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ABSTRACT 60 

Climate change impacts forest functioning and dynamics, and large uncertainties remain 61 

regarding the interactions between species composition, demographic processes, and 62 

environmental drivers. There are few robust tools available to link these processes, which 63 

precludes accurate projections and recommendations for long-term forest management. Forest 64 

gap-models present a balance between complexity and generality and are widely used in 65 

predictive forest ecology. However, their relevance to tackle questions about the links between 66 

species composition, climate and forest functioning is unclear. In this regard, demonstrating the 67 

ability of gap-models to predict the growth of forest stands at the annual time scale – 68 

representing a sensitive and integrated signal of tree functioning and mortality risk - appears as 69 

a fundamental step. 70 

In this study, we aimed at assessing the ability of a gap-model to accurately predict 71 

forest growth in the short-term and potential community composition in the long-term, across 72 

a wide range of species and environmental conditions. To do so, we present the gap-model 73 

ForCEEPS, calibrated using an original parameterization procedure for the main tree species in 74 

France. ForCEEPS was shown to satisfactorily predict forest annual growth (averaged over a 75 

few years) at the plot level from mountain to Mediterranean climates, regardless the species. 76 

Such an accuracy was not gained at the cost of losing precision for long-term predictions, as 77 

the model showed a strong ability to predict potential community composition along a gradient 78 

of sites with contrasted conditions. The mechanistic relevance of ForCEEPS parameterization 79 

was explored by showing the congruence between the values of key model parameter and 80 

species functional traits. We further showed that accounting for the spatial configuration of 81 

crowns within forest stands, the effects of climatic constraints and the variability of shade 82 

tolerances in the species community are all crucial to better predict short-term productivity with 83 

gap-models.  84 
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The dual ability of predicting short-term functioning and long-term community 85 

composition, as well as the balance between generality and realism (i.e., predicting accuracy) 86 

of the new generation of gap-models may open great perspectives for the exploration of the 87 

biodiversity-ecosystem functioning relationships, species coexistence mechanisms, and the 88 

impacts of climate change on forest ecosystems. 89 

90 
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INTRODUCTION 91 

Forests cover about 30% of the land at the global scale, harbor most of terrestrial biodiversity, 92 

are an important carbon sink (Pan et al. 2011), play a pivotal role for climate regulation (Chapin 93 

et al. 2008) and provide key ecosystem services to humans (TEEB 2010). However, climate 94 

change puts forests at high risk, including disruption in forest dynamics (McDowell et al. 2020), 95 

as harsher environmental conditions strongly impact forest structure and composition 96 

(Esquivel-Muelbert et al. 2019) and functioning (Boisvenue and Running 2006, Allen et al. 97 

2010, Lindner et al. 2010). In turn, compositional changes have been shown to affect forest 98 

functioning (Nadrowski et al. 2010, Liang et al. 2016), in interaction with climatic drivers 99 

(Coomes et al. 2014, Jactel et al. 2018). Yet, we lack robust tools to explore the interactive 100 

effects of biodiversity and climate change on forest dynamics and functioning. 101 

Trees are long-lived organisms, which complicates the implementation of experiments 102 

designed to assess the influences of future environmental conditions (e.g., increased 103 

atmospheric CO2 (Korner et al. 2005) or water stress (Limousin et al. 2009)) and community 104 

composition (including species richness, Castagneyrol et al. 2013, Verheyen et al. 2016) on 105 

forest ecosystem functioning. While such experiments are key to study forest ecosystems, they 106 

require years to yield relevant results, which are necessarily conditioned by specific site 107 

conditions, thereby limiting their generality (Nadrowski et al. 2010, Norby and Zak 2011). An 108 

alternative approach lies in the design of field sampling along climate and/or diversity 109 

gradients, which has yielded significant results in the last years (e.g., Jucker et al. 2016, del Río 110 

et al. 2017, Jourdan et al. 2019), although it can be affected by confounding factors. 111 

Complementing these approaches, forest models represent a crucial tool to explore the 112 

interactions and feedbacks among species composition, forest functioning and climate 113 

