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Abstract

Motivation: Nowadays, virtual screening (VS) plays a major role in the process of drug development.
Nonetheless, an accurate estimation of binding affinities, which is crucial at all stages, is not trivial and
may require target-specific fine-tuning. Furthermore, drug design also requires improved predictions for
putative secondary targets among which is Estrogen Receptor alpha (ER«).

Results: VS based on combinations of Structure-Based VS (SBVS) and Ligand-Based VS (LBVS) is gain-
ing momentum to help characterizing secondary targets of xenobiotics (including drugs and pollutants).
In this study, we propose an integrated approach using ligand docking based on multiple structural en-
sembles to reflect the conformational flexibility of the receptor. Then, we investigate the impact of the two
different types of features (structure-based docking descriptors and ligand-based molecular descriptors)
for affinity predictions based on a random forest algorithm. We find that ligand-based features have limited
predictive power (rp =0.69, R%=0.47), compared to structure-based features (rp =0.78, R%=0.60) while
their combination maintains the overall accuracy (rp =0.77, R*=0.56). Extending the training dataset to
include xenobiotics, leads to a novel high-throughput affinity prediction method for ER« ligands (rp =0.85,
R?=0.71). Method’s robustness is tested on several ligand databases and performances are compared
with existing rescoring procedures. The presented prediction tool is provided to the community as a dedi-
cated satellite of the @ TOME server.

Availability: http://atomed.cbs.cnrs.fr/ATOME_V3/SERVER/EDMon_v3.html

Contact: schneider@cbs.cnrs.fr, labesse@cbs.cnrs.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite the fact that the efforts invested in drug development have con-
stantly increased during the last decades, the number of drug approvals
stays almost constant (Munos, 2009). Indeed, about 81% of all new drug
candidates fail (DiMasi et al., 2010), mainly due to a lack of drug effi-
ciency and/or side effects associated with off-target binding. In order to
reduce time and cost of drug development process, various computer aided
methods have been implemented. Two main techniques, namely Structure-
based and ligand-based virtual screening, are widely used (Lionta et al.,

2014; Lavecchia, 2015). They are now used in routine for hit identification
in order to prioritize compounds for experimental assays and they are also
gaining interest for lead optimization.

Ligand-based virtual screening (LBVS) methods are based on ana-
lyzing features of substructures and chemical properties related to activity
of the ligand. They are useful to search chemical libraries using global
or substructure similarity (Mestres and Knegtel, 2000), shape-matching
(Nicholls et al., 2010) or pharmacophores (Yang, 2010). The algorithms
used in those methods are in constant development and recent LBVS meth-
ods are based on data mining and machine learning (Lavecchia, 2015).
They do not require structural knowledge, but instead large datasets of
characterized ligands.

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“output” — 2019/3/12 — page 1 — #1



Schneider et al.

Structure-based virtual screening (SBVS) can be used to predict
the binding mode of drugs, to define the important specific interactions
between ligand and target and finally to discover a way to improve a given
drug by guiding further optimization. SBVS includes docking of candidate
ligands into a protein target, followed by evaluation of the likelihood of
binding in this pose using a scoring function with an important trade-off
between speed and accuracy (Cerqueira et al., 2015). Compared to LBVS,
whichis restricted to similar molecules the training had been performed on,
SBVS is applicable to completely new molecules but it requires knowledge
of the targeted structure (or reliable theoretical models). Moreover, affinity
cliffs caused by steric clashes, which result from very small changes of
the molecules, are more likely to be identified by SBVS methods than by
LBVS.

Combining LBVS with SBVS is emerging as a way to compensate
limitations of each of these complementary approaches. Indeed, there are
new attempts to combine both, thanks to the increasing number of both
atomic structures and affinity measurements. Usually, the combination of
LBVS and SBVS is performed in a sequential or parallel manner (Yu et al.,
2018; Zhang et al., 2017). The sequential approach uses both methods as
filter steps in a hierarchical procedure with increasing refinement. The
parallel approach compares the selected compounds of both methods and
retrieves either a consensus (selected by both) or a complementary se-
lection (top molecules from each approach) (Lavecchia and Di Giovanni,
2013). In recent works, sequential selection used interaction fingerprint
similarity on large docking outputs. Alternatively, one might apply a weak
similarity restraint such as a molecular shape restraint for the ligand (to be
classified as a shape-matching LBVS method) during the docking process
in SBVS as it is implemented in the docking software PLANTS (Korb
et al., 2009).

