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Second order monotone finite differences discretization

of linear anisotropic differential operators

Frédéric Bonnans∗ Guillaume Bonnet† Jean-Marie Mirebeau‡

December 20, 2020

Abstract

We design adaptive finite differences discretizations, which are degenerate elliptic and
second order consistent, of linear and quasi-linear partial differential operators featuring
both a first order term and an anisotropic second order term. Our approach requires the
domain to be discretized on a Cartesian grid, and takes advantage of techniques from the
field of low-dimensional lattice geometry. We prove that the stencil of our numerical scheme
is optimally compact, in dimension two, and that our approach is quasi-optimal in terms of
the compatibility condition required of the first and second order operators, in dimension two
and three. Numerical experiments illustrate the efficiency of our method in several contexts.

1 Introduction

In this paper, we design finite difference discretizations of Degenerate Elliptic (DE) Partial
Differential Equations (PDEs). This class of equations is sufficiently general to encompass a
wide variety of applications, in the fields of optimal transport, game theory, differential geometry,
stochastic modeling and finance, optimal control, . . . Our results are limited to linear and quasi-
linear operators, but could in principle be used as a building block for the discretization of
fully non-linear operators, see Appendix A. On the other hand, the assumption of degenerate
ellipticity yields comparison principles and stability properties [CIL92].

Discrete Degenerate Ellipticity (DDE), for numerical schemes, implies similarly strong prop-
erties [Obe06], which often turn proofs of convergence into simple verifications. A known lim-
itation of monotone discretization schemes is their consistency order with the original PDE,
which cannot exceed two for second order operators and one for first order operators [Obe06].
However, many common implementations of second order DE operators only achieve first order
consistency, or sometimes less. They may also rely on excessively wide stencils [FO11, LN18],
especially in the context of two-scales discretizations [LN18]. This degrades the accuracy of the
numerical results, which severely constrains the practical uses of these methods. The objective
of this paper is to characterize when a second order monotone discretization is feasible, and
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how wide the numerical scheme stencil must be, especially when the second order part of the
operator is strongly anisotropic, and the first order term is non-vanishing.

We state our theoretical results in the context of linear operators with constant coefficients,
defined over Rd where d ∈ {2, 3}. Because degenerate ellipticity is a local property, which is
stable under a variety of transformations, they admit straightforward extensions to quasi-linear
operators and some fully non-linear operators. Non-constant coefficients and bounded domains
with Dirichlet boundary conditions are also easily handled. See Appendix A and the numerical
experiments §4 for these extensions. Without loss of generality, our theoretical results are stated
in the context of linear operators with constant coefficients.

We define the linear operator L = L[ω,D] on Rd by the expression

−Lu(x) := 〈ω,∇u(x)〉+ Tr(D∇2u(x)), (1.1)

where ω ∈ Rd, D ∈ S++
d is a symmetric positive definite matrix, and the unknown u : Rd → R

is a smooth function. Likewise in the discrete setting we define the finite differences operator
Lh = Lh[ρhi , ei]1≤|i|≤I , on the Cartesian grid hZd with grid scale h > 0, by the expression

−Lhu(x) := h−2
∑

1≤|i|≤I

ρhi
(
u(x+ hei)− u(x)

)
, (1.2)

where ρh−I , · · · , ρh−1, ρ
h
1 , · · · , ρhI ≥ 0 are non-negative weights, and e1, · · · , ei ∈ Zd are offsets

with integer entries, for some positive integer I. Here and throughout this paper, without loss
of generality, we use the convention that e−i := −ei for all 1 ≤ i ≤ I.

Note that any translation invariant linear operator on hZd, finitely supported and vanishing
on constant functions, can be written in the form (1.2). We denote by Sd the set of symmetric
d× d matrices, by S+

d the subset of semi-definite ones, and by S++
d the positive definite ones.

Definition 1.1. The operator L[ω,D] is said Degenerate Elliptic (DE) if D ∈ S+
d . The discrete

operator Lh[ρhi , ei]1≤|i|≤I is said Discrete Degenerate Elliptic (DDE) if ρhi ≥ 0 for all 1 ≤ |i| ≤ I.

In particular, the DE and DDE properties do not impose any restrictions on the first order
term ω ∈ Rd, and the numerical scheme offsets ei ∈ Zd.

Definition 1.2 (Absolute feasibility). We say that the pair (hω,D) is absolutely feasible if there
exists (ρhi , ei)1≤|i|≤I such that L[ω,D] and Lh[ρhi , ei]1≤|i|≤I are both degenerate elliptic, and are
equal on all quadratic functions u. Equivalently, one has∑

1≤|i|≤I

ρhi ei = hω,
∑

1≤|i|≤I

ρhi eie
T
i = D, (1.3)

and ρhi ≥ 0, ei ∈ Zd \ {0}, ∀1 ≤ |i| ≤ I.

Definition 1.2 is stated in terms of the pair (hω,D), and not of the triplet (h, ω,D), because
it only depends eventually on the product hω, as shown by algebraic characterization (1.3).
In dimension d = 1, one easily checks that (hω,D) is absolutely feasible iff hω ≤ 2D, and in
that case the standard discretization using centered finite differences obeys (1.3). Note that
discretizing (1.1) using upwind finite differences for the first order term fails the consistency test
(1.3). In this paper, we fully characterize when a pair (hω,D) is absolutely feasible in dimension
d ∈ {2, 3}, see Proposition 3.10, which is not straightforward unless D is a diagonal matrix.
More practically, we provide an explicit scheme construction.
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Our numerical scheme relies on a tool from a lattice geometry known as Selling’s decom-
position, described in more detail in §2.1, see also [Sel74, CS92]. It associates to each positive
definite matrix D ∈ S++

d , where d ∈ {2, 3}, a specific decomposition of the following form

D =
∑

1≤i≤I
σieie

T
i , where σi ≥ 0, ei ∈ Zd, ∀1 ≤ i ≤ I, (1.4)

and I := d(d + 1)/2. Selling’s decomposition has already been used in the design of difference
schemes in dimension d ∈ {2, 3}, for (divergence form) anisotropic diffusion in [FM14], or various
anisotropic eikonal equations in [Mir17, Mir19]. It is at the foundation of degenerate elliptic and
second order consistent discretizations of the fully non-linear two dimensional Monge-Ampere
[BCM] and Pucci [BBM21] equations. In dimension d = 2, an equivalent construction based on
the Stern-Brocot dyadic tree of rational numbers is used in [BOZ04] for the Hamilton-Jacobi-
Bellman equation of Stochastic control.

The support (ei)
I
i=1 of Selling’s decomposition, which is also the stencil of the numerical

scheme proposed in this paper, tends to align with the anisotropy defined by the matrix D. This
is illustrated on Figure 1, where we use the following parametrization of the set of symmetric
positive definite matrices of size two and with unit determinant:

D(a, b) :=
1√

1− a2 − b2

(
1 + a b
b 1− a

)
, a2 + b2 < 1. (1.5)

Definition 1.3 (Finite difference operators). For any e ∈ Zd, h > 0, u : hZd → R, we let

δheu(x) :=
u(x+ he)− u(x− he)

2h
, ∆h

eu(x) :=
u(x+ he)− 2u(x) + u(x− he)

h
.

Given D ∈ S++
d where d ∈ {2, 3}, with Selling decomposition D =

∑
1≤i≤I σieie

T
i , we let

∇hDu(x) =
∑

1≤i≤I
σi δ

h
eiu(x) ei, ∆h

Du(x) =
∑

1≤i≤I
σi∆

h
eiu(x).

The centered finite differences δheu(x) = 〈e,∇u(x)〉 + O(h2) and second order finite differ-
ences ∆h

eu(x) = 〈e,∇2u(x)e〉 + O(h2), are classical constructs. In combination with Selling’s
decomposition, they are here used to define discrete anisotropic gradient and laplacian operators,
with the following consistency properties easily derived from (1.4)

∇hDu(x) = D∇u(x) +O(h2), ∆h
Du(x) = Tr(D∇2u(x)) +O(h2). (1.6)

For context, Selling’s decomposition of the matrix D = Id yields up to permutation the canonical
basis (e1, · · · , ed) with unit weights σ1 = 1, · · · , σd = 1, whereas the remaining weights are zero
σi = 0, d < i ≤ I (and the vectors ei, d < i ≤ I are not uniquely determined). As a result ∇hId
and ∇hId are the classical finite differences discretizations of the gradient and laplacian, whose
stencil only involves the immediate grid neighbors.

Definition 1.4 (Canonical discretization). We say that (hω,D) ∈ Rd × S++
d , d ∈ {2, 3}, is

canonically feasible if the following operator Lh is DDE

−Lhu(x) := 〈D−1ω,∇hDu(x)〉+ ∆h
Du(x). (1.7)
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Figure 1: To each point (a, b) of the unit disk, we associate the matrix D = D(a, b) defined
by (1.5). Left: Ellipse defined by {〈v,D−1v〉 ≤ 1; v ∈ R2}. Points close to the unit disk
boundary (shown blue) yield strongly anisotropic ellipses. Center: Support (ei)

I
i=1 of Selling’s

decomposition, which is also the stencil of our finite difference scheme for the given anisotropy.
Right: Set of vectors ω for which the pair (ω,D) is canonically feasible (dark gray), or absolutely
feasible (dark and light gray), computed via Proposition 3.10. The scale of the three figures
may not match.

Equivalently, but more explicitly, Lh = Lh[ρhi , ei]1≤|i|≤I , involves the same offsets as Selling’s

decomposition D =
∑

1≤i≤I σeie
T
i , with the usual convention e−i := −ei. The weights are

obtained as
ρhi := σi (1 + h

2 〈ω,D
−1ei〉). (1.8)

Definition 1.4 outlines a simple and practical discretization of anisotropic linear PDE op-
erators, often referred to as our numerical scheme in the paper. By construction, canonical
feasibility implies absolute feasibility, but the latter can be achieved in a variety of other ways,
using possibly a different number of terms I, a different support (ei)

I
i=1, or different weights

(ρhi )1≤|i|≤I . Note also that (1.7) is second order consistent with the PDE operator (1.1), in view
of (1.6), whereas the conditions of Definition 1.2 only imply first order consistency. We next
state the main result of this paper.

Theorem 1.5. Let (hω,D) ∈ Rd×S++
d , where d ∈ {2, 3}. If (hω,D) is absolutely feasible, then

(cdhω,D) is canonically feasible, with c2 := 1/2 and c3 := 1/6.

Taking the contraposition, Theorem 1.5 shows that if the canonical discretization of Defini-
tion 1.4 does not yield a DDE scheme in some practical instance, then (up to the factor cd) the
grid scale is too coarse and there is no hope of obtaining a DDE and second order consistent
finite differences scheme by any other means. The following result in contrast provides a direct
criterion for canonical feasibility. We denote by ‖ · ‖ and 〈·, ·〉 the Euclidean norm and scalar
product. Let also ‖e‖M :=

√
〈e,Me〉 and ‖A‖ := max‖x‖≤1 ‖Ax‖ for any e ∈ Rd, M ∈ S++

d ,
and matrix A.

Theorem 1.6. Let (hω,D) ∈ Rd × S++
d , where d ∈ {2, 3}, and let M := D−1. If one has

h‖M‖
1
2 ‖ω‖M ≤ cd, (1.9)

then (hω,D) is canonically feasible, with c2 := 1 and c3 := 1/(2
√

3).
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The existence of a finite differences discretization, degenerate elliptic and second order con-
sistent, is not the only practical concern: the width of the stencil used is also of importance.
Excessively wide stencils reduce the effective discretization scale of the scheme, thus also the
accuracy of the numerical results. They may also raise difficulties with the treatment of bound-
ary conditions, computer parallelization, matrix conditioning and sparsity, etc. We provide two
results related to the stencil width. First, we show that the canonical discretization has the
smallest support of all possible DDE and second order consistent discretizations, in dimension
two, in the strong sense of convex hull inclusion. We denote by Hull(E) the convex hull of a
subset E of a vector space.

