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Abstract

In this paper, we investigate properties of entropy-penalized Wasser-
stein barycenters introduced in [5] as a regularization of Wasserstein
barycenters [1]. After characterizing these barycenters in terms of a
system of Monge–Ampère equations, we prove some global moment
and Sobolev bounds as well as higher regularity properties. We finally
establish a central limit theorem for entropic-Wasserstein barycenters.

Keywords: entropic-Wasserstein barycenters, Monge-Ampère equa-
tions and systems, central limit theorem.
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1 Introduction

Wasserstein barycenters are minimizers of a weighted sum of squared quadratic
Wasserstein distances to some fixed family of probability measures. As such,
they are a particular instance of Fréchet means. In recent years, Wasserstein
barycenters have become a popular tool to interpolate between probability
measures and found various applications in statistics, image processing and
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machine learning (see [23], [36], [31], [39]). There are also by now various nu-
merical solvers to compute or approximate them (see [16], [14], [4], [33]). In-
troduced in [1] in the case of finitely many measures over an euclidean space,
the Wasserstein barycenter problem has been extended to the Riemannian
setting by Kim and Pass [24] and to the case of infinitely many (possibly ran-
dom) measures by Pass [32], Bigot and Klein [6] and Le Gouic and Loubes [28]
who established a law of large numbers for empirical Wasserstein barycenters
of i.i.d. random measures. Having this law of large number in mind, it is nat-
ural to look for error estimates and asymptotic normality of the error between
population Wasserstein barycenters and their empirical counterpart. How-
ever, establishing a central limit theorem (CLT) for Wasserstein barycenters
and, more generally, for Fréchet means over a nonnegatively curved metric
space seems to be a delicate task (see [3]) except in very particular cases (di-
mension one or the case of Gaussians, see [2], [27]). The difficulty is not only
due to the fact that the problem is infinite-dimensional but also (and in fact
more importantly) to the fact that Wasserstein barycenters are related to an
obstacle problem for a system of Monge–Ampère equations (see [1]). The
support of the Wasserstein barycenter is indeed an unknown of the problem
and very little is known about its regularity (see [35] for counter-examples
to convexity). The free-boundary aspect of Wasserstein barycenters actually
makes the dependence of the barycenter possibly nonsmooth on the sample
and thus prevents one from using a delta method.

Bigot, Cazelles and Papadakis in [5] observed that when one discretizes
continuous measures, the corresponding (discrete) barycenters exhibit strong
oscillations and proposed to add an entropic penalization to the Wasserstein
variance functional to rule out such discretization artefacts. Such regulariza-
tions were also considered in a more general setting by the third author in
[26]. Once one adds an entropic term, the free-boundary aspect of the un-
regularized Wasserstein problem disappears and one can expect regularity
and quite strong estimates by PDE arguments. The objective of this pa-
per is precisely to investigate the regularizing effect of the entropic penalty
term. Starting from the optimality condition which consists in an elliptic
system of Monge–Ampère equations, we will prove various bounds (on the
Fisher information, by a maximum principle, or higher regularity based on
the regularity theory for Monge–Ampère). We will then consider the stochas-
tic setting of entropic Wasserstein barycenters of random i.i.d. measures. As
a consequence of our estimates, we will obtain a strengthened form of the
law of large numbers (that is, not only for a.s. convergence in Wasserstein
distance, but also for Sobolev norms) and more importantly, under suitable
additional assumptions, we will obtain a CLT.
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The paper is organized as follows. In section 2, we introduce the setting
and prove existence and uniqueness of the entropic Wasserstein barycenter.
The entropic barycenter is then characterized by a system of Monge–Ampère
equations in section 3 where we treat the Gaussian case as a simple applica-
tion. Section 4 is devoted to further properties: global moment and Sobolev
bounds, strong stability and a maximum principle. Higher regularity is con-
sidered in section 5 first in the bounded case and then on Rd for log-concave
measures. Section 6 deals with asymptotic results for entropic barycenters of
empirical measures with a law of large numbers and a CLT. Finally, the ap-
pendix gathers some material related to the linearization of Monge–Ampère
equations and to auxiliary probability results which are used in the proof of
our CLT.

2 Setting, assumptions and preliminaries

We denote by P2(Rd) the set of Borel probability measures on Rd having a
finite second moment and equip P2(Rd) with the 2-Wasserstein metric, W2.
Recall that for (µ, ν) ∈ P2(Rd)2, the squared 2-Wasserstein distance between
µ and ν is defined as the value of the optimal transport problem:

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

ˆ
Rd×Rd

‖x− y‖2 dγ(x, y) (2.1)

where Π(µ, ν) denotes the set of transport plans between µ and ν, i.e. the
set of Borel probability measures on Rd × Rd having µ and ν as marginals.
Equipped with W2, P2(Rd) is a Polish space, which we shall simply call
the Wasserstein space. Convergence in W2 is well known to be equivalent to
narrow convergence, plus convergence of the second moment. For more on the
optimal transport problem and Wasserstein spaces we refer to the textbooks
of Villani [38, 37] and Santambrogio [34]. The Kantorovich duality formula
enables one to express 1

2
W 2

2 (µ, ν) as the supremum ofˆ
Rd
u dµ+

ˆ
Rd
v dν

among pairs of potentials u and v such that

u(x) + v(y) ≤ 1

2
‖x− y‖2, ∀(x, y) ∈ Rd × Rd.

In the Kantorovich dual, u and v can be chosen to be conjugate to each other
in the sense that

u(x) = inf
y∈Rd

{
1

2
‖x− y‖2 − v(y)

}
, v(y) = inf

x∈Rd

{
1

2
‖x− y‖2 − u(x)

}
.
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Hence u and v can be chosen semi-concave and the previous relations can
conveniently be expressed in terms of the convex potentials

ϕ(x) :=
1

2
‖x‖2 − u(x), ψ(y) :=

1

2
‖y‖2 − v(y) (2.2)

by the fact that ϕ and ψ are Legendre transforms of each other

ϕ = ψ∗, ψ = ϕ∗.

The existence of optimal potentials u and v for the Kantorovich dual is well
known. An important result due to Brenier [8] says that if, in addition,
µ is absolutely continuous with respect to the Lebesgue measure, then the
optimal transport problem in (2.1) has a unique solution and is given by γ =
(id,∇ϕ)#µ where ϕ is the convex potential defined in (2.2). The Brenier’s
map ∇ϕ is unique up to a µ-negligible set, and is the unique gradient of a
convex map transporting µ to ν. If µ is absolutely continuous and almost
everywhere strictly positive, the potential ϕ is unique up to an additive
constant. In this case, we denote it ϕνµ and likewise denote by uνµ the semi
concave Kantorovich potential uνµ = 1

2
‖·‖2 − ϕνµ.

Now we give ourselves a Borel (with respect to the Wasserstein metric)
probability measure P on P2(Rd) such thatˆ

P2(Rd)

m2(ν) dP (ν) < +∞, (2.3)

where m2(ν) denotes the second moment of ν i.e.

m2(ν) =

ˆ
Rd
‖x‖2 dν(x), ∀ν ∈ P2(Rd). (2.4)

Given a regularization parameter λ > 0 and Ω a nonempty open connected
subset of Rd with a Lebesgue negligible boundary (of particular interest is
the case where Ω = Rd or Ω is convex), we are interested in the following
problem (which was introduced in [5] as an entropic regularization of the
Wasserstein barycenter problem):

inf
ρ∈P2(Rd)

VP,λ,Ω(ρ) :=
1

2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν) + λEntΩ(ρ) (2.5)

where EntΩ is defined for every µ ∈ P2(Rd) by

EntΩ(µ) =

{´
Ω
ρ log ρ, if µ = ρdx and

´
Ω
ρ = 1,

+∞ otherwise.

If Ω = Rd we simply denote EntRd = Ent and VP,λ,Rd = VP,λ. By the direct
method of the calculus of variations, one easily obtains
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Proposition 2.1. Assuming (2.3), then (2.5) admits a unique solution.

Proof. Let (ρn) be a minimizing sequence for (2.5) (necessarily 0 outside Ω).
In what follows C will denote a constant which may vary from one line to
the other. Observing that

1

2
W 2

2 (ρn, ν) ≥ 1

4
m2(ρn)−m2(ν),

we deduce from the fact that VP,λ,Ω(ρn) is bounded from above and (2.3) that
we have

1

4
m2(ρn) + λEntΩ(ρn) ≤ C. (2.6)

It now follows from [22] that for α ∈ ( d
d+2

, 1), one can bound from below the
entropy by

EntΩ(ρ) ≥ −C(1 +m2(ρ))α (2.7)

with (2.6) this shows that m2(ρn) is bounded so that (ρn) is tight. One
may therefore assume, taking a subsequence if necessary that (ρn) converges
narrowly to some ρ. Of course ρ ∈ P2(Rd) (with m2(ρ) ≤ lim infnm2(ρn))
and ρ vanishes outside Ω. Now since m2(ρn) is bounded and (ρn) converges
narrowly to ρ we have (see e.g. the appendix of [13] for details):

EntΩ(ρ) ≤ lim inf
n

EntΩ(ρn). (2.8)

and EntΩ(ρ) > −∞ thanks to (2.7). We also have for every ν ∈ P2(Rd)

W 2
2 (ρ, ν) ≤ lim inf

n
W 2

2 (ρn, ν)

hence, by Fatou’s Lemma:

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν) ≤ lim inf

n

ˆ
P2(Rd)

W 2
2 (ρn, ν) dP (ν)

which, together with (2.8) enables us to conclude that ρ solves (2.5). The
uniqueness of the minimizer directly follows from the strict convexity of the
entropy and the convexity of the Wasserstein term.

Entropic-Wasserstein barycenters can therefore be defined as follows:

Definition 2.2. The unique solution ρ of (2.5) is called the entropic-Wasserstein
barycenter of P with respect to λ and Ω and denoted barλ,Ω(P ).
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Remark 2.3. Theorem 4.4 in [5] states under the additional assumption that
Ω is convex and compact (note that taking the closure of Ω does not change
the entropic-Wasserstein barycenter) and supp ν ⊂ Ω for P -a.e. ν, then

W2(barλ,Ω(P ), bar0,Ω(P ))→ 0 as λ→ 0,

provided bar0,Ω(P ) is unique. By inspecting their proof, one can actually see
that the compactness assumption on Ω can be relaxed by the same argument
as in Proposition 2.1. The assumption on the inclusion of the support can
also be omitted if one understands bar0,Ω(P ) as the Wasserstein barycenter
of P constrained to have support in Ω.

Since barλ,Ω(P ) is absolutely continuous with respect to the Lebesgue
measure, we shall slightly abuse notations and use the same notation for its
density.

We can immediately state some basic invariance properties of entropic-
Wasserstein barycenters in case Ω = Rd. For instance, if we shift all measures
ν by some vector s ∈ Rd and rotate by some orthogonal matrix Q ∈ O(d),
then entropic-Wasserstein barycenters will be also shifted and rotated by the
same vector and matrix (clearly, the same result holds for any subgroup of
translations and orthogonal transformations that Ω is invariant to). The next
proposition shows that translations can actually be “factored out” from the
barycenter.

