Second order monotone finite differences discretization of linear anisotropic differential operators - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2021

Second order monotone finite differences discretization of linear anisotropic differential operators

Résumé

We design adaptive finite differences discretizations, which are degenerate elliptic and second order consistent, of linear and quasi-linear partial differential operators featuring both a first order term and an anisotropic second order term. Our approach requires the domain to be discretized on a Cartesian grid, and takes advantage of techniques from the field of low-dimensional lattice geometry. We prove that the stencil of our numerical scheme is optimally compact, in dimension two, and that our approach is quasi-optimal in terms of the compatibility condition required of the first and second order operators, in dimension two and three. Numerical experiments illustrate the efficiency of our method in several contexts.
Fichier principal
Vignette du fichier
AnisotropicFirstOrder.pdf (562.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03084046 , version 1 (20-12-2020)
hal-03084046 , version 2 (08-03-2021)

Identifiants

Citer

Frédéric Bonnans, Guillaume Bonnet, Jean-Marie Mirebeau. Second order monotone finite differences discretization of linear anisotropic differential operators. Mathematics of Computation, 2021, Mathematics of Computation, 90, pp.2671-2703. ⟨10.1090/mcom/3671⟩. ⟨hal-03084046v2⟩
333 Consultations
327 Téléchargements

Altmetric

Partager

More