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Abstract A plane crack is considered and the influence of
local curvature of the crack front on the local mechanical
fields is studied. The main goal is to determine the stress in-
tensity factors along a curved planar crack in linear elasticity
with accuracy. This is obtained by determination of new test
fields and the use of bilinear forms, issued from invariant
integrals, which separate the local modes of fracture.
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fields, Curved crack front

1 Introduction

The displacement asymptotic expansion is well known in the
two dimensional case. The fundamental solution has been
given by Williams (1957). Near the front of a crack it is
well known that the most singular term of the expansion can
be simply obtained by superposition of plane strain and the
anti-plane strain solutions (Bui, 1975,1977).

However, it it important to consider additional higher or-
der terms in order to study the possible path of propagation
using developments of Leblond (1989) and also to ensure
with more accuracy the condition of equilibrium in a finite
domain near the crack tip.

The first step of the analysis is to characterize the lo-
cal J-integral or the G-θ integral, by the use of the energy
momentum tensor (Eshelby,1951). The invariant integral has
the same property than the J-integral of Rice (1968) taking
account of additional terms due to the curvature of the crack
front by the way of a surface integral. This term is necessary
to ensure the invariance with respect to the path of integra-
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tion. This term vanishes for a rectilinear front, it is propor-
tional to the curvature.

A similar idea is used to generalize the G-θ integral of
Destuynder and Djaoua (1981).

The invariant integrals are quadratic forms with respect
to the displacement gradient, and the associated bilinear form
is introduced. In the case of linear elasticity, the obtained
bilinear form is a generalisation of the Chen-Shield (1977)
invariant integral M.

The invariant integrals satisfy the Irwin’s value.

In a finite domain of integration of radius R, the fields
obtained by Williams do not any more satisfy the equilib-
rium, and consequently the value of invariant integral taken
with this field don’t satisfy Irwin’s formula.

The second step is to define a correction of the William’s
solution to take the curvature Γ into account. These cor-
rected fields are compared with the stress development ob-
tained in (Leblond & Torlai, 1982) and the fields proposed
in (Yosibash et al., 2011)

The equations are established in a local moving frame
associated to the crack front.

The additional terms are proposed for the three local
mode of rupture up to order two, the approximated value
of invariant integral is given to this order of approximation.

The use of bilinear forms with the new test fields on the
analytical solutions due to Fabrikant (1988,1989) for mode
I,II and III, gives an approximation of local stress intensity
factors. The precision of the results depends on η = RΓ , this
give an evaluation of the radius R of the domain of integra-
tion to guarantee a given precision with respect of the local
curvature Γ of the crack front.
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2 Some preliminaries

A point Mo of the crack front is defined by its arc-length s,
the tangent vector to the crack front is then es

dMo = ds es = ds(cosφex + sinφey) =
es

Γ
dφ , Γ =

dφ

ds
(1)

and Γ is the curvature of the crack front.
The normal to the plane of the crack is ez and N is the

normal vector to the crack front. In the frame of Fresnet, we

ey

ex

ez

ez

Mo(s)

esN(s)

Fig. 1 The crack front

have

des

ds
= Γ N (2)

A point of the plane (Mo,ez,N) has cylindrical coordinates
(r,θ), M = Mo(s)+ r er(s,θ).

er =−cosθ N(s)+sinθ ez, eθ = sinθ N(s)+cosθ ez (3)

Then,

dM = dr er + rdθ eθ + γ es ds, γ = 1+ rΓ cosθ (4)

The elementary volume is dω = dr rdθ γ ds. Due to the

ey

ex

Γr

θ

Mo(s)

r
er

eθ

ez

−N

Fig. 2 The local frame

moving frame with respect to s, the gradient of the displace-
ment u depends on the curvature Γ , and accordingly to the
local strain ε in the basis (er,eθ ,es) can be decomposed in

three contributions, first a plane strain, an anti-plane strain,
and additional terms proportional to Γ , see appendix B.

εrr =
∂u
∂ r

(5)

εθθ =
1
r

∂v
∂θ

+
u
r

(6)

2εrθ =
1
r

∂u
∂θ

+
∂v
∂ r
− v

r
(7)

εss =
Γ

γ

∂w
∂φ

+
Γ

γ
(ucosθ − vsinθ) (8)

2εrs =
∂w
∂ r

+
Γ

γ

∂u
∂φ
−wcosθ

Γ

γ
(9)

2εsθ =
1
r

∂w
∂θ

+
Γ

γ

∂v
∂φ

+wsinθ
Γ

γ
(10)

The local stress σ in linear elasticity can be also decom-
posed in the same spirit and must satisfy

– the local equilibrium divσ = 0, expression of divergence
is given in appendix C,

– the boundary conditions on the lips Σ± of the cracks
σ±.ez = 0.