Proposition 2.4. Let Ω = Rd, λ > 0, P be a measure on P2(Rd) satisfying
condition (2.3), and ρ = barλ(P ). Fix a measurable map s ∈ L2

(
P ;Rd

)
and

define a measure Ps := (ν 7→ ν+s(ν))#P , where ν⊕s := (x 7→ s+x)#ν for all
ν ∈ P2(Rd) and s ∈ Rd. Then barλ(Ps) = ρ⊕ s̄, with s̄ :=

´
P2(Rd)

s(ν) dP (ν).

Proof. Note that it is enough to consider the case Eν [X] = 0 for P -a.e. ν,
where Eν [X] =

´
Rd x dν(x) is the average of ν ∈ P2(Rd). Recall that due to

the bias-variance decomposition

W 2
2 (µ, ν) = W 2

2 (µ	Eµ[X], ν 	Eν [X]) + ‖Eµ[X]−Eν [X]‖2, µ, ν ∈ P2(Rd).

Since entropy is invariant to shifts, we get for any ρ ∈ P2(Rd) and a ∈ Rd

VPs,λ(ρ⊕ a) =
1

2

ˆ
P2(Rd)

[
W 2

2 (ρ	 Eρ[X], ν) + ‖Eρ[X] + a− s(ν)‖2] dP (ν)

+ λEnt(ρ)

= VP,λ(ρ)− 1

2
‖Eρ[X]‖2 +

1

2
‖a+ Eρ[X]− s̄‖2 + C.
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In particular, taking s ≡ 0, ρ = ρ, and using that the minimum with respect
to a is attained at 0, we get that Eρ[X] = 0. Now, we can first minimize
VP,λ(ρ) over ρ’s with zero mean: Eρ[X] = 0, and then minimize the third term
with respect to a, hence barλ(Ps) = ρ⊕ a, a = s̄. The claim follows.

Remark 2.5. Note that, when Ω = Rd, a useful corollary of Proposition 2.4
is that the average of entropic-Wasserstein barycenter is the expectation of
averages:

Eρ[X] =

ˆ
P2(Rd)

Eν [X] dP (ν). (2.9)

3 Characterization

The entropic term forces the regularized barycenter to be everywhere posi-
tive. Indeed, arguing in a similar way as in Lemma 8.6 from [34], we arrive
at:

Lemma 3.1. Let ρ := barλ,Ω(P ) then ρ > 0 a.e. on Ω and log(ρ) ∈ L1
loc(Ω).

Proof. Let g be a Gaussian density, scaled so as to give mass 1 to Ω. For
t ∈ (0, 1), set ρt := (1 − t)ρ + tg. The convexity of ρ 7→ W 2

2 (ρ, ν) together
with the optimality of ρ, give

λ(EntΩ(ρt)− EntΩ(ρ)) ≥ t

2

ˆ
P2(Rd)

[W 2
2 (ρ, ν)−W 2

2 (g, ν)] dP (ν)

so that for some C, we have for every t ∈ (0, 1),

1

t
(EntΩ(ρt)− EntΩ(ρ)) ≥ C. (3.1)

Now, observe that

1

t
(EntΩ(ρt)− EntΩ(ρ)) =

ˆ
{ρ=0}

g log(tg) +

ˆ
{ρ>0}

1

t
(ρt log(ρt)− ρ log(ρ))

≤
ˆ
{ρ=0}

g log(tg) +

ˆ
{ρ>0}

(g log(g)− ρ log(ρ))

≤ log(t)

ˆ
{ρ=0}

g + EntΩ(g)− EntΩ(ρ)

(where in the second line we have used the convexity of s 7→ s log(s)). Com-
bining this inequality with (3.1) and letting t→ 0+, we immediately see that
|{ρ = 0}| = 0.
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Let us now show that log(ρ) ∈ L1
loc(Ω). Since max(0, log(ρ)) ≤ ρ we have

to show that
´
K

log(ρ) > −∞ for every compact subset (of positive Lebesgue
measure) K of Ω. Calling µ the uniform probability measure on K, setting
νt := ρ+ t(µ− ρ) for t ∈ (0, 1) and arguing as above, we have

1

t
(EntΩ(νt)− EntΩ(ρ)) ≥ C,

moreover 1
t
(νt log(νt)− ρ log ρ) ≤ µ log(µ)− ρ log ρ ∈ L1(Ω), Fatou’s Lemma

and the previous inequality thus give

C ≤ lim sup
t→0+

1

t
(EntΩ(νt)− EntΩ(ρ))

≤
ˆ

Ω

lim sup
t→0+

(νt log(νt)− ρ log(ρ)) =

ˆ
Ω

log(ρ)(µ− ρ)

and since EntΩ(ρ) is finite, this gives
´
K

log(ρ) > −∞.

The fact that the regularized barycenter is everywhere positive guarantees
uniqueness (up to a constant) of the Kantorovich potential between ρ and
ν ∈ P2(Rd). This uniqueness is well-known to be very useful in terms of differ-
entiability of µ 7→ W 2

2 (µ, ν) at µ = ρ as expressed in Lemma 3.4 below (which
is slight generalization of Proposition 7.17 in [34]). The following inequality
will be useful to justify the differentiability of µ 7→

´
P2(Rd)

W 2
2 (µ, ν) dP (ν) at

µ = ρ:

Lemma 3.2. Let ρ ∈ L1(Ω) and ρ > 0 a.e. on Ω. Then for any compact set
K ⊂ Ω and any convex function ϕ : Ω→ R one has

osc
K
ϕ := max

K
ϕ−min

K
ϕ ≤ diam(K) + r

inf
x∈Kr/2

ρ(Br/2(x))

ˆ
Ω

‖∇ϕ‖ρ, (3.2)

where 0 < r ≤ d(K, ∂Ω) and Kσ =
⋃
x∈K B̄σ(x) for any σ > 0. Moreover,

the Lipschitz constant of ϕ on K, Lip (ϕ|K), can be estimated as

Lip (ϕ|K) ≤ 2 diam(K) + 3r

r inf
x∈K3r/4

ρ(Br/4(x))

ˆ
Ω

‖∇ϕ‖ρ. (3.3)

Remark 3.3. Notice that Ω is not necessary convex, thus we say a function
ϕ on Ω is convex if it can be extended to a convex function on Rd (possibly
taking value +∞), see [20].
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Proof. Let x1 ∈ arg maxK ϕ, x0 ∈ arg minK ϕ, and w ∈ ∂ϕ(x1). Then for
any x ∈ Ω and z ∈ ∂ϕ(x) one has

ϕ(x0) + z · (x− x0) ≥ ϕ(x) ≥ ϕ(x1) + w · (x− x1),

and thus the Cauchy–Schwarz inequality yields

‖z‖ ≥ oscK ϕ+ w · (x− x1)

‖x− x0‖
.

Since ϕ is a.e. differentiable, we haveˆ
Ω

‖∇ϕ‖ρ ≥
ˆ
Wr(x1,w)

‖∇ϕ‖ρ ≥ osc
K
ϕ

ˆ
Wr(x1,w)

1

‖x− x0‖
ρ(x) dx

≥ osc
K
ϕ

ˆ
Wr(x1,w)

1

‖x− x1‖+ ‖x1 − x0‖
ρ(x) dx

≥ osc
K
ϕ
ρ
(
Br/2

(
x+ rw

2‖w‖

))
diam(K) + r

,

where we have set Wr(x,w) := {y ∈ Br(x) : w · (y − x) ≥ 0} and used the

fact that Br/2

(
x+ rw

2‖w‖

)
⊂ Wr(x,w) and x + rw

2‖w‖ ∈ Kr/2. Finally, the

positivity of ρ together with the compactness of K implies that

inf
{
ρ(Wr(x,w)) : x ∈ K, w ∈ Rd

}
≥ inf

x∈Kr/2
ρ(Br/2(x)) > 0.

The first claim follows.
To prove (3.3) we apply (3.2) to Kr/2, which yields

osc
Kr/2

ϕ ≤
diam(Kr/2) + r/2

inf
x∈K3r/4

ρ
(
Br/4(x)

) ˆ
Ω

‖∇ϕ‖ρ

≤ diam(K) + 3r/2

inf
x∈K3r/4

ρ
(
Br/4(x)

) ˆ
Ω

‖∇ϕ‖ρ.

Note that for any x ∈ K and w ∈ ∂ϕ(x) one has Br/2(x) ⊂ Kr/2, hence

osc
Kr/2

ϕ ≥ osc
Br/2(x)

ϕ ≥ r

2
‖w‖.

Therefore,

‖w‖ ≤ 2

r
osc
Kr/2

ϕ ≤ 2 diam(K) + 3r

r inf
x∈K3r/4

ρ
(
Br/4(x)

) ˆ
Ω

‖∇ϕ‖ρ,

thus we obtain the desired bound on Lip (ϕ|K).
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Lemma 3.4. Let ρ := barλ,Ω(P ) and given ν ∈ P2(Rd), let uνρ be the (unique
on Ω, up to an additive constant) Kantorovich potential between ρ and ν. Let
µ ∈ L1(Ω) be a probability density such that µ− ρ has compact support in Ω,
defining ρε := ρ+ ε(µ− ρ) for ε ∈ (0, 1

2
), we have

lim
ε→0+

1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ, ν)] =

ˆ
Ω

uνρ d(µ− ρ)

and

lim
ε→0+

1

2ε

ˆ
P2(Rd)

[W 2
2 (ρε, ν)−W 2

2 (ρ, ν)] dP (ν) =

ˆ
P2(Rd)

(ˆ
Ω

uνρ d(µ−ρ)
)

dP (ν).

Proof. Let us shorten notations by defining

u := uνρ, ϕ := ϕνρ =
1

2
‖·‖2 − uνρ

and let uε be a Kantorovich potential between ρε and ν and ϕε := 1
2
‖·‖2−uε.

Let K be a compact subset of Ω supporting µ−ρ and normalize the potentials
ϕ and ϕε in such a way that their minimum on K is 0. It immediately follows
from the Kantorovich duality formula that

ˆ
K

uε d(µ− ρ) ≥ 1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ, ν)] ≥

ˆ
K

u d(µ− ρ). (3.4)

Now observe that since (∇ϕε)#ρε = ν, we have

m2(ν) =

ˆ
Ω

‖∇ϕε‖2ρε ≥ (1− ε)
ˆ

Ω

‖∇ϕε‖2ρ. (3.5)

We then deduce from Jensen’s inequality a bound on
´

Ω
‖∇ϕε‖ρ which does

not depend on ε. Thanks to Lemma 3.2, we obtain local uniform bounds
on ϕε and therefore can deduce that for some vanishing sequence of εn, ϕεn
converges locally uniformly on Ω to some convex ψ whose minimum is 0
on K and that ∇ϕεn converges ρ-a.e. to ∇ψ. Using continuous bounded
test-functions and Lebesgue’s dominated convergence theorem, we can pass
to the limit in ∇ϕεn#ρεn = ν to deduce that ∇ψ#ρ = ν, which, with our
normalization and the uniqueness of Brenier’s map implies that ψ = ϕ and
also full uniform convergence on K of uε to u. Passing to the limit in (3.4)
gives the first claim of the Lemma.

To prove the second claim, set

θε(ν) :=
1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ, ν)]
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and observe that it follows from (3.4)-(3.5) and Lemma 3.2 that θε(ν) can be
bounded from above and from below by two affine functions of m2(ν), the
desired result therefore follows from (2.3), Lebesgue’s dominated convergence
theorem and the first claim.