Theorem 1.7. Let (hω,D) ∈ R2×S++
2 be canonically feasible, and let (ρhi , ei)1≤|i|≤I be the cor-

responding discretization, pruned so that ρhi 6= 0 or ρh−i 6= 0 for all 1 ≤ i ≤ I. Let (ρ′hi , e
′
i)1≤|i|≤I′

be another discretization, obeying (1.3). Then

Hull{ei; 1 ≤ |i| ≤ I} ⊆ Hull{e′i; 1 ≤ |i| ≤ I ′}.

Second, we provide explicit bounds on the stencil width in terms of the differential operator
coefficients and anisotropy.

Theorem 1.8. Let (hω,D) ∈ Rd × S++
d be canonically feasible, where d ∈ {2, 3}, and let

(ρhi , ei)1≤|i|≤I be the corresponding discretization. Then ‖ei‖M ≤ Cd
√
‖M‖ for all 1 ≤ i ≤ d,

where M := D−1, and C2 = 2 and C3 = 4
√

3.

Theorem 1.8 implies in particular that ‖ei‖ ≤ Cd Cond(D), for all 1 ≤ i ≤ I, where
Cond(D) :=

√
‖D‖‖D−1‖. See also [Mir16] for average case bounds in dimension d = 2, under

random rotations RT
θ DRθ of the tensor, θ ∈ [0, 2π].

Outline

Section §2 is devoted to further discussion of the canonical discretization, and to the proofs of
Theorems 1.6, 1.7 and 1.8 which follow rather directly from arguments presented in [Mir17] and
[Mir16]. Section §3 establishes Theorem 1.5. Numerical experiments are presented in §4.

2 The canonical discretization

This section is devoted to a further presentation of the construction of Definition 1.4, here
referred to as the canonical discretization of a second order linear PDE operator. We review
Selling’s algorithm in §2.1, finalizing the algorithmic description of our numerical scheme. We de-
scribe in §2.2 an interpretation of this algorithm as an optimization procedure, involving objects
from the field of lattice geometry known as Voronoi’s first reduction and Ryskov’s polyhedron.
Theorems 1.6, 1.7 and 1.8 are proved in §2.3.

The results presented §2.3 are new, whereas the more classical techniques described in §2.1
and §2.2 are required for completeness and as a preliminary to the proof of Theorem 1.5 in §3.

2.1 Selling’s algorithm and formula

We describe Selling’s algorithm [Sel74, CS92], and the related tensor decomposition formula
which is invoked in Definition 1.4 of the numerical scheme considered in this paper.
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Selling’s algorithm

This algorithm belongs to the field of lattice geometry [NS04], which among other things studies
coordinate systems in additive lattices (here Zd), adapted to the geometry defined by a given
positive definite quadratic form (here defined by D ∈ S++

d ). The next definition introduces such
a concept.

Definition 2.1. A superbase of Zd is a (d + 1)-tuple b = (v0, · · · , vd) ∈ (Zd)d+1 such that
|det(v1, · · · , vd)| = 0 and v0 + · · ·+ vd = 1. It is said D-obtuse, where D ∈ S++

d , if 〈vi, Dvj〉 ≤ 0
for all 0 ≤ i < j ≤ d.

Given a positive definite tensor D ∈ S++
d , where d ∈ {2, 3}, Selling’s algorithm constructs

a D-obtuse superbase, see Algorithm 1. Note that the algorithm does not extend to dimension
d ≥ 4, and indeed there exists a matrix D ∈ S++

4 for which no D-obtuse superbase exists
[Sch09a].

Algorithm 1 Selling’s algorithm

Input: A positive definite tensor D ∈ S++
d , and a superbase b = (v0, · · · , vd), where d ∈ {2, 3}.

While there exists 0 ≤ i < j ≤ d such that 〈vi, Dvj〉 > 0 do

If d = 2, b← (−vi, vj , vi − vj).
If d = 3, b← (−vi, vj , vi + vk, vi + vl) where {k, l} = {0, 1, 2, 3} \ {i, j}.

Output: b, which is now a D-obtuse superbase.

Proof of correctness and termination of Algorithm 1. Denote by b the current superbase at the
beginning of an iteration. If the stopping criterion holds, then b is D-obtuse, as desired. Other-
wise, denoting by b′ the updated superbase, one easily checks that

ED(b′) = ED(b)− Cd〈vi, Dvj〉 where ED(b) :=
∑

0≤k≤d
‖vk‖2D, (2.1)

and where C2 = 4 and C3 = 2. Thus ED(b′) < ED(b). Since there exists only finitely many
superbases b such that ED(b) is below a given constant, Selling’s algorithm must terminate.

Selling’s algorithm is not the only means to produce a D-obtuse superbase. For instance
Corollary 1 and Proposition 1 in [FM14] show in dimension d ∈ {2, 3} how to produce a D-
obtuse superbase from another type of system of coordinates referred to as D-reduced basis,
resulting in a O(ln(‖D‖‖D−1‖)) numerical complexity [NS04]. Selling’s algorithm is however
efficient enough for applications to PDE discretization, which usually involve moderate condition
numbers, and therefore it is used in all our numerical experiments §4.

Selling’s decomposition

This mathematical formula allows, once a D-obtuse superbase of Zd is known, to decompose the
tensor D ∈ S++

d in the form of (1.4). For that purpose, we associate to each superbase a family
of vectors (eij)i 6=j defined by duality relations.

Definition 2.2. Let b = (v0, · · · , vd) be a superbase of Zd. Then for any i, j in {0, · · · , d} such
that i 6= j we let eij ∈ Zd be the unique vector obeying 〈eij , vk〉 := δik − δjk, for all 0 ≤ k ≤ d.
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Note that Definition 2.2 defines eij ∈ Rd by d + 1 linear relations. This does make sense
in view of the redundancy v0 + · · · + vd = 0 of the linear forms, and of the compatibility
(δi0 − δj0) + · · ·+ (δid − δjd) = 1− 1 = 0 of the right-hand sides. The vectors eij admit explicit
expressions when d ∈ {2, 3}, namely (up to the sign)

eij = ±v⊥k if d = 2, (resp. eij = ±vk × vl if d = 3), (2.2)

where {i, j, k} = {0, 1, 2} (resp. {i, j, k, l} = {0, 1, 2, 3}). For all i, j, k, l ∈ {0, · · · , d} such that
i 6= j and k 6= l one also has the useful identity〈

vk, (eije
T
ij)vl

〉
=
〈
eij , (vk ⊗ vl)eij

〉
= 〈eij , vk〉〈eij , vl〉 (2.3)

=

{
−1 if {i, j} = {k, l},
0 otherwise.

We denoted by v ⊗ w := 1
2(vwT + wvT) ∈ Sd the symmetrized outer product of two vectors

v, w ∈ Rd. The next lemma shows how a superbase of Zd defines a decomposition of an arbitrary
tensor D, involving integer offsets. If the superbase is D-obtuse, then the weights are non-
negative, and the decomposition is known as Selling’s decomposition or formula [Sel74, CS92].

Lemma 2.3 (Selling’s decomposition). Let D ∈ Sd, and let b = (v0, · · · , vd) be a superbase of
Zd. Then

D = −
∑

0≤i<j≤d
〈vi, Dvj〉eijeT

ij . (2.4)

If D ∈ S++
d and b is D-obtuse, then (2.4) is known as Selling’s decomposition of D.

Proof. Denote by D′ the r.h.s. of (2.4). By (2.3) we obtain 〈vk, Dvl〉 = 〈vk, D′vl〉 for all 0 ≤ k <
l ≤ d. These d(d+ 1)/2 independent linear relations imply D = D′, as announced.

We finally complete the description of our numerical scheme construction, see Definition
1.4. Given a positive definite tensor D, build a D-obtuse superbase using Selling’s algorithm
or another method. Then Selling’s formula (2.4) yields the required tensor decomposition D =∑

1≤i≤I σieie
T
i with I = d(d+1)/2, σi ≥ 0, ei ∈ Zd \{0}. We emphasize that one cannot replace

Selling’s formula with another tensor decomposition in Definition 1.4, or Theorems 1.5, 1.6, 1.7
and 1.8 would fail. Finally, let us mention that Selling’s decomposition is uniquely determined
by the tensor D, and thus independent of the choice of D-obtuse superbase, see Remark 2.13.

2.2 Ryskov’s polyhedron and Voronoi’s first reduction

We introduce two concepts from lattice geometry, Ryskov’s polyhedron and Voronoi’s first re-
duction [Sch09a], allowing us to rephrase Selling’s algorithm as a a simplex-like optimization
method solving a linear program. In order to prevent any confusion, let us insist that these ge-
ometric tools are not connected with the classical concept of Voronoi diagram, which is instead
related with Voronoi’s second reduction [Sch09a]. Ryskov’s polyhedron is an unbounded subset
Md ⊆ Sd, defined as follows1

Md := {M ∈ Sd; ∀e ∈ Zd \ {0}, 〈e,Me〉 ≥ 1}. (2.5)

1Depending on the author, Ryskov’s polyhedron (2.5) is defined via the constraints 〈e,Me〉 ≥ λ, e ∈ Zd \ {0},
where λ is one, two, or an unspecified positive constant [Sch09b]. These definitions are equivalent up to an
homothety of Md.
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Remark 2.4 (Identification of duplicate constraints). The constraints associated in (2.5) with a
vector e ∈ Zd \ {0} and with its opposite −e are obviously equivalent. We regard them as a
single constraint, associated with the equivalence class ±e.

The main result proved in this subsection is the classification of the edges and vertices of the
polyhedronMd in dimension d ∈ {2, 3}, see Corollary 2.11. These objects are actually known in
all dimensions d ≤ 8 see [Sch09b, CS88, SSV07], hence the results presented in this subsection
are not new. The proof is recalled for completeness and because its arguments are adapted in
§3.1 for the proof of Theorem 1.5.

Regularity of Ryskov’s polyhedron

We refer to Appendix B for some general terminology on polyhedra and linear programming.
Recall that, by Minkowski’s convex body theorem [Sch09a], any centrally symmetric convex
body K ⊆ Rd of volume Vol(K) > 2d contains a point of Zd \ {0}.

Lemma 2.5. Each M ∈Md is positive definite, and det(M) ≥ cd where cd > 0 is a constant.

Proof. If M ∈ Md, then by construction M is positive semi-definite and the set K = {x ∈
Rd; 〈x,Mx〉 < 1} contains no point of Zd \ {0}. By Minkowski’s convex body theorem one has

2d ≥ Vol(K) = Vol(B) det(M)−
1
2 , where B denotes the Euclidean unit ball, as announced. The

announced result thus holds with (sub-optimal) constant cd := Vol(B)2/22d.

The optimal constant in Lemma 2.5 is cd = γ−dd , where γd is known as Hermite’s constant
[Sch09a].

Corollary 2.6. The polyhedron Md is regular in the sense of Definition B.1.