Consider the first term of Williams expansion, uo =
√

r uo
w

uo
w = Ku(s)Uo(θ)er +Kv(s)Vo(θ)eθ +Kw(s)Wo(θ) ez (11)

the associated strain ε(uo) satisfies first the conditions of
plane strain :

εrr = Ku
1

2
√

r
Uo = ε

o
rr, (12)

εθθ = Kv
1√
r

∂Vo

∂θ
+

1√
r

KuUo = ε
o
θθ , (13)

2εrθ =
√

rKu
1
r

∂Uo

∂θ
−Kv

1
2
√

r
Vo = 2ε

o
rθ (14)

anti-plane and normal components depend on the curvature

2εrs = Kw
1

2
√

r
Wo +

√
r(

dKu

dφ
Uo−KwWo cosθ)

Γ

γ

= 2ε
o
rs +2Γ ε

1
rs,

2εsθ = Kw
1√
r

∂Wo

∂θ
+
√

r(
dKw

dφ
Vo +KwWo sinθ)

Γ

γ

= 2ε
o
sθ +2Γ ε

1
sθ

and

εss =
√

r(
dKw

dφ
Wo+KuUo cosθ−KvVo sinθ)

Γ

γ
=Γ ε

1
ss (15)

We recover the singular part of the strain εo, and a addi-
tional term ε1 which is proportional to

√
r.

The same decomposition exists for the stress,

σ = σo +Γ σ
1 (16)

with order 0 in Γ singular as 1/
√

r, taking these values in
the equilibrium equation we recover that the dominant term
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when r vanishes corresponds exactly to the plane-strain and
anti-plane strain solutions.

However, for mode I, the singular field σo is not in equi-
librium, in a torus of finite radius ; the equilibrium equations
depends on the curvature of the crack front:

divσo =

KI

4(2ν−1)
Γ√

r

(
(8ν−3) cos

3θ

2
− cos

θ

2

)
er

− KI

4(2ν−1)
Γ√

r

(
(8ν−1) sin

3θ

2
− sin

θ

2

)
eθ

+ ...

The same thing holds in mode II, and III.

3 Invariants integral J, Gθ

It is well known that the Eshelby’s momentum tensor Ψ sat-
isfies a conservation law in the case of homogeneous mate-
rial

divΨT = 0, Ψ=W (ε)I−σ .∇u (17)

where I is the identity, W (ε) is the strain energy and σ =
∂W
∂ε

is divergence free, then

∫
Ω

divΨT .Θ dΩ = 0, ∀Θ (18)

Consider Ω a section of the torus between s,s+ds, with ex-
ternal radius RS and internal radius RI , as presented in figure
3. Let Ai, (reps. As) be the disk with center Mo and radius RI
(resp. RS).

a −N

ez

r

θ
Ri

Rs

Γi

Γs

Fig. 3 A section of the torus

Chose a particular Θ : Θ=−Θ(r,θ)N

0 =
∫

Ω

divΨT .NΘ dΩ

=
∫ s+ds

s

(∫
As\Ai

divΨT
Θ(r,θ) γdA

)
.N(s) ds

therefore we obtain (dA = rdrdθ )

0 =
∫

As\Ai

divΨT .N(s)Θ(r,θ) γdA (19)

By integration by part with respect to (r,θ) we have

0 =
∫

ΓRS

n.Ψ.N Θ γRSdθ −
∫

ΓRI

n.Ψ.N Θ γRIdθ

−
∫

As\Ai

N.
∂Ψ

∂φ
.es Θ Γ γdA+

∫
As\Ai

Ψ : ∇Θγ dA
(20)

Define JΓr =
∫

Γr
n.Ψ.N Θ γrdθ , where Γr is the circle of ra-

dius r, the J-integral is exactly:

J = lim
r→0

JΓr (21)

we have whith the help of (20) the property

J = JΓRS
+ lim

RI→0

∫
As\Ai

(Ψ : ∇Θ−N.
∂Ψ

∂φ
.es Γ Θ)γdA (22)

then

J = JΓRS
+
∫

As

(Ψ : ∇Θ−N.
∂Ψ

∂φ
.es Γ Θ)γdA (23)

Integral J. For the particular choice Θ(r,θ) = −N we ob-
tain

J =−
∫

ΓRS

n.Ψ.N γ RSdθ −
∫

As

(es.Ψ+N.
∂Ψ

∂φ
).es Γ γ dA

(24)

Integral GΘ . For Θ=−Θ(r,θ)N with

Θ(r,θ) =

{
(RS− r)/(RS−RI) ,RI ≤ r ≤ RS

1 ,0≤ r ≤ RI
(25)

GΘ =
∫

As

(Ψ : ∇Θ−ΘN.
∂Ψ

∂φ
.esΓ )dA (26)

This expression is used essentially in computational es-
timation on characteristic of fracture.

