Cost-optimal role of wind and solar power in Europe under climate change

Gildas SIGGINI¹, Sofia G. Simoes², Edi ASSOUMOU¹, Sophie DEMASSEY¹

¹ Centre de Mathématiques Appliquées, France, ² LNEG – National Laboratory for Energy and Geology, Portugal

EMP-E 2020: Modelling Climate Neutrality for the European Green Deal
Oct. 2020
The European power system

THE EU27+ power sector

- 1012 GW of installed capacity (260 GW of wind and solar)
- ~40% of the production coming from fossil fuels
- ~1000 Mt CO2 coming from public electricity and heat production

Share of total generation per source

What do we study? : EU power sector decarbonization

Our decarbonization objective : Identify planification pathways corresponding to limits on cumulative CO emissions from 2020 to 2050
TIMES Model : eTIMES-EU

- **Electric system model**
- **Spatial resolution**: 29 regions considered aggregated in 8 interconnected groups
- **Temporal resolution**: Milestone years represented by 64 time slices (3h step for 2 typical days and 4 seasons)
- **Linear optimization model**: minimization of the total discounted cost of the system
- **Decision years**: 2016, 2017, 2020, 2025, 2030, 2035, 2040, 2045, 2050
Integration of climate variability

A thorough pipeline from climate data projections to national energy system input indicators from 2030 to 2050:

- Hydro capacity factors
- Wind and solar capacity factors
- Variation in electricity demand (volumes and intra-annual structure)
- Variation in heat demand (intra-annual structure)
Scenario description

Default hypotheses:
- Initial demand* from EU Reference Scenario
- Country specific development rhythms calibrated with historical values
- Announced coal phase outs arrive at planned date
- No targets on France nuclear activity
- Renewable potentials calibrated with JRC-ENSPRESO database and interconnections until 2030 with TYNDP2016
- Fuel and technology costs calibrated with IRENA and WEO2016
Results

CO2 emissions reduction compared to 2016

<table>
<thead>
<tr>
<th>Year/Scenario</th>
<th>BUDGET_50</th>
<th>BUDGET_60</th>
<th>BUDGET_70</th>
<th>BUDGET_80</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>-37.26%</td>
<td>-30.81%</td>
<td>-22.81%</td>
<td>-16.48%</td>
</tr>
<tr>
<td>2050</td>
<td>-83.23%</td>
<td>-66.49%</td>
<td>-51.05%</td>
<td>-33.71%</td>
</tr>
</tbody>
</table>

- At least **37% of emissions reduction** needed by 2030 compared to 2016 levels to be on track with a budget of 16.7 Gt

Share of electricity generated by solar and wind in 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Solar</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUDGET_50</td>
<td>28%</td>
<td>31%</td>
</tr>
<tr>
<td>BUDGET_60</td>
<td>28%</td>
<td>30%</td>
</tr>
<tr>
<td>BUDGET_70</td>
<td>25%</td>
<td>28%</td>
</tr>
<tr>
<td>BUDGET_80</td>
<td>22%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Volume of electricity flows in TWh in 2050

- Solar and wind contribute to at least 57% of electricity generation even in the BUDGET_80 scenario
- Physical electricity flows raise by 11% between the two extreme scenarios
You’re Invited to our results showcase!

Join Clim2Power on 9 November:

We are pleased to invite you to Clim2power’s Results Showcase Session to be held online on 9 November 2020. Members of the Clim2power consortium will present project results and explore opportunities for future collaborations. Please save the date. More details will be provided in the following weeks.

www.clim2power.com
Thanks!

More on CLIM2POWER:

https://clim2power.com/
sofia.simoes@lneg.pt

Project CLIM2POWER is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWF (AT), FCT (PT), EPA (IE), ANR (FR) with co-funding by the European Union (Grant 690462).