Proof. Let us check the three points of this definition. (i) The set Md contains all M ∈ Sd
such that M � Id, hence it has non-empty interior, as required. (ii) The defining constraints
obey Span{eeT; e ∈ Zd \ {0}} = Sd, as required. (iii) For any M,M ′ ∈ Sd and any e ∈ Rd
one has 〈e,M ′e〉 ≥ (λmin(M) − ‖M − M ′‖)‖e‖2, where λmin(M) > 0 denotes the smallest
eigenvalue. Given M ∈ S++

d , one thus has 〈e,M ′e〉 > 1 whenever ‖M ′ −M‖ < λmin(M)/2 and
‖e‖ ≥ 2/λmin(M). This shows that only finitely many constraints defining the polyhedron Md

active in the neighborhood of any M ∈Md, as required.

Vertices and edges of Ryskov’s polyhedron

We describe a family of vertices of Md in Lemma 2.8, the corresponding edges in Lemma 2.10,
d ∈ {2, 3}, and show in Corollary 2.11 that this exhausts the skeleton of Md.

Definition 2.7. To each superbase b = (v0, · · · , vd) of Zd one associates the matrix

Mb =
1

2

∑
0≤i≤d

viv
T
i . (2.6)

Lemma 2.8. Let b = (v0, · · · , vd) be a superbase of Zd. Then 〈e,Mbe〉 ≥ 1 for all e ∈ Zd \ {0},
with equality iff e = eij for some i, j ∈ {0, · · · , d}, i 6= j, see Definition 2.2.

Proof. Let e ∈ Zd \ {0} and S := 2〈e,Mbe〉 =
∑

0≤i≤d〈vi, e〉2. Then S is the sum of the squares
of the integers 〈vi, e〉, 0 ≤ i ≤ d, which are not all zero, and obey

∑
0≤i≤d〈vi, e〉 = 〈0, e〉 = 0.

Thus S ≥ 2, with equality iff there exists i 6= j such that 〈vi, e〉 = 1, 〈vj , e〉 = −1, and 〈vk, e〉 = 0
for all k /∈ {i, j}. In other words e = eij , as announced.
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By Lemma 2.8, one has Mb ∈ Md for any superbase b. Furthermore, Mb saturates the
d(d + 1)/2 = dim(Sd) linearly independent constraints associated with the vectors ±eij , where
0 ≤ i < j ≤ d, and satisfies strictly the constraints associated with any other e ∈ Zd \ {0}. This
shows that Mb is a non-degenerate vertex of the polyhedron Md. The edges emanating from
this vertex, in dimension d ∈ {2, 3}, are described in Lemma 2.10 below.

We introduce in the next definition an adjacency relation on the set of superbases of Zd,
which is reminiscent of the superbase updates involved in Selling’s algorithm, Algorithm 1. This
similarity is not by accident, and it leads to an interpretation of Selling’s algorithm as a linear
program solver, see Proposition 2.12.

Definition 2.9. One defines the following adjacency relations for superbases of Zd, d ∈ {2, 3},

(v0, v1, v2)↔ (−v0, v1, v0 − v1), (2.7)

(v0, v1, v2, v3)↔ (−v0, v1, v2 + v0, v3 + v0),

and likewise up to a permutation and/or a global change of sign of the superbase.

Lemma 2.10. Let d ∈ {2, 3} and let b be a superbase of Zd. The edges of Md containing Mb

coincide with the segments [Mb,Mb′ ], where b′ is a superbase of Zd adjacent to b.

Proof. Recall that Mb is a non-degenerate vertex of Md. Therefore there exists d(d + 1)/2 =
dim(Sd) edges of Md containing Mb, which are obtained by relaxing one of the constraints
active at Mb (see also §B.3 on this topic). In other words, the edges of Md containing Mb can
be parametrized by 0 ≤ α < β ≤ d and obtained as

Eαβ = {M ∈Md; 〈eij ,Meij〉 = 1, 0 ≤ i < j ≤ d, (i, j) 6= (α, β)}.

Let b, b′ be superbases of Zd as in (2.7). Then distinguishing dimensions we compute

(d = 2) : 2(Mb′ −Mb) = (v0 − v1)(v0 − v1)T − v2v
T
2 = −4v0 ⊗ v1. (2.8)

(d = 3) : 2(Mb′ −Mb) (2.9)

= (v2 + v0)(v2 + v0)T + (v3 + v0)(v3 + v0)T − v2v
T
2 − v3v

T
3

= 2v0 ⊗ (v0 + v2 + v3) = −2v0 ⊗ v1.

The symmetrized outer product ⊗ was introduced in (2.3). Thus elements M in [Mb,Mb′ ] obey
the constraints 〈eij ,Meij〉 = 1 whenever {i, j} 6= {0, 1}, by (2.3). Therefore [Mb,Mb′ ] ⊆ E01,
and equality holds since Mb and Mb′ are vertices ofMd and E01 ⊆ ∂Md. Likewise, by permuting
the indices, we obtain for all 0 ≤ i < j ≤ d an edge of Md of the form [Mb,Mb′ ] where b′ is
adjacent to b, obeying all the constraints active at the non-degenerate vertex Mb but the one
associated with ±eij (previously ±e01).

Corollary 2.11. The vertices (resp. bounded edges) of Ryskov’s polyhedron Md, where d ∈
{2, 3}, take the form Mb where b is a superbase of Zd (resp. [Mb,Mb′ ] where b′ is an adjacent
superbase). There are no unbounded edges in ∂Md.

Proof. The result follows from Lemma 2.10, and the fact that the graph defined by the vertices
and edges of a regular polyhedron is connected.
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Voronoi’s first reduction

Voronoi’s first reduction Vor(D), of a positive definite quadratic form D ∈ S++
d , is defined as a

linear minimization problem over Ryskov’s polyhedron

Vor(D) := inf
M∈Md

Tr(DM). (2.10)

This linear program, in dimension d(d+ 1)/2 and subject to infinitely many constraints, is well
posed as shown by Voronoi himself [Vor08, Sch09a], in the sense that the collection of minimizers
is non-empty and compact (generically it is a point) for any D ∈ S++

d . The next proposition
reproves this fact in dimension d ∈ {2, 3}.

Proposition 2.12. Let D ∈ S++
d , where d ∈ {2, 3}. Then Voronoi’s first reduction is a well

posed linear program, attaining its minimum at vertices Mb of Md associated with a D-obtuse
superbase b.

Proof. By lemma 2.10, Selling’s algorithm defines a walk on the graph defined by the vertices
and edges of Ryskov’s polyhedron. Observing that ED(b) = 2 Tr(DMb), see (2.1) and (2.6), we
see that the next vertex selection reduces the linear program’s objective function, whenever that
is possible. Compare also (2.1, left) with (2.8) and (2.9). Since Selling’s algorithm terminates,
it solves the linear program (2.10), by the general results in §B.2. Furthermore, by Definition
2.1, it terminates precisely when reaching a D-obtuse superbase, which concludes the proof.

Note that the proof of the previous proposition outlines a close relationship between Selling’s
algorithm and the simplex algorithm [BG15] applied to the linear program (2.10).

Remark 2.13 (Uniqueness of Selling’s decomposition). Consider the decomposition (2.4) of a
tensor D ∈ S++

d , associated with a D-obtuse superbase b (if any exists, which is only guaranteed
in dimension d ≤ 3). By Lemma 2.8, it can be rephrased as a set of KKT relations for the linear
program (2.10) at Mb ∈Md, see Definition B.5. Since Mb is a non-degenerate vertex ofMd, the
coefficients of this KKT relation are uniquely determined, even if there is no uniqueness of the
D-obtuse superbase, see Proposition B.6. In contrast, Voronoi’s reduction (2.10) in dimension

d ≥ 4, or our variant Ṽor(ω,D) introduced §3.2 in dimension d ≥ 2, involve polyhedra with
degenerate vertices, at which the KKT relations are often non-uniquely determined.

2.3 Proof of Theorems 1.6, 1.7 and 1.8

Theorems 1.6 and 1.8, announced in the introduction, provide respectively a criterion for the
existence of our discretization, and an estimate of the size of its support. They both follow from
the next lemma, which bounds the norm of the vectors defined dually from an obtuse superbase.

Lemma 2.14 (Corollary 4.12 in [Mir17]). Let D ∈ S++
d where d ∈ {2, 3}. Let b be a D-obtuse

superbase, and let e = eij, for some i, j ∈ {0, · · · , d} such that i 6= j, see Definition 2.2. Then,
denoting C2 := 2 and C3 := 4

√
3, one has

‖e‖M ≤ Cd‖M‖
1
2 , where M := D−1. (2.11)

We refer to [Mir17] for the proof of Lemma 2.14, and use this result here to establish Theo-
rems 1.6 and 1.8.
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Proof of Theorem 1.8. Recall that the numerical scheme construction in Definition 1.4 relies on
the decomposition of a tensor D ∈ S++

d via Lemma 2.3, and in particular it involves the offsets
eij , 0 ≤ i < j ≤ d associated with a D-obtuse superbase. The announced estimate thus directly
follows from Lemma 2.14.

Proof of Theorem 1.6. Same notations as in the proof of Theorem 1.8. Denoting M := D−1 and
e = eij for some 0 ≤ i < j ≤ d, one has by Lemma 2.14

|〈ω,D−1e〉| = |〈ω,Me〉| ≤ ‖ω‖M‖e‖M ≤ Cd‖M‖
1
2 ‖ω‖M .

Condition (1.9) thus implies that the weights (1.8) are non-negative, which as announced proves
the absolute feasibility of (hω,D).

The rest of this section is devoted to the proof of Theorem 1.7. For that purpose, we need
to introduce the geometrical concept of Voronoi vector [Sch09a].

Definition 2.15. A point e ∈ Zd \ {0} is an M -Voronoi vector, where M ∈ S++
d , if there exists

p ∈ Rd (referred to as the witness) such that

‖p− 0‖M = ‖p− e‖M ≤ ‖p− x‖M , for all x ∈ Zd. (2.12)

One says that e is a strict M -Voronoi vector if the above inequality is strict for all x /∈ {0, e}.

The origin 0 is introduced in (2.12, left) to emphasize the geometrical interpretation. In
the language of Voronoi diagrams, e is a an M -Voronoi vector iff the Voronoi cells of 0 and e
intersect, in the diagram of Rd associated with the sites Zd and metric ‖ · ‖M . The (strict) M -
Voronoi vectors can be determined from an M -obtuse superbase, as shown by the next lemma
in dimension d = 2. See Theorem 3 in [CS92] for a related argument in arbitrary dimension.

Lemma 2.16. Let M ∈ S++
2 and let e0, e1, e2 be an M -obtuse superbase. Then ±e0,±e1,±e2

are M -Voronoi vectors. Furthermore e0 is a strict M -Voronoi vector iff 〈e1,Me2〉 < 0 (likewise
for −e0, and likewise permuting (e0, e1, e2)).

Proof. We first show, w.l.o.g., that e0 is an M -Voronoi vector, whose witness is p := e0/2.
Note that ‖p − 0‖M = ‖p − e0‖M (= ‖e0/2‖M ) as required (2.12). Let x ∈ Z2 be arbitrary.
Since det(e1, e2) = 1, there exists a, b ∈ Z such that x = ae1 + be2. From this point a direct
computation yields (2.12), as announced

‖p− x‖2M − ‖p‖2M = ‖(a+ 1/2)e1 + (b+ 1/2)e2‖2M − ‖(e1 + e2)/2‖2M
= (a2 + a)‖e1‖2M + (b2 + b)‖e2‖2M + (2ab+ a+ b)〈e1,Me2〉

≥
(

(a2 + a) + (b2 + b)− (2ab+ a+ b)
)

(−〈e1,Me2〉)

= −(a− b)2〈e1,Me2〉 ≥ 0.