Evaluation of J-integrals on a torus. Consider the theoreti-
cal value Jth given by the Irwin’s formula :

Jth =
1−ν2

E
(K2

I +K2
II)+

1
2µ

K2
III (27)

this value is compared with the approximation of J or GΘ

when the displacement is the first singular terms of Williams
expansion

uo =
√

r
(KI

2µ
uI

o(θ)+
KII

2µ
uII

o (θ)+
KIII

2µ
uIII

o (θ)
)

(28)

where

uI
o(θ) =

1
2
(− cos

3θ

2
+(5−8ν) cos

θ

2
)er

+
1
2
(sin

3θ

2
+(8ν−7) sin

θ

2
)eθ

(29)
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uII
o (θ) =

1
2
(3 sin

3θ

2
+(8ν−5) sin

θ

2
)er

+
1
2
(3 cos

3θ

2
+(8ν−7) cos

θ

2
)eθ

(30)

uIII
o (θ) = sin

θ

2
ez (31)

The J-integral is evaluated for each mode of fracture, on a
torus of external radius RS

3.1 Mode I

The obtained value of J differs from the theoretical value as

JI
o = Jth(1+ JI

o1η + JI
o2η

2 + JI
o3η

3 + ...) (32)

GΘ = Jth(1+G0
1ηi +G0

2η
2
i +G0

3η
3
i ) (33)

with k =
RS

RI
,ηi = Γ RI ,η = Γ RS and

JI
o1 =

32ν2−32ν +5
8(2ν−1)

, G0
1 =

k+1
2

JI
o1 (34)

JI
o2 = −64ν2−64ν +15

32(2ν−1)
, G0

2 =
k3−1

3(k−1)
JI

o2 (35)

JI
o3 =

64ν2−56ν +11
96(2ν−1)

, G0
3 =

k4−1
4(k−1)

JI
o3 (36)

3.2 Mode II

In the same spirit for mode II,

JII
o

Jth
= 1+η

32ν2−32ν +9
8(2ν−1)

+η
2 64ν2−128ν +63

32(2ν−1)
... (37)

3.3 Mode III

The evaluation of integral J for wo(r,θ) is then

JIII
o = Jth(1−η−η

2− η3

3
+ ...) (38)

3.4 Comments on the results of order 0

The difference with the theoretical value is essentially due to
the fact that the plane and anti-plane fields are not statically
admissible in the torus of radius RS. When η or ηi tends to
zero, the theoretical value is recovered, that is conformed
to the fact that the singular part of the displacement is the
plane-strain or anti-plane strain solution.

The fact that each terms of the expansion of GΘ depends
only of the corresponding term of J multiply by a function
of k = RS/RI is due to the choice of Θ as a function of r,

then the integration on the domain can be decomposed into
separate integration with respect to r and to θ .

To have a best approximation of the J integral, we pro-
pose to define displacement fields which satisfy the equilib-
rium equation as the best possible. The correction is issued
from the plane-strain and anti-plane-strain solutions and is
obtained as an asymptotic expansion with respect to the lo-
cal curvature Γ of the crack front.

4 Construction of more consistent fields

To converge to the exact solution, asymptotic field is now
build with respect to the equilibrium equations and bound-
ary conditions for higher order in Γ . Consider the expansion
of the displacement, where the generalized stress intensity
factors Kα are considered as uniform :

u =
√

r∑
α

Kα ∑
j

r j
Γ

juα
j (θ) (39)

For mode α and terms of order j in Γ , the equilibrium and
the boundary conditions up to order j must be satisfied that
is

divσ = o(Γ j), σ .n = o(Γ j) (40)

We study successively each mode of rupture.

4.1 Mode I

Order one. As we have seen previously (2), the equilibrium
at order 0 is not satisfied. In order to cancel the linear term
in Γ in equilibrium equations, we consider a correction of
order one :

u1 =
√

r
KI

2µ
(uI

o + rΓ uI
1) (41)

where

uI
1 =U I

1(θ)er +V I
1(θ)eθ (42)

depends only on θ

U I
1 = U I

ct cos
3θ

2
+U I

cu cos
θ

2
(43)

V I
1 = V I

st sin
3θ

2
+V I

su sin
θ

2
(44)

With respect to equilibrium equations and boundary condi-
tions on the lips, the constants are determined as

U I
ct =

8ν−3
8

, U I
cu =

128ν2−96ν +13
24

(45)

V I
st = −

8ν−5
8

, V I
su =

128ν2−192ν +55
24

(46)

This solution is not unique, a additional term issued form
the Williams solution (39) can be considered.
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The local stresses σ = σ0 +Γ σ1 for order one is

σ
rr
1 = (ν− 9

16
) cos

3θ

2
− (

13
16
−ν) cos

θ

2

σ
rθ
1 =

7−16ν

16
(sin

θ

2
+ sin

3θ

2
)

σ
θθ
1 =

9−16ν

16
(cos

θ

2
+3 cos

3θ

2
)

σ
ss
1 = −1

2

(
(1+ν) cos

3θ

2
+(16ν

2−2ν−5) cos
θ

2

)
The development of Leblond & Torlai (1982) is recovered.