We are now in position to characterize the regularized barycenter:

Proposition 3.5. Let ρ ∈ P2(Rd), then ρ = barλ,Ω(P ) if and only if, denot-
ing by ∇ϕνρ Brenier’s map between ρ and ν, there are normalizing constants
for ϕνρ such that ρ has a continuous density given by

ρ(x) := exp
(
− 1

2λ
‖x‖2 +

1

λ

ˆ
P2(Rd)

ϕνρ(x) dP (ν)
)

(3.6)

for every x ∈ Ω. Moreover, log(ρ) is semi-convex hence differentiable a.e.
and for a.e. x ∈ Ω, one has

x+ λ∇ log(ρ)(x) =

ˆ
P2(Rd)

∇ϕνρ(x) dP (ν). (3.7)

Proof. For necessity fix a compact with nonempty interior subset K of Ω and
normalize uνρ such that it has minimum 0 on K, then, arguing as in the proof

of Lemma 3.4, there is a constant CK such that
∥∥uνρ∥∥L∞(K) ≤ CK(1+m2(ν))

so that the (semi-concave) potential

x 7→ U(x) :=

ˆ
P2(Rd)

uνρ(x) dP (ν)

is bounded on K. Now we claim that V := λ log(ρ) + U (which is integrable
on K thanks to Lemma 3.1) coincides Lebesgue a.e. with a constant on K
(which taking an exhaustive sequence of compact subsets of Ω will enable
to find normalizing constants for ϕνρ that do not depend on K and therefore
prove (3.6)). Assume, by contradiction, that V does not coincide Lebesgue
a.e. with a constant on K, then we could find two measurable subsets K1

and K2 of K, both of positive Lebesgue measure and α ∈ R and δ > 0 such
that

V ≥ α + δ a.e. on K1, V ≤ α− δ a.e. on K2. (3.8)

In particular ρ(K1) > 0 and ρ(K2) > 0, now set β := ρ(K1)
2ρ(K2)

and define the

probability density µ ∈ L1(Ω) by

µ(x) :=


1
2
ρ(x) if x ∈ K1,

(1 + β)ρ(x) if x ∈ K2,

ρ(x) otherwise

11



and ρε := ρ+ ε(µ− ρ). It is straightforward to check that

lim
ε→0+

1

ε
(Ent(ρε)− Ent(ρ)) =

ˆ
K

log(ρ)(µ− ρ).

With Lemma 3.4, the construction of µ and (3.8), this yields

lim
ε→0+

1

ε
[VP,λ,Ω(ρε)− VP,λ,Ω(ρ)] =

ˆ
K

V (µ− ρ)

= −1

2

ˆ
K1

V ρ+ β

ˆ
K2

V ρ ≤ −δρ(K1) < 0

contradicting the fact by optimality of ρ, VP,λ,Ω(ρε) ≥ VP,λ,Ω(ρ).
Now assume that ρ ∈ P2(Rd) satisfies (3.6), and let µ ∈ P2(Rd) be

supported on Ω and such that EntΩ(µ) < ∞. Using the convexity of the
entropy firstly gives

λEntΩ(µ) ≥ λEntΩ(ρ) + λ

ˆ
Ω

log(ρ)(µ− ρ). (3.9)

Secondly, by Kantorovich duality formula and using the fact that uνρ is a
Kantorovich potential between ρ and ν, we get

1

2

ˆ
P2(Rd)

W 2
2 (µ, ν) dP (ν) ≥ 1

2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν)

+

ˆ
P2(Rd)

(ˆ
Ω

uνρ d(µ− ρ)
)

dP (ν).

Adding (3.9), observing that (3.6) means that λ log ρ +
´
P2(Rd)

uνρ dP (ν) = 0

and using Fubini’s theorem, we thus get

VP,λ,Ω(µ) ≥ VP,λ,Ω(ρ),

so that ρ = barλ,Ω(P ).

Let us now prove (3.7). Since

Φ :=

ˆ
P2(Rd)

ϕνρ dP (ν)

is convex, log ρ is semi-convex. It is therefore differentiable a.e. Now we claim
that if x ∈ Ω is a differentiability point of Φ it also has to be a differentiability
point of ϕνρ for P -almost every ν. Indeed, assume that Φ is differentiable at
x ∈ Ω. For n ∈ N∗, let An denote the set of ν ∈ P2(Rd) for which there

12



exist pν and qν in ∂ϕνρ(x) such that ‖pν − qν‖ ≥ 1/n. The desired claim
will be established if we prove that P (An) = 0 for every n ∈ N∗. Let then
(qν , pν) ∈ ∂ϕνρ(x)2 be chosen (in a measurable way) so that ‖pν − qν‖ ≥ 1/n
when ν ∈ An, then, for every h ∈ Ω− x, one has

ϕνρ(x+ h)− ϕνρ(x)− 1

2
(pν + qν) · h ≥

1

2
|(pν − qν) · h|,

so that, by integration s :=
´
P2(Rd)

pν+qν
2

dP (ν) ∈ ∂Φ(x) = {∇Φ(x)} and then

Φ(x+ h)− Φ(x)− s · h = o(h) ≥ 1

2

ˆ
An

|(pν − qν) · h| dP (ν).

By homogeneity, we thus have
´
An
|(pν− qν) ·h| dP (ν) = 0 for every h so that´

An
‖pν − qν‖ dP (ν) = 0 ≥ P (An)/n and therefore P (An) = 0. Hence, if Φ is

differentiable at x, for every h ∈ Rd, we have:

ϕνρ(x+ th)− ϕνρ(x)

t
→ ∇ϕνρ(x) · h as t→ 0+, for P -a.e. ν.

Moreover, the left-hand side above is controlled in absolute value by the
Lipschitz constant of ϕνρ in a compact neighbourhood of x which, thanks to
Lemma 3.2, in turn, is controlled by

ˆ
Ω

∥∥∇ϕνρ∥∥ρ =

ˆ
Rd
‖y‖ dν(y) ≤

√
m2(ν).

Thanks to (2.3) and Lebesgue’s dominated convergence theorem, we thus get

∇Φ(x) =

ˆ
P2(Rd)

∇ϕνρ(x) dP (ν),

which shows (3.7).

Remark 3.6 (A first regularizing effect). One immediately deduces from
(3.6) and the convexity of ϕνρ, further regularity properties of the regularized
barycenter:

log(ρ) ∈ L∞loc(Ω), ρ ∈ W 1,∞
loc (Ω), and ∇ρ ∈ BVloc(Ω,Rd). (3.10)

Example 3.7 (Gaussian case). Suppose now that P is concentrated on Gaus-
sian measures and Ω = Rd; then the regularized barycenter is Gaussian
as well. In order to prove this we can assume thanks to Proposition 2.4
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that P -a.e. ν = N (0, Sν), where Sν are positive semi-definite matrices with
EP [Sν ] ≤ σ2I, σ > 0. We want to prove that there is a positive definite
symmetric matrix S̄ such that

barλ(P ) = N (0, S̄).

In order to see that, recall that the optimal transport T νρ from ρ = N (0, S)
to ν = N (0, Sν) is given by (see e.g. [18])

T νρ (x) := S−1/2
(
S1/2SνS

1/2
)1/2

S−1/2︸ ︷︷ ︸
=:TSνS

x.

Thus ϕνρ = 1
2
x ·T SνS x+C, and the optimality condition (3.6) can be rewritten

as

−λ
2
x · S̄−1x = −‖x‖

2

2
+

1

2
EP
[
x · T SνS x

]
+ C,

i.e.
I = λS̄−1 + S̄−1/2 EP

[(
S̄1/2SνS̄

1/2
)1/2
]
S̄−1/2.

Thus S̄ has to be a solution of the following fixed-point equation

S = Φ(S) := λI + EP
[(
S1/2SνS

1/2
)1/2
]
.

This has a solution by Brouwer’s fixed-point theorem. Indeed, denote by αν
the largest eigenvalue of Sν . Then, by assumption

EP [αν ] ≤ trEP [Sν ] ≤ dσ2.

Define
α := 2λ+ dσ2,

then for any λI ≤ S ≤ αI it holds that

Φ(S) ≤
(
λ+ EP

[
(ανα)1/2

])
I ≤

(
λ+

α

2
+

EP [αν ]

2

)
I

≤
(
λ+

α

2
+
dσ2

2

)
I = αI.

So, Φ(·) maps the convex set {λI ≤ S ≤ αI} to itself, and it is clearly
continuous. The existence of S̄ such that S̄ = Φ(S̄) therefore follows from
Brouwer’s fixed-point theorem.
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4 Properties of the entropic barycenter

4.1 Global bounds

The aim of this paragraph is to emphasize some global bounds on the entropic
barycenter which hold in the case where Ω may be unbounded, in particular
it covers the case of the whole space.

Lemma 4.1. The entropic-Wasserstein barycenter ρ of P enjoys the follow-
ing bound on the Fisher information:ˆ

Ω

‖∇ log(ρ)‖2ρ ≤ 1

λ2

ˆ
P2(Rd)

W 2(ρ, ν) dP (ν).

In particular,
√
ρ ∈ H1(Ω), hence in case Ω = Rd it holds that ρ ∈ L∞(R) ∩

C0,1/2(R) if d = 1, ρ ∈ Lq(R2) for every q ∈ [1,+∞) if d = 2 and ρ ∈
L

d
d−2 (Rd) if d ≥ 3. Finally, (1 + ‖x‖)∇ρ ∈ L1(Rd).

Proof. According to Proposition 3.5

∇ log(ρ(x)) =
1

λ

ˆ
P2(Rd)

(
∇ϕνρ(x)− x

)
dP (ν) = −1

λ

ˆ
P2(Rd)

∇uνρ(x) dP (ν),

thus
ˆ

Ω

‖∇ρ‖2

ρ
=

ˆ
Ω

‖∇ log(ρ)‖2ρ ≤ 1

λ2

ˆ
Ω

ρ(x)

ˆ
P2(Rd)

∥∥∇uνρ(x)
∥∥2

dP (ν) dx,

and using Fubini’s Theorem, we get that

ˆ
Ω

‖∇ρ‖2

ρ
≤ 1

λ2

ˆ
P2(Rd)

[ˆ
Ω

∥∥∇uνρ∥∥2
ρ

]
dP (ν) =

1

λ2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν).

Finally, (1 + ‖x‖)∇ρ = 2 (1 + ‖x‖)
√
ρ∇
√
ρ belongs to L1(Rd) since both

(1 + ‖x‖)
√
ρ and ∇

√
ρ are in L2(Rd).

Proposition 4.2. Let p ≥ 1, and assume thatˆ
P2(Rd)

mp(ν) dP (ν) < +∞ (4.1)

(where mp(ν) :=
´
Rd‖x‖

p dν(x)). Then the entropic-Wasserstein barycenter
ρ of P satisfies mp(ρ) < +∞, and more precisely, for any r > 0 it holds that

mp(ρ) ≤ 6p

2

(
rp +

ˆ
P2(Rd)

mp(ν) dP (ν)

)
+
|B1(0)|Γ

(
d+p

2

)
2|Ω ∩Br(0)|

(96λ)(d+p)/2. (4.2)
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In particular, if Ω = Rd, then

mp(ρ) ≤ 6p

2

ˆ
P2(Rd)

mp(ν) dP (ν) + (3456λ)p/2 Γ

(
d+ p

2

)
. (4.3)

Proof. Fix r > 0 s.t. |Ω ∩Br(0)| > 0 and denote S := Ω∩Br(0). Now let us
take R > 0 and consider the set

QR :=
{
x ∈ BR(0) \BR/2(0) : ‖x‖ ≥ 3

(
E
∥∥T νρ (x)

∥∥+ r
)}

(4.4)

(here and after, expectations are taken w.r.t. ν ∼ P ). Assume ρ(QR) > 0
and define

ρt := ρ+ t

(
ρ(QR)

|S|
1S −ρ1QR

)
∈ P2(Ω), 0 ≤ t ≤ 1.