In the third line we used ‖e1‖2M = 〈−e0 − e2,Me1〉 ≥ −〈e1Me2〉, and likewise ‖e2‖2M ≥
−〈e1Me2〉. In the rest of the proof, we show that e0 is a strict M -Voronoi vector, under
the additional assumption that 〈e1,Me2〉 < 0. Indeed, if ‖p‖ = ‖p − x‖, then a = b by the
above, thus x = −ae0 and therefore ‖e0/2‖M = ‖(a+1/2)e0‖M . This implies a ∈ {0,−1}, hence
x ∈ {0, e0}, and therefore e0 is a strict M -Voronoi vector, as announced.

Lemma 2.17. Let D ∈ S++
2 and let (e0, e1, e2) be a D-obtuse superbase. Let M := D−1 and

(v0, v1, v2) = (e⊥0 , e
⊥
1 , e

⊥
2 ). Then (v0, v1, v2) is an M -obtuse superbase. In addition, for any i 6= j

one has 〈ei, Dej〉 < 0 iff 〈vi,Mvj〉 < 0.
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Proof. By construction one has v0, v1, v2 ∈ Z2, v0+v1+v2 = (e0+e1+e2)⊥ = 0, and det(v1, v2) =
det(e1, e2) = ±1. Thus (v0, v1, v2) is a superbase of Z2. On the other hand, the obtuseness
properties come from the following identity: for any e, e′ ∈ R2, D ∈ S++

2 and M := D−1 one
has

〈e⊥,Me′⊥〉 = det(M)〈e,De′〉.

(In the special case D = Id, this identity expresses that rotation by π/2 is an isometry. In the
general case D = ATA for some A ∈ GL2(R), it follows from a linear change of variables and
the relation (Ae)⊥ = cof(A)e⊥ where cof(A) denotes the cofactor matrix.)

We are ready to prove Theorem 1.7, by adapting a result of [Mir16], devoted to operators
without a first order term, and stated in terms of Voronoi vectors.

Lemma 2.18 (Adapted from Theorem 1.3 in [Mir16]). Let D ∈ S++
2 , and let D =

∑
1≤i≤I σieie

T
i

be the decomposition associated with a D-obtuse superbase by Lemma 2.3, pruned so that σi 6= 0
for all 1 ≤ i ≤ I. Let also D =

∑
1≤i≤I′ σ

′
ie
′
ie
′T
i be another decomposition, with I ′ > 0, σ′i ≥ 0,

e′i ∈ Z2 \ {0} for all 1 ≤ i ≤ I ′. Then

Hull{±ei; 1 ≤ i ≤ I} ⊆ Hull{±e′i; 1 ≤ i ≤ I ′}.

Proof. Theorem 1.3 in [Mir16] provides a similar statement, except that the vectors (±ei)1≤i≤I
are defined as the strict M -Voronoi vectors, where M = D−1. By Lemmas 2.16 and 2.17, the
tensor decomposition here considered (2.4) is also supported on the set of strict M -Voronoi
vectors, and the result follows.

Proof of Theorem 1.7. We use the notations of Theorem 1.7, and define σi := ρhi + ρh−i for all
1 ≤ i ≤ I, and σ′i := ρ′hi + ρ′h−i for all 1 ≤ i ≤ I ′. Note that σi > 0 since ρhi 6= 0 or ρh−i 6= 0,
and both are non-negative, for all 1 ≤ i ≤ I. Then D =

∑
1≤i≤I σieie

T
i =

∑
1≤i≤I σ

′
ie
′
ie
′T
i , and

by Definition 1.4 the first decomposition comes from a D-obtuse superbase as in Lemma 2.3.
Applying Lemma 2.18, and recalling that e−i := −ei, we conclude the proof of Theorem 1.7.

3 Proof of Theorem 1.5

We establish in this section our main result, Theorem 1.5, on a compatibility relation needed
for constructing our numerical scheme. This condition relates the grid scale h (safely ignored in
this section, see Remark 3.1 below), with the first order term ω ∈ Rd and the second order term
D ∈ S++

d of the discretized linear differential operator. More precisely, this result states that
if (ω,D) is absolutely feasible (some discretization exists), then (cdω,D) is canonically feasible
(our discretization exists), where d ∈ {2, 3} and cd ∈]0, 1] is a constant.

The guiding principle of the proof is to adapt to the pair (ω,D) ∈ Rd × S++
d , of a vector

and a symmetric positive definite matrix, the tools and techniques presented in §2.1 and §2.2,
which originally apply to a matrix D ∈ S++

d alone. The arguments are split into three parts, and

proceed as follows. We define and describe in §3.1 a variant M̃d ⊆ Rd×Sd of Ryskov’s polyhedron
Md ⊆ Sd, see (2.5), involving an asymmetric perturbation of the constraints. The corresponding

generalization Ṽor(ω,D) of Voronoi’s first reduction Ṽor(D), see (2.10), is discussed in §3.2. We
conclude the proof of Theorem 1.5 in §3.3, by studying a low dimensional linear feasibility
problem.

Remark 3.1 (ω vs hω). In this section, we speak of the canonical (resp. absolute) feasibility of
a pair denoted (ω,D) ∈ S++

d × Rd, instead of (hω,D) as in §1. Indeed, the presence of the
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gridscale h > 0 is superflous in Definitions 1.2 and 1.4 or Theorems 1.5 - 1.8. It only appears for
consistency with the Taylor expansions, and so as to outline the different homogeneity properties
of the vector ω and the second order tensorD. These results do not depend on h and ω separately,
but only on the product hω, which can be treated as a block and is here simply renamed ω.

3.1 A variant of Ryskov’s polyhedron

We study of a variant of Ryskov’s polyhedron (2.5). Denoted M̃d ⊆ Rd × Sd, it is defined as
follows

M̃d := {(η,M) ∈ Rd × Sd; ∀e ∈ Zd \ {0}, 〈η, e〉+ 〈e,Me〉 ≥ 1}. (3.1)

This subsection is devoted to description of the vertices and edges of M̃d, when d ∈ {2, 3}, see
Theorem 3.2 below (no other result from this section is used in the following ones). Surpris-
ingly enough, this structure is only barely richer than that of Ryskov’s original polyhedron, see
Corollary 2.11, despite the higher dimension.

The concepts of superbase b of Zd, the associated matrix Mb ∈ S++
d , and the notion of

adjacent superbases (b, b′), were introduced in Definitions 2.1, 2.7, and 2.9 respectively. Regular
polyhedra and their edges are introduced in Definitions B.1 and B.2 of Appendix B.

Theorem 3.2. Let d ∈ {2, 3}. Then M̃d is a regular polyhedron, with:

(a) Vertices: (0,Mb), for all superbases b of Zd.

(b) Bounded edges: [(0,Mb), (0,Mb′)], for all adjacent superbases b and b′ of Zd.

(c) Unbounded edges: {(0,Mb) + λ(vI , vIv
T
I ); λ ≥ 0}, for all superbases b of Zd and all I (

{0, · · · , d}, I 6= ∅, where b = (v0, · · · , vd) and vI :=
∑

i∈I vi.

The rest of this section is devoted to the proof of Theorem 3.2, following a line of arguments
similar to the proof of Corollary 2.11. For commodity, we introduce a scalar product on Rd×Sd,
as well as a family of elements le ∈ Rd × Sd, e ∈ Zd \ {0}, defined as follows:

〈〈(η,M), (ω,D)〉〉 := 〈η, ω〉+ Tr(MD), le := (e, eeT). (3.2)

By construction 〈〈le, (η,M)〉〉 = 〈e, η〉 + 〈e,Me〉, which is convenient in view of (3.1). Observe
that for any λ1, · · · , λI , µ1, · · · , µI ∈ R and e1, · · · eI ∈ Zd, one has∑

1≤i≤I

λi + µi
2

(
ei, eie

T
i

)
+
λi − µi

2

(
− ei, (−ei)(−ei)T

)
(3.3)

=

 ∑
1≤i≤I

µiei,
∑

1≤i≤I
λieie

T
i

 .

Remark 3.3 (Erdahl’s cone of quadratic functions). The set (3.1) is reminiscent of Erdahl’s cone
[Erd92, DSSV12], another inhomogeneous generalization of Voronoi’s constructions, defined as
follows:

Ed := {f quadratic function on Rd; ∀e ∈ Zd, f(e) ≥ 0}

Recall that a quadratic function on is a map of the form x ∈ Rd 7→ α+ 〈η, x〉+ 〈x,Mx〉. Thus
for any f ∈ Ed, the normalized function f/f(0) (assuming f(0) 6= 0) can be identified with an
element of

{(η,M) ∈ Rd × Sd; ∀e ∈ Zd \ {0}, 〈η, e〉+ 〈e,Me〉 ≥ −1}. (3.4)
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Despite the apparent similarity between (3.4) and (3.1), the set M̃d only resembles Erdahl’s

cone superficially. The set M̃d is more closely related with Ryskov’s original polyhedron Md,
as shown by Theorem 3.2 and Corollary 2.11.

Lemma 3.4. For all (η,M) ∈ M̃d one has M ∈Md.

Proof. One has 〈e,Me〉 = 1
2(〈η, e〉+ 〈e,Me〉) + 1

2(〈η,−e〉+ 〈−e,M(−e)〉) ≥ 1, ∀e ∈ Zd \{0}.

Lemma 3.5. The polyhedron M̃d is regular, in the sense of Definition B.1.

Proof. (i) Let (η,M) ∈ Rd × Sd be such that ‖η‖ ≤ 1 and M � 2 Id. Then for any e ∈ Zd \ {0}
one has 〈η, e〉+〈e,Me〉 ≥ −‖e‖+2‖e‖2 ≥ 1 since ‖e‖ ≥ 1. Thus (η,M) ∈ M̃d, and therefore M̃d

has a non-empty interior. (ii) Recalling that Span{eeT; e ∈ Zd \ {0}} = Sd, see Lemma 2.3, and

using (3.3) one obtains Span{(e, eeT); e ∈ Zd\{0}} = Rd×Sd, as required. (iii) Let (η,M) ∈ M̃d.
Then M ∈ Md, by Lemma 3.4, and therefore M is a symmetric positive definite matrix whose
smallest eigenvalue is denoted λmin(M) > 0. Then for any (η′,M ′) such that ‖η − η′‖ ≤ 1 and
‖M −M ′‖ ≤ λmin(M)/2 one has for all e ∈ Zd \ {0}

〈η′, e〉+ 〈e,M ′e〉 ≥ −‖η′‖‖e‖+ (λmin(M)− ‖M −M ′‖)‖e‖2

≥ (λmin(M)‖e‖/2− ‖η‖ − 1)‖e‖ ≥ 2,

assuming ‖e‖ ≥ 2(‖η‖+ 3)/λmin(M) for the last inequality. This shows that only finitely many

of the constraints defining the polyhedron M̃d are active in the neighborhood of (η,M) ∈ M̃d,
as required.

The next lemma describes a family of vertices of M̃d.

Lemma 3.6. For any vertex M of Md, the pair (0,M) is a vertex of M̃d. In addition, the

active constraints at a vertex M ∈ Md, and at the corresponding vertex (0,M) ∈ M̃d, are
associated with the same vectors e ∈ Zd \ {0}.

Proof. We first check that (0,M) ∈ M̃d. Indeed, for any e ∈ Zd \ {0}, one has 〈〈le, (0,M)〉〉 =
〈0, e〉+ 〈e,Me〉 = 〈e,Me〉 ≥ 1, since M ∈Md.

