = 0. According to Proposi-

tion 2 this occurs when

δi ≤ 1− ηi
ri
, i = 1, 2.

2. Cd = {1} and Cb = {2}. In this case, all the traffic of class 1 is sent to
Server 1 and the traffic of class 2 is sent to Server 0 and Server 2. As a
result, ρ∗1 = η1

r1
and, from (10) and (11) we obtain that ρ∗2 = 1−δ2 r0+r2−η2r0+δ2r2

and ρ∗0 = 1− r0+r2−η2
r0+δ2r2

. According to Proposition 2, this case occurs when

δ1 ≤
1−η1r1
1−ρ∗0

and 1
1−ρ∗0

> δ2 >
1− η2r2
1−ρ∗0

, i.e.,

δ1 ≤
(

1− η1
r1

) r0 + δ2r2
r0 + r2 − η2

and

r0 + δ2r2
r0 + r2 − η2

> δ2 >
(

1− η2
r2

) r0 + δ2r2
r0 + r2 − η2

,

which simplifying gives

δ1 ≤
(

1− η1
r1

) r0 + δ2r2
r0 + r2 − η2

and
1

1− η2
r0

> δ2 > 1− η2
r2
.



10

3. Cd = {1} and C0 = {2}. In this case, all the traffic of class 1 is sent to
Server 1 and the traffic of class 2 is sent to Server 0. As a result, ρ∗1 = η1

r1
,

ρ∗0 = η2
r0

and ρ∗2 = 0. According to Proposition 2, this case occurs when

δ1 ≤
1−η1r1
1−ρ∗0

and δ2 ≥ 1
1−ρ∗0

, i.e.

δ1 ≤
1− η1

r1

1− η2
r0

and δ2 ≥
1

1− η2
r0

.

4. C0 = {1, 2}. In this case, the traffic of both classes is sent to Server 0.
Hence, ρ∗i = 0 for i = 1, 2 and from (10) that ρ∗0 = 1− r0−η1−η2

r0
= η1+η2

r0
.

According to Proposition 2 and using that δ1 ≤ δ2, this case occurs when
δ1 ≥ 1

1−ρ∗0
, i.e.,

δ1 ≥
r0

r0 − η1 − η2
.

5. Cb = {1, 2}. In this case, the traffic of class i is sent to Server 0 and Server
i, for i = 1, 2. From (10) and (11), it results that ρ∗0 = 1− r0+r1+r2−η1−η2

r0+δ1r1+δ2r2

and, for i = 1, 2, ρ∗i = 1− δi r0+r1+r2−η1−η2r0+δ1r1+δ2r2
. Moreover, we conclude from

Proposition 2 that this occurs when, for i = 1, 2, 1
1−ρ∗0

> δi >
1− ηiri
1−ρ∗0

, which

using that δ2 ≥ δ1 gives

δ1 >
(

1− η1
r1

) r0 + δ1r1 + δ2r2
r0 + r1 + r2 − η1 − η2

and

r0 + δ1r1 + δ2r2
r0 + r1 + r2 − η1 − η2

> δ2 >
(

1− η2
r2

) r0 + δ1r1 + δ2r2
r0 + r1 + r2 − η1 − η2

.

We simplify the above expressions and we obtain

δ1 >
(

1− η1
r1

) r0 + δ2r2
r0 + r2 − η2

and

r0 + δ1r1
r0 + r1 − η1 − η2

> δ2 >
(

1− η2
r2

) r0 + δ1r1
r0 + r1 − η1

.

6. Cb = {1} and Cd = {2}. We observe that this case is symmetric to the
case 2 (where Cb = {2} and Cd = {1}) and using the same arguments, we
get the following conditions

1

1− η1
r0

> δ1 > 1− η1
r1

and
(

1− η2
r2

)
δ2 ≤

r0 + δ1r1
r0 + r1 − η1

.

7. Cb = {1} and C0 = {2}. In this case, the traffic of class 1 is sent to
Server 0 and Server 1, whereas all the traffic of class 2 to Server 0. As a
result, we have that ρ∗2 = 0 and from (10) and (11), we obtain that ρ∗0 =
1− r0+r1−η1−η2

r0+δ1r1
and ρ∗1 = 1− δ1 r0+r1−η1−η2r0+δ1r1

. According to Proposition 2,



11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2
1 = 1 1/r1

2 = 1 2/r2
(1 1/r1, 1 2/r2)