Then

d

dt
EntΩ(ρt)

∣∣∣∣
t=0+

=
ρ(QR)

|S|

ˆ
S

log ρ−
ˆ
QR

ρ log ρ

≤ ρ(QR) log

(
ρ(S)

|S|

)
− ρ(QR) log

(
ρ(QR)

|QR|

)
≤ ρ(QR) log

(
|QR|ρ(S)

ρ(QR)|S|

)
≤ ρ(QR) log

(
|BR(0)|
ρ(QR)|S|

)
= ρ(QR) log

(
VdR

d

ρ(QR)|S|

)
,

where Vd := |B1(0)| is the volume of a unit ball in Rd. Furthermore, for any
ν we can estimate W 2

2 (ρ1, ν) using the transport plan

γ := (id, T νρ )#

(
ρ1Rd\QR

)
+

1

|S|
1S ⊗

(
T νρ
)

#
(ρ1QR) ∈ Π(ρ1, ν),

which gives us

W 2
2 (ρ1, ν) ≤

ˆ
Rd\QR

∥∥T νρ (x)− x
∥∥2
ρ+

 
S

[ˆ
QR

∥∥T νρ (x)− y
∥∥2
ρ(x)

]
dy

≤ W 2
2 (ρ0, ν) +

ˆ
QR

[(
r +

∥∥T νρ (x)
∥∥)2 −

∥∥T νρ (x)− x
∥∥2
]
ρ

≤ W 2
2 (ρ0, ν) +

ˆ
QR

[
r2 + 2r

∥∥T νρ (x)
∥∥− ‖x‖2 + 2

∥∥T νρ (x)
∥∥‖x‖] ρ.
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Then it is easy to see that, due to convexity of W 2
2 (·, ·),

d

dt
EW 2

2 (ρt, ν)

∣∣∣∣
t=0+
≤ EW 2

2 (ρ1, ν)− EW 2
2 (ρ0, ν)

≤
ˆ
QR

[
r2 + 2 (r + ‖x‖)E

∥∥T νρ (x)
∥∥− ‖x‖2

]
ρ

=

ˆ
QR

[(
r + E

∥∥T νρ (x)
∥∥)2 −

(
‖x‖ − E

∥∥T νρ (x)
∥∥)2
]
ρ

≤ −1

3

ˆ
QR

‖x‖2ρ ≤ −ρ(QR)R2

12
.

Therefore,

d

dt
VP,λ,Ω(ρt)

∣∣∣∣
t=0+
≤ λρ(QR)

(
log

(
VdR

d

ρ(QR)|S|

)
− R2

24λ

)
.

On the other hand, by optimality this derivative should be nonnegative, thus

ρ(QR) ≤ VdR
d

|S|
exp

(
− R2

24λ

)
. (4.5)

Now we set Rn = 2n and define qn := ρ(QRn), n ∈ Z. Note that by the
definition (4.4) of QR, if x ∈ Ω \

⋃
n∈ZQRn , then ‖x‖ < 3

(
E
∥∥T νρ (x)

∥∥+ r
)
.

Consequently,

mp(ρ) =

ˆ
Ω

‖x‖pρ ≤
ˆ

Ω\
⋃
n∈ZQRn

3p
(
E
∥∥T νρ ∥∥+ r

)p
ρ+

∑
n∈Z

Rp
nqn. (4.6)

Using the fact that (a + b)p ≤ 2p−1(ap + bp),
(
T νρ
)

#
ρ = ν, and Jensen’s

inequality, one can bound the first term on the r.h.s. as follows:ˆ
Ω\

⋃
n∈ZQ2n

3p
(
E
∥∥T νρ (x)

∥∥+ r
)p
ρ ≤ 6p

2

(
rp + E

ˆ
Ω

∥∥T νρ ∥∥pρ) =
6p

2
(rp + Emp(ν)) .

Now let us bound the second term: due to (4.5) we get∑
n∈Z

Rp
nqn ≤

Vd
|S|
∑
n∈Z

Rd+p
n exp

(
− R

2
n

24λ

)

≤ Vd
|S|
∑
n∈Z

ˆ 2n+1

2n
xd+p−1 exp

(
− x2

96λ

)
dx

=
Vd
|S|

ˆ +∞

0

xd+p−1 exp

(
− x2

96λ

)
dx

=
Vd(96λ)(d+p)/2

2|S|
Γ

(
d+ p

2

)
.
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Combining the above bounds together we obtain

mp(ρ) ≤ 6p

2
(rp + Emp(ν)) +

Vd(96λ)(d+p)/2

2|S|
Γ

(
d+ p

2

)
,

thus the first claim follows.
Finally, in case Ω = Rd, we can take r =

√
96λ

6p/(p+d)
, then using |S| = Vdr

d

one obtains

mp(ρ) ≤ 6p

2
Emp(ν) +

(
6d/(p+d)

√
96λ
)p 1 + Γ

(
d+p

2

)
2

≤ 6p

2
Emp(ν) + (3456λ)p/2 Γ

(
d+ p

2

)
.

Remark 4.3. Note that (4.3) (and thus, in some sense, (4.2)) is an inter-
polation between two bounds. On the one hand, if λ = 0, then ρ is a stan-
dard Wasserstein barycenter and, due to convexity of mp(·) along generalized
geodesics, one gets the bound

mp(ρ) ≤
ˆ
P2(Rd)

mp(ν) dP (ν).

On the other hand, if P is concentrated at the measure δ0, then ρ = N (0, λI)
by Proposition 3.5. In this case,

mp(ρ) =
(2λ)p/2 Γ

(
p+d

2

)
Γ
(
d
2

) ,

which coincides with the second term in the r.h.s. of (4.3) up to a constant
factor to the power p and a factor depending on the dimension.

Remark 4.4. Let us indicate now a more elementary approach to obtain
moment bounds when Ω is convex. Let V : Rd → R+ be a convex potential
such thatˆ

P2(Rd)

mV (ν) dP (ν) < +∞, where mV (ν) :=

ˆ
Rd
V (x) dν(x).

On the one hand, thanks to (3.7), the convexity of V and the fact that
∇ϕνρ#

ρ = ν, we have:

ˆ
Ω

V (λ∇ log ρ(x) + x)ρ(x) dx ≤
ˆ
P2(Rd)

mV (ν) dP (ν).
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On the other hand, again by convexity V (λ∇ log ρ(x) +x)ρ(x) ≥ V (x)ρ(x) +
λ∇V (x) · ∇ρ(x). Integrating by parts (which can be justified if V is C1,1 and
using Lemma 4.1), denoting by n the outward normal to Ω on ∂Ω, we thus
get ˆ

Ω

(V − λ∆V )ρ ≤
ˆ
P2(Rd)

mV (ν) dP (ν)− λ
ˆ
∂Ω

∂nV ρ. (4.7)

Assuming (4.1) and choosing V (x) = ‖x − x0‖p (actually, some suitable
C1,1 approximations of V ) with p ≥ 2 in (4.7) with x0 ∈ Ω, observing that
∂nV ≥ 0 on ∂Ω since Ω is convex, we obtain the bound

ˆ
Ω

(
‖x−x0‖p−λp(p+d−2) ‖x−x0‖p−2

)
ρ(x) dx ≤

ˆ
Ω

ˆ
Rd
‖x−x0‖p dν(x) dP (ν).

In particular, when Ω = Rd or, more generally, when Ω is convex and con-
tains 0, we have

m2(ρ) ≤ 2λd+

ˆ
P2(Rd)

m2(ν) dP (ν),

and for higher moments

mp(ρ) ≤ λp(p+ d− 2)mp−2(ρ) +

ˆ
P2(Rd)

mp(ν) dP (ν).

Note finally that when choosing V linear, the two convexity inequalities we
used above are equalities, yielding

ˆ
Ω

xρ(x) dx+ λ

ˆ
∂Ω

nρ =

ˆ
P2(Rd)

ˆ
Rd
x dν(x) dP (ν).

Corollary 4.5. Under assumptions of Proposition 4.2 it holds that ρ1/p ∈
W 1,p(Ω). In particular, if p > d, then ρ ∈ L∞(Ω) ∩ C0,1−d/p(Ω).

Proof. Once we have a bound on mp(ρ), the fact that ρ1/p is W 1,p can be
proved as for Lemma 4.1. Indeed, by the same arguments (together with the
crude bound

∥∥∇ϕνρ(x)− x
∥∥p ≤ 2p−1

(∥∥∇ϕνρ(x)
∥∥p + ‖x‖p

)
) we arrive at

pp
∥∥∇ρ1/p

∥∥p
Lp(Ω)

=

ˆ
Ω

‖∇ρ‖p

ρp−1 ≤
2p−1

λp

(ˆ
P2(Rd)

mp(ν) dP (ν) +mp(ρ)

)
.
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4.2 Stability

Following [28], let us define the p-Wasserstein metric between measures on
Pp(Rd):

Wp
p (P,Q) := inf

Γ∈Π(P,Q)

ˆ
Pp(Rd)×Pp(Rd)

W p
p (µ, ν) dΓ (µ, ν). (4.8)

Lemma 4.6 (Stability). Take p ≥ 2 and let {Pn}n≥1 ⊂ Pp
(
Pp(Rd)

)
, P ∈

Pp
(
Pp(Rd)

)
be s.t. Wp(Pn, P ) → 0. Then for ρn = barλ,Ω(Pn) and ρ =

barλ,Ω(P ) it holds that

Wp(ρn, ρ) −→ 0, (4.9)

ρ1/p
n

W 1,p(Ω)−−−−−→ ρ1/p, (4.10)

log ρn
W 1,q

loc (Ω)
−−−−→ log ρ, ∀ 1 ≤ q <∞. (4.11)

Proof. Proof of (4.9). Note that since W2(·, ·) ≤ Wp(·, ·) and W2(·, ·) ≤
Wp(·, ·), one has W2(Pn, P )→ 0. According to the proof of Proposition 2.1,
m2(ρn) (m2(ρ)) are uniformly bounded, thus by (2.7) Ent(ρn) (Ent(ρ)) are
bounded from below. Moreover, replacement of Ω with its closure Ω does
not change an entropic-Wasserstein barycenter. Then Theorem 5.5 from [26]
implies that W2(ρn, ρ)→ 0.