We next prove that (0,M) is a vertex of M̃d, relying on the characterization of Remark
B.3. By assumption, since M is a vertex of Md, there exists e1, · · · , eI in Zd \ {0} such that
〈ei,Mei〉 = 1 for all 1 ≤ i ≤ I, and Span{eieT

i }1≤i≤I = Sd. The latter property implies
that {ei}Ii=1 spans Rd, hence using (3.3) we obtain Span{lei}1≤|i|≤I = Rd × Sd, with the usual
convention e−i = −ei. Since 〈〈l±ei , (0,M)〉〉 = 〈ei,Mei〉 = 1, we conclude that (0,M) is a vertex

of M̃d. The additional point is straightforward, since the vectors e ∈ Zd associated to active
constraints at (0,M) ∈ M̃d are characterized by the identity 1 = 〈e, 0〉+ 〈e,Me〉 = 〈e,Me〉.

It the rest of this section, we compute the edges emanating from vertex (0,M) in M̃d. We
apply the strategy of §B.3 to compute the outgoing direction of each edge, and eventually only
encounter the following two cases:

(i) The computed edge direction has the form ν = (0, N) for some N ∈ Sd, hence the cor-

responding edge is internal to M̃d ∩ ({0} × Sd) = {0} ×Md. Since the edges of Md are
known, see Corollary 2.11, this must be a bounded edge in the form of Theorem 3.2 (b).
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(ii) The computed edge direction has the form ν = (v, vvT), where v ∈ Zd (more precisely, v
has the form indicated in Theorem 3.2 (c)). Thus for any e in Zd \ {0},

〈〈le, ν〉〉 = 〈〈(e, eeT), (v, vvT)〉〉 = 〈e, v〉+ Tr(eeTvvT) = 〈e, v〉+ 〈e, v〉2.

Since e and v have integer coordinates, the scalar product 〈e, v〉 is an integer, and therefore

〈〈le, ν〉〉 ≥ 0 (with equality iff 〈e, v〉 ∈ {0,−1}). Thus ν yields an unbounded edge in M̃d

starting from (0,M), in the form of Theorem 3.2 (c).

The graph defined by the edges and vertices of a regular polyhedron is connected, see Ap-
pendix B. Once the above dichotomy is established, it follows that M̃d has no other vertices
than those already found in Lemma 3.6, which concludes the proof of Theorem 3.2.

Notation (i-ii) and (A-D) in §3.1.1 and 3.1.2.

We establish the above dichotomy (i-ii) in §3.1.1 and 3.1.2, in dimension two and three re-
spectively. For that purpose, we rely on the algorithm presented in §B.3 for enumerating the
outgoing edges from a vertex in a polyhedron, and explicitly refer to its steps (A-D).

3.1.1 Edges of M̃2

Let b = (v0, v1, v2) be a superbase of Z2, and let Mb be the corresponding vertex of M2, see
(2.6). By Lemma 2.8, the active constraints at the vertex Mb ∈ M2 correspond to the set of
vectors E := {eij ; i, j ∈ {0, 1, 2}, i 6= j} associated with the superbase b, see Definition 2.2.

By Lemma 3.6, (0,Mb) is a vertex of the polyhedron M̃2, at which the constraints associated
with the same vectors e ∈ E are active. Since the number #(E) = 6 of active constraints at

(0,Mb) ∈ M̃2 exceeds the dimension dim(R2 × S2) = 2 + 3 = 5 of the embedding vector space,

the vertex is degenerate. The edges containing (0,Mb) ∈ M̃2 are obtained by selecting 4 out
of the six active constraints, in other words by removing two elements from the set E. The
following cases can be distinguished:

• Removing e12 and e21. The corresponding direction is ν = (0, v1 ⊗ v2), which lies within
{0} × Sd, and thus falls in case (i). Validation of the direction: one has 〈〈le01 , ν〉〉 =
〈e01, v1 ⊗ v2 e01〉 = 〈e01, v1〉〈e01, v2〉 = 0, since 〈e01, v2〉 = 0. Likewise 〈〈le, ν〉〉 = 0 for all
e ∈ {±e01,±e02}, hence ν obeys the conditions of (B) of Algorithm §B.3.

• Removing e01 and e02. The corresponding direction is ν = (v0, v0 ⊗ v0), which falls in
the case (ii) of an unbounded edge. Validation of the direction: one has 〈〈le12 , ν〉〉 =
〈e12, v0〉2 + 〈e12, v0〉 = 02 + 0 = 0, and 〈〈le10 , ν〉〉 = 〈e10, v0〉2 + 〈e10, v0〉 = (−1)2 + (−1) = 0.
Likewise for e ∈ {e21, e20}.

• Removing e01 and e20. The corresponding direction is ν = (v0, v1 ⊗ v1 − v2 ⊗ v2), but
it does not correspond to an edge, since it is eliminated in step (C) of Algorithm §B.3.
Indeed, noting that 〈le, ν〉 = 〈e, v1〉2 − 〈e, v2〉2 + 〈e, v0〉 we obtain

〈le10 , ν〉 = 12 − 02 − 1 = 0,

〈le02 , ν〉 = 02 − (−1)2 + 1 = 0,

〈l±e12 , ν〉 = (±1)2 − (∓1)2 + 0,
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showing that the direction ν is correct. However since

〈le01 , ν〉 = (−1)2 − 02 + 1 = 2, 〈le20 , ν〉 = 02 − 12 − 1 = −2,

have opposite signs, the direction ν does not yield an edge of positive length.

There are 15 distinct two element subsets of E := {eij ; i, j ∈ {0, 1, 2}, i 6= j}, and we have
considered just three. However by permuting indices, the above considered cases respectively
cover 3, 6, and again 6, distinct two element subsets E. Thus our enumeration is complete, and
Theorem 3.2 is proved in dimension d = 2.

3.1.2 Edges of M̃3

Let b = (v0, v1, v2, v3) be a superbase of Z3, and let Mb be the corresponding vertex of M3, see
(2.6). By Lemma 2.8, the active constraints at the vertex Mb ∈ M3 correspond to the set of
vectors E := {eij ; i, j ∈ {0, 1, 2, 3}, i 6= j} associated with the superbase b, see Definition 2.2.

By Lemma 3.6, (0,Mb) is a vertex of the polyhedron M̃3, at which the constraints associated
with the same vectors e ∈ E are active. Since the number #(E) = 12 of active constraints at

(0,Mb) ∈ M̃2 exceeds the dimension dim(R3 × S3) = 3 + 6 = 9 of the embedding vector space,

the vertex is degenerate. The edges containing (0,Mb) ∈ M̃3 are obtained by selecting 8 out
of the twelve active constraints, in other words by removing four elements from the set E. The
following cases can be distinguished:

• Removing ±e01 and two other unspecified elements of E. If the subset is not rejected in
step (B), then the corresponding direction is ν = (0, v0⊗v1), which lies within {0}×Sd and
thus falls into case (i). Validation of the direction: one has 〈〈leij , ν〉〉 = 〈eij , v0〉〈eij , v1〉 = 0
as soon as {i, j} 6= {0, 1}, hence ν obeys the conditions of (B).

• Removing α01e01, α02e02, α03e03 and another unspecified element of E, where α01, α02, α03 ∈
{−1, 1}. The corresponding direction is, up to a global sign change,

ν = (−v0, α01v0 ⊗ v1 + α02v0 ⊗ v2 + α03v0 ⊗ v3).

It is rejected in step (B) or (C), unless α01 = α02 = α03 in which case ν = (−α01v0, v0⊗v0)
(here with the correct sign) falls in case (ii) and defines an unbounded edge. (Note that
v0⊗v1 +v0⊗v2 +v0⊗v3 = −v0⊗v0 since v1 +v2 +v3 = −v0.) Indeed, for any i, j ∈ {1, 2, 3}
such that i 6= j one computes

〈l±e0i , ν〉 = −α0i ∓ 1, 〈leij , ν〉 = 0. (3.5)

• Removing α01e01, −α12e12, α23e23, −α30e30, where α01, α12, α23, α30 belong to {−1, 1}.
Then the corresponding direction is, up to a global sign change,

ν = (v1 + v3, α01v0 ⊗ v1 + α12v1 ⊗ v2 + α23v2 ⊗ v3 + α30v3 ⊗ v0).

It is rejected in step C, unless α01 = α12 = α23 = α30, in which case ν = (v, v ⊗ v) (here
with the correct sign) with v = −α01(v1 + v3) = α01(v0 + v2) falls in case (ii) and thus
defines an unbounded edge. (Note that −(v1 + v3) ⊗ (v1 + v3) = (v0 + v2) ⊗ (v1 + v3) =
v0 ⊗ v1 + v1 ⊗ v2 + v2 ⊗ v3 + v3 ⊗ v0 since v0 + v2 = −(v1 + v3).) Indeed, we check that

〈le02 , ν〉 = 0 + 0 + 0 + 0 + 0, likewise for e ∈ {±e02,±e13}
〈l±e01 , ν〉 = −α01 ± 1, likewise for e ∈ {±e01,±e12,±e23,±e30}.
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Finally, we need to show that all the possible 4 element subsets S ⊆ {eij ; i 6= j} correspond
to one of the considered cases, up to a permutation of the superbase. We refer to {i, j} as the
indices of vector eij . If two elements of S share the same two indices, a.k.a. eij , eji ∈ S for some
i 6= j, then we fall in the first case. Otherwise, if (at least) three elements of S share one index,
then we fall in the second case. Otherwise, each index i ∈ {0, · · · , 3} appears in at most two
elements of S, thus exactly two since #(S) = 4 = #{0, · · · , 3}. It follows that the indices of S
define a cycle, and we fall in the last case.

3.2 A variant of Voronoi’s first reduction

We introduce and study a variant of Voronoi’s first reduction, applying to pairs (ω,D) of a
vector ω ∈ Rd and a positive definite symmetric tensor D ∈ S++

d , instead of the matrix D alone
in the original formulation (2.10). It is defined as follows:

Ṽor(ω,D) := inf{〈ω, η〉+ Tr(DM); (η,M) ∈ M̃d}. (3.6)

Somewhat surprisingly, our generalization of Voronoi’s first reduction reduces to the original
one, subject to a compatibility condition.

Theorem 3.7. Let d ≤ 3. For any (D,ω) ∈ S++
d × Rd one has

Ṽor(D,ω) =

{
−∞ if ∃v ∈ Zd \ {0}, 〈v,Dv〉+ 〈ω, v〉 < 0,

Vor(D) otherwise.

Proof. The result follows from the description of the vertices and unbounded edges of the poly-
tope M̃d in Theorem 3.2, and from the general expression (B.2) of the value of a linear pro-
gram. Note also that any v1 ∈ Zd \ {0} with co-prime coordinates can be completed into a
basis v1, · · · , vd of Z, hence also into a superbase with v0 := −(v1 + · · ·+ vd). Hence the set of

directions of all unbounded edges of M̃d, see Theorem 3.2 (c), is Zd \ {0}.

Proposition 3.8. Let d ≤ 3, and let (ω,D) ∈ Rd × S++
d . The following are equivalent:

(i) The pair (ω,D) is absolutely feasible.

(ii) The linear program Ṽor(ω,D) is bounded.

In case (ii), any set of KKT relations for Ṽor(ω,D) yields a simultaneous decomposition of
(ω,D), showing (i) explicitly.