At order 1, we obtain an approximation of J-integral at
order two:

JI
1

Jth
= 1− JI

12η
2− JI

13η
3 + ...) (47)

JI
12 =

192ν2−72ν +3
64(1−2ν)

(48)

JI
13 =

4096ν4−4608ν3 +1072ν2 +168ν−41
192(2ν−1)

(49)

and for Gθ

Gθ

Jth
= 1+

k3−1
3(k−1)

J1
2 η

2
i +

k4−1
4(k−1)

J1
3 η

3 (50)

At order two. A correction of order 2 is obtained by the
same way, balancing the Γ 2 terms of the equilibrium equa-
tions with a displacement uI

2 =U I
2(θ)er +V I

2(θ)eθ where

U I
2 = U I

cq cos
5θ

2
+U I

ct cos
3θ

2
+U I

cu cos
θ

2
,

V I
2 = V I

sq sin
5θ

2
+V I

st sin
3θ

2
+U I

su sin
θ

2
.

The constants are given by the static conditions

U I
cq =

3−24ν

64 , V I
sq =

24ν−9
64

U I
ct =

−512ν3+64ν2+80ν+53
360 , V I

st =
−512ν3+704ν2+80ν−137

360
U I

cu =
67−256ν2

192 , V I
su =

256ν2−192ν−37
192

For this new field,

u2 = KI
√

r(uI
o + rΓ uI

1 + r2
Γ

2uI
2) (51)

an evaluation of J-integral up to order 3 is obtained.

JI
2 = Jth (1+η

3JI
23 + ...) (52)

with

JI
23 =

6144ν3−256ν2−4224ν +871
1536(2ν−1)

(53)

and in a similar way

G = Jth (1+η
3
i JI

23
k4−1

4(k−1)
+ ...) (54)

For a practical view point, taking account of order n correc-
tion for the displacement make a correction of order n+ 1
for J-integral.

4.2 Mode II

The displacement uo for mode II corresponds to the plane
strain singular field

uII
o =
√

rKII

(
uII

o (θ)er + vII
o (θ)eθ

)
(55)

with

uII
o = 3 sin

3θ

2
+(8ν−5) sin

θ

2
,

vII
o = 3 cos

3θ

2
+(8ν−7) sin

θ

2

Then the value of J becomes

JII
o = Jth(1+ηJII

o1 +η
2JII

o2 + ...) (56)

with

JII
o1 =

32ν2−32ν +9
8(2ν−1)

, JII
o2 =

64ν2−128ν +63
32(2ν−1)

Ordre one. The correction of equilibrium at the order 1 gives

uII
1 =U II

st sin
3θ

2
+U II

su sin
θ

2
, vII

1 =V II
ct cos

3θ

2
+V II

su sin
θ

2

with

U II
st = (3−8ν)/4, U II

su = (128ν
2−96ν−107)/60,

V II
ct = (5−8ν)/4, V II

cu =−(128ν
2−192ν +79)/60

The local stresses σ = σ0 +Γ σ1 for order one is

σ
rr
1 = (ν− 9

16
) sin

3θ

2
− (

107
80
− 7

5
ν) sin

θ

2

σ
rθ
1 = − 1

80

(
(80ν−35) cos

3θ

2
+(31−16ν) cos

θ

2

)
σ

θθ
1 = −9−16ν

80
(sin

θ

2
+ sin

3θ

2
)

σ
ss
1 = − 1

10

(
5(1+ν) sin

3θ

2
+(16ν

2 +14ν−45) sin
θ

2

)
The development of Leblond & Torlai (1982) is recovered
for mode II at order 1.