Arguing in the same way as in the proof of Proposition 4.2, one can show
that for any R > 0

ˆ
{‖x‖≥R}

‖x‖pρn ≤ C

[ˆ
Pp(Rd)

ˆ
{‖x‖≥R}

(
1 +

∥∥∇ϕνρn∥∥p) ρn dPn(ν)

+

ˆ +∞

R

xd+p−1 exp

(
− x2

96λ

)
dx

]
, (4.12)

where the constant C depends solely on Ω, λ, p, and d.
To prove that Wp(ρn, ρ)→ 0, we also need the following result on conti-

nuity of optimal transport plans: once W2(ρn, ρ) → 0, Wp(νn, ν) → 0, and
there exists a unique optimal transport plan γνρ from ρ to ν for the quadratic
cost function, one has

J(γνnρn , γ
ν
ρ )→ 0,

where J(·, ·) is the optimal transport cost for the cost function

c
(
(x1, y1), (x2, y2)

)
= ‖x1 − x2‖2 + ‖y1 − y2‖p, xi, yi ∈ Rd,
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and γνnρn is any optimal transport plan from ρn to νn for the quadratic cost
function. Indeed,ˆ

‖x− y‖2 dγνnρn = W 2
2 (ρn, νn)→ W 2

2 (ρ, ν) =

ˆ
‖x− y‖2 dγνρ ,

then γνnρn ⇀ γνρ due to Prokhorov’s theorem and uniqueness of the optimal
transport plan; moreover,

ˆ
Rd×Rd

(
‖x‖2 + ‖y‖p

)
dγνnρn (x, y) = m2(ρn) +mp(νn)

→ m2(ρ) +mp(ν) =

ˆ
Rd×Rd

(
‖x‖2 + ‖y‖p

)
dγνρ (x, y),

thus the convergence follows from [26, Theorem 3.7]. Further, using [26,
Theorem 3.7] again, it is easy to see that for any closed set G ⊂ Rd the
function

(ρ, ν) 7→
ˆ
G

(
1 +

∥∥∇ϕνρ∥∥p) ρ =

ˆ
G×Rd

(1 + ‖y‖p) dγνρ (x, y)

is upper-semicontinuous w.r.t. convergence in W2 distance (for ρ) and Wp

distance (for ν), as well as its average w.r.t. a measure on Pp(Rd):

(ρ, P ) 7→
ˆ
Pp(Rd)

ˆ
G

(
1 +

∥∥∇ϕνρ∥∥p) ρ dP (ν).

Hence for all R > 0 one obtains

lim sup

ˆ
Pp(Rd)

ˆ
{‖x‖≥R}

(
1 +

∥∥∥∇ϕνρn∥∥∥p) ρn dPn(ν)

≤
ˆ
Pp(Rd)

ˆ
{‖x‖≥R}

(
1 +

∥∥∇ϕνρ∥∥p) ρ dP (ν).

Using this together with (4.12), we get that

lim sup

ˆ
{‖x‖≥R}

‖x‖pρn ≤ C

[ˆ
{‖x‖≥R}

(ˆ
Pp(Rd)

(
1 +

∥∥∇ϕνρ∥∥p) dP (ν)

)
ρ

+

ˆ +∞

R

xd+p−1 exp

(
− x2

96λ

)
dx

]
→ 0 as R→ 0.

Thus the measures ‖·‖pρn are uniformly integrable, and by the criterion of
convergence in a Wasserstein space (see e.g. [38, Theorem 6.9] or [26, Theo-
rem 3.7]), we deduce that Wp(ρn, ρ)→ 0.
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Proof of (4.10) and (4.11). Fix an arbitrary open set U ⊂⊂ Ω. By
Lemma 3.2

Lip
(
ϕνρn

∣∣
U

)
≤ C

inf
x∈U3r/4

ρn
(
Br/4(x)

) (ˆ
Ω

‖∇ϕνρn‖
2ρn

)1/2

=
C

inf
x∈U3r/4

ρn
(
Br/4(x)

)√m2(ν),

where r = d(U, ∂Ω). Since ρn ⇀ ρ and ρ > 0 on Ω, we have inf
x∈U3r/4

ρn
(
Br/4(x)

)
≥

c > 0 for any n. Therefore, the functions

ϕ̄n = λ log ρn +
‖·‖2

2
=

ˆ
P2(Rd)

ϕνρn dPn(ν)

are uniformly Lipschitz continuous on U for all n since
´
P2(Rd)

m2(ν) dPn(ν)

are uniformly bounded. Furthermore, as ρn ⇀ ρ > 0, ϕ̄n are also uniformly

bounded on U . Then, by the Arzelà–Ascoli theorem, ϕ̄n
C(U)−−−→ ϕ̄, and we

deduce from weak convergence that ϕ̄ = λ log ρ + ‖·‖2
2

. Moreover, every ϕ̄n
is convex, thus ∇ϕ̄n → ∇ϕ̄ a.e. on U . Hence, by Lebesgue’s dominated

convergence theorem, we get ϕ̄n
W 1,q(U)−−−−−→ ϕ̄ for any 1 ≤ q < ∞ and thus

(4.11).
Further, using (3.7), we get

ˆ
Ω\U

∥∥∇ρ1/p
n

∥∥p =
1

pp

ˆ
Ω\U
‖∇ log ρn‖

pρn ≤
2p−1

(pλ)p

ˆ
Ω\U

(‖∇ϕ̄n‖p + ‖x‖p) ρn.

Since the functions ρ 7→
´

Ω\U‖x‖
pρ and (ρ, P ) 7→

´
Pp(Rd)

´
Ω\U

∥∥∇ϕνρ∥∥pρ dP (ν)

are u.s.c., we obtain that

lim sup

ˆ
Ω\U

∥∥∇ρ1/p
n

∥∥p → 0 as U → Ω

(e.g. in a sense that ρ(Ω \ U)→ 0). Finally, this together with (4.11) yields

that ρ1/p
n

W 1,p(Ω)−−−−−→ ρ1/p.

In particular, the previous lemma shows that one can approximate the
barycenter ρ by approximating P with discrete measures supported on some
dense set of measures, e.g. discrete or having smooth densities. As another
corollary of Lemma 4.6, in section 6 we will obtain a law of large numbers
for entropic-Wasserstein barycenters.
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4.3 A maximum principle

Proposition 4.7. Assume that Ω is convex and there is some C > 0 such
that P

(
{ν(Ω) = 1, ν ∈ L∞(Rd), ν ≤ C}

)
= 1 and let ρ := barλ,Ω(P ) be its

entropic barycenter. Then ρ ∈ L∞(Rd) with ρ ≤ C.

Proof. We first prove the result in the simple case where P is supported by
finitely many nice measures and then proceed by approximation thanks to
the stability Lemma 4.6 (more precisely, its corollary Theorem 6.1).

Step 1: the case of finitely many nice measures.
Fix a compact convex set K ⊂ Ω with nonempty interior. Assume that

P =
∑N

i=1 piδνi , where each νi is supported in K and has a C0,α, bounded
away from 0 density on K. Since K is bounded, all ϕνiρ are Lipschitz, so we

can take the continuous version of ρ on Ω. Now fix an arbitrary x ∈ Ω \K.
Since ρ > 0 on Ω and

(
∇ϕνiρ

)
#
ρ = νi for all i, there are subgradients

∇ϕνiρ (x) ∈ K. Let y =
∑N

i=1 pi∇ϕ
νi
ρ (x) ∈ K, v = y−x

‖y−x‖ , then, thanks to

(3.6)

∂v log ρ(x) ≥ 1

λ
‖y − x‖ > 0,

therefore x cannot be a maximum point of ρ, and ρ actually attains its
maximum on K.

Further, since log(ρ) ∈ W 1,∞
loc (Ω), the regularity result of Cordero-Erausquin

and Figalli [15] yields that ϕνiρ is in fact C2,α
loc . Then at its maximum point

x ∈ Ω we should have, on the one hand

N∑
i=1

piD
2ϕνiρ (x) ≤ I.

On the other hand, using the Monge–Ampère equation ρ = det
(
D2ϕνiρ

)
νi
(
∇ϕνiρ

)
(see also (5.8)), and the bounds νi ≤ C, we get

ρ(x) ≤ C det
(
D2ϕνiρ (x)

)
, i = 1, . . . , N.

So, using the concavity of det(·)1/d over symmetric positive semi-definite
matrices, we obtain

ρ(x)1/d ≤ C1/d

N∑
i=1

pi det
(
D2ϕνiρ (x)

)1/d

≤ C1/d det

(
N∑
i=1

piD
2ϕνiρ (x)

)1/d

≤ C1/d,
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which gives ρ ≤ C.
Of course, the requirement that νi is bounded away from 0 is just here

to justify twice differentiability of ϕνiρ , if we drop this assumption replacing
νi by νni = (1 − 1

n
)νi + 1

n|K| , using Lemma 4.6, we get the same conclusion
by letting n → ∞. In a similar way, Hölder regularity of the νi’s can also
be removed by suitably mollifying these measures and arguing by stability
again. Finally, if P =

∑N
i=1 piδνi with νi ≤ C and m2(νi) < +∞, we can find

an increasing sequence of compact convex sets Kn ⊂ Ω, such that for every
n ∈ N

max
i=1,...,N

ˆ
Rd\Kn

(
1 + ‖x‖2

)
dνi(x) ≤ 1

n
.

Set

νni :=
νi 1Kn
νi(Kn)

, Pn :=
N∑
i=1

piδνni ,

then ρn := barλ,Ω(Pn) is bounded with ρn ≤ n
n−1

C and since W2(νni , νi) →
0 for all 1 ≤ i ≤ N , we have W2

2 (Pn, P ) → 0, thus stability enables us
to conclude that ρ ≤ C. This shows that barλ,Ω(P ) ≤ C whenever P =∑N

i=1 piδνi with νi ≤ C and m2(νi) < +∞.

Step 2: the general case.
We now consider the case of a general Borel probability P on P2(Rd)

satisfying (2.3) and concentrated on L∞(Rd) densities giving full mas to Ω
and essentially uniformly bounded by C. Let ν1, ν2, . . . be i.i.d. random
measures drawn from P . Then, by Theorem 6.1, the empirical barycenters
ρn := barλ,Ω(Pn), where Pn := 1

n

∑n
i=1 δνi is the empirical measure, a.s. con-

verge to ρ in 2-Wasserstein distance. Since all ρn are a.s. bounded by C
thanks to Step 1, so is ρ.

Remark 4.8. For the sake of simplicity, we assumed that there is a P -a.e.
uniform bound on ‖ν‖L∞. But it is easy to see that the previous proof carries
over to the more general case where P

(
{ν(Ω) = 1, ν ∈ L∞(Rd), ν ≤ C}

)
≥

α > 0 in which case the L∞ bound on ρ = barλ,Ω(P ) becomes

‖ρ‖L∞(Rd) ≤
C

αd
.

The following simple example shows that convexity of Ω is essential for
the maximum principle (even if P -a.e. measure ν is concentrated on Ω).

Example 4.9. Consider the one-dimensional case where Ω = (−8,−4) ∪
(−1, 1) ∪ (4, 8). Let P = 1

2
δν− + 1

2
δν+ , ν− = 1

4
1(−8,−4), ν+ = 1

4
1(4,8). First,

we take λ = 0, thus ρ0 := barΩ,0(P ) is an ordinary Wasserstein barycenter
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(constrained to be supported on Ω). It is easy to see that ρ0 is actually
supported on (−1, 1), so ‖ρ0‖L∞(Ω) ≥ 1

2
while ‖ν−‖L∞(Ω) = ‖ν+‖L∞(Ω) = 1

4
.

Now we consider ρλ := barΩ,λ(P ) and let λ→ 0. By compactness, we readily
get that ρλ ⇀ ρ0, so, for λ small enough, we have ‖ρ0‖L∞(Ω) >

1
4
. Finally, by

rescaling, one can construct examples violating the maximum principle for
any λ > 0.

5 Higher regularity

5.1 The bounded case

The theory developed so far has needed very mild assumptions on Ω. To
deduce higher regularity (up to the boundary) of the Kantorovich potentials
and the barycenter we need to impose more conditions on the domain.