Proof. Proof that (i) ⇒ (ii). Assume that (ω,D) is absolutely feasible, and denote by ρi ≥ 0
the weights, and ei ∈ Zd the offsets of the corresponding decomposition, so that

ω =
∑

1≤i≤I
ρiei, D =

∑
1≤i≤I

ρieie
T
i . (3.7)

Then for any (M,η) ∈ M̃d, one obtains using the identity 〈e,Me〉 = Tr(MeeT)

〈ω, η〉+ Tr(DM) =
∑

1≤i≤I
ρi (〈ω, ei〉+ 〈ei,Mei〉) ≥

∑
1≤i≤I

ρi ≥ 0.

Therefore Ṽor(D,ω) ≥ 0 > −∞ is bounded.
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Proof that (ii) ⇒ (i). By Proposition 2.12 there exists a vertex Mb of Md, where b is a
superbase of Zd, such that Vor(D) = Tr(DMb). By Lemmas 2.8 and 3.6, (0,Mb) is a ver-

tex of M̃d at which finitely many constraints (ei)
I
i=1 are active. By Theorem 3.7, Ṽor(D) =

Vor(D) = Tr(DMb) = 〈ω, 0〉 + Tr(DMb) and this minimum is attained at the vertex (0,Mb).
The KKT relations express that there exists non-negative weights (ρi)

I
i=1 (possibly non-unique)

such that the objective function and the weighted sum of the constraints are equal: one has
〈ω, η〉+ Tr(DM) =

∑
1≤i≤I ρi(〈ei, η〉+ 〈ei,Mei〉) for all (η,M) ∈ Rd × Sd. From this point, the

simultaneous decomposition (3.7) holds by identification, as announced.

Remark 3.9 (Degeneracy of the vertices of M̃d). The vertices of M̃d are degenerate, in dimension
d ∈ {2, 3}, in the sense that exactly d(d+1) constraints are active, which is strictly greater than
dim(Rd×Sd) = d(d+ 1)/2 +d. As a result, the KKT relations for the linear program Vor(ω,D)
in general do not uniquely determine the decomposition (3.7) of the pair (ω,D). This is in
constrast with Voronoi’s first reduction in dimension d ≤ 3, see Remark 2.13.

3.3 Local study of feasibility

In this section, we compare the conditions of canonical and absolute feasibility of a pair (ω,D),
in dimension d ≤ 3, concluding the proof of Theorem 1.5. For that purpose, we fix a symmetric
positive definite matrix D ∈ S++

d , denote by b = (v0, · · · , vd) a D-obtuse superbase, and recall
Selling’s decomposition (2.4)

D =
∑

0≤i<j≤d
σijeije

T
ij , (3.8)

where σij := −〈vi, Dvj〉 ≥ 0 and where eij ∈ Zd \ {0} for all 0 ≤ i < j ≤ d is introduced in
Definition 2.2. In this subsection, for notational convenience, the indices i and j, are always
implicitly constrained to lie in the set {0, · · · , d}.

We characterize, in the next proposition, the canonical and absolute feasibility of a pair
(ω,D) in terms of Selling’s decomposition of D. The argument, in the case of absolute feasibility,
heavily relies on the results established in §3.2.

Proposition 3.10. Assume d ≤ 3. Let ω ∈ Rd and D ∈ S++
d . We use the notations b,

(σij , eij)i<j of Selling’s decomposition (3.8). Then

• (ω,D) is absolutely feasible iff there exists µij ∈ [−1, 1], for all 0 ≤ i < j ≤ d, such that
ω =

∑
i<j µijσijeij

• (ω,D) is canonically feasible iff |〈eij , D−1ω〉| ≤ 1 for all 0 ≤ i < j ≤ d such that σij > 0.

Proof. First equivalence. If the pair (ω,D) is absolutely feasible, then by Proposition 3.8 the

linear program Ṽor(ω,D) is bounded, and attains its minimum at the vertex (0,Mb), at which
the active constraints are associated with the vectors eij , i 6= j. By the KKT relations, there
exists non-negative weights ρij , i 6= j, such that

ω =
∑
i 6=j

ρijeij D =
∑
i 6=j

ρijeije
T
ij .

Recalling that eji = −eij for all i 6= j, we obtain

ω =
∑
i<j

(ρij − ρij)eij D =
∑
i<j

(ρij + ρji)eije
T
ij .
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By uniqueness of Selling’s decomposition, see Remark 2.13, one has σij = ρij + ρji for all
i < j. Denoting µij := (ρij − ρji)/σij ∈ [−1, 1] when σij > 0 (and e.g. µij = 0 if σij = 0),
we obtain ω =

∑
i<j µijσijeij as announced. The reverse implication is trivial, by defining

ρij = σij(1 + µij)/2 and ρji = σij(1− µij)/2, for all i < j.
Second equivalence. By construction, see Definition 1.4, the pair (ω,D) obeys is canonically

feasible iff σij(1 + ε〈eij , η〉) ≥ 0 for all i < j and all ε ∈ {−1, 1}, where η := D−1ω. This is
indeed equivalent to |〈eij , D−1ω〉| ≤ 1, for all i < j such that σij > 0, as announced.

We next state two technical lemmas which, combined with Proposition 3.10 above, let us
conclude the proof of Theorem 1.5. The proof of Lemma 3.11 is postponed to §3.3.1.

Lemma 3.11. Let D ∈ S++
d , d ≤ 3. We use the notations b, (σij , eij)i<j of Selling’s decompo-

sition (3.8). Then |〈eij ,Mekl〉| ≤ ‖eij‖2M for all i < j and all k < l, where M := D−1.

Lemma 3.12. Let D =
∑R

r=1 σrere
T
r , where σr ≥ 0, er ∈ Rd for all 1 ≤ r ≤ R, and R is a

positive integer. If D is positive definite, then σr〈er, D−1er〉 ≤ 1 for all 1 ≤ r ≤ R.

Proof. For any 1 ≤ r ≤ R, one has D � σrereT
r , in the sense of symmetric matrices. Therefore,

letting vr := D−1er, we obtain 〈er, D−1er〉 = 〈vr, Dvr〉 ≥ σr〈vr, er〉2 = σr〈er, D−1er〉2. This
implies 1 ≥ σr〈er, D−1er〉, as announced.

Proof of Theorem 1.5. Assume that (D,ω) is absolutely feasible. Then for any i < j, using the
notations of Proposition 3.10, we obtain

|〈eij , D−1ω〉| ≤
∑
k<l

σkl|µkl| |〈eij , D−1ekl〉|

≤
∑
k<l

σkl〈ekl, D−1ekl〉

≤
∑
k<l

1 = d(d+ 1)/2.

The three inequalities follows, successively, from Proposition 3.10 (first point), Lemma 3.11,
and Lemma 3.12. If follows from Proposition 3.10 (second point) that (D,ω/C) is canonically
feasible, with C := d(d+ 1)/2, as announced.

3.3.1 Proof of Lemma 3.11

Throughout this subsection, we use for convenience the notation 〈v, w〉M := 〈v,Mw〉, for any
v, w ∈ Rd, M ∈ S++

d . We use the notations of Lemma 3.11. In particular D ∈ S++
d , M := D−1,

b = (v0, · · · , vd) is a D-obtuse superbase, and (σij , eij)i<j are the coefficients and offsets of
Selling’s decomposition (3.8) of D. As before, the indices i, j implicitly lie in {0, · · · , d}.

Proof in dimension d = 2. Assume that the superbase b = (v0, v1, v2) satisfies

det(v1, v2) = 1,

without loss of generality and up to exchanging v1 and v2. Then (e12, e20, e01) = (v⊥0 , v
⊥
1 , v

⊥
2 )

by (2.2), and this triplet is an M -obtuse superbase by Lemma 2.17. Denoting (w0, w1, w2) :=
(e12, e20, e01) one obtains

−〈w0, w1〉M − 〈w0, w2〉M = 〈w0,−w1 − w2〉M = ‖w0‖2M ,

and therefore 0 ≤ −〈w0, w1〉M ≤ ‖w0‖2M . Likewise 0 ≤ −〈wi, wj〉M ≤ ‖wi‖2M for all i 6= j, which
is the announced result.
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Proof in dimension d = 3. Denote wij := vi×vj for all i 6= j. In the following, {i, j, k, l} denotes
an arbitrary permutation of {0, 1, 2, 3}, thus for instance wij = ±ekl by (2.2). Note also that

wij = −wji, and wij + wik + wil = vi × (vj + vk + vl) = −vi × vi = 0.

The scalar products defined by D ∈ S++
3 and its inverse M := D−1 are related by the following

identity, where u, v, w ∈ R3

det(D)〈u× v, u× w〉M = ‖u‖2D〈v, w〉D − 〈u, v〉D〈u,w〉D.

(In the case D = Id this is known as the Binet-Cauchy identity. In the general case where
D = ATA for some A ∈ GL3(R) it follows from a linear change of variables and the relation
(Au)× (Av) = cof(A)(u× v) where cof(A) denotes the cofactor matrix.)

Choosing u = vi, v = vj and w = vk, we obtain that 〈wij , wik〉M ≤ 0. On the other hand

−〈wij , wik〉M − 〈wij , wil〉M = 〈wij , vi × (−vk − vl)〉M
= 〈wij , vi × (vi + vj)〉M
= ‖wij‖2M ,

thus 0 ≤ −〈wij , wik〉M ≤ ‖wij‖2M . Finally, since −wkl = wki + wkj , we obtain that

−〈wij , wkl〉M = 〈wij , wki + wkj〉M = −〈wij , wik〉M + 〈wji, wjk〉M ,

and therefore, by the previous estimate, −‖wij‖2M ≤ 〈wij , wkl〉M ≤ ‖wij‖2M . This concludes the
proof of Lemma 3.11.

4 Numerical experiments

We illustrate the PDE discretization introduced in this paper with synthetic numerical experi-
ments, in dimension d ∈ {2, 3}, involving linear and quasi-linear operators, and using Dirichlet
boundary conditions on a non-square and non-smooth domain. Let us mention that a close vari-
ant of the proposed scheme, involving the divergence form operator div(D(x)(∇u(x)−ω(x)u(x)))
featuring both a first and second order term, is used in [PCC+19] for image impainting purposes
in dimension d = 2, in collaboration with one of the authors. See also [FM14] for applications to
image denoising in dimension d ∈ {2, 3}, with an operator lacking the first order term however.
Additional concrete applications of the proposed scheme will be the object of future work.

The PDEs addressed numerically in this section take the form

Lu(x) = f(x), ∀x ∈ Ω, u(x) = g(x), ∀x ∈ ∂Ω, (4.1)

where Ω := {x ∈ Rd; ‖x‖ < 1}∪ ]0, 1[d is the union of the d-dimensional unit ball and of the
d-dimensional unit cube. The PDE operator −Lu(x) is chosen as the following linear (resp.
quasi-linear) expression

〈ω(x),∇u(x)〉+ Tr(D(x)∇2u(x)) (4.2)(
resp.

1

2
〈ω(x),∇u(x)〉2 + Tr(D(x)∇2u(x))

)
whose coefficients ω : Ω→ Rd and D : Ω→ S++

d are defined for any x = (x1, · · · , xd) in Rd by

ω(x) :=
2− cos(πx1)

3
ω0(x),

D(x) := µ
2 + cos(πx1)

3

(
νId + (1− ν)ω0(x/2)ω0(x/2)T

)
,
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where the parameters µ, ν > 0 are specified in Figures 3 to 6, and where

ω0(x) :=

{
(cos(πx2), sin(πx2)) if d = 2,

(cos(πx2), sin(πx2) cos(πx3), sin(πx2) sin(πx3)) if d = 3.

This particular choice of operator and coefficients is only meant to be reasonably simple and
explicit, and to feature substantial anisotropy for the second order term — with ν = 1/10 in the
experiments. It also allows for a direct analytic verification of the assumptions of Theorem 1.6
ensuring the DDE property, see the last paragraph of this section.