The value of J-integral is now

JII
1 = Jth (1+ JII

12η
2 + ...) (57)

with

JII
12 =−

448ν2−5576ν +943
320(1−2ν)

(58)
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Order two. The correction of equilibrium at the order 2 gives

uII
2 =U II

2 er +V II
2 eθ (59)

U II
2 (θ) = U II

su sin
θ

2
+U II

sq sin
5θ

2
+U II

st sin
3θ

2

V II
2 (θ) = V II

cu cos
θ

2
+V II

cq cos
5θ

2
+V II

ct cos
3θ

2
with

V II
cu = (256ν

2 +320ν−581)/960

U II
su = (256ν

2 +512ν−803)/960

V II
cq = (24ν−9)/64

U II
sq = (24ν−3)/64

V II
ct = (512ν

3 +320ν
2−3056ν +2749)/4200

U II
st = −(512ν

3 +960ν
2 +464ν−3161)/4200

Then the value of J-integral is

JII
2 = Jth(1+η

3 43008ν3 +166144ν2−31550ν +139513
53560(2ν−1)

)

4.3 Mode III

The field uo = KIII
√

r Wo(θ)ez gives the singular anti-plane
shear strain.

Wo = sin
θ

2

JIII
o =

1
2µ

K2
III (1+ JIII

o1 η + JIII
o2 η

2 + ..)

JIII
o1 = −1, JIII

o2 =−1, ...

Ordre one. At the order one u1 = KIII
√

r(Wo + rΓW1)ez:

W1 =
1
4

sin
θ

2
JIII

1 = Jth(1+ JIII
12 η

2 + ...

JIII
12 = −3

2
The local stress σ1 is

σ
rs
1 =

7
8

sin
θ

2
(60)

σ
sθ
1 =

5
8

cos
θ

2
(61)

Order two. The displacement is now

u2 = KIII
√

r(Wo + rΓW1 + r2
Γ

2W2) (62)

with:

W2 =
1
6

sin(θ/2)− 3
32

sin(3θ/2) (63)

and

JIII
2 = Jth(1+ JIII

23 η
3 + ...), JIII

23 =−5
4

(64)

4.4 General remark

We have build corrected fields, they are not unique. As the
asymptotic expansion is defined as proposed in (39), we
know that for each term in

√
r r j the corresponding terms

uw
j of the Williams expansion satisfies the equilibrium, and

a correction of this field with respect to Γ is needed at order√
r r j+1.

5 Separation of the modes of rupture

To separate the three modes of rupture, the bilinear form
associated to J or Gθ in terms of displacement is now intro-
duced. Consider two displacements U,V which are admissi-
ble for the local problem of elasticity inside the torus almost
locally, then

J(U +V ) = J(U)+ J(V )+2J(U,V ) (65)

where J is the bilinear form associated to the quadratic form
J. It is easy to show now that

J(U,V ) =
1
4

(
J(U +V )− J(U−V )

)
(66)

this provides an extension of the biliear form proposed by
Chen & Shield (1977).

To extract, the local Kα it is possible to use a test field

V = ∑
α

K∗α
√

r
j=n

∑
j=0

r j
Γ

juα
j (67)

where uα
j are given as in preceding sections.

It can be noticed that for n= 1 for the bilinear form takes
the value

2µJ(u,V ) = KIK∗I (1−ν)(1+η
2JI

12)

+KIIK∗II(1−ν)(1+η
2JII

12)

+KIIIK∗III(1+η
2JIII

12 )+ ...

(68)

and it is used to extract the Kα along the crack front. Such
an extraction is studied analytically in the next section using
the particular solutions of Fabrikant (1988,1989).

6 Comparison with analytical solutions

Fabrikant gives the displacement solution of a circular crack
under uniform pressure and shear.



7

6.1 For uniform pressure

For a circular crack under uniform pressure (Appendix.E.1),
the displacement is given by

uF = ∑
j

r j f (θ)+
√

r
(

KF uo(θ)+ ∑
α≥1

rα uF
α(θ)

)
(69)

where

uF
1 = KF(u1 +uw(1−8ν)/12) (70)

and the value of J

2µJ(uF ,K∗I u1) = K∗I KI(1−ν)(1+ JI
12η

2 + ...)

= K∗I KF(1−ν)
(71)

gives the value KI = KF up to order two in η .

6.2 Solution de Fabrikant Mode II-III

For a circular crack under uniform shear (Appendix.E.2):

uF = ∑
j

r j f j(θ)+
√

rKII(φ)
(

uo(θ)+∑
α

rα uF
α(θ))

+
√

rKIII(φ)T
(

wo(θ)+∑
α

rα wF
α(θ)

) (72)

with KII(φ) = Ko cosφ/(1− ν),KIII(φ) = Ko sinφ , this is
conformed to the relations given in (Bui, 1975,1977). Then
we can show that

uF
1 = KII(φ) (u1 +uF

w +U1(wo,θ))

wF
1 = KIII(φ) (w1 +wF

w +W1(uo,θ))
(73)