2 = 1
1 2/r0

2 = r0 + r2 2
r2(1 1/r1) 1 r0/r2

1 = 1 1/r1
1 2/r0

1 = r0
r0 1 2

2 = r0 + r1 1
r0 + r1 1 2

2 = (1 2/r2) r0 + r1 1
r0 + r1 1

1 = 1
1 1/r0

 
 
C0 = Cb = , Cd = {1, 2}
C0 = , Cb = {2}, Cd = {1}
C0 = {2}, Cb = , Cd = {1}
C0 = {1, 2}, Cb = Cd =
C0 = Cd = , Cb = {1, 2}
C0 = , Cb = {1}, Cd = {2}
C0 = {2}, Cb = {1}, Cd =

Figure 2: Conditions 1-7 determine a partition of the half-plane 0 ≤ δ1 ≤ δ2.

we conclude that this case occurs when 1
1−ρ∗0

> δ1 >
1− η1r1
1−ρ∗0

and δ2 ≥ 1
1−ρ∗0

,

i.e.,

δ2 ≥
r0 + δ1r1

r0 + r1 − η1 − η2
> δ1 >

(
1− η1

r1

) r0 + δ1r1
r0 + r1 − η1 − η2

,

which after some simplification results in

δ2 ≥
r0 + δ1r1

r0 + r1 − η1 − η2
> δ1 >

1− η1
r1

1− η2
r0

.

The conditions described in items 1-7 split the feasible half-plane 0 ≤ δ1 ≤ δ2
into, at most, 7 disjoint regions. A detailed example of such partition is shown
in Figure 2.

4.2 Computation of the solution of (LOAD-OPT) with C >
2

As we saw before, the characterization of the solution of (LOAD-OPT) with
C = 2 requires to distinguish seven different cases. This suggest that the charac-
terization of the solution of (LOAD-OPT) with an arbitrary number of classes is
to be out of reach. However, we provide a fixed-point algorithm using the result
of Proposition 2. The pseudocode of this algorithm is shown in Algorithm 1.



12

Algorithm 1 Fixed-point Algorithm to compute the solution of (LOAD-OPT).

1: INITIALIZE traffic intensities: η1, . . . , ηC ;
capacity of the servers: r0, r1, . . . , rC ;
holding costs of the servers: c0, c1, . . . , cC ;
partition of K: C0, Cd and Cb

2: COMPUTE ρ0 using C0, Cd and Cb.
3: SET D0 = Db = Dd = ∅.
4: SET δj =

√
cj/rj
c0/r0

, j = 1, . . . , C.

5: while D0 6= C0 or Db 6= Cb or Dd 6= Cd do
6: SET D0 = C0 and Db = Cb and Dd = Cd.
7: SET C0 = Cb = Cd = ∅.
8: for all i ∈ K do
9: if δi ≥ 1

1−ρ0 then

10: UPDATE C0 = C0 ∪ {i}.
11: else

12: if δi >
1− ηiri
1−ρ0 then

13: UPDATE Cb = Cb ∪ {i}.
14: else
15: UPDATE Cd = Cd ∪ {i}.
16: end if
17: end if
18: end for
19: UPDATE ρ0 using C0, Cd and Cb.
20: end while
21: COMPUTE ρ1, . . . , ρC using C0, Cd and Cb.
22: return ρ0, ρ1, . . . , ρC .

The main idea of this algorithm is that it starts from an initial partition C0, Cb
and Cd that is used to compute ρ0 (see Lines 2 and 19). This value of ρ0 is
then used to determine the set of classes that belong respectively to C0 (see
Line 9-10), to Cb (see Line 12-13) and to Cd (see Line 14-15). The algorithm
stops in the first iteration where C0, Cb and Cd do not change. When this oc-
curs, according to Proposition 2, the optimal loads are obtained using (10) and
(11) with the resulting partition of the algorithm. Unfortunately, we did not
succeed is showing the convergence of this algorithm. However, as we will see
in the numerical section, we study the converge of this algorithm and, in all
the experiments we have carried out, the convergence is given in a very small
number of steps.

We remark that this algorithm can be also used to analyze the economies
when including a multi-skilled server into a system with C dedicated servers.
For this purpose, we need to initiate the algorithm with an initial partition
such that Cd = K and C0 = Cb = ∅ and with some values of η1, . . . , ηC and
r1, . . . , rC such that the system with only dedicated servers is stable. In that



13

case, the output of the algorithm will be one of the following possibilities: (i) the
algorithm stops after the first iteration and (ii) the algorithm does not stop after
the first iteration. In the former case, we can conclude that it is not beneficial
to add a multi-skilled server, whereas in the latter one we can compare the
cost at the initial state and the cost when the algorithm stops to compare the
performance of both systems.