In the present study, we take advantage of a new interface between
PLANTS and the web server @ TOME (Pons and Labesse, 2009) to screen
multiple conformations in parallel (to be described in more details else-
where). It also allows us to systematically deduce shape restraints and
binding site boundaries based on the geometry of the original ligand from
the crystal structure in a fully automatic manner. Subsequent postprocess-
ing is performed using various chemoinformatics tools including several
scoring functions to predict protein-ligand affinity.

Ultimately, all the parameters computed to evaluate a ligand pose can
be used for machine learning. Indeed, the combination of LBVS and SBVS
with machine learning is an emerging approach to improve affinity pre-
diction (Wdjcikowski et al., 2017). Therefore, we evaluate applicability
of machine learning on the docking outputs of @ TOME and PLANTS
and ligand similarity measurements. In order to set up and evaluate this
development, we focused on a well known therapeutic target - the estrogen
receptor ERav.

The ER« is a steroid binding receptor playing a key role in a variety of
diseases due to its important role in development and physiology. The most
prominent examples are ER-based cancer therapies that focus on blocking
estrogen action in targeted tissues, with ERa being the main target for
treatment of ER-positive breast cancer (Ma et al., 2009). The development
of new and improved selective ER modulators is therefore still of high
interest for pharmaceutical companies to target tissues selectively and to
avoid resistance and adverse effects (Wang et al., 2018; Katzenellenbogen
et al., 2018; Baker and Lathe, 2018).

On the other hand, ERa can also be the unwanted target of drugs
or xenobiotics (Delfosse et al., 2012; Baker and Lathe, 2018) and has
been identified as anti-target that should be considered in toxicity tests
during drug development. Thus, a better understanding of the mechanism
of ligand recognition by ER« is of paramount importance for safer drug
design. Previously, dedicated prediction methods have been addressing the
question of whether a molecule is binding or not (Niu et al., 2016; Pinto
et al., 2016; Ribay et al., 2016; Mansouri et al., 2016), and traditional

structure-activity relationship (QSAR) modeling studies have been also
performed with varying success on this nuclear receptor (Waller et al.,
1995; Waller, 2004; Asikainen et al., 2004; Zhang et al., 2013; Zhao et al.,
2017; Hou et al., 2018).

Despite the fact that ER« is an already well characterized therapeutic
target (Ekena er al., 1997; Nettles et al., 2004), we are still lacking an
efficient and robust method for predicting the binding mode and affinity
of docked ligands. A large number of ER« crystal structures in complex
with ligands are now known and the binding affinity of hundreds of chem-
ical compounds have been experimentally determined. Therefore, ER«x
represents a perfect example to attempt a full characterization by combin-
ing SBVS with LBVS and employing machine learning in order to better
predict binding affinity and potential future drug profiles.

2 Approach

Here, we present an integrated approach for high accuracy affin-
ity predictions on the well known and intensively studied drug tar-
get ERa. First, a training set was built by systematic docking of
chemical compounds extracted from the BindingDB into the available
crystal structures of ERa. Scoring functions and other chemometric
information were gathered for the corresponding complexes and the
ligand. Then, we employed a random forest machine learning algo-
rithm on these features ranging from structure-based docking metrics
to ligand-based molecular descriptors. All virtual screening results
are made available at http://atome4.cbs.cnrs.fr/htbin-post/ AT23/MULTI-
RUN/FILTER/showform.cgi?WD=AT23/EG/38751543 and the devel-
oped prediction tool is provided to the community as an automatic predic-
tion extension within the @ TOME-EDMon server (http://atome4.
cbs.cnrs. fr/ATOME_V3/SERVER/EDMon_v3.html).

3 Materials and methods
3.1 Ligand datasets

3.1.1 BindingDB dataset

Two sets of experimentally tested ligands for the human ERa (UniPro-
tID: P03372) were extracted from BindingDB (Liu et al., 2007; Gilson
etal.,2016) (2018 dataset, updated 2018-04-01). One set contains ligands
with known inhibitory constant (Ki) as affinity measure, and a second set
contains ligands with half maximal inhibitory concentration (IC50) as an
affinity proxy.

A few peptides and a series of boron cluster containing molecules were
removed from both datasets, as it was not possible to generate proper 3D
conformations or charges for these molecules. The final sets contained 281
ligands (Ki set) and 1641 ligands (IC50 set), respectively. For training, we
preferred to focus on the Ki dataset since it corresponds to more direct
measurements while the IC50 dataset was used as a larger dataset for
method testing.