The William’s components for (r
√

rΓ ) are

uw = 5 sin
5θ

2
+(8ν−3) sin

θ

2
, uF

w = (8ν−13)uw/120

vw = 5 cos
5θ

2
+(8ν−9) cos

θ

2
, vF

w = (8ν−13)vw/120

ww = sin
3θ

2
, wF

w = (2ν−3)
cosφ

1−ν
ww

The interaction terms between plane strain and anti-plane
strain is evaluated as

U1 = −KII(φ) sin
θ

2
64ν2−48ν−16

15

V1 = KII(φ) cos
θ

2
64ν2−48ν−16

15

W1 =
KIII(φ)

1−ν
sin

θ

2

Separation of the modes II and III. To separate the stress
intensity factor, we use the J bilinear forms and the proposed
new test fields, then

(u∗,v∗) =
√

rK∗II(u
II
o + rΓ uII

1 ,v
II
o + rΓ vII

1 ),

w∗ = K∗III
√

r(wo + rΓ w1)

and

2µJ(uF ,u∗) = K∗IIKII(1−ν)+K∗IIIKIII

= cosφ Ko K∗II(1+η
2J2

II)

+ sinφ Ko K∗III(1+η
2J2

III)

(74)

The values of KII(φ) =
Ko cosφ

1−ν
and KIII(φ) = Ko sinφ are

recovered (at order two) !

7 Conclusion

After the definition of generalized invariant integral J for a
general curved crack, the influence of the curvature of the
crack front on its value has been studied. Introduction of an
asymptotic expansion of the displacement in terms of the
curvature ensures that equilibrium state is described more
precisely in the vicinity of the crack front. This development
permits a best evaluation of the J-integral inside a finite do-
main, which is useful for numerical computation. The devel-
opment is given at order two, which ensures that the value
of the integral is correct up to order 3.

The correction of order one in curvature for the displace-
ment gives the same correction in stresses given by Leblond
& Torlai (1982).

To show the ability of the new fields to give a more pre-
cise evaluation of the stress intensity factors, analytical re-
sults are given using the local solutions of a circular crack
under pressure or shear.

These results emphasize the possibility to characterize
the local stress intensity factors along a planar crack front.
For a computational point of view the correction depends on
the parameter η = RSΓ ,which determines the radius RS of
domain of integration to be used with respect to the local
curvature of the front of the crack in order to guarantee a
given precision.

Appendises

A Derivation in the local frame

The local basis is given by er,eθ ,es for this moving frame we have the
relations
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∂er

∂θ
= eθ ;

∂er

∂ s
= Γ cosθes

∂eθ

∂θ
= −er;

∂eθ

∂ s
=−Γ sinθes

∂es

∂ s
= Γ N =−Γ (cosθer− sinθeθ )

We can replace the derivative with respect to ds by dφ taking account

of
dφ

ds
= Γ .

B Gradient of a vector

For a vector u = uer + veθ +wes the gradient is

∇u =
∂u
∂ r

er⊗ er +(
1
r

∂u
∂θ
− v

r
)er⊗ eθ +(

1
γ

∂u
∂ s
−w

Γ

γ
cosθ)er⊗ es

+
∂v
∂ r

eθ ⊗ er +(
1
γ

∂v
∂ s

+w
Γ

γ
sinθ)eθ ⊗ es +(

1
r

∂v
∂θ

+
u
r
)eθ ⊗ eθ

+
∂w
∂ r

es⊗ er +
1
r

∂w
∂θ

es⊗ eθ

+ (
1
γ

∂w
∂ s

+u
Γ

γ
cosθ − v

Γ

γ
sinθ)es⊗ es

C Divergence of a second order tensor

P = Prrer⊗ er +Prθ er⊗ eθ +Prser⊗ es

+ Pθreθ ⊗ er +Pθθ eθ ⊗ eθ +Pθseθ ⊗ es

+ Psres⊗ er +Pθses⊗ eθ +Psses⊗ es

div(P) = (
∂Prr

∂ r
+

1
r

∂Prθ

∂θ
+

Prr−Pθθ

r
)er

+ (
1
γ

∂Prs

∂ s
+(Prr−Pss)cosθ

Γ

γ
−Prθ sinθ

Γ

γ
)er

+ (
∂Pθr

∂ r
+

1
r

∂Pθθ

∂θ
+(Prθ +Pθr)

1
r
)eθ

+ (
1
γ

∂Pθs

∂ s
+Pθr cosθ

Γ

γ
+(Pss−Pθθ )sinθ

Γ

γ
)eθ

+ (
∂Psr

∂ r
+

1
r

∂Pθs

∂θ
+Psr 1

r
)+

1
γ

∂Pss

∂ s
)es

+ ((Prs +Psr)cosθ − (Pθs +Pθs)sinθ)
Γ

γ
es

D William’s asymptotic expansion for the displacement
in plane strain

The displacement takes the formal form

u =
√

r∑
pα

kpα rp(uα
p (θ)er + vα

p (θ)eθ +wα
p (θ)es)

where the components (uα
p ,v

α
p ,w

α
p ) depend on the mode of fracture α .