For any discretization step h > 0, we let Ωh := Ω ∩ hZd and consider the finite differences
scheme

Lhu(x) = f(x) in Ωh, (4.3)

where one has, denoting g(x, p) := 〈ω(x), p〉 in the linear case (resp. g(x, p) := 1
2〈ω(x), p〉2 in the

quasi-linear case)
−Lhu(x) := g(x,D(x)−1∇hD(x)u(x)) + ∆h

D(x)u(x).

The Dirichlet boundary condition from (4.1) does not appear in (4.3) because it is implicitly
implemented via the finite differences operators, defined as (A.3) and (A.4) when the point x is
near ∂Ω. See Appendix A for more discussion on the extension of the scheme of Definition 1.4
to non-constant coefficients, Dirichlet boundary conditions, and non-linear operators.

As announced, we present synthetic tests of our numerical scheme. For that purpose, a
function u : Ω→ R is chosen with a closed form expression, and the right hand side f : Ω→ R is
generated by symbolic differentiation and evaluation of Lu, so that u obeys (4.1) with boundary
condition g := u|∂Ω. The discretized PDE (4.3) is then solved for a range of grid scales h > 0,
and the resulting l1(Ωh) and l∞(Ωh) reconstruction errors are reported in Figures 3 to 6.

The chosen exact solutions are a smooth function u1, a C2,0.5 function u2, and a singular
function u3, inspired by [FJ17] for u1 and by [FO13] for u2 and u3, and defined in Ω by

u1(x) :=
1

4
‖x‖4, u2(x) := max(0, ‖x‖ − 0.4)2.5, u3(x) :=

√
d− ‖x‖2. (4.4)

The multiplicative coefficient 1/4 in the definition of u1 is choosen so that the range of
values taken by ‖∇u1‖ in Ω remains close to the one of values taken by ‖∇u2‖, since those
values influence the DDE property of the scheme (4.3) in the quasi-linear case, see §4.1. In
numerical experiments, we also adjust the parameter µ in the definition of the tensor field
D : Ω→ S++

d so that DDE holds at reasonable grid scales.
Empirically we observe second order convergence ‖u − uh‖1 = O(h−2) and ‖u − uh‖∞ =

O(h−2), where u is among the two test functions u1 and u2 defined in (4.4) and uh is the
numerical solution of (4.3) with the corresponding r.h.s. for both the linear and quasi-linear
operators (4.2), in both dimension two and three, see Figures 3 to 6. For the test function u3,
first order convergence ‖u3 − uh‖1 = O(h−1) and ‖u3 − uh‖∞ = O(h−1) is observed instead.
From a theoretical standpoint, convergence was not expected for u3 and the quasi-linear scheme,
since the DDE property is not guaranteed in this case, even for small h.

For the quasi-linear equations, a Newton method is used, converging in at most 12 iterations
in our experiments with tolerance 10−8 on the max-norm of residual of the discretized PDE.

Remark 4.1 (Dominant source of numerical error). The curves of convergence associated to the
linear and quasi-linear equations are conspicuously similar for the function u2 in dimension two,
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see Figures 3 and 4, and u1, u2, and u3 in dimension three, see Figures 5 and 6. This suggests
that the discretization of the first order term in (4.2) is not the dominant source of error in these
cases.

For u1 and u3 in dimension three, we obtained a different convergence curve when changing
the tensor field D : Ω → S++

d , suggesting that the discretization of Tr(D∇2u) is the dominant
source of numerical error. For the C2,0.5 function u2, we did not observe a significative difference
in the curves of convergence when changing the tensor field D, but we did observe one when
replacing the radius r = 0.4 with 0.5 in its definition, suggesting that the dominant source of
error is related to the configuration of the grid points Ωh in the vicinity of the sphere of radius
r across which u2 is non-smooth.

4.1 Theoretical guarantees of Discrete Degenerate Ellipticity

An a-priori analysis allows to guarantee the DDE property of the numerical schemes used in our
numerical experiments (except in one case where it fails), thanks to the explicit and reasonably
simple expression of the PDE coefficients (4.2) (and, in the quasi-linear case, of the PDE solution
(4.4)). In practical applications, such an analysis may not be possible, but alternatively the DDE
property can be checked numerically by looking at the sign of the coefficients of the Jacobian
matrix of the discretized operator Lh.

Letting M(x) := D(x)−1, one easily obtains

‖M(x)‖ = µ−1(3/(2 + cos(πx1)))ν−1 ≤ 3µ−1ν−1,

and therefore
‖M(x)‖1/2‖ω(x)‖M(x) ≤ ‖M(x)‖‖ω(x)‖ ≤ 3µ−1ν−1.

It follows that the pair (hω(x), D(x)) is canonically feasible as soon as h ≤ cdµν/3, where the
absolute constant cd is specified in Theorem 1.6. The discretization of the linear operator (4.2,
left) is thus DDE under these conditions.

We now check whether the discretization of the quasi-linear operator (4.2, right) is DDE in
a neighborhood of the solutions (4.4), by linearizing the operator. For any x ∈ Ω and p ∈ Rd
one has ‖∇pg(x,∇u(x))‖ = ‖〈ω(x),∇u(x)〉ω(x)‖ ≤ ‖ω(x)‖2‖∇u(x)‖ ≤ ‖∇u(x)‖. By the same
resoning as above, if u denotes either one of the functions u1 and u2 in (4.4), then the pair
(h∇pg(x,∇u(x)), D(x)) is canonically feasible for all x ∈ Ω, and thus the scheme (4.3) is DDE
in the neighborhood of u, as soon as

h <
cdµν

3 supx∈Ω ‖∇u(x)‖
,

where we used that ‖∇u1(x)‖ and ‖∇u2(x)‖ are bounded on Ω. In contrast ‖∇u3(x)‖ is
unbounded when x → (1, · · · , 1) ∈ ∂Ω. Thus DDE fails in the neighborhood of u3, but as
noted above we do still observe convergence empirically in this particular case.

5 Conclusion and perspectives

In this paper, we answer whether one can discretize linear PDE operator, of order at most two
and in dimension d ≤ 3, using a second order consistent finite difference scheme obeying the
degenerate ellipticity property. The question is basic and of broad interest, and in dimension
d = 1 the answer is indeed simple, well known, and taught at a basic level. In dimension
d ∈ {2, 3} however the anisotropy of the second order part of the operator comes into play, and
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Figure 2: Errors in numerical solutions to the linear equation in dimension d = 2, with param-
eters µ = 1, ν = 1/10, h = 1/100, and with exact solutions u1, u2, and u3.

Figure 3: Convergence of the numerical scheme for the linear equation in dimension d = 2, with
parameters µ = 1 and ν = 1/10, and with exact solutions u1, u2, and u3. Degenerate ellipticity
is guaranteed by §4.1 for h ≤ 1/30 ≈ 0.0333 and empirically observed up to h ≈ 0.0660.

Figure 4: Convergence of the numerical scheme for the quasi-linear equation in dimension d = 2,
with parameters µ = 2 and ν = 1/10, and with exact solutions u1, u2, and u3. The legend is
as in Figure 3. In the neighborhood of functions u1 and u2, degenerate ellipticity is guaranteed
by §4.1 respectively for h < 1/(30

√
2) ≈ 0.0236 and for h < 1/(75(

√
2− 0.4)1.5) ≈ 0.0131. It is

observed empirically in the last iteration of the Newton method respectively up to h ≈ 0.0379
and up to h ≈ 0.0435. In the case of the singular function u3, degenerate ellipticity is not
theoretically guaranteed, but it is nevertheless observed empirically in the last iteration of the
Newton method up to h ≈ 0.0574.
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Figure 5: Convergence of the numerical scheme for the linear equation in dimension d = 3, with
parameters µ = 4 and ν = 1/10, and with exact solutions u1, u2, and u3. The legend is as in
Figure 3. Degenerate ellipticity is guaranteed by §4.1 for h ≤ 1/(5

√
3) ≈ 0.115 and empirically

observed up to h ≈ 0.198.

Figure 6: Convergence of the numerical scheme for the quasi-linear equation in dimension d = 3,
with parameters µ = 8 and ν = 1/10, and with exact solutions u1, u2, and u3. The legend is
as in Figure 3. In the neighborhood of functions u1 and u2, degenerate ellipticity is guaranteed
by §4.1 respectively for h < 2/135 ≈ 0.0148 and for h < 1/(75

√
3(
√

3 − 0.4)1.5) ≈ 0.00501. It
is observed empirically in the last iteration of the Newton method respectively up to h ≈ 0.131
and up to h ≈ 0.261. In the case of the singular function u3, degenerate ellipticity is not
theoretically guaranteed, but it is nevertheless observed empirically in the last iteration of the
Newton method up to h = 0.3, that is, for all values of h we tested in the graphs above.
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a subtler analysis is required. Leveraging tools from the field of Euclidean lattice geometry,
we could characterize whether a discretization exists, and provide an explicit (quasi-)optimal
construction. Numerical experiments illustrate the efficiency of the method in dimension d ∈
{2, 3}, on linear and quasi-linear problems.

Several research directions are open, both practical and theoretical, including (i) applications
to PDEs arising from concrete problems, especially those whose first order term is large, e.g.
depending on a relaxation parameter, (ii) extensions to fully non-linear HJB PDEs, and (iii) a
theoretical analysis of the convergence rates. Another interesting open problem is the extension
of our results for a dimension d > 3, which is not obvious since, as already mentioned after
Definition 2.1, then D-obtuse bases do not necessarily exist.

A Adaptation to quasi-linear and fully non-linear PDEs

The numerical scheme presented in the introduction of this paper applies to linear schemes with
constant coefficients, defined over the full space Rd, d ∈ {2, 3}. We illustrate in this appendix
how the three restrictions in emphasis can be relaxed. For that purpose let us recall the definition
of a degenerate elliptic scheme, in a general setting.

Definition A.1. Let X be a discrete set, and for each x ∈ X let V (x) ⊆ X \ {x} be a finite set
(the neighbors, or stencil of x). Let also U := RX . A numerical scheme on X, with stencil V , is
a mapping F : U→ U of the form

Fu(x) := F(x, u(x), [u(x)− u(y)]y∈V (x)).

It is said discrete degenerate elliptic (DDE) iff F is non-decreasing w.r.t. the second and third
arguments (coordinate wise).

Definition 1.1, from the introduction, is a special case of Definition A.1, adapted to linear
schemes with constant coefficients, and choosing X = hZd and V (x) := {x+ hei; 1 ≤ |i| ≤ I}.
In the rest of this appendix, we show how various natural extensions of our numerical scheme
fit into the general framework of Definition A.1.