5 Performance Analysis

We now determine the scenarios in which it is profitable to either train or hire
multi-skilled agents. For this, we compare the value of the objective function
when there are only dedicated servers to that with also a multi-skilled one, as
well as the case in which all the servers are multi-skilled and can serve all the
jobs.

5.1 Comparison with All Full-Skilled Servers System

First, we compare the cost of the model with C dedicated servers and a single
full-skilled server with the cost a system formed by C + 1 servers with the same
values of the holding costs and capacities as Server 0, but all the servers can
serve jobs of all the classes. We call the latter model ASSAC (All Servers Serve
All Classes).

Lemma 2. Consider that ηj → 0 for all j > 1 and δ1
1− η1r1

< 1. Then, the cost of

the system with dedicated servers is δ21 times smaller than the cost of the ASSAC
model when η1 is small enough.

Proof. In the system with dedicated servers, when δ1
1− η1r1

< 1 and ηj → 0 for all

j > 1, all the jobs of class 1 are executed in Server 1 and the load of the rest of
the servers is zero. Hence, the cost of this system is∑

j∈S
cj

ρj
1− ρj

= c1

η1
r1

1− η1
r1

. (12)

In the ASSAC model, the traffic is uniformly shared among all the servers
and, therefore, the cost of this system when δ1

1− η1r1
< 1 and ηj → 0 for all j > 1

is ∑
j∈S

cj
ρj

1− ρj
= c0

η1
r0

1− η1
(C+1)r0

. (13)

When η1 is small enough, (12) and (13) are approximately c1η1
r1

and c0η1
r0

,
respectively. And the desired result thus follows since ratio of the former and
the latter is δ21 .

From the above lemma, we have that the optimal cost of the system with
dedicated servers is smaller than that of ASSAC in the considered regime.



14

Proposition 6. Consider that ηj → 0 for all j > 1 and δ1
1− η1r1

< 1. Then, the

optimal cost of (LOAD-OPT) is smaller than the optimal cost of ASSAC when
η1 is small enough.

We now show that the optimal cost of (LOAD-OPT) can be larger than that
of ASSAC. The intuition behind this result is that the stability region of the
ASSAC model is wider than the stability region for the model with one dedicated
server. By taking the load close to the boundary of the stability region of the
model with one dedicated server, the cost can be made to go infinity. For the
ASSAC model, however, the availability of spare capacity means that the cost
remains finite.

Proposition 7. Consider that ηj → 0 for all j = 2, . . . , C and η1 → r0 +
r1. Then, the optimal cost of ASSAC is smaller than the optimal cost of
(LOAD-OPT).

Proof. We first observe that the cost of ASSAC when ηj → 0 for all j > 1 and
and η1 → r0 + r1 is given by

c0(C + 1)

r0+r1
(C+1)r0

1− r0+r1
(C+1)r0

= c0

r0+r1
r0

1− r0+r1
(C+1)r0

,

which is clearly finite.
However, for the model with dedicated servers, class-1 jobs are served by

Server 0 and Server 1, whose load tends to one when η1 → r0 + r1. Therefore,
its cost tends to infinity.

From the above propositions, it follows the existence of a switching curve
when δ1 < 1. In Section 6, we study numerically this curve.

5.2 Comparison with No Sharing System

We consider a system formed by C + 1 dedicated servers, but Server 0 can only
serve jobs of class 1, whereas for i ≥ 2 Server i can serve only jobs of class i.
We call this model as system without sharing since jobs of different classes are
not served in the same server. We compare the optimal cost of this system with
the optimal cost of (LOAD-OPT).

In Proposition 7, we have shown that the optimal cost of (LOAD-OPT)
tends to infinity when η1 → r0 + r1 and ηj → 0 for j = 2, . . . , C, whereas the
optimal cost of ASSAC is finite. In the following result, we show that there is a
regime where the optimal cost of the system without sharing is infinity, where
the optimal cost of (LOAD-OPT) is finite. The intuition is similar here when
we note that the stability region of the no-sharing model is included in that of
the model with one shared server.

Proposition 8. Consider that ηj → 0 for all j = 1, . . . , C − 1 and ηC → rC .
Then, the optimal cost of the system without sharing is larger than the optimal
cost of (LOAD-OPT).



15

Figure 3: Comparison of optimal costs of Section 5.1 when δi < 1 for i = 1, 2.

6 Numerical Experiments

In this section, we present the numerical experiments that complement the main
theoretical findings of this article.