3.1.2 In-house xenobiotic dataset

The xenobiotic chemical data that was used first as an external testing
dataset and afterwards to build an extended training set, is an in-house
dataset of 66 ligands with measured affinities for ERa (Grimaldi et al.,
2015). These extra compounds correspond mostly to bisphenols, halo-
genated coumpounds, as well as natural macrocycles micmicking estradiol
(or phytoestrogens) but harboring distantly related chemical structures.

3.1.3 FDA ER« dataset
In order to have a second external validation, we used the Estrogen Re-
ceptor targeted dataset from the Endocrine Disruptor Knowledge Base
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Figure 1. Structure-based dataset generation approach. The ligand dataset was extracted

from the BindingDB (BDB), which uses VConf for 3D conformation generation and
VCharge for charge assignment. Two more partial charge models (MMFF and Gasteiger)
and two other 3D conformation generators (openbabel and FROG-2) were employed to
generate a total of 5 ligand sets. Those were submitted to the @ TOME server for docking
and complex evaluation. The @ TOME output datasets 'MMFF’, *Gast’, "BDB’, "OB3D’
and "Frog3D’ (containing the results of 20 dockings per ligand in different structures)

were grouped in three combined datasets, a different charge dataset ’dCharge’, a different
conformation dataset ’dConf’, and an ALL’ dataset.

(EDKB) provided by the U.S. Food & Drug Administration (FDA), named
here ER-EDKB dataset. The dataset contains 131 ER binders and 101
non-ER binders including natural ligands and xenochemicals that are struc-
turally different from drug-like molecules. For ER binders, the binding
affinity measure is reported as a relative binding activity (RBA), which
is based on an assay using rat uteri. Those cell-based measurements are
influenced by different factors, such as cellular permeability, and are un-
fortunately not directly comparable with direct Ki measures. Nevertheless,
we predicted affinities using all models and transformed the measured RBA
values back to pIC50 values (pIC50 = logi1o(RBA) — 8).

3.2 Generation of ligand conformations

On the ligand side, there are two factors that can have an impact on dock-
ing. One is the initial conformation submitted to a docking program. The
second factor are the atomic partial charges that have an impact on ligand
pose evaluation (scoring) and can be calculated using different models.
The initial ligand sets were downloaded from BindingDB (BDB) and have
3D conformations generated by VConf and partial charges generated by
VCharge (Chang and Gilson, 2003). We also tested two other charge mod-
els (Gasteiger and MMFF94 charges) instead of the default charge for
the 3D conformers built by Vconf. Two other 3D generators (OpenBabel
(OLBoyle et al., 2011) and Frog2 (Miteva et al., 2010)) using their default
charge (Gasteiger and MMFF94, respectively). This resulted in a total of 5
ligand sets. The ligand sets were then grouped based on variation on their
3D generation, their charges or all together as depicted in Figure 1.

3.3 Structure-based ligand docking

3.3.1 Ensemble docking
First, all liganded ER« structures available in the PDB (461 monomers)
were gathered using the @TOME server by submitting the ’canonical’

Table 1. Structure-based docking metrics

Metric name  Short description

PlantsFull PLANTS score (with anchor weight)

Plants PLANTS ChemPLP score (without weight)

PlantsLR PLANTS pKa (calculated by linear regression on PDBbind)
MedusaScore  Medusa original score

MedusaLR MedusaScore pKa (calculated by linear regression on PDBbind)
XScore XScore affinity score (pKa)

DSX DSX original score

DSXLR DSX pKa (calculated by linear regression on PDBbind)
AtomeScore @TOME pKa = mean(PLANTS, XScore, MedusaScore, DSX)
Tanimoto Similarity between candidate ligand and anchor ligand
AtomSA S.A. @TOME score

QMean QMean score of receptor model

AnchKd Affinity calculated between receptor/anchor (pKa)

AnchorFit Candidate/ligand superimposition score (PLANTS software)
LigandEnergy Internal energy of ligand (AMMP force field)

LPC LPC software score (receptor/ligand complementarity function)
PSim Similarity to receptor/ligand interaction profile in PDB template
CpxQuality Complex quality consensus score