Suppose that P is concentrated on sufficiently regular probability mea-
sures supported on a closed ball of radius R > 0, B̄ := Ω = B̄R(0), more
precisely, assume that for some α ∈ (0, 1), k ∈ N∗ and C > 0

P
({
ν ∈ Pac(Rd) : ν(Ω) = 1, ‖ν‖Ck,α(Ω) + ‖log ν‖L∞(Ω) ≤ C

}
︸ ︷︷ ︸

=:Q

)
= 1. (5.1)

Remark 5.1. The following arguments are presented here for the case of
a ball for simplicity but work for compact convex sets with Ck+2,α-boundary
which are strongly convex with a uniform modulus of convexity. More pre-
cisely, we require that there are m-strongly convex functions Hν , H ∈ Ck+2,α(Rd)
for m > 0 such that

Ω = {x ∈ Rd : H(x) < 0}, ∂Ω = {x ∈ Rd : H(x) = 0},
supp ν = {x ∈ Rd : Hν(x) ≤ 0}, ∂(supp ν) = {x ∈ Rd : Hν(x) = 0},

and there is an R > 0 such that Ω, supp ν ⊂ BR(0) for P -a.e. ν. We add
remarks at the proofs that significantly depend on the domain.

Thanks to the entropic regularization, this regularity implies regularity
for the potentials and the barycenter.

Proposition 5.2. Under assumption (5.1), one has

ϕνρ ∈ Ck+2,α(Ω) for P -a.e. ν and ρ ∈ Ck+2,α(Ω), (5.2)

and there is a constant K > 0 such that∥∥ϕνρ∥∥Ck+2,α(Ω)
≤ K for P -a.e. ν. (5.3)
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Furthermore, for P -a.e. ν the transport ∇ϕνρ : Ω→ Ω is a diffeomorphism of
class Ck+1,α.

Proof. By (5.1) P -a.e. ν ∈ C0,α(Ω) is bounded from below and above on Ω
by a constant only depending on C. With the representation of ρ in (3.6)
we obtain that ∇ log ρ is bounded by 2R/λ a.e. Together with

´
ρ = 1 this

implies that ‖log ρ‖C0,1(Ω) is bounded by a constant only depending on R and
λ.

This implies by Caffarelli’s regularity theory for Monge–Ampère equations
(see [11] for the original paper and Theorem 3.3 [17] for a concise formulation)
that for any ν ∈ Q, ϕνρ ∈ C2,α(Ω) and ∇ϕνρ : Ω→ Ω is a diffeomorphism.

For the uniform estimate again by Caffarelli’s regularity theory for Monge–
Ampère equations (theorem on page 3 of [10]) there is an α1 ∈ (0, 1) and
constant C1 (only depending on α1, C and R) such that∥∥ϕνρ∥∥C1,α1 (Ω)

,
∥∥ϕρν∥∥C1,α1 (Ω)

≤ C1 for every ν ∈ Q.

This implies in particular ρ ∈ C1,α1(Ω) by (3.6) and we can apply Theo-
rem A.7 to see that

Φρ :
{
ν ∈ C0,α1(Ω) : ν(Ω) = 1, ‖log ν‖L∞(Ω) <∞

}
→ M

ν 7→ ϕρν

is continuous (whereM denotes the set of C2,α1(Ω) convex potentials ϕ with
zero mean such that ‖∇ϕ‖ = R on ∂Ω). Now note that, by the compact
embedding of Hölder spaces, Q is compact in C0,α1(Ω). This implies that
Φρ(Q) is compact in C2,α1(Ω). Hence, there is a K1 > 0 such that∥∥ϕρν∥∥C2,α1 (Ω)

≤ K1 for P -a.e. ν. (5.4)

Furthermore, since each ϕρν is strongly convex thanks to compactness of
Φρ(Q) we conclude that there is constant c > 0 such that

D2ϕρν ≥ c for P -a.e. ν, (5.5)

so that we obtain ∥∥D2ϕνρ
∥∥
L∞(Ω)

≤ c for P -a.e. ν, (5.6)

which gives ρ ∈ C1,1(Ω) and then again by Caffarelli’s regularity theory for
Monge–Ampère equations ϕνρ ∈ C3,α(Ω). Differentiating now the Monge–
Ampère equation (which is satisfied in the classical sense)

det(D2ϕνρ)ν(∇ϕνρ) = ρ in Ω,∥∥∇ϕνρ∥∥2
= R2 on ∂Ω,
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in direction e ∈ Sd−1, we obtain by the same considerations as in the appendix

div(Aν∇(∂eϕ
ν
ρ)) = ∂eρ in Ω,

∇ϕνρ · ∇(∂eϕ
ν
ρ) = 0 on ∂Ω,

(5.7)

where Aν = ν(∇ϕνρ) det(D2ϕνρ)(D
2ϕνρ)

−1. Thanks to Lemma A.3 and (5.5)
we can finally deduce by classical Schauder estimates (Theorem 6.30 in [21])
that there is constant K > 0 uniform in ν such that∥∥∂eϕνρ∥∥C2,α(Ω)

≤ K
(∥∥∂eϕνρ∥∥C0,α(Ω)

+ ‖∂eρ‖C0,α(Ω)

)
.

This concludes the uniform estimate of ϕνρ in C3,α(Ω) for P -a.e. ν, and by

again employing (3.6) we deduce ρ ∈ C3,α(Ω). Higher regularity follows by
standard elliptic theory.

Note in particular that ϕνρ satisfies the Monge–Ampère equation, subject
to the second boundary value condition, which encodes the fact that ∇ϕνρ
maps the ball into itself, in the classical sense

det(D2ϕνρ)ν(∇ϕνρ) = ρ in B

∇ϕνρ(B) ⊂ B,
(5.8)

and that the second boundary value condition is equivalent (see Lemma A.1)
to an eikonal equation on the boundary

‖∇ϕνρ(x)‖2 = R2, ∀x ∈ ∂B.

5.2 The case of log-concave measures on Rd

Caffarelli’s contraction principle [12], generalized by Kolesnikov in [25], im-
plies global (and dimension-free) Lipschitz (or Hölder) global estimates for
the optimal transport between suitable log-concave measures. In its original
form, Caffarelli’s Theorem says that the optimal transport between the stan-
dard Gaussian γ and a measure which is more log-concave (i.e. has the form
e−V γ with V convex) is 1-Lipschitz. Since the entropic barycenter is less log-
concave than a Gaussian, if the measures ν satisfy a uniform log-concavity
estimate, one can deduce a C1,1 regularity result for log(ρ):

Proposition 5.3. Assume that there is some A > 0 such that P -almost every
ν writes as dν = e−V dy with D2V ≥ AI (in the sense of distributions), and
let ρ := barλ(P ) be its entropic barycenter. Then log ρ ∈ C1,1(Rd) and more
precisely there holds

− I ≤ λD2 log ρ ≤
( 1√

λA
− 1
)
I. (5.9)
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Proof. It directly follows from (3.6) that ρ = e−ψ with D2ψ ≤ I
λ
. Since

dν = e−V dy with D2V ≥ AI, thanks to Caffarelli’s contraction Theorem,
the optimal transport map ∇ϕνρ is Lipschitz with the explicit estimate

0 ≤ D2ϕνρ ≤
I√
λA

so that the convex potential Φ :=
´
P2(Rd)

ϕνρ dP (ν) is C1,1 and has the same

upper bound on its Hessian. Since λ∇ log(ρ) + id = ∇Φ, the bound (5.9)
directly follows.

6 Statistical properties

6.1 Stochastic setting and law of large numbers

Now we consider the following stochastic setting [7, 26, 3]: let P , as above,
be a distribution on P2(Ω) with finite second moment, and ν1, ν2, . . . be
independent random measures drawn from P . We will call the barycenter of
the first n measures ν1, . . . , νn an empirical barycenter : ρn = bar(Pn), where
Pn = 1

n

∑n
i=1 δνi is the empirical measure. Note that ρn is random, and in

this section we will establish its statistical properties, namely, consistency
and (under additional assumptions) a central limit theorem. As already
mentioned in section 4, a LLN follows immediately from Lemma 4.6.

Theorem 6.1 (law of large numbers). Assume
´
P2(Rd)

mp(ν) dP (ν) < +∞
for some p ≥ 2. Let ρ be the entropic-Wasserstein barycenter of P and
{ρn}n∈N be empirical barycenters. Then it a.s. holds that

Wp(ρn, ρ) −→ 0,

log ρn
W 1,q

loc (Ω)
−−−−→ log ρ ∀1 ≤ q <∞,

ρ1/p
n

W 1,p(Ω)−−−−−→ ρ1/p.

Moreover, under assumption (5.1) ρn
a.s.−−→ ρ in Ck+2,β(Ω) for any β ∈ (0, α).

Proof. It is well-known that, since the Wasserstein space is Polish, empirical
measures Pn converge to P inWp metric (see e.g. Corollary 5.9 in [26]). Then
the first part of the theorem follows from Lemma 4.6.

Further, once (5.1) holds, sequence {ρn}n∈N is uniformly bounded in
Ck+2,α(Ω) by Proposition 5.2. Therefore, due to compact Hölder embedding
and weak convergence ρn ⇀ ρ, the second claim follows.
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6.2 Central limit theorem

Let H be a separable Hilbert space endowed with its Borel sigma-algebra.
Recall that random variables {Xn}n∈N taking values in H converge in dis-
tribution to a random variable X if E f(Xn) → E f(X) for any bounded
continuous function f on H. We denote this convergence by

Xn
d−→ X.

We also need to recall the notion of strong operator topology (SOT): oper-

ators An on H converge to A in SOT (An
SOT−−→ A), if Anu → Au for all

u ∈ H. Finally, to prove a central limit theorem for barycenters we will use
some technical results from probability theory postponed to Appendix B.

Let us also introduce the following notation: if F is a space of integrable
functions on Ω, then

F� :=

{
f ∈ F :

ˆ
Ω

f = 0

}
. (6.1)

Theorem 6.2 (central limit theorem). Let assumption (5.1) be fulfilled with
k = 1. Then a CLT for empirical barycenters holds in L2

�(B):

√
n (ρn − ρ)

d−→ ξ ∼ N (0,Σ),

with covariance operator Σ = G−1 Var(ϕνρ)G
−1 where

G : u 7→ λ
u

ρ
− λ

 
B

u

ρ
− E(Φν)′(ρ)

and Φν(ρ) is the zero-mean Brenier’s potential between ρ and ν.

Proof. Step 1. Let us introduce the following map F on C0,α(B̄):

F : ρ 7→ λ log ρ+
‖·‖2

2
−
 
B

(
λ log ρ(x) +

‖x‖2

2

)
.

Obviously, it is continuously differentiable if ‖log ρ‖L∞(B) <∞ and its deriva-
tive is

F ′(ρ) : u 7→ λ
u

ρ
− λ

 
B

u

ρ
.

Then equation (3.6) can be rewritten (see Appendix A for properties of
the map Φν) as follows:

F (ρ) = EΦν(ρ).
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Respectively, for empirical barycenter it reads as

F (ρn) =
1

n

n∑
i=1

Φνi(ρn).