6.1 Comparison with ASSAC

We first focus on the performance comparison of Section 5.1, where we showed
the existence of a switching curve when δ1 < 1. For C = 2, we analyze the
value of the objetive function of the models under comparison in Section 5.1,
which are the M model (i.e., the model we consider in Section 4.1) and the
ASSAC model with three servers. In Fig. 3, we fix the values of the capacities
and holding costs and we consider η1 and η2 such that both models are stable,
that is, when ηi < r0 + ri, for i = 1, 2 and η1 + η2 < r1 + r2 + r0. We set
r1 = r2 = r0 = 1 and c0 = 20, c1 = 1 and c2 = 2. We represent with ’x’
where the cost of the ASSAC model is smaller and with a filled ’o’ the region
where the value of the objective function of the M model is smaller. As it can
be observed in Fig. 3, the switching curve is unique, that is, when we increase
η1 (or η2) there is a single value where the model that outperforms changes.
Another interesting conclusion of this experiment is that the region where the
M model outperforms is very large.



16

Figure 4: Ratio of the optimal costs under comparison in Section 5.2 (η1 ∈ (0, 2)
and η2 ∈ (0, 1)).

6.2 Comparison with no-sharing system

In the next set of experiments, we concentrate on the performance comparison
of Section 5.2. We compare the value of the objective function of both models
for the values of η1 and η2 such that both systems are stable, i.e., η1 < r0 + r1
and η2 < r2 considering the same values of the parameters as in Fig. 3. As we
said in Section 5.2, the stability region of the system without sharing is smaller
than that of the M model. This implies that M model outperforms the system
without sharing when η2 → 1. This phenomenon can be clearly observed in
Fig. 4. We are also interested in comparing these models out of the boundary.
For this purpose, we present in Fig. 5 a zoomed version of Fig. 4. From this
illustration, we conclude that the performance of both models is very similar
when η1 ∈ (0, 2) and η2 ∈ (0, 0.8).

6.3 The solution of (LOAD-OPT) for C > 2

We now study the Algorithm 1 since, as we said before, its convergence ensures
that the solution of (LOAD-OPT) is obtained. We first consider a system with
C = 5 classes of traffic and the values of the parameters presented in Table 1.
We have chosen these parameters since the solution of (LOAD-OPT) for these
values satisfies that Cd = {3}, C0 = {4} and Cb = {1, 2, 5}, i.e., all the sets of
the partition are non-empty.

We consider three different initial conditions: first, all the classes belong to
Cd (see solid line in Figure 6); second, classes 1, 3 and 4 belong to Cd, whereas



17

Figure 5: Ratio of the optimal costs under comparison in Section 5.2 (η1 ∈ (0, 2)
and η2 ∈ (0, 0.8)).

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5
rj 25 34 38 39 13 27
cj 5 10 11 6 86 14
ηj 28 33 20 12 24

Table 1: Parameters of the system considered in Section 6.3.

classes 2 and 5 to Cb (see dashed line in Figure 6); and finally, classes 1, 2, 3
and 4 belong to Cd and class 5 to Cb (see dotted line in Figure 6).

We illustrate in Figure 6 the evolution of the loads of each server over the
iterations of the algorithm. In the upper line of Figure 6 we show the loads of
Server 0, Server 1 and Server 2, whereas in the bottom line the loads of Server 3,
Server 4 and Server 5. We observe that, when the algorithm converges, the load
of Server 4 is zero, which means that, for this case, ρ∗4 = 0. We also see that,
for Server 3, the initial load in the scenario that is represented by the solid line
(that is, the scenario where all the classes send all the traffic to its dedicated
server) equals to the load when the algorithm converges. This means that, for
class 3, we have that ρ∗3 = η3

r3
.

It is important to remark that, as we can also observe in Figure 6, the algo-
rithm converges to the same values for the three different initial partitions under
consideration. We have also started the system with other initial partitions and
the obtained results confirmed that the algorithm always converges. Another
interesting property of this algorithm is that the number of iterations required
to reach the convergence is very small. Indeed, when the initial partition of
K is such that all the classes belong to Cd, the algorithm converges after 12
iterations. Moreover, for the rest of the cases, the algorithm converges for a less



18

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

s

Evolution of S0

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

s

Evolution of S1

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

s

Evolution of S2

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

s

Evolution of S3

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

s

Evolution of S4

 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

s

Evolution of S5

Figure 6: Convergence of the fixed-point algorithm presented in Section 4.2.
The x-axis represents the iterations of the algorithm and the y-axis the load of
each server.

number of iterations. When the initial partition of K is such that classes 1, 3
and 4 belong to Cd and classes 2 and 5 to Cb, it converges after 2 iterations and
when the initial partition of K is such that classes 1, 2, 3 and 4 belong to Cd
and class 5 to Cb, it converges after 3 iterations.