LPE Ligand Position Error (SVM multi-variable linear regression)

amino acid sequence of ERar (UniProt identifier: P03372-1) with a speci-
fied sequence identity threshold of 90%. All gathered 461 monomers had
a sequence identity between 95% and 100% with the submitted sequence
and correspond to point mutants of the human ER«. Missing or substi-
tuted side-chains were modeled using SCWRL 3.0 (Wang et al., 2008)
using the strictly conserved side-chains fixed. By default, for each ligand
to be docked (e.g. from BDB), a set of 20 different template structures
were automatically selected among all available PDB structures. This se-
lection is based on the highest similarity (Tanimoto score) between the
uploaded ligand and the co-crystallized ligand present in a template. The
automatic virtual screening procedure implemented in the @ TOME server
uses the docking program PLANTS with its shape restraint functionality
(with a weighting of -3), using the original ligand of the screened struc-
ture as a pharmacophore. Of note, this ligand is also used to define the
boundaries of the binding site to be screened (using a distance cutoff of 8
A). So, not only the protein conformation is (slightly) distinct but various
cavity volume and extent are used in this parallel docking procedure. For
each template screened, only the best pose was kept. After docking and
structure alignment, the 20 computed poses were clustered by conforma-
tion similarity, and the most likely pose is selected automatically among
the largest cluster using a dedicated heuristics. Accordingly, we perform
ligand docking on conformational ensemble as an optimal procedure for
SBVS.

3.3.2 Structure-based molecular descriptors
Each docking pose is evaluated by various chemoinformatics tools (see
Table 1. Here, we take advantage of several re-scoring functions (namely
MedusaScore (Yin et al., 2008), DSX (Neudert and Klebe, 2011), or X-
SCORE (Wang et al., 2002)) recently embedded in @ TOME to derive a
consensus score (including also ChemPLP as used in PLANTS (Korb ez al.,
2006)) inorder to predict protein-ligand affinities. In addition, other eval-
uations are performed including model quality (e.g.: Qmean) and internal
ligand conformation.

The above parameters were important for structure-based screening,
and they were complemented by other information regarding the chemical
nature of ligands using additional molecular descriptors.
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Table 2. Ligand-based molecular descriptors

Descriptor name Short description

Weight molecular weight
VABC volume descriptor
AtomCount number of atoms
BondCount number of bonds

RotatableBondsCount number of rotatable bonds
AromaticBondsCount  number of aromatic bonds
HBondDonorCount number of hydrogen bond donors
HBondAcceptorCount number of hydrogen bond acceptors
TPSA Topological Polar Surface Area
prediction of logP based on the
atom-type method called XLogP
fraction of sp3 carbons to sp2 carbons

XLogP

HybridizationRatio

3.3.3 Ligand molecular descriptors

In order to include more information about the small molecules being
screened, molecular descriptors were calculated using the Chemistry De-
velopment Kit (CDK), a collection of open source Java libraries for
chemoinformatics (Guha, 2007). The descriptors were selected based on
their ability to represent the diversity of the ligand dataset, taking into ac-
count their orthogonality, and based on their variable importance score
during model training. The final set of 11 QSAR molecular descrip-
tors includes topological, geometrical, constitutional and charge based
descriptors and is listed in Table 2 with descriptor name and a short
description.

3.3.4 Combined structure/ligand descriptors

All 5 docking datasets (originating from the 5 different ligand sets)
provided 19 structure-based docking metrics for the 20 docking poses
computed for each ligand. For each metric, median and standard deviation
were computed and used as a unified instance. Ligand-based variables (11
CDK molecular descriptors) were added to the 19 structure-based metrics.
A correlation matrix with all descriptors used for the Ki-BDB dataset is
provided as heatmap (see Figure S3). Alternatively, the commonly used
MACCS fingerprints (166 features) were also tested for comparison.

3.4 Machine learning approaches

3.4.1 Algorithm selection and training

For all analyses, calculations and machine learning, the R language (ver-
sion 3.2.4) with RStudio was used. The random forest (RF) algorithm
provided by the R package ‘randomForest’ showed the highest accuracy in
an initial test (see Figure S1) when compared to 6 other machine learning
algorithms: linear regression (LinReg), decision tree (CARTree), Gra-
dient Boosting Machine (GBM), support vector machine (SVM) with a
linear kernel (SVM_L), a polynomial kernel (SVM_P), and a radial kernel
(SVM_R).

All algorithms were employed with default variable settings and 10-
fold cross validation. Major advantages of the RF algorithm are that it
handles non-linearities, numerical and categorical variables, and it gives
estimates of variable importance and generalization error. Therefore, ran-
dom forest was chosen as the most promising algorithm, since it seemed
the best adapted to our data. In order to avoid over-fitting of the models
we used stratified 10-fold cross validation repeated 10 times for all models
(unless otherwise indicated).