Combining the above equations and using differentiability of F and Φν (The-
orem A.7), we obtain

Gn(ρn−ρ) = F (ρn)−F (ρ)− 1

n

n∑
i=1

(Φνi(ρn)− Φνi(ρ)) =
1

n

n∑
i=1

ϕi−Eϕ, (6.2)

where ϕi = ϕνiρ , Eϕ = Eϕνρ, and operator Gn is defined as follows:

Gn =

ˆ 1

0

F ′(ρtn) dt− 1

n

n∑
i=1

ˆ 1

0

(Φνi)′(ρtn) dt (6.3)

with ρtn = (1− t)ρ+ tρn.
Step 2. We are going to apply a delta-method to prove a CLT and to

do this we need a convergence (in an appropriate space)

(Gn)−1 P−→ G−1, G = F ′(ρ)− E(Φν)′(ρ). (6.4)

We will consider CLT in L2
�(B), so first, we extend all the linear operators

above to L2
�(B). Let us denote by BarΩ,λ(Q) the set of entropic barycenters

of all measures supported on Q:

BarΩ,λ(Q) = {barΩ,λ(P ) : P ∈ P2(Q)} .

Clearly, the operators F ′(ρ) are Hermitian, bounded and uniformly positive-
definite (due to uniform lower bound following from Proposition 5.2) for all
ρ ∈ BarB,λ(Q). Further, for all ρ ∈ BarB,λ(Q) and ν ∈ Q it holds that
−(Φν)′(ρ) are Hermitian and nonnegative. Moreover, they are uniformly
bounded since all D2ϕνρ are bounded away from zero according to Propo-
sition 5.2. In particular, the operators G and all Gn are a.s. well-defined,
continuously invertible in L2

�(B), and G−1
n are uniformly bounded.

Now we show that G−1
n → G−1 in SOT. First, F ′(ρn)

SOT−−→ F ′(ρ) a.s. since

ρn
C2(B̄)−−−→ ρ a.s. by Theorem 6.1. Second, the LLN and separability of L2

�(B)
yield that

1

n

n∑
i=1

(Φνi)′(ρ)
SOT−−→ E(Φν)′(ρ) a.s.
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It remains to show that

1

n

n∑
i=1

ˆ 1

0

(Φνi)′(ρtn) dt− 1

n

n∑
i=1

(Φνi)′(ρ)
SOT−−→ 0 a.s. (6.5)

Note that (Φν)′(ρ)
SOT−−→ (Φν)′(ρ) as ρ

C2(B̄)−−−→ ρ for any ν ∈ Q due to Theo-
rem A.7. Let us fix u ∈ L2

�(B), then functions

f νi(ρ) =

∥∥∥∥ˆ 1

0

(Φνi)′(ρt)u dt− (Φνi)′(ρ)u

∥∥∥∥,
where ρt = (1 − t)ρ + tρ, are bounded, continuous, and f νi(ρ) = 0. Since

ρn
C2(B̄)−−−→ ρ a.s., Lemma B.1 ensures that∥∥∥∥∥ 1

n

n∑
i=1

ˆ 1

0

(Φνi)′(ρtn)udt− 1

n

n∑
i=1

(Φνi)′(ρ)u

∥∥∥∥∥ ≤ 1

n

n∑
i=1

f νi(ρn)→ 0 a.s.

Taking a dense countable set {uj}j∈N in L2
�(B) and using boundedness of

(Φν)′ one obtains (6.5). Combining the above results we conclude that

Gn
SOT−−→ G a.s. Finally, for any u ∈ L2

�(B) one has

G−1
n u−G−1u = G−1

n (G−Gn)G−1u→ 0,

i.e. G−1
n

SOT−−→ G−1 a.s.
Step 3. Now by the standard CLT in Hilbert spaces (see e.g. [29, Theo-

rem 10.5]) applied to {ϕi}i∈N we obtain that

Sn√
n

:=
1√
n

n∑
i=1

(
ϕi − Eϕνρ

) d−→ ξ, ξ ∼ N
(
0,Var(ϕνρ)

)
. (6.6)

According to (6.2),
√
n (ρn − ρ) = G−1

n

Sn√
n
.

Since G−1
n are uniformly bounded and G−1

n
SOT−−→ G−1 a.s., Lemma B.2 yields

a CLT for ρn:

√
n (ρn − ρ)

d−→ G−1ξ ∼ N
(
0, G−1 Var(ϕνρ)G

−1
)
.
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A Linearization of Monge–Ampère equations

We consider ν, µ ∈
{
% ∈ Pac(B̄) : ‖%‖C0,α(B̄) + ‖log %‖L∞(B̄) <∞

}
on a closed

ball B̄ := BR(0) of radius R > 0 for α ∈ (0, 1). Our goal is to linearize the
following Monge–Ampère equation with a second boundary value condition

det(D2ϕ)ν(∇ϕ) = µ,
∇ϕ(B̄) = B̄,

(A.1)

for some fixed ν ∈ C1,α(B̄). Note that thanks to Brenier’s theorem there
exists a unique convex solution satisfying (A.1) (a priori in the sense of
∇ϕ#µ = ν), and it is C2,α(B̄) thanks to regularity theory for Monge–Ampère
equations. We will need the following lemmas.

Lemma A.1. Let ϕ ∈ C1(B̄) be strictly convex. Then the following are
equivalent

� ∇ϕ(B̄) = B̄,

� ∇ϕ(∂B) ⊂ ∂B.

Proof. For the first direction assume by contradiction that there is p ∈ ∂B
such that ∇ϕ(p) ∈ B̊. Note that at p there is an outer normal to B̄, namely
p itself. Take a > 0 such that ∇ϕ(p) + ap ∈ B. Since ∇ϕ is surjective, there
is q ∈ B̄ satisfying ∇ϕ(q) = ∇ϕ(p) + ap. Then

(q − p) · (∇ϕ(q)−∇ϕ(p)) = a(q − p) · p < 0,

which contradicts the monotonicity of ∇ϕ.
For the other direction, note that ∇ϕ(∂B) ⊂ ∂B implies ∇ϕ(∂B) = ∂B

since the only subset of ∂B homeomorphic to ∂B is ∂B itself. Now, by a
similar argumentation as above one can obtain that ∇ϕ(∂B) ⊂ ∂∇ϕ(B̄).
Furthermore, strict convexity of ϕ yields that its conjugate ϕ∗ ∈ C1(Rd),
and recall that (∇ϕ∗)−1 ({x}) = {∇ϕ(x)} for any x ∈ B̊. Thus ∇ϕ maps B̊
to the interior of ∇ϕ(B̄). Therefore, ∂∇ϕ(B̄) = ∇ϕ(∂B) = ∂B. Now, there
is only one compact set in Rd with nonempty interior and boundary ∂B: B̄,
so that we have ∇ϕ(B̄) = B̄.

Remark A.2. Note that the proof of Lemma A.1 extends to the setting
described in Remark 5.1. Keeping the same notation the statement changes
to equivalence of

� ∇ϕ(Ω̄) = supp ν,
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� ∇ϕ(∂Ω) ⊂ ∂ supp ν.

The contradicting argument reads in this case (since ∇H(p) is the outer
normal at p)

(q − p) · (∇ϕ(q)−∇ϕ(p)) = a(q − p) · ∇H(p) < 0,

where the inequality is strict due to the strong convexity.

Lemma A.3. For ϕ ∈ C2(B̄) strongly convex such that ‖∇ϕ(x)‖2 −R2 = 0
for x ∈ ∂B, there is β ∈ C(∂B), β > 0 such that (D2ϕ)−1(x)·x = β(x)∇ϕ(x)
for x ∈ ∂B. Futhermore, there exists κ > 0 such that |∇ϕ(x) · x| ≥ κ for all
x ∈ ∂B.

Proof. Note that the Legendre transform ϕ∗ is at least C2(B̄). Indeed, by
standard regularity theory for convex functions ϕ∗ ∈ C1(B̄) and since D2ϕ is
invertible, the inverse function theorem applied to ∇ϕ yields differentiability
for ∇ϕ∗ = (∇ϕ)−1. Now note that ∇ϕ∗ also satisfies (see Lemma A.1)

‖∇ϕ∗(y)‖2 −R2 ≤ 0 for all y ∈ B
‖∇ϕ∗(y)‖2 −R2 = 0 for all y ∈ ∂B.

This implies by differentiating at a boundary point y that there is β̃(y) ≥ 0
such that

D2ϕ∗(y)∇ϕ∗(y) = β̃(y)y.

By invertibility of D2ϕ∗(y), we see that β̃(y) > 0. Substituting ∇ϕ(x) = y
gives by using properties of Legendre transform

D2ϕ∗(∇ϕ(x))∇ϕ∗(∇ϕ(x)) = β̃(∇ϕ(x))∇ϕ(x),

⇐⇒ (D2ϕ)−1(x)x = β̃(∇ϕ(x))∇ϕ(x),

for all x ∈ ∂B. Set β(x) := β̃(∇ϕ(x)) and note that β ∈ C(∂B) since

β(x) =
1

R2
(D2ϕ)−1(x)x · ∇ϕ(x).

The second statement follows since

|∇ϕ(x) · x| = 1

β(x)
(D2ϕ)−1(x)x · x ≥ R2K > 0,

where K is a constant only depending on ‖D2ϕ‖L∞(B) and ‖(D2ϕ)−1‖L∞(B).
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Remark A.4. One may readily check that Lemma A.3 extends to the setting
described in Remark 5.1. Indeed, the proof uses that the defining convex
functions of the ball are of the form ‖·‖2 − R2 and the outer normal at a
boundary point x is x.

Form now on, we fix the constant by considering potentials in the set

Ck,α
� (B̄) :=

{
ϕ ∈ Ck,α(B̄) :

ˆ
B

ϕ = 0

}
with k ∈ N. Let us also define

M =
{
ϕ ∈ C2,α

� (B̄) : ‖∇ϕ‖2 −R2 = 0 on ∂B
}
.

We now prove that in a neighborhood of a strongly convex function ϕ0 ∈M
this set is the graph of a C1-function.

Lemma A.5. At ϕ0 ∈ M strongly convex, M is locally given by the image
of a bijective C1-function on a closed subspace of C2,α

� (B̄). More precisely,
there exist open subsets V ⊂ F0 :=

{
h ∈ C2,α

� (B̄) : ∇ϕ0 · ∇h = 0 on ∂B
}

,
U ⊂ C2,α

� (B̄), with ϕ0 ∈ U, and a bijective C1-function:

χ0 : V → U ∩M. (A.2)

Furthermore, for f0 := ΠF0(ϕ0), where ΠF0 is the projection on F0 defined
by (A.3), it holds χ′0(f0) = id .

Proof. First, we show that C2,α
� (B̄) = F0 ⊕G0, where F0, G0 are linear sub-

spaces defined as

F0 :=
{
f ∈ C2,α

� (B̄) : ∇ϕ0 · ∇f = 0 on ∂B
}
,

G0 :=
{
g ∈ C2,α

� (B̄) : ∃c ∈ R,− div(A0∇g) = c
}
,

where A0 = cof(D2ϕ0) is the cofactor matrix of D2ϕ0. Here and in the
following, − div(A0∇g) = c is to be understood in the distributional sense,
i.e. for all ψ ∈ C∞c (B) such that

´
B
ψ = 0

ˆ
B

A0∇g · ∇ψ = 0.

Take ϕ ∈ C2,α
� (B̄). Define f to be a solution of

− div(A0∇f) = − div(A0∇ϕ) +
ffl
B

div(A0∇ϕ) in B,
∇ϕ0 · ∇f = 0 on ∂B,

(A.3)
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and g a solution of

− div(A0∇g) = −
ffl
B

div(A0∇ϕ) in B,
∇ϕ0 · ∇g = ∇ϕ0 · ∇ϕ on ∂B.