(Cordonnier et al. 2018b). Yet, the term « forest models » covers a wide range of approaches, 114 

as recently reviewed (Pretzsch et al. 2015, Ruiz-Benito et al. 2020). Forest models were indeed 115 

used to predicting forest functioning and growth at scales ranging from tree, to stand (Makela 116 
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et al. 2000) and landscape (Pacala et al. 1993). Moreover forest models differ in their 117 

complexity, from empirical yield tables (Skovsgaard and Vanclay 2008) to ecophysiology-118 

based models (Dufrêne et al. 2005, Simioni et al. 2016) that explicitly describe part of the 119 

biological mechanisms at stake but require a large amount of data to be properly calibrated and 120 

forced. By contrast, forest gap models (hereafter referred to as “gap models”), operating mostly 121 

at the stand scale, rely on empirical relationships, physiological knowledge and first principles 122 

from ecological theory (Bugmann 2001). Because these models incorporate physically- or 123 

ecologically-based hypotheses while relying on a small set of species-specific parameters, we 124 

believe that they are good candidates to explore forest responses to future growing conditions 125 

across spatial scales.  126 

The design of gap model was originally motivated by the recognition that canopy gaps 127 

created by falling trees are a key driver shaping forest structure, dynamics, and succession 128 

(Botkin et al. 1972). Although gap models also incorporate representations of abiotic 129 

constraints (e.g., water or nutrient stress) on forest functioning, and in some instances 130 

competition for belowground resources, their key feature is a representation of the ability of 131 

trees of contrasted sizes and different species to compete for light resource. Gap models have 132 

been originally developed to understand the processes at play during forest succession (Botkin 133 

et al. 1972, Canham et al. 1994, Bugmann 2001). Consequently, they are commonly validated 134 

against potential natural vegetation (hereafter “PNV”), or against standing biomass 135 

accumulated over long (>50 years) time periods at the tree or stand level (Bugmann 1996, 136 

Strigul et al. 2008, Didion et al. 2009, Rasche et al., 2011). Gap models have been used to 137 

address a variety of basic and applied research questions, including the effects of climate on 138 

forest biomass and composition (e.g., Pfister and Bugmann 2000) or forest management 139 

planning (e.g. Rasche et al. 2011, Mina et al. 2017). 140 
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Recent developments have shown that gap models can be further used to explore species 141 

coexistence mechanisms (Chauvet et al. 2017), diversity effects on the functioning of forest 142 

ecosystems (Morin et al. 2011, Bohn and Huth 2017) and their response to climate change 143 

(Morin et al. 2018). These new perspectives highlight the importance of forest structure and 144 

light-related interactions for forest functioning. In fact, forest structure has been shown to 145 

influence forest growth (Hardiman et al. 2011, Gough et al. 2019) and to partly mediate tree 146 

diversity effects on productivity (Dănescu et al. 2016, Cordonnier et al. 2019, Schnabel et al. 147 

2019). Enhanced canopy space occupation (‘canopy packing’, Jucker et al. 2015) and light 148 

capture, which is mediated by the coexistence of species with contrasting shade tolerance, was 149 

shown to be key in the functioning of diverse and structurally complex forests (Williams et al. 150 

2017). The presence of shade-tolerant species in tree species mixtures indeed strongly 151 

modulates the way tree diversity affects forest functioning and productivity (Toïgo et al. 2018, 152 

Van de Peer et al. 2018, Cordonnier et al. 2018a). Gap models can be parameterized for a wide 153 

range of species and environmental conditions, and could thus be a crucial tool to explore how 154 

differences in shade-tolerance affect the relationships between species richness and forest 155 

functioning (Morin et al. 2011, Toïgo et al. 2018). However, the multi-dimensional 156 

configuration of crowns in forest stands is not often represented explicitly in gap models (but 157 

see Maréchaux and Chave 2017, Pacala et al. 1993, Purves et al. 2008), which hinders the 158 

assessment of the importance of architectural plasticity and canopy packing on forest 159 

productivity, species succession and coexistence. 160 

Moreover, exploring Biodiversity-Ecosystem Functioning (BEF) relationships or 161 

species coexistence under climate change using gap models will require to assess (i) whether 162 

they are able to predict key patterns linking forest composition and functioning and (ii) whether 163 

they embed a sound representation of the underlying mechanistic processes. Annual tree growth 164 

was shown to be a sensitive and integrated signal of tree functioning and mortality risk 165 
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(Dobbertin 2005, IFN 2016, Cailleret et al. 2017, DeSoto et al. 2020), in contrast to PNV and 166 

standing biomass, which result from the accumulated effects of multiple ecological processes 167 