Mode I.

up(θ) = − 1
2
[(1−2p)cos

(
(2p+3)

θ

2
)
+(8ν−5+2p)cos

(
(2p−1)

θ

2
)
]

vp(θ) = − 1
2
[(2p−1)sin

(
(2p+3)

θ

2
)
+(8ν−7−2p)sin

(
(2p−1)

θ

2
)
]

Mode II.

up(θ) = − 1
2
[(3+2p)sin

(
(2p+3)

θ

2
)
+(5−8ν−2p)sin

(
(2p−1)

θ

2
)
]

vp(θ) = − 1
2
[(2p+3)cos

(
(2p+3)

θ

2
)
+(8ν−7−2p)cos

(
(2p−1)

θ

2
)
]

Mode III.

wp = sin(2p+1)
θ

2

E Fabrikant solution

E.1 Circular crack under uniform pressure

In the frame (ex,ez) the displacement is given as (Fabrikant, 1988)

ux =
pρ

2πµ

{
(1−2ν)

[ a
√

l2
2 −a2

l2
2

− arcsin
a
l2

]
+

2a2|z|
√

a2− l2
1

l2
2 (l

2
2 − l2

1 )

}

uz =
2p
πµ

{
2(1−ν)

[ z
|z|
√

a2− l2
1 − zarcsin

a
l2

]
+ z
[

arcsin
a
l2
−

a
√

l2
2 −a2

l2
2 − l2

1

]}

with

ρ = 1+η cosθ , z = η sinθ , η = rΓ

l1 =

√
1+η cosθ +

η2

4
− η

2

l2 =

√
1+η cosθ +

η2

4
+

η

2

The solution is developed up to order 2 in Γ

1− l2
1 = η(2−η)sin2 θ

2

l2
2 −1 = η(2+η)cos2 θ

2

A =
√

l2
2 −1l2

2 =
√

η
√

1+ cosθ (1− η

4
(3+4cosθ))

arcsin
1
l2

=
π

2
+
√

η
√

cosθ +1(−1+
η

12
(1+4cosθ))

√
A− arcsin

1
l2

= − π

2
+
√

η
√

cosθ +1 (2− η

6
(5+8cosθ))

2z
l2
2

= η sinθ(2−2η(1+ cosθ)+ ...)

with these quantities we obtain

Ux =
π

2
(1+η cosθ)(2ν−1)+

√
ηU0

x +η
√

ηU1
x + ...

Uz = πη sinθ(2ν−1)+
√

ηU0
z +η

√
ηU1

z + ..

the components of the expansion are obtained successively,

– at order 0 the plane strain solution

U0
x =

1
2
((5−8ν) cos

θ

2
− cos

3θ

2
)

U0
z =

1
2
((8ν−7) sin

θ

2
+ sin

3θ

2
)

– at the order 1

U1
x =

1
24

(
3 cos

5θ

2
+(20−16ν) cos

3θ

2
+3(8ν−9) cos

θ

2

)
U1

z =
1
24

(
−3(8ν +1) sin

θ

2
+24(1−2ν) sin

3θ

2
+3 sin

5θ

2

)
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These components are decomposed into two contributions, the correc-
tion for the order 0

u1
x =

1
24

(
3 cos

5θ

2
+(128ν

2−144ν +34) cos
3θ

2
+(72ν−33) cos

θ

2

)
u1

z =
1
24

(
3 sin

5θ

2
+(128ν

2−144ν +34) sin
3θ

2
+(24ν−9) sin

θ

2

)
and a plane strain term as Williams had proposed for r

√
r:

W 1
x = (7−8ν) cos

3θ

2
−3 cos

θ

2

W 1
y = (5−8ν) sin

3θ

2
−3 sin

θ

2

Then the order one displacement is

U1 = u1 +
1−8ν

12
W 1 (75)

E.2 Circular crack under uniform shear

For uniform shear, the decomposition is similar . On the crack an uni-
form shear is imposed

ux = 2
1−ν

2−ν

π

µ
τx

√
a2−ρ2,uy = 2

1−ν

2−ν

π

µ
τy

√
a2−ρ2, (76)

ρ i the distance to the axis Oz. Then we introduce the stress intensity
factors proposed by Williams (ρ = a− r)

KII = 2

√
2a
π

τx

2−ν
(77)

KIII = 2

√
2a
π

1−ν

2−ν
τy (78)

These quantities varies along the front of the crack, a pure mode II
along axis ex becomes a pure anti-plane shear along ey. This is con-
formed to the relations given in (Bui, 1975,1977). The Fabrikant solu-
tion (Fabrikant, 1989) is written as (A = 1/(πµ(2−ν))