We now present further numerical work we have performed to analyze the
convergence of Algorithm 1 for larger systems. For this set of experiments,
we consider that the number of dedicated servers, C, varies from 10 to 200
with step 10. For each case we run our algorithm 10 times where, in each run,
the parameters of the system are randomly chosen (but satisfying the stability
condition); the results are depicted in Figure 7, where the blue bars represent
the minimum number of iterations required for convergence and the yellow bars



19

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Servers

0

1

2

3

4

5

6

7

8

9

Ite
ra

tio
ns

Max and Min number of iterations until convergence
Min iterations
Max iterations

Figure 7: Minimum and maximum number of iterations until convergence for
systems of different size.

the difference up to the maximum. The main conclusions of these experiments
are twofold: first, we observe that the algorithm converges in all the cases; and
second, that the number of iterations required to converge varies between 2 and
6 in all the cases. This means that the convergence of this algorithm is very fast
even for large systems with 200 dedicated servers.

7 Conclusions

We study the optimal Bernoulli routing in a system with C dedicated servers
and a single multi-skilled server. We first provide a necessary and sufficient
condition for the stability of the system. We then reformulate this problem
as a optimization problem in terms of the loads of the system and we show
the equivalence of both problems. We provide structural properties on the
solution of the derived problem, which allows us to fully characterize the optimal
loads of the system when C = 2 and also to present a fixed point algorithm
whose convergence ensure that the optimal loads are obtained. We compare
the performance of this system with optimal loads with a system where all
the servers are multi-skilled and also with a system where all the servers are
dedicated. Finally, we explore numerically the convergence of the fixed point
algorithm and show that, in all the considered cases, the algorithm converges
in a very few number of steps.



20

For future work, we are interested in generalizing the results of this article
to systems with a more complex topology. Besides, we think that an interesting
extension of the performance analysis of this work would be to consider other
popular load balancing policies such as Power of Two and Join the Shortest
Queue.

References

[1] I. Taboada, S. Aalto, P. Lassila, F. Liberal, Delay and energy-aware
load balancing in ultra-dense heterogeneous 5G networks, Transactions on
Emerging Telecommunications Technologies 28 (9) (2017) e3170.

[2] E. Altman, U. Ayesta, B. J. Prabhu, Load balancing in processor sharing
systems, Telecommunication Systems 47 (1-2) (2011) 35–48.

[3] B. Gaujal, E. Hyon, A. Jean-Marie, Optimal Routing in Two Parallel
Queues with Exponential Service Times, Discrete Event Dynamic Systems
16 (1) (2006) 71–107. doi:10.1007/s10626-006-6179-3.

[4] M. Mitzenmacher, The Power of Two Choices in Randomized Load Bal-
ancing, IEEE Trans. Parallel Distrib. Syst. 12 (10) (2001) 10941104.

[5] N. D. Vvedenskaya, R. L. Dobrushin, F. I. Karpelevich, Queueing system
with selection of the shortest of two queues: An asymptotic approach, Prob-
lems of Information Transmission 32 (1) (1996) 15–27.

[6] C. Graham, Chaoticity on path space for a queueing network with selection
of the shortest queue among several, J. Appl. Probab. 37 (1) (2000) 198–
211. doi:10.1239/jap/1014842277.

[7] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, A. Greenberg, Join-Idle-
Queue: A Novel Load Balancing Algorithm for Dynamically Scalable Web
Services, Perform. Eval. 68 (11) (2011) 1056–1071.

[8] M. Harchol-Balter, M. E. Crovella, C. D. Murta, On choosing a task as-
signment policy for a distributed server system, Journal of Parallel and
Distributed Computing 59 (2) (1999) 204–228.

[9] H. Feng, V. Misra, D. Rubenstein, Optimal state-free, size-aware dispatch-
ing for heterogeneous M/G/-type systems, Performance Evaluation 62 (1-4)
(2005) 475–492.

[10] M. Harchol-Balter, Task assignment with unknown duration, in: Proceed-
ings 20th IEEE International Conference on Distributed Computing Sys-
tems, IEEE, 2000, pp. 214–224.

[11] J.-M. Fourneau, Modeling green data-centers and jobs balancing with energy
packet networks and interrupted Poisson energy arrivals, SN Computer
Science 1 (1) (2020) 28.