(e.g. tree recruitment, growth and mortality). Demonstrating the ability of gap models to predict 168 

the growth of forest stands at the annual time step or across a few years (i.e., to predict biomass 169 

fluxes in addition to biomass stocks; Guillemot et al., 2017), would open important research 170 

avenues to investigate how the mechanisms underlying BEF-relationships shape forest 171 

dynamics and community assembly (Cordonnier et al. 2018b). In addition, progress in trait-172 

based ecophysiology has allowed identifying key functional traits involved in tree survival and 173 

growth in contrasting environments (Falster et al. 2018). Testing the congruence between key 174 

model parameters and functional traits is thus another way to evaluate the mechanistic relevance 175 

of these models. 176 

Here, we aim to test whether a gap model can predict the annual growth of forests 177 

differing widely in species composition and climatic conditions throughout France, using only 178 

a small set of parameters that can be calibrated based on forest inventories. French mainland 179 

forests are found in a wide range of conditions including mountain, continental, oceanic and 180 

Mediterranean climates (Verkerk et al. 2019) and are therefore ideal to evaluate the generality 181 

of the hypotheses embedded in models. We present the ForCEEPS model (Forest Community 182 

Ecology and Ecosystem ProcesseS), derived from ForClim (Bugmann 1996, Didion et al. 183 

2009). Among other novelties, ForCEEPS embeds an improved representation of tree-tree 184 

competition for light by considering individual crown sizes in the vertical canopy space. 185 

ForCEEPS was parameterized for the main French tree species, and evaluated against annual 186 

growth (averaged across a few years) at the tree and stand scale, and against PNV. In addition, 187 

we verified the mechanistic relevance of ForCEEPS by assessing the congruence of key species 188 

parameters with functional traits. Finally, we conducted a sensitivity analysis on the ForCEEPS 189 

stand growth predictions, to quantify the importance of 1) an explicit representation of crown 190 
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size, 2) the variability of shade-tolerance among species, and 3) the climatic constraints for 191 

accurately simulating stand growth.  192 

 193 

MODEL DESCRIPTION 194 

Overview 195 

The ForCEEPS model is a forest gap model (also called forest dynamics model). Forest gap 196 

models simulate abiotic (climate and soil properties) and biotic constraints (tree-tree 197 

competition for light) on tree establishment, growth, and survival in small parcels of land 198 

(“patches”). The mechanisms embedded in gap models rely on ecological hypotheses clearly 199 

stated, such as the trade-off between growth in full light and survival under shade (Bazzaz 200 

1979). Tree height and crown dimensions are inferred from allometry, based on tree trunk 201 

diameter, which is also the main variable measured in forestry surveys. Gap models commonly 202 

simulate forest dynamics at an annual time step, and do not explicitly represent biogeochemical 203 

cycling. ForCEEPS shares many features with the JABOWA (Botkin et al. 1972) and ForCLIM 204 

models (Bugmann 1996), and more precisely with ForCLIM 2.9.6 (Didion et al. 2009). Below, 205 

we present the central principles of ForCEEPS and the key developments that differentiate it 206 

from other gap models (a full description of the model is provided in Appendix A).  207 

The simulated patches are independent from each other, and properties at the forest level 208 

are obtained by aggregating the properties over all patches (Shugart 1984, Bugmann 2001). 209 

Within each patch (i.e., usually between 400 and 1000 m²), environmental conditions are 210 

assumed to be horizontally homogeneous. The spatial location of trees is therefore implicit, and 211 

the competitive ability of a tree is assumed equal for all trees of similar size and species. This 212 

hypothesis allows for several simplifications in the representation of tree-tree interactions, but 213 

imposes that the patch size cannot be larger than 1000 m2, which is assumed to be the maximum 214 

area influenced by a tree (Shugart 1984). Gap models are often cohort-based, assuming that all 215 



11 
 

trees of the same species and age behave similarly, for the sake of simulation efficiency. By 216 

contrast, ForCEEPS is completely individual-based, which notably allows to simulate the 217 

intraspecific variability in competitive ability. Another novel aspect in ForCEEPS is the 218 

possibility of imposing a feedback between the actual forest composition and the identity of the 219 

colonizing seedlings each year. This latter feature may be crucial for examining mechanisms of 220 

species coexistence in tree communities (Cordonnier et al. 2018b). However, with regard to the 221 

objective of the present paper, the most crucial development of ForCEEPS in comparison with 222 