Alternatively, an external test set was built by taking a stratified selec-
tion of 20% of the whole dataset. The remaining 80% was used as training
set for the models.

Table 3. Pearson correlations (rp ) on all five datasets between experimental
affinities and scores from four scoring functions Plants, MedusaScore, DSX
and XScore, of (1) the best pose selected by @ TOME, and of (2) the median
scores of the four scoring functions, calculated on 20 dockings per ligand on
all five datasets.

Dataset name | Plants MedusaScore DSX XScore

(€)] rp on predictions for the best pose
Gast 0.042 0.154 0.129  0.060
MMFF 0.063 0.182 0.157 0.082
BDB 0.038 0.111 0.118 0.076

OB3D 0.109 0.180 0.143  0.129
Frog3D 0.022 0.132 0.118 0.040

2) rp on predictions over 20 poses
Gast -0.031 0.204 0.019 0.049
MMFF -0.025 0.192 0.038 0.054
BDB -0.019 0.087 0.022  0.059
OB3D -0.017 0.175 0.008 0.050

Frog3D -0.048 0.199 0.005 0.036

3.4.2 Comparison of different tree-based algorithms

The RF algorithm we used, has only one tunable hyperparameter that
can be adjusted for the present dataset. Therefore, we wondered whether
other tree-based ensemble algorithms with more tunable hyperparame-
ters offer an improved prediction accuracy when tuned more carefully.
In total, five different tree-based algorithms were employed on the same
Ki BindingDB2018 dataset for affinity prediction and subsequent perfor-
mance comparison. They are: random forest (RF), regularized random
forest (rRF), global regularized random forest (rRFglobal), Extreme Gra-
dient Boosted Trees (xgbTree), and Extreme Gradient Boosted Trees with
dropout (xgbDART). Here, Bayesian optimization was employed to se-
lect the best hyperparameters (5 to 7 depending on the method), which
demands a substantially increase in computational expense compared to
the one-variable optimization required for the RF algorithm.

3.5 Random forest regression modeling

Random forest models were then trained on each dataset separately
(CMMFF’, "Gast’, 'BDB’, ’OB3D’ and ’Frog3D’), on the combination
of the 3 different 3D conformation datasets ({"BDB’, ’OB3D’, "Frog3D’ }
="dConf’), on the combination of the 3 different partial charge datasets
({"MMFF’, ’Gast’, ’BDB’ } = *dCharge’), and on all 5 datasets combined
(CALL’) (compare Figure 1).

Besides the Pearson correlation, two further regression evaluation met-
rics were used to evaluate the model performance on the external test set.
First, the coefficient of determination (RQ) is calculated using the sum of
squares method. The second metric, the RMSE, also termed as Root Mean
Squared Deviation (RMSD) is the average deviation of the predictions
(predicted affinities) from the observations (measured affinities).

4 Results and Discussion

We developed and tested an automated and integrated structure- and ligand-
based approach to predict quickly accurate binding affinities for ERcv. This
approach takes into account structural variability from the ligand side by
using different 3D generators and different charge models, and from the
receptor side by using 20 structures for each ligand to be docked. Here, we
give access to the docking poses while we evaluate thoroughly the affinity
predictions performed using various methods.

4.1 Predictions using re-scoring methods

In a first attempt, the predictive power of the four different scoring
functions implemented in the @ TOME server was assessed.
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The Pearson correlations between affinity measurement and the median
scores (calculated on 20 docking poses per ligand) are very low for all
generated datasets (see Table 3). Even the most recent scoring functions
(MedusaScore and DSX) performed poorly in this test. Interestingly, the
selection of the best pose among the 20 computed ones slightly improves
the correlation between predicted and measured affinities for 3 scoring
functions but for MedusaScore which appeared as the most robust and the
best for the various ligand description schemes.

However, the overall correlation is too low for fine ligand ranking
and indicates a limitation of the general-purpose scoring functions. This
prompted us to develop a more sophisticated method that should be able
to combine advantages of different docking evaluations (structure-based
and ligand-based ones) and potentially take into account specific features.

4.2 Random Forest regression - model training

4.2.1 Structure-based and ligand-based partial models

To investigate the actual affinity prediction capabilities of structure-based
and ligand-based variables, partial models were trained using the 19
structure-based metrics or the 11 Ligands-based metrics on the same
dataset named BDB. The docking-metrics only model (rp=0.780 and R?=
0.596) outperforms the molecular-descriptors only model (rp=0.689, and
R2=0.472) while it has a similar Pearson correlation coefficient and R2
value compared to the combined model (rp=rp =0.77, R? =0.56).