F(r,θ) = (−5+4ν)zarcsin
a
l2

+4(1−ν)
√

a2− l2
1

G(r,θ) =
z
√

l2
2 −a2

l2
2 − l2

1

ux

A
= F(r,θ)τx +aG(r,θ)

(
τx +

l2
1

l2
2
(τx cos2φ + τy sin2φ)

)
uy

A
= F(r,θ)τy +aG(r,θ)

(
τy ++

l2
1

l2
2
(τx sin2φ − τy cos2φ)

)
uz

A
= ρ(τx cosφ + τy sinφ)

( 1−2ν

2
(arcsin

a
l2
−a

√
l2
2 −a2

l2
2

)+
a2

l2
2

G(r,θ)
)

Now, we consider the normal plane to the crack front, with direc-
tion T (φ). In the frame (−N,ez) , in this plane we have (U,V,W ) =

u
sinφ

1−ν
,v

sinφ

1−ν
,w cosφ))

u = − Γ

12
r
√

r
(
(16ν−26) sin

5θ

2
+(24ν−9) sin

3θ

2
+(32ν−7) sin

θ

2

)
+
√

r
(

3 sin
3θ

2
+(8ν−5) sin

θ

2

)
− 1

2
π r(2−ν)

√
2Γ sin2θ +(1−2ν)

π√
2Γ

sinθ

v = − Γ

12
r
√

r
(

2(8ν−13) cos
5θ

2
+3(8ν−5) cos

3θ

2
− (32ν−37) cos

θ

2

)
− √r

(
3 cos

3θ

2
+(8ν−7) cos

θ

2

)
+

1
2

π r
√

2Γ ((ν−2)cos2θ −3(1−ν)cosθ)+(1−2ν)
π√
2Γ

cosθ

w = 8
√

r sin
θ

2
+ r
√

r
2Γ

1−ν
((3−2ν) sin

3θ

2
+(2−ν) sin

θ

2
)

− π(5−4ν)√
2(1−ν)

r
√

Γ sinθ

Consider the first singular terms (
√

r), we recognize the mode II for
(u,v) and mode III for w. The pure mode III valid for φ = 0 is changed
in pure mode II at φ = π/2.

The displacement is decomposed into three contributions at order
1 in Γ :

– a plane strain correction
– an anti-plane strain correction,
– a correction with coupling into plane and anti-plane solutions,
– and additional Williams contribution proportional to r

√
r

The plane and anti-plane corrections have the form given in section 4.
For the third contribution, the anti-plane shear gives a contribution

in plane strain, this is due to the fact that the stress intensity factors are
non uniform and depend on φ . For given wo, the equilibrium equation
in direction er,eθ must be satisfied, with the boundary conditions on
the lips. Solving this system we obtain with ( K2 = sinφ/(1−ν),K3 =
cosφ )

u1 = −K2 r
√

r Γ
64ν2−48ν−16

15
sin

θ

2

v1 = K2 r
√

r Γ
64ν2−96ν +32

15
cos

θ

2

In a similar way, the plane strain gives a contribution normal to the
plane (equilibrium equation on direction (ez))

w1 =
K3

1−ν
r
√

r Γ sin
θ

2

The terms of Williams are given for r
√

r with n = 3, p = 1 :

– plane strain mode II

uII
w = r

√
r (5 sin

5θ

2
+(8ν−3) sin

θ

2
)

vII
w = r

√
r (5 cos

5θ

2
+(8ν−9) cos

θ

2
)

– anti-plane mode III

ww = r
√

r sin
3θ

2

uw
1 = (8ν−13)uII

w/120 (79)

vw
1 = (8ν−13)vII

w/120 (80)

ww
1 =

(2ν−3)
1−ν

ww (81)

It can be noticed that this type of decomposition is conformed to
the asymptotic expansion proposed in (Leblond & Torlai, 1982).
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mathématique de l’intégrale de Rice en théorie de la rupture
fragile. Math. Meth. in Appl. Sci, 3:70-87

8. Chen FHK, Shield RR (1977) Conservation laws in elasticity of the
J-integral type. Journal of Applied Mathematics and Physics 28:122

9. Leblond JB, Torlai O (1982) The stress field near the front of an
arbitrarily shaped crack in a three-dimensional elastic body. J. of
Elasticity 29:97-131

10. Yosibash Z, Shannon S, Dauge M, Costabel M. (2011) Circular
edge singularities for the Laplace equation and the elasticity system
in 3-D domains. Int. J. Fract, 168:31-52.

11. Fabrikant VI (1988) Green’s functions for a penny-shaped crack
under normal loading. Engineering Fracture Mechanics 30(1):87-
104

12. Fabrikant VI (1989) Flat crack under shear loading. Acta Mechan-
ica 78:1-31