ForClim is the implementation of a new module for tree-tree competition for light, i.e. a key 223 

factor controlling growth and forest structure (Schwinning and Weiner 1998), where the 224 

individual crown lengths are explicitly represented in the vertical canopy space (see Appendix 225 

A). 226 

Tree establishment, growth, and mortality are simulated at a yearly time step, but 227 

monthly climatic data (monthly mean temperature and precipitation sum) are used to estimate 228 

annual or seasonal degree-days sum (GDD), winter temperatures, and a drought index (DrI). 229 

The latter depends on monthly soil water content (SWC) that is calculated from a monthly water 230 

budget (Bugmann and Solomon 2000) and is influenced by the site-specific maximum soil 231 

water holding capacity. Last, soil nutrients content (Nsoil) is another abiotic factor simulated in 232 

ForCEEPS, considered constant at the site level (Appendix A).  233 

 234 

Seedling establishment  235 

Seedlings are established with a diameter at breast height of 1 cm. Establishment success is 236 

simulated as a function of species-specific responses to DrI, GDD, winter temperature (see 237 

Table 1 for species parameter description, and Appendix A), light availability at the forest floor 238 

(see realized tree growth section), and browsing pressure (Didion et al. 2011). By default, the 239 

model assumes that there is a constant seed rain in the patches and thus no dispersal limitation, 240 
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but alternatively it is possible to activate a feedback between the actual forest composition at 241 

year n and species composition of the new seedlings at year n+1. Seedling establishment can 242 

be constrained by defining a maximum number of seedlings potentially colonizing the patches 243 

and/or by imposing a feedback of actual forest composition on the composition of colonizing 244 

seedlings (Appendix A).  245 

 246 

Tree mortality 247 

Tree mortality depends on two components: (i) a “background” mortality that is constant across 248 

time, and (ii) a growth-related mortality (Appendix A). The background mortality is purely 249 

stochastic. It depends on species’ maximum longevity and simulates mortality events induced 250 

by ‘random’ small-scale disturbances (e.g., attack of pathogen in an endemic phase). Large-251 

scale disturbances (e.g., windthrows, wildfires) can be taken into account by increasing the 252 

background mortality rate, but are not considered here. The growth-related mortality is a proxy 253 

for stress conditions, i.e., tree mortality probability increases with the decrease in absolute or 254 

relative tree growth (i.e. tree vigor) induced by abiotic factors or by competition (DeSoto et al. 255 

2020). It is thus noteworthy that competition has an indirect effect on mortality rates via the 256 

growth-related mortality.  257 

 258 

Potential tree growth 259 

Annual tree growth is modelled through stem diameter increment at breast height (ΔD). 260 

Following the classical scheme of gap models, ΔD is calculated in two steps. First, the potential 261 

(i.e. maximum) diameter increment (ΔDopt) of each tree is predicted in each year using the 262 

following empirical equation (Moore 1989): 263 

∆Dopt = 𝑔𝑠

D(1−
H

𝐻𝑚𝑎𝑥𝑠
)

2.𝐻𝑚𝑎𝑥𝑠−𝑏𝑆×𝑒(𝑐𝑠.D)×(𝑐𝑠.D+2)     (Eq. 1) 264 
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where D is tree diameter at breast height, H is tree height, gs is the maximum growth 265 

rate of species s, 𝐻𝑚𝑎𝑥𝑠
 is the maximum height reachable by the species s, and bs and cs are 266 

species-specific parameters (with bs = 𝐻𝑚𝑎𝑥𝑠
 – 137; and cs = Ss / bs); ss is a species-specific 267 

allometric parameter relating tree height and diameter as follows (Bugmann 1996): 268 

H = 𝑎 + (𝐻𝑚𝑎𝑥𝑠 − 𝑎) × (1 − 𝑒
(

−𝑆𝑠.D

𝐻𝑚𝑎𝑥𝑠−𝑎
)
)     (Eq. 2) 269 

with a = 1.37 m (i.e. breast height). Therefore, simulating the potential diameter 270 

increment of a tree in ForCEEPS requires to determine the values of the species-specific 271 

parameters gs, ss and 𝐻𝑚𝑎𝑥𝑠
 (Table 1). 272 

 273 

Realized tree growth 274 

Realized tree diameter increment ΔD is calculated by modifying ΔDopt according to abiotic or 275 

biotic growth reduction factors (all factors are bounded between 0 and 1) followong a modified 276 