4.2.2 Random Forest model trained on MACCS fingerprints

In this context, it might be interesting to add more information regarding
the chemical nature of the ligands studied. Instead of using a reduced set
of ligand-based parameters, we turned to use a more thorough description
based on an extended and popular fingerprints: MACCS. A new random
forest model was trained on MACCS fingerprints representing the ligands
only, without providing any structural docking data. This resulted in a
Pearson correlation of 0.765 and R? of 0.571 on the Ki test set, midway be-
tween the two partial models compared above (molecular descriptors only
model and docking metrics only model). It is outperformed by our final
RF model, which combines ligand-based and structure-based informa-
tion. Combining MACCS with docking-based features slightly improves
the overall performance on the training and testing datasets but further
evaluation using external datasets (see below) suggested some overfitting.

4.2.3 Structure-based and ligand-based combined models
- trained on single and multiple combined datasets

After optimizing model training by parameter tuning, variable selection
and engineering, we compared the various models trained on either sin-
gle datasets CMMFF’, "Gast’, 'BDB’, ’OB3D’ and "Frog3D’) or multiple
combined datasets ("dConf’, ’dCharge’ and ’ALL’). Whereas the five mod-
els trained on single datasets have a R2 of 0.66 (£ 0.01), an RMSE of
0.82 (4 0.01) and an explained variance of 63.4 (4= 0.8), the three models
trained on multiple datasets have a better R2 of 0.68 (+ 0.004), a lower
RMSE of 0.78 (£ 0.008) and an explained variance of 90.6 (& 3.7).

The other models that seem to outperform slightly the RF model on
the "ALL’ dataset are the boosted tree models xgbTree and xgbDART.
But the reverse was true when evaluating the corresponding models onto
the reference dataset from the FDA (see below). Most of the differences
are weak and may not be significant. Accordingly, the more complex
implementations did not provide significant increase in performance and
they were not studied further.

4.3 Random Forest regression - model testing

Most remarkable is the strong increase in accuracy when using either the
’dConf’ model trained on the 3 different 3D conformation datasets CBDB’,
’OB3D’ and "Frog3D’) or the model trained on the total combined *ALL’

dataset comprising all 5 datasets CMMFF’, *Gast’, 'BDB’, ’OB3D’ and
’Frog3D’). Interestingly, using different charge models improves affinity
predictions, but slightly less efficiently than using different 3D conforma-
tions. This is probably due to the fact that the binding pocket of ER« is
mostly hydrophobic and therefore the ligands show the same property and
partial charges are predominantly found to differ only marginally.

4.4 Analysis of variable importance

To assess the impact of the various parameters from structure-based and
ligand-based scoring functions, the variable importance was tracked during
training of the RF models. The 30 most important variables for the models
trained on the ALL’ dataset is shown in Figure 2. Overall, all models have
a rather similar variable importance profile (data not shown).

Noteworthy, the most important variable 'Tanimoto_Med’ is the same
for all trained models showing its outstanding importance. It represents
the median Tanimoto score calculated between the docked ligand and the
20 shape restraints (or "anchors’) present in the targeted structure. This
may reflect the importance of using structures bound to similar ligand to
ensure proper affinity predictions.

The second and third most important variables are 'nRotB.nB’ and
"XLogP’. 'nRotB.nB’ estimates ligand flexibility, deduced from the num-
ber of rotatable bonds 'nRotB’ and the total number of bonds 'nB’ by
simply dividing them ('nRotB’/’nB’). During variable testing, this com-
bined variable showed an increased importance compared to the original
variables (data not shown), which were therefore removed for the final
model training. The particular importance of 'nRotB.nB’ indicates the im-
portant role of entropy cost for binding flexible ligands. Obviously, this
parameters is not easily handled in a systematic manner by general scoring
functions while it is an important parameter for affinity predictions. In the
particular case of ERq, it likely discriminates rather small and rigid ago-
nists from larger and more flexible antagonists to prevent overestimating
the affinity of the latter. In agreement, the fifth variable is the molecular

Variable importance - RF on BDB 2018 ERa Ki
"ALL’ dataset

Tanimato_Med -
¥LogP L]
rRotB.nB -
Tanimoto_ S0 -
Taw

nfromB.nB -
TopoPSA -
HybRatio L}
XScore Med -

VABC
DS¥_Raw Med .
nHEAcc
DEX_Score Med .
Anchid Med -
AnchorFit_SD .
Anchid_SD

.
AtomeSc SO -
NbAtLig Med ]