21

[12] Z. Liu, M. Lin, A. Wierman, S. Low, L. L. H. Andrew, Greening Geographi-
cal Load Balancing, IEEE/ACM Transactions on Networking 23 (2) (2015)
657–671.

[13] G. Koole, A. Pot, J. Talim, Routing heuristics for multi-skill call centers,
Vol. 2, 2003, pp. 1813–1816.

[14] R. B. Wallace, W. Whitt, A Staffing Algorithm for Call Centers with Skill-
Based Routing, Manufacturing & Service Operations Management 7 (4)
(2005) 276294.

[15] J. Chen, J. Do, P. Shi, A survey on skill-based routing with applications to
service operations management, Queueing Systems 96 (2020) 53–82.

[16] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia, Reduc-
ing Latency via Redundant Requests: Exact Analysis, in: Proceedings of
the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS 15, Association for
Computing Machinery, New York, NY, USA, 2015, p. 347360.

[17] T. Bonald, C. Comte, F. Mathieu, Performance of Balanced Fairness in
Resource Pools: A Recursive Approach, Proc. ACM Meas. Anal. Comput.
Syst. 1 (2) (2017). doi:10.1145/3154500.

A Proof of Proposition 1

We first show that if there exists a subset A ⊂ K such that
∑
i∈A ηi > r0 +∑

i∈A ri, then the system is not stable.
We know from (1) and (2) that

r0ρ0 +
∑
i∈A

riρi =
∑
i∈K

ηi(1− pi) +
∑
i∈A

ηi(1− pi)

=
∑
i∈A

ηi +
∑
i∈K\A

ηi(1− pi)

≥
∑
i∈A

ηi

> r0 +
∑
i∈A

ri.

Therefore, we have obtained that r0ρ0+
∑
i∈A riρi > r0+

∑
i∈A ri, which requires

that, at least, the load of one server is larger than one, i.e., that the system is
not stable.

Let ε > 0 small. We now show that, if (6) holds, then the system is stable.
For this purpose, we define the following routing strategy: for all i ∈ K such
that ηi < ri, pi = 1− ε and for all i ∈ K such that ηi ≥ ri, pi = ri

ηi
(1− ε). For



22

this choice, it is clear that ρj < 1 for all j ∈ K. We now focus on Server 0 and
we aim to show that ∑

i∈K
ηi(1− pi) < r0.

We denote by K∗ the set of classes such that ηi ≥ ri. Hence, the above
expression is satisfied if and only if∑

i∈K\K∗

ηiε+
∑
i∈K∗

ηi(1− pi) < r0

Hence, ∑
i∈K\K∗

ηiε+
∑
i∈K∗

ηi

(
1− ri

ηi
(1− ε)

)
< r0 ⇐⇒

∑
i∈K\K∗

ηiε+
∑
i∈K∗

(ηi − ri(1− ε)) < r0 ⇐⇒

∑
i∈K\K∗

ηiε+
∑
i∈K∗

(ηi − ri + riε) < r0

We know from (6) that
∑
i∈K∗(ηi − ri) < r0 and, therefore, the above in-

equality is satisfied if and only if

ε

 ∑
i∈K\K∗

ηi +
∑
i∈K∗

ri

 < r0 −
∑
i∈K∗

(ηi − ri).

In other words, the desired result follows if we choose ε > 0 such that

ε <
r0 −

∑
i∈K∗(ηi − ri)(∑

i∈K\K∗ ηi +
∑
i∈K∗ ri

) .
B Proof of Proposition 2

In the following result, we provide a property that will be useful to show the
result of Proposition 2.

Lemma 3. Let C̃ ⊆ K. Then,∑
i∈C̃

ηi = r0ρ0 +
∑
j∈C̃

rjρj ⇐⇒ Cb ∪ C0 ⊆ C̃.

Proof. To simplify the notation, we writeD = Cb∪C0. IfD = ∅, then ρ0 = 0 and
ρj = ηj/rj for j = 1, 2, . . . , C, which implies clearly that

∑
i∈A ηi =

∑
j∈SA ρjrj

for all A ⊂ K.



23

We now focus on the case D 6= ∅. We know that

ρj < ηj/rj , ∀j ∈ D and ρj = ηj/rj , ∀j ∈ K \D. (14)

We now observe that K = D
⋃

(K \D) and therefore from (7)∑
i∈D

ηi +
∑

i∈K\D

ηi = r0ρ0 +
∑
i∈D

riρi +
∑

i∈K\D

riρi.