(A.4)

Thanks to Lemma A.3 the boundary conditions are uniformly oblique and
compatible with the right hand side. Hence, both (A.3) and (A.4) admit a
unique weak solution f, g ∈ H1

� (B) which is C2,α
� (B̄) thanks to linear elliptic

PDE theory (e.g. by a combination of [30, Theorem 5.54] and [21, Theorem
6.31]). Thus, we have found a decomposition ϕ = f + g for f ∈ F0 and
g ∈ G0. It is also unique because F0 ∩ G0 = {0}. To see that notice that
every h ∈ F0 ∩G0 satisfies

− div(A0∇h) = c in B, c ∈ R
∇ϕ0 · ∇h = 0 on ∂B,

whose unique solution is h = 0. In total, we obtain well-definedness of the
projection operators ΠF0 : C2,α(B̄) → F0 and ΠG0 : C2,α(B̄) → G0. Conti-
nuity of ΠF0 and ΠG0 in C2,α(B̄) follows by the open mapping theorem, see
e.g. [9, Theorem 2.10].

Now we would like to apply the implicit function theorem to

Γ: F0 ⊕G0 → C1,α(∂B),

(f, g) 7→ ‖∇(f + g)‖2 −R2.

Its partial derivative at ϕ0 with respect to g0 := ΠG0(ϕ0) is given by

∂

∂g
Γ(ϕ0)h = 2∇ϕ0 · ∇h on ∂B, h ∈ G0.

Bijectivity of the derivative means existence and uniqueness of h ∈ C2,α
� (B̄)

such that
− div(A0∇h) = c on B, c ∈ R,
∇ϕ0 · ∇h = w on ∂B,

(A.5)

where w ∈ C1,α(∂B). By the same argumentation as above, this is the
case if and only if c = − 1

|B|

´
∂B
w det(D2ϕ0)β0 where β0 is as in Lemma

A.3. Continuity follows again by the open mapping theorem. Thanks to the
implicit function theorem there are UF ⊂ F0, UG ⊂ G0 open (ΠF (ϕ0) ∈ UF ,
resp. ΠG(ϕ0) ∈ UG) such that χ̃0 : UF → UG is C1 and

Γ(f, g) = 0 for (f, g) ∈ UF ⊕ UG ⇐⇒ g = χ̃0(f).

This implies that χ0 : UF →M∩UF ⊕UG, f 7→ f + χ̃0(f) is well-defined, C1

and bijective.
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Finally, note that for f0 := ΠF0(ϕ0), h ∈ F0

0 =
d

df
Γ(f0, χ̃0(f0))h = 2∇ϕ0 · ∇h︸ ︷︷ ︸

=0

+
∂

∂g
Γ(f0, χ̃0(f0))χ̃′0(f0)h.

By invertibility of ∂
∂g

Γ(f0, χ0(f0)), we conclude χ̃′0(f0) = 0, hence χ′0(f0) =
id .

Now for ϕ0 ∈ M take U ⊂ C2,α
� (B̄) from Lemma A.5 (and possibly

restrict it further such that any ϕ ∈ U ∩M is strongly convex) and consider
the map

Mν : U ∩M→
{
u ∈ C0,α(B̄) :

ˆ
B

u = 1

}
ϕ 7→ det(D2ϕ)ν(∇ϕ)

(A.6)

where ν is a fixed probability density in the set Q defined in (5.1) with k = 1.
Note that this map is well-defined by Lemma A.1 and the fact that the push
forward preserves the mass. We want to “take the derivative at ϕ ∈ U ∩M”
by pulling back Mν to the linear space F0 with the map χ0 from Lemma A.5.

Proposition A.6. In the setting of Lemma A.5, let ϕ ∈ U ∩M be strongly
convex. Then Nν := Mν ◦ χ0 is continuously differentiable at f := ΠF0ϕ and
the derivative is given by

N ′ν(f) : F0 → C0,α
� (B̄)

h 7→ tr(AνD
2(χ′0(f)h)) + det(D2ϕ)∇ν(∇ϕ) · ∇(χ′0(f)h),

(A.7)

where F0 =
{
h ∈ C2,α

� (B̄) : ∇ϕ0 · ∇h = 0 on ∂B
}

and Aν := ν(∇ϕ)cof(D2ϕ).
In addition, in the weak sense we have

N ′ν(f)h = div(Aν∇(χ′0(f)h)).

Proof. Let h ∈ F0, then the directional derivative is given by

d

dt
Nν(f + th)|t=0 =

d

dt
det(D2χ0(f + th))ν(∇χ0(f + th))|t=0

= tr(AνD
2(χ′0(f)h)) + det(D2ϕ)∇ν(∇ϕ) · ∇(χ′0(f)h).

By continuity of χ′0, we can conclude that Nν is continuously differentiable.
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Now note that if ϕ ∈ C3,α(B̄)

div(Aν∇(χ′0(f)h)) = div(ν(∇ϕ)cof(D2ϕ)∇(χ′0(f)h))

= D2ϕ∇ν(∇ϕ) · cof(D2ϕ)∇(χ′0(f)h)

+ ν(∇ϕ) div(cof(D2ϕ)∇(χ′0(f)h))

= det(D2ϕ)∇ν(∇ϕ) · ∇(χ′0(f)h)

+ ν(∇ϕ) tr
(
cof(D2ϕ)D2(χ′0(f)h)

)
,

where, in the last line, we have used that cof(D2ϕ) has divergence-free
columns (see Lemma p.462 in [19]). This yields

N ′ν(f)h = div(Aν∇(χ′0(f)h)).

The same result follows for ϕ ∈ C2,α(B̄) (in the weak sense) by density.

For fixed ν ∈ Q, consider now

S =
{
% ∈ Pac(B̄) : ‖%‖C0,α(B̄) + ‖log %‖L∞(B̄) <∞

}
and the map

Φν : S → M,
µ → ϕ, where ϕ strongly convex and ∇ϕ#µ = ν.

(A.8)

Note that this is well defined thanks to Brenier’s theorem (Theorem 2.12
(ii) [37]) and regularity theory for Monge–Ampère equations (Theorem 3.3
[17]). Furthermore, by the considerations before we can now prove that it is
continuously differentiable.

Theorem A.7. Φν as defined in (A.8) is continuously differentiable. More
precisely, for every µ ∈ S, the value of (Φν)′(µ)f at f ∈ C0,α

� (B̄) is the
unique solution h ∈ C2,α

� (B̄) of the linearized equation

div(Aν∇h) = f in B,

∇ϕ0 · ∇h = 0 on ∂B,

where ϕ0 = Φν(µ) and Aν = ν(∇ϕ0)cof(D2ϕ0).

Proof. For ϕ0 = Φν(µ) ∈ M the derivative of Nν at f0 = ΠF0(ϕ0) is given
by Proposition A.6. Invertibility of N ′ν(f0) is equivalent to finding, for every
f ∈ C0,α

� (B̄), a unique

h ∈ F0 =
{
u ∈ C2,α

� (B̄) : ∇ϕ0 · ∇u = 0 on ∂B
}
,
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such that
div(Aν∇h) = f in B, (A.9)

in the weak sense where we have used that χ′0(f0) = id by Lemma A.5. As
before, by strong convexity of ϕ0 equation (A.9) is uniformly elliptic and
the boundary conditions are compatible, so that by elliptic regularity theory
there is a unique solution h ∈ C2,α

� (B̄), satisfying the boundary condition
∇ϕ0 · ∇h = 0 on ∂B. With the inverse function theorem we conclude that
there is an open (in S) neighborhood U containing µ such that N−1

ν |U : U →
N−1
ν (U) is a C1-diffeomorphism. By possibly further restricting U (such that

N−1
ν (U) ⊂ V from Lemma A.5), we see that Φν |U = χ0 ◦N−1

ν |U is also C1 in
a neighborhood of µ. We employ again χ′0(f0) = id to conclude.

B Auxiliary probability results

Lemma B.1. Consider space Cb(X ) of bounded continuous functions on a
separable metric space X endowed with the topology of pointwise convergence.
Let f1, f2, . . . be i.i.d. (Borel) random functions from Cb(X ) s.t. f1(x∗) = 0
a.s. and E supx∈X |f1(x)| <∞. Let {Xn}n∈N be a sequence of r.v. convergent
to x∗ a.s. Then

1

n

n∑
i=1

fi(Xn)→ 0 a.s.

Proof. Consider the modulus of continuity for f at point x∗:

ωf (δ, x
∗) :=

{
supx∈Bδ(x∗)|f(x)− f(x∗)|, δ > 0,

0, δ = 0.

Note that (f, δ) 7→ ωf (δ, x
∗) is measurable: indeed, take a countable dense

set S ⊂ X , then

ωf (δ, x
∗) = sup

x∈S
|f(x)− f(x∗)|1[d(x, x∗) < δ].

Since fi(x
∗) = 0 a.s., we have for any fixed δ > 0∣∣∣∣∣ 1n

n∑
i=1

fi(Xn)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

ωfi(d(Xn, x
∗), x∗)

≤ 1

n

n∑
i=1

(
ωfi(δ, x

∗)1 [d(Xn, x
∗) ≤ δ]

+ sup
x∈X
|fi(Xn)|1 [d(Xn, x

∗) > δ]
)
.
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Further, E supx∈X |f1(x)| <∞, therefore by the strong LLN

1

n

n∑
i=1

sup
x∈X
|fi(Xn)| a.s.−−→ E sup

x∈X
|f1(x)|,

1

n

n∑
i=1

ωfi(δ, x
∗)

a.s.−−→ Eωf1(δ, x∗) ≤ E sup
x∈X
|f1(x)|.

Since 1 [d(Xn, x
∗) > δ]→ 0 a.s. it holds a.s. that

lim sup
1

n

n∑
i=1

ωfi(d(Xn, x
∗), x∗) ≤ Eωf1(δ, x∗)→ 0 as δ → 0

due to Lebesgue’s dominated convergence theorem. The claim follows.

The following result is a version of Slutsky’s theorem for Hilbert space.

We say that Xn ∈ H converge in probability to X (Xn
P−→ X), if ‖Xn−X‖

P−→
0, i.e. for any ε > 0 it holds that P {‖Xn −X‖ > ε} → 0.

Lemma B.2. Let {An}n∈N be a sequence of random bounded operators on a
separable Hilbert space H convergent to a fixed operator A in SOT a.s. and
bounded in probability (i.e. for any ε > 0 there exists Mε s.t. P (‖An‖ > Mε) ≤
ε for all n). Let {Xn} be a sequence of r.v. in H, Xn

d−→ X. Then AnXn
d−→

AX.

Proof. Let {en}n∈N be an o.n.b. in H and Πk be the orthogonal projector
onto the first k axes e1, . . . , ek. Then

AnXn = AXn + (An − A)ΠkXn + (An − A) (I − Πk)Xn. (B.1)

Since An
SOT−−→ A a.s., for any fixed k we have ‖(An − A) Πk‖op → 0 a.s., thus

(An − A) ΠkXn
P−→ 0.

Moreover,

(I − Πk)Xn
d−−−→

n→∞
(I − Πk)X

P−−−→
k→∞

0.

Since An are bounded in probability, the above equations imply that

(An − A)Xn
P−→ 0.

This together with (B.1) and Xn
d−→ X yields convergence AnXn

d−→ AX.
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