geometric mean (Bugmann 1996, Didion et al. 2009): 277 

∆D = ∆Dopt × √𝐺𝑅𝑙𝑖𝑔ℎ𝑡 × 𝐺𝑅𝑔𝑑𝑑 × 𝐺𝑅𝑑𝑟𝑜𝑢𝑔ℎ𝑡 × 𝐺𝑅𝑠𝑜𝑖𝑙
3      (Eq. 3) 278 

where GRlight is the growth reduction factor related to light availability for the tree, GRgdd is the 279 

growth reduction factor related to growing season temperatures of the site (GDD), GRdrought is 280 

the growth reduction factor related to the site drought index (DrI), and GRsoil is the growth 281 

reduction factor related to soil nutrients content (Nsoil) (see Appendix A). The effects of each of 282 

these growth reduction factors on realized tree growth depend on species-specific parameters: 283 

GRlight depends on species shade tolerance ShTs; GRgdd depends on species minimum sum of 284 

growing degree-days GDDS; GRdrought depends on species drought tolerance DrTs; and GRsoil 285 

depends on species requirements for soil nutrients NReqs (see Table 1). All growth reduction 286 

factors vary among site conditions and species, and GRlight varies also among trees, because it 287 

is influenced by the sizes of the neighbouring trees in the patch (see next section). 288 
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 289 

Effects of the competition for light on tree growth 290 

In ForClim 2.9.6 (Didion et al. 2009), the amount of light available for a tree (with H being its 291 

total height) is reduced by the leaf area of the trees found in the same patch whose height is 292 

greater than H or equal to H. Thus, all the foliage of trees taller than the target tree contribute 293 

to the shading. ForCEEPS embeds a more realistic description of the competition for light, by 294 

representing individual crown lengths in the vertical space of the canopy (Fig. S1 and Appendix 295 

A).  296 

In ForCEEPS, the growth reduction factor related to light availability (GRlight) has two 297 

components:  298 

GR𝑙𝑖𝑔ℎ𝑡 = GR𝑐𝑠 × GR𝑠ℎ    (Eq. 4) 299 

with GRcs representing the feedback of crown size on tree growth, i.e., tree leaf area is positively 300 

linked to tree growth rate (Mitscherlich and von Gadow 1968). GRsh is the reduction factor 301 

related to shading by competing trees. The key feature is that individual tree crowns are 302 

characterized by crown length cl, calculated as follows for each tree i: 303 

𝑐𝑙𝑖 = 𝑐𝑠𝑖 × 𝐻𝑖   (Eq. 5) 304 

with H being tree height and cs being the ratio of the height with a green crown, which is related 305 

to light exposition of the tree (Didion et al. 2009). For each tree, cs varies between two extreme 306 

species-specific values that represent the case where the tree is fully shaded (𝑐𝑠 = 𝑐𝑠𝑚𝑖𝑛𝑠
) or 307 

in full light (𝑐𝑠 = 𝑐𝑠𝑚𝑎𝑥𝑠
), with: 308 

𝑐𝑠𝑖 = 𝑐𝑠𝑚𝑎𝑥𝑠
− (𝑐𝑠𝑚𝑎𝑥𝑠

− 𝑐𝑠𝑚𝑖𝑛𝑠
) × 𝑘𝐿𝐴𝑖

   (Eq. 6) 309 

where the extreme values 𝑐𝑠𝑚𝑎𝑥𝑠
 and 𝑐𝑠𝑚𝑖𝑛𝑠

 have been derived from the relationship between 310 

foliage fresh weight and DBH described in Wehrli et al. (2007) and depends on the foliage type 311 

parameter fS (see Appendix A), and kLAI is the correction factor - ranging from 0 (no shading) 312 

to 1 (full shading) - calculated by Didion et al. (2009) as follows: 313 
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𝑘𝐿𝐴𝐼𝑖
= 𝑚𝑖𝑛 [(

𝐿𝐴𝐼𝐻𝑖

𝐿𝐴𝐼𝑚𝑎𝑥
)

2

, 1]   (Eq. 7) 314 

with LAIH being the cumulative double-sided leaf area index between the top of the canopy and 315 

the top of the target tree (i.e. between the top of the canopy and the height H) and LAImax being 316 

the maximum value of double-sided leaf area index in a patch, resulting from the light 317 

compensation point of the most shade-tolerant European tree species [i.e. LAImax = 11.98 318 