From ρj = ηj/rj , ∀j ∈ K \D, it follows that∑
i∈D

ηi +
∑
i∈A

ηi = r0ρ0 +
∑
j∈D

rjρj +
∑
j∈A

rjρj , ∀A ⊆ K \D. (15)

Therefore, for any C̃ ⊆ K such that D ⊆ C̃ the constraint (9) is satisfied as an
equality. Besides, we now show that for any subset that does not contain D, the
constraint (9) is satisfied as an inequality. For all B ⊂ D, (15) can be written
as follows:∑
i∈B

ηi +
∑

i∈D\B

ηi +
∑
i∈A

ηi = r0ρ0 +
∑
j∈B

rjρj +
∑

j∈D\B

rjρj +
∑
j∈A

rjρj , ∀A ⊆ K \D,

which, by ρj < ηj/rj ∀j ∈ D, gives that∑
i∈B

ηi +
∑
i∈A

ηi =r0ρ0 +
∑
j∈B

rjρj +
( ∑
j∈D\B

rjρj −
∑

i∈D\B

ηi

)
+
∑
j∈A

rjρj

<r0ρ0 +
∑
j∈B

rjρj +
∑
j∈A

rjρj , ∀A ⊆ K \D.

And the desired result follows.

We now prove the result of Proposition 2.

Proof. The Lagrangian corresponding to (LOAD-OPT) is

L(ρ,ν, ζ, γ, ξ) =
c0ρ0

1− ρ0
+

C∑
j=1

cjρj
1− ρj

+

C∑
j=0

νj(−ρj) +

C∑
j=0

ζj(ρj − 1)

+ γ
( C∑
i=1

ηi − r0ρ0 −
C∑
j=1

rjρj

)
+
∑
A⊂K
A6=∅

ξA

(∑
i∈A

ηi − r0ρ0 −
∑
j∈A

rjρj

)



24

Given that the optimization problem is convex, ρ∗,ν∗, ζ∗, γ∗, ξ∗ is a solution of
(LOAD-OPT) if it satisfies Karush-Kuhn-Tucker conditions:

0 ≤ ρ∗j ≤ 1, ∀j = 0, 1, . . . , C (16)
c0

(1− ρ∗0)2
− ν∗0 + ζ∗0 − r0

(
γ∗ +

∑
A⊂K
A6=∅

ξ∗A
)

= 0 (17)

cj
(1− ρ∗j )2

− ν∗j + ζ∗j − rj
(
γ∗ +

∑
A⊂K
j∈A

ξ∗A
)

= 0, ∀j = 1, 2, . . . , C (18)

ν∗j ≥ 0, ζ∗j ≥ 0, γ∗ ∈ R, ξ∗A ≥ 0, ∀j = 0, 1, . . . , C, ∀A ⊂ K, A 6= ∅ (19)

ν∗j ρ
∗
j = 0, ζ∗j (ρ∗j − 1) = 0, ∀j = 0, 1, . . . , C (20)

C∑
i=1

ηi = r0ρ
∗
0 +

C∑
j=1

rjρ
∗
j (21)

∑
i∈A

ηi ≤ r0ρ∗0 +
∑
j∈A

rjρ
∗
j , ∀A ⊂ K, A 6= ∅ (22)

ξ∗A

(∑
i∈A

ηi − r0ρ∗0 −
∑
j∈A

rjρ
∗
j

)
= 0, ∀A ⊂ K, A 6= ∅. (23)

We observe that the objective function tends to infinity when ρj → 1, which
implies that ρ∗j < 1, ∀j = 0, 1, . . . , C and, as a consequence of this and from (20),
ζ∗j = 0, ∀j = 0, 1, . . . , C. Furthermore, from Lemma 3 and (23), we conclude
that ∀A ∈ K that does not contain Cb ∪ C0, its multiplier verifies that ξ∗A = 0,
because for those subsets the constraint (9) is satisfied as an inequality.

For Server 0, we know that ρ∗0 = 0 if C0∪Cb = ∅ and ρ0 > 0 otherwise. This
clearly implies that ν∗0 ≥ 0 if C0 ∪ Cb = ∅ and ν∗0 = 0 otherwise. For all j ∈ K,
we know that ρ∗j = ηj/rj if j ∈ Cd, whereas ρ∗j < ηj/rj otherwise. This clearly
implies that ν∗j = 0 if j ∈ Cd. We also know that ν∗j = 0 if j ∈ Cb because, in
this case, ρ∗j > 0, whereas if j ∈ C0, we have that ν∗j ≥ 0.