-

AtomSA_SD -

QOhean_S0
AtomeSc_Med

rifiromi B

Plants Raw_Mad

Importance

Figure 2. Variable importance of the top 30 variables, tracked during model training for
the model trained on the "ALL’ dataset with the full variable set. Structure-based docking
metrics have an extension (_Med or _SD). The suffix _Med stands for the calculated median
of the variable for a ligand’s 20 dockings and _SD is the respective standard deviation of

this variable.
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weight ("MW’) which may also compensate for the additive terms of most
scoring functions dedicated to affinity predictions.

Another predominantly important and high-rank variable (second in
the "ALL’ model and third in the ’dCharge’ and ’dConf’ models) is
"XLogP’. Representing hydrophobicity and solubility of the ligand, it is
expected to be an important factor with respect to the mainly hydropho-
bic binding pocket of ERav. Moreover, "XLogP’ may reflect solvent-driven
entropic effects that are not easily taken into account by usual scoring func-
tions. Indeed, flexibility and solvation-linked metrics can be regarded as
useful for a crude estimate of some entropic effects and counterbalance the
enthalpy-oriented affinity prediction approach of usual scoring functions.

Finally, the different scoring functions (DSX, Plants, MedusaScore
and X-score; through their means and standard deviations) show a smaller
importance than the three above parameters, which could be in agreement
with the poor correlations described above. It may also arise from the
intrinsic redundancy of our selected variables as several affinity predictions
are performed in parallel.

Opverall, this result underlines the importance of developing dedicated
models for each target under investigation, in order to account for some
specific features including particular desolvation and flexibility properties.

4.5 Model evaluation on different datasets

4.5.1 Model evaluation on a in-house xenobiotic dataset

We took advantage of a complementary and independent dataset - the
xenobiotic chemical data of 66 ERc binders to evaluate the robustness of
our models. Our models performed rather poorly on this dataset with a
Pearson correlation of 0.48 for the best Random Forest model BDB-Ki
(and 0.40 with the BDB-Ki+MACCS model). Importantly, the chemical
nature of most xenobiotics differs significantly from most of the drug-
like compounds from the BDB dataset used for training. As such, small
xenobiotics (including the small bisphenols) occupy only partially the hy-
drophobic cavity and often also present numerous halogen substitutions
(that are notoriously hard to model). Furthermore, for some of the small
xenobiotics we cannot rule out the possibility that two molecules may bind
simultaneously (with synergetic effects). This result prompted us to com-
bine these xenobiotics and BDB Ki dataset into an extended training set
to build a new RF model.

4.5.2 Model evaluation on FDA ER-EDKB dataset
‘We then evaluated our two best models on a reference dataset comprising
both 322 drug-like and xenobiotic compounds. At the first glance, the pre-
dictions made using the original model (trained on only BDB Ki) showed
a lower performance especially on the edges of the affinity ranges with
both overestimated affinities for small and weak binders (e.g.: alkylphe-
nol) and underestimated predictions for tight binders such as rigid and
compact agonists. Indeed, the BDB dataset is mainly composed of large
and high-affinity antagonists. Accordingly, some FDA compounds such
as high affinity agonists, appear as strong outliers.

Most remarkable is the benefit of adding a complementary dataset of
66 xenobiotic compounds to the initial 281 ligands from BindingDB (see
Table 4). Accordingly, the nature and diversity of the ligands matter, so
that, proper coverage of the studied chemical space, in the training dataset
compared to the testing one is essential.

4.5.3 Model evaluation on BindingDB - IC50 dataset
Finally, the most extended and reliable dataset we used for evaluated the
our RF models was chosen as the IC50 dataset which includes 1641 entities.
Interestingly, the model trained on the Ki dataset only already performed
well against IC50 data suggesting a strong robustness.