Non constant coefficients

Discrete Degenerate Ellipticity is a local property, which only needs to be verified pointwise,
independently at each point x ∈ X of the discretization domain, see Definition A.1. As a result,
the numerical scheme presented in this paper trivially extends to non-constant coefficients. More
precisely, let ω and D be a field of vectors and of symmetric positive definite matrices, and let
h > 0 be a grid scale. Then we can define the counterparts with variable coefficients of the
linear PDE operator (1.1) and of its canonical discretization (1.7)

−Lu(x) := 〈ω(x),∇u(x)〉+ Tr(D(x)∇2u(x)), (A.1)

−Lhu(x) := 〈D(x)−1ω(x),∇hD(x)u(x)〉+ ∆h
D(x)u(x). (A.2)

The scheme Lh is DDE under the same conditions, pointwise, as in the constant coefficient
case. It is not hard to show that the coefficients x 7→ ρhi (x) ≥ 0 of Lh expressed as in (1.1) are
Lipschitz, provided ω and D are Lipschitz. Interestingly, convergence rates have been established

in a similar setting [Kry05] but under the slightly stronger assumption that x 7→
√
ρhi (x) is

Lipchitz.
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Dirichlet boundary conditions

Consider a bounded open domain Ω ⊆ Rd, d ∈ {2, 3}, equipped with Dirichlet boundary con-
ditions f : ∂Ω → R, and let Ωh := Ω ∩ hZd, where the grid scale h > 0 is fixed in the
following. Forall x ∈ Ωh, e ∈ Zd \ {0}, define hex := min{k > 0; x + ke ∈ Ωh}, and note that
0 < hex ≤ h. Introduce the first and second finite difference operators, where for convenience
we denote h± := h±ex , and where u : Ωh → R is extended to ∂Ω using the provided Dirichlet
boundary condition

δheu(x) :=
1

2

(u(x+ h+e)− u(x)

h+
− u(x− h−e)− u(x)

h−

)
, (A.3)

∆h
eu(x) :=

2

h+ + h−

(u(x+ h+e)− u(x)

h+
+
u(x− h−e)− u(x)

h−

)
. (A.4)

Note that this construction coincides with Definition 1.3 when x is sufficiently far from ∂Ω. For
smooth u, one has δheu(x) = 〈∇u(x), e〉 +O(hr) and ∆h

eu(x) = O(hr) where r = 1 if x is close
to ∂Ωh, and r = 2 otherwise. In addition the discrete operator defined by

−Lhu(x) := λ δheu(x) + ∆h
eu(x)

is DDE provided hλ ≤ 2, similarly to the constant coefficient case, since 0 < h±ex ≤ h. Therefore
(A.3) and (A.4) can be used as a drop in replacement for the finite difference operators of
Definition 1.3 when Dirichlet boundary conditions are used, the resulting scheme is DDE under
the same conditions. More complex boundary conditions may require ad-hoc treatment.

Quasi-linear operators

Let D ∈ S++
d , d ∈ {2, 3}, and let g : Rd → R be a smooth function. Consider the quasi-linear

operator L and its discretization Lh defined by

−Lu(x) := g(∇u(x)) + Tr(D∇2u(x)), −Lhu(x) := g(D−1∇hDu(x)) + ∆h
Du(x).

The operator L is degenerate elliptic, since in the continuous setting this property is independent
of the first order term of the PDE. On the other hand, the scheme Lh is DDE provided the linear
scheme L̃h defined by −L̃hu(x) := 〈D−1ω,∇hDu(x)〉 + ∆h

Du(x) is DDE for all ω ∈ ∇g(Rd) =
{∇g(x);x ∈ Rd}. (This is a severe restriction if g is e.g. a quadratic function, but for such
applications it can be enough to check that the scheme is DDE in a neighborhood of the solution.)

Fully non-linear operators

Fully non-linear HJB operators can be expressed, under mild regularity assumptions, in Isaacs
form

Lu(x) := sup
α∈A

inf
β∈B
Lαβu(x), (A.5)

where A, B are known as the control sets. In addition Lαβ is a linear DE operator, for all α ∈ A,
β ∈ B,

Lαβu(x) := µαβ(x) + λαβ(x)u(x) + 〈ωαβ(x),∇u(x)〉 − Tr(Dαβ(x)∇2u(x)),

where µαβ(x) ∈ R, λαβ(x) ≥ 0, ωαβ(x) ∈ Rd, and Dαβ(x) ∈ S+
d . In the special case where

the set A or B is a singleton, which is common (consider the Monge-Ampere [BCM] or Pucci
[BBM21] equations), then (A.5) is known as the Bellman form of the operator.
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It is in principle possible to introduce samples Ah ⊆ A and Bh ⊆ B of the control sets, and
construct a discretization Lhαβ of each linear operator Lαβ following the approach presented in
this paper. This produces a DDE approximation of the operator L

Lhu(x) := sup
α∈Ah

inf
β∈Bh

Lhαβu(x).

Let us acknowledge, however, that this construction is far from straightforward to put in practice,
especially if the sets A and B are non-compact, and if the condition number of the matrices
Dαβ(x) is not uniformly bounded.

B Terminology and elementary properties of polyhedra

In this section, we recall some of the terminology and elementary properties related with poly-
hedra, limiting our attention to those which are immediately useful in the study of Ryskov’s
polyhedron and its variant §2.2 and §3.1. See [BG15] for a more complete reference.

B.1 Regularity and skeleton

Definition B.1. A polyhedron in Rn is a set of the form

M := {x ∈ Rn; ∀i ∈ I, 〈li, x〉 ≥ αi}, (B.1)

where li ∈ Rn, αi ∈ R, and I is a finite or countable set. The polyhedron M is said regular
iff it (i) has a non-empty interior, (ii) does not contain any affine line, and (iii) can be locally
described by the constraints corresponding to a finite subset of I.

By definition, a polyhedron is thus a convex set. Condition (ii) can be reformulated as
Span{li; i ∈ I} = Rn. Condition (iii) can be reformulated as follows: for all x ∈ M there exists
a positive radius r > 0 and a finite subset I0 ⊆ I such that

〈li, y〉 > αi, ∀i ∈ I \ I0, ∀y ∈ B(x, r).

Definition B.2. Let M be a regular polyhedron, defined as in (B.1). A k-facet of M, where
1 ≤ k ≤ n, is a non-empty subset of M of the form

{x ∈M; ∀i ∈ J, 〈li, x〉 = αi}, where dim Span{li; i ∈ J} = n− k,

and where J ⊆ I denotes a subset of the constraint indices.

By construction, a k-facet is a convex subset of ∂M of affine dimension k. If a k-facet
satisfies #(J) > n− k, where J ⊆ I is chosen maximal for inclusion, then it is said degenerate.
By construction 0-facets are singletons, and their single point is called a vertex. On the other
hand 1-facets are known as edges and come in two flavors

• Bounded edges, of the form [x1, x2] := {(1 − t)x1 + tx2; 0 ≤ t ≤ 1}, where x1 and x2 are
vertices.

• Unbounded edges, of the form {x + λv; λ ≥ 0}, where x is a vertex, and v ∈ Rn \ {0} is
called the unbounded edge direction (unique up to multiplication by a positive constant).

Note that doubly unbounded edges, of the form {x + λv; λ ∈ R}, are affine lines and are thus
excluded by Definition B.1.

Remark B.3. LetM be a regular polyhedron, in the sense of Definition B.1. An element x ∈M
is a vertex iff Rn = Span{li; i ∈ I, 〈li, x〉 = αi}.
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B.2 Linear programs

Linear programs are defined as the optimization of a linear functional over a polytope. A
fundamental result of operational research, is that such problems can under suitable assumptions
be solved by a greedy search over the graph defined by the edges of the polytope, such as the
simplex algorithm [BG15]. Since Definition B.1 allows for infinitely many constraints, which is
slightly more general than the common setting, we establish in Proposition B.4 a basic result
on such programs, used in §3.2. Note that the infima in (B.2) may not be attained.

Proposition B.4. Let M be a regular polyhedron. Then for any l ∈ Rn

inf{〈l, x〉; x ∈M} (B.2)

=

{
−∞ if 〈l, v〉 < 0 for some unbounded edge direction v,

inf{〈l, x〉; x vertex of M} otherwise.

Proof. By point (i) of Definition B.1, there exists x∗ ∈ int(M). By point (ii) of Definition B.1,
one has Span{li; i ∈ I} = Rn, otherwise x∗+Rv is an affine line contained inM for any non-zero
v ∈ Span{li; i ∈ I}⊥, hence there exists I∗ ⊆ I with #(I∗) = n and such that (li)i∈I∗ is a basis
of Rn.

Define l∗ :=
∑

i∈I∗ li, and consider for each α > l∗(x∗) the set Mα := {x ∈ M; 〈l∗, x〉 ≤ α}.
Note that for each x ∈ Mα and i ∈ I∗ one has 0 ≤ li(x) − αi ≤ α −

∑
i∈I∗ αi, hence Mα

is bounded. Thus Mα is a compact polyhedron with non-empty interior, which by Defini-
tion B.1 (iii) is characterized by finitely many linear constraints. By Carathéodory’s theorem,
min{〈l, x〉; x ∈Mα} is attained at a vertex ofMα, which by construction is either a vertex ofM
or the intersection of an edge ofM (bounded or not) with the hyperplane {x ∈ Rn; 〈l∗, x〉 = α}.
From this point, and noting that M = ∪α∈RMα, the announced result easily follows.

Definition B.5 (Karush-Kuhn-Tucker relations). A set of KKT relations for l in Rn and x in
M is a finitely supported family of non-negative coefficients (λi)i∈I such that

l =
∑
i∈I

λili, and ∀i ∈ I, λi = 0 or 〈li, x〉 = αi.

It is known [BG15] that a linear form l ∈ Rn attains its minimum at a given point x of a
regular polyhedron M, if and only if there exists KKT relations for l and x. The next result
establishes a uniqueness property of the KKT relations.

Proposition B.6. LetM⊆ Rn be a regular polyhedron, in the sense of Definition B.1. Assume
that one has a set of KKT relations (λi)i∈I for some l ∈ Rd at a non-degenerate vertex x ∈M.
Then any other KKT relations (λ′i)i∈I at some x′ ∈ M (possibly distinct from x), for the same
l, obey λi = λ′i for all i ∈ I.

Proof. For all i ∈ I such that λ′i > 0 one has 〈li, x′〉 = αi, thus 〈li, x−x′〉 ≥ 0. On the other hand
one has 〈l, x〉 = 〈l, x′〉 = infM, and therefore 0 = 〈l, x − x′〉 =

∑
i∈I λ

′
i〈li, x − x′〉. Combining

these two arguments we obtain that for all i ∈ I such that λ′i > 0 one has 〈li, x − x′〉 = 0, and
therefore 〈li, x〉 = αi. Since x is a non-degenerate vertex, the family {li; i ∈ I, 〈li, x〉 = αi} is a
basis of Rn, which implies the announced result.
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B.3 Edges originating from a vertex

In this section, we present a constructive enumeration of all the edges of a regular polyhedron
M containing a given vertex x. This description follows from Definition B.2 of k-facets, here
with k = 1. We use the notations of Definition B.1.

Let J := {i ∈ I; 〈li, x〉 = αi} denote the indices of all the active constraints at the vertex x
ofM. In order to enumerate all the edges ofM containing x, bounded or unbounded, the steps
are the following:

(A) Consider successively all subsets S of J with cardinality n− 1.

(B) If dim Span{li; i ∈ S} < n− 1, then skip this subset. Otherwise denote by ν ∈ Rn \ {0} the
vector, which is unique up to a scalar multiplication, such that 〈li, ν〉 = 0 for all i ∈ S.

(C) Replace ν with its opposite −ν, if necessary, in such way that 〈li, ν〉 ≥ 0 for all i ∈ J \ S.
If that is not possible, then skip this subset.

(D) Compute Λ := sup{λ ∈ R;x+ λν ∈ M}. If Λ = +∞, then there is an unbounded edge at
x in the direction of ν. Otherwise, x and x+ Λν are the vertices of a bounded edge of M.
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[SSV07] M. Sikirić, A. Schürmann, and F. Vallentin, Classification of eight-dimensional perfect
forms, Electronic Research Announcements of the American Mathematical Society
13 (2007), no. 3, 21–32.

[Vor08] G. Voronoi, Sur quelques propriétés des formes quadratiques positives parfaites, J.
reine angew. Math, 1908.

31