We first prove this result when Cb∪C0 = ∅. For this case, the load of Server
0 is zero and, thus, it is enough to show that δj < 1 − ηj/rj . From (17) and
(18), we get that

c0 − ν∗0 − r0
(
γ∗ +

∑
A⊂K
A6=∅

ξ∗A
)

= 0 (24)

cj
(1− ηj/rj)2

− rj
(
γ∗ +

∑
A⊂K
j∈A

ξ∗A
)

= 0, ∀j = 1, 2, . . . , C. (25)

From (24) and since ν∗0 ≥ 0, it results that

ν∗0 = c0 − r0
(
γ∗ +

∑
A⊂K
A 6=∅

ξ∗A
)
≥ 0 ⇐⇒ c0

r0
≥ γ∗ +

∑
A⊂K
A6=∅

ξ∗A,



25

From (25), we obtain that

γ∗ +
∑
A⊂K
j∈A

ξ∗A =
cj
rj

1

(1− ηj/rj)2
, ∀j = 1, 2, . . . , C.

Therefore,

cj
rj

1

(1− ηj/rj)2
= γ∗ +

∑
A⊂K
j∈A

ξ∗A ≤ γ∗ +
∑
A⊂K
A 6=∅

ξ∗A ≤
c0
r0
,

which gives the desired condition, i.e., δj ≤ 1− ηj/rj , ∀j = 1, 2, . . . , C.
We focus on the case C0 6= ∅ or Cb 6= ∅. We note that (17) and (18) can be

written as follows:

c0
(1− ρ∗0)2

− r0
(
γ∗ +

∑
A⊂K

Cb∪C0⊆A

ξ∗A
)

= 0 (26)

cj − ν∗j − rj
(
γ∗ +

∑
A⊂K

Cb∪C0⊆A

ξ∗A
)

= 0, ∀j ∈ C0 (27)

cj
(1− ηj/rj)2

− rj
(
γ∗ +

∑
A⊂K

Cb∪C0⊆A
j∈A

ξ∗A
)

= 0, ∀j ∈ Cd. (28)

cj
(1− ρ∗j )2

− rj
(
γ∗ +

∑
A⊂K

Cb∪C0⊆A
j∈A

ξ∗A
)

= 0, ∀j ∈ Cb. (29)

We aim to show that, for all j ∈ C0, δj ≥ 1
1−ρ∗0

, and for all j ∈ Cb 1
1−ρ∗0

>

δj >
1−ηj/rj
1−ρ∗0

.

For the first condition, we observe that from (26) and (27), it follows that,
for all j ∈ C0,

γ∗ +
∑
A⊂K
Cb⊆A

ξ∗A =
c0
r0

1

(1− ρ∗0)2
=
cj
rj
−
ν∗j
rj
,

which, using that ν∗j ≥ 0, gives that

δj ≥
1

1− ρ∗0
.

We now show the second condition, i.e., 1
1−ρ∗0

> δj >
1−ηj/rj
1−ρ∗0

for all j ∈ Cb.



26

From (26) and (29), it follows that, for all j ∈ Cb,

γ∗ +
∑
A⊂K

Cb∪C0⊆A

ξ∗A =
c0
r0

1

(1− ρ∗0)2
=
cj
rj

1

(1− ρ∗j )2
(30)

⇐⇒ 0 =
cj
rj

1

(1− ρ∗j )2
− c0
r0

1

(1− ρ∗0)2
(31)

⇐⇒ δj =
1− ρ∗j
1− ρ∗0

, (32)

which gives that
ρ∗j = 1− δj(1− ρ∗0),

as desired.
Using the last expression and that, for j ∈ Cb, 0 < ρ∗j < ηj/rj , the desired

result follows, i.e.,

1

1− ρ∗0
> δj =

1− ρ∗j
1− ρ∗0

>
1− ηj/rj

1− ρ∗0
.

To finish, we compute the loads of all the servers. First, for j ∈ Cd, we have
clearly that ρ∗j =

ηj
rj

. Besides, we use that for all j ∈ Cb, ρ∗j = 1 − δj(1 − ρ∗0),

and from the expression (7), it follows that

C∑
i=1

ηi = r0ρ
∗
0 +

C∑
j=1

rjρ
∗
j ⇐⇒

C∑
i=1

ηi = r0ρ
∗
0 +

∑
j∈Cb

rj(1− δj(1− ρ∗0)) +
∑
i∈Cd

ηi.

And rearranging both sides of the above expression, we obtain that

ρ∗0 = 1−
r0 +

∑
j∈Cb rj −

∑
i∈Cb∪C0

ηi

r0 +
∑
j∈Cb δjrj

.

And the desired result follows.