Training and testing the IC50 dataset (1641 compounds vs 281 for the
Ki dataset) provided also some insights into dataset size requirements for

the studied target. First, the performance on the IC50 test set (0.87) is better
than on the Ki data set (0.77) (compare Table 5). Then, cross-predictions
were computed by either using the model constructed on the Ki dataset for
predictions on the IC50 dataset, or employing the model constructed on
the IC50 dataset for predicting the Ki dataset. In that case, it seems that
the small Ki test set (56 compounds) does not allow optimal validation
as it shows a significant drop in performance compared to the Ki training
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Figure 3. Performance evaluation of extended models on their respective 20% left-out
test sets. The initial dataset of 281 ligands is extended by a set of 66 xenochemicals. The
heatmap shows Pearson correlations between predictions and measures for all combinations
of training model and prediction set. The different training models are listed as rows and
the test sets, on which the predictions were made, are listed as columns. RF models were
trained on each dataset separately CMMFF’, *Gast’, "BDB’, ’OB3D’, "Frog3D’), on the
combination of the 3 different 3D conformation datasets ({"BDB’, ‘OB3D’, "Frog3D’} =
’dConf”), on the combination of the 3 different partial charge datasets ({"MMFF’, *Gast’,
’BDB’} = ’dCharge’), and on all 5 datasets combined (= ALL’). The predictions with
the Pearson correlation highlighted in the heatmap (black box) is plotted as scatter-plot for
details below. The scatter plot shows the actual predicted versus measured affinities together
with a regression line (dashed line), the optimal prediction line (solid diagonal) and the
evaluation metrics - Pearson correlation coefficient (rp), coefficient of determination (R2)
and root-mean-square error (RMSE). All evaluation metrics were calculated with respect
to the actual values (solid diagonal), not the regression line.
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Table 4. Model performances on the FDA ER-EDKB test set. The presented
models employ all the RF algorithm and differ in training set composition con-
cerning used molecules and in type of variables used. @ TOME+LD = docking
evaluation variables from the @ TOME server + ligand descriptors calculated
with CDK.

Algorithm | Training set Variable type Pearso.n
correlation
RF ALL+Xeno @TOME+LD 0.748
RF ALL+Xeno | @ TOME+LD+MACCS 0.740
RF ALL @TOME+LD 0.663
RF ALL @TOME+LD+MACCS 0.648
RF BDB+Xeno @TOME+LD 0.712
RF BDB+Xeno | @ TOME+LD+MACCS 0.688
RF BDB @TOME+LD 0.584
RF BDB @TOME+LD+MACCS 0.542
RF BDB+Xeno MACCS only 0.487

Table 5. Comparison of cross-predictions between the Ki and IC50 models and
datasets. Pearson correlations between experimental affinities and the random
forest predictions are reported.

on BDB Ki | on BDB Ki | on BDB IC50 | on BDB IC50
training set test set training set test set
number of compounds 225 56 1319 322
Ki ALL model 0.99 0.77 0.64 0.69
IC50 ALL model 0.64 0.49 1.00 0.87

Table 6. Evaluation of best RF models on various datasets. Pearson correlations
between experimental affinities and the RF predictions are reported for the
whole datasets but for values marked with **’ that indicates values for a 20%

test set.
REALL o Predictionset | v o | FDA | 1050 | Ki
Ki+Xeno 098 | 0.75 | 0.65 | 0.96
Ki 048 | 0.66 | 0.65 | 0.77*
1C50 025 | 035 | 0.87% | 0.61

set (0.49 vs 0.64). On the contrary, the Ki-ALL model showed similar
performance on both the IC50 training and testing sets (1319 versus 322
entities).

We also evaluated our last model trained on the extended dataset includ-
ing both the Ki dataset and the xenobiotic dataset on the largest avaliable
IC50 dataset from BindingDB (compare Table 6). Good predictions were
observed for the IC50 dataset although the addition of the xenobiotic
dataset did not bring any improvement (nor any deterioration) for that
particular dataset. Again this suggests that our final model is rather robust.

5 Conclusion

We provide an original in silico method for accurate binding affin-
ity predictions that takes advantage of structural ensembles, of various
structure-based metrics and of ligand-based descriptors in a unique com-
bination. This led to a prediction tool outperforming methods based either
solely on SBVS or LBVS approaches as exemplified here with the MACCS
fingerprints. Our work confirmed the performance of Random Forest over
other machine learning approaches as previously noticed (Russo et al.,
2018). In some cases, higher accuracy was reported but for smaller com-
pound libraries (Hou et al., 2018). Accordingly, our results present one of
the largest validation surveys and best performing tools for affinity predic-
tion against ERa. By training on various types of partial charges and/or
3D builders, we believe our tool will be more robust to variations in the

way the submitted compound libraries are generated. Areas for further im-
provements are probably obtaining increased accuracy in ligand docking,
a possible addition of further evaluation metrics for the protein-ligand in-
teractions, as well as using deep learning. Testing challenging compounds
is also an important way to guide improvement and we expect our web
server to be thoroughly tested with novel compounds.
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