(Bugmann 1994, Didion et al. 2009)].  319 

The vertical space of the patch p at simulation step t=t1 is discretized in n(p,t1) layers of 320 

a given width w, whose value is bounded between 0 (ground level) to 𝐻𝑚𝑎𝑥(𝑝, 𝑡1) (height of 321 

the tallest tree in the patch p at t=t1), with w = 1 m. We assumed that tree leaf area decreases 322 

linearly from the top to the base of the crown, i.e. from the highest to the lowest layer in which 323 

the crown of the tree is found (Fig. S1-B) (Eermak 1998, Van Pelt et al. 2016). We are aware 324 

that tree crown shape and vertical leaf area distribution vary among tree species and are also 325 

affected by the size and identity of neighbouring trees (Poorter et al. 2006, Williams et al. 2017, 326 

Niklaus et al. 2017). Our assumption should thus be seen as a first parsimonious step that can 327 

be refined using species- and context-specific architectural data. Further details about the 328 

calculation of GRcs and GRsh are described in Appendix A. 329 

 330 

Effects of the environmental conditions on tree growth 331 

Belowground competition for water and nutrients is not explicit in ForCEEPS. However, while 332 

the model focuses on competition for light in its current version, it is noteworthy that soil 333 

nutrient content and soil moisture indirectly affect competition for light, in a way that differs 334 

among species (Table 1). In fact, GRsoil and GRdrought affect tree dimensions (diameter and 335 

height) (Eq. 3) and thus tree leaf area (Eq. 11), which in turn modifies the competitive ability 336 

of a tree because shading directly depends on leaf area (Eq. 12). Therefore, site conditions (soil 337 

and climate) modulate competition among trees.  338 
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 339 

CALIBRATION, VALIDATION, AND SENSITIVITY ANALYSIS 340 

 341 

Species 342 

The calibration and validation of ForCEEPS was done for nine species (Table S1) - four 343 

Angiosperm species and five Gymnosperm species, including the seven most widespread tree 344 

species in France (Quercus petraea, Q. robur, Fagus sylvatica, Abies alba, Picea abies, Pinus 345 

sylvestris and P. pinaster) (IGN 2018), and two emblematic species of Mediterranean French 346 

forests (Pinus halepensis and Quercus ilex). Furthermore, P. pinaster is the planted species 347 

covering the largest area in France. These species dominate in contrasted stages of the 348 

vegetation succession: pioneer (Pinus), intermediate- (Picea) or late-succession species 349 

(Quercus, Fagus, Abies). 350 

Furthermore, for the PNV simulations, we complemented the set of studied species by 351 

considering 13 additional species (‘other species’ in Table S1) to cover most possible forest 352 

types: Acer campestre, A. platanoides, and A. pseudoplatanus (grouped in “Acer” species); 353 

Larix decidua and Pinus cembra (grouped in “mountain gymnosperms”); Sorbus aria, S. 354 

aucuparia, and Ulmus glabra (grouped in “mountain broadleaves”); Betula pendula, Fraxinus 355 

excelsior and Populus tremula (grouped in “other broadleaves” species); Carpinus betulus, and 356 

Quercus pubescens. However, no forest growth data was available to properly calibrate or 357 

validate the model for these other species as done for the nine main ones. This notably occurred 358 

because growth data at the stand scale were not available for these species (see Validation 359 

section) and growth data at the tree scale were only available for C. betulus and Q. pubescens 360 

(see Table S2).  361 

The workflow of the study is summarized in Fig. 1. 362 

 363 
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Calibration 364 

Each species simulated in ForCEEPS is defined by 13 key parameters described in Table 1 (and 365 

Table S1) from which other parameters were derived (bs and cs in Eq. 1, fs and as in Eq. 11, 366 

𝑐𝑠𝑚𝑖𝑛𝑠
, 𝑐𝑠𝑚𝑎𝑥𝑠

 in Eq. 6, LCPs in Eq. 8). The variability among functional traits reflects 367 

fundamental trade-offs of species life-history strategies (Bazzaz 1979, Violle et al. 2007). In 368 

ForCEEPS, like in many gap models, the variability among parameters’ values aims at 369 

reflecting such trade-offs (Bugmann 2001), and in this sense we further assume that the 370 

parameters describing the species in the model are proxies of life-history or functional traits. 371 

For instance, late-successional species are generally characterized by slow growth (i.e. low 372 

values of gs), long lifespan (i.e. low values of Amaxs), and high shade tolerance (i.e. low values 373 

of ShTols), in contrast to early-successional ones (Reich 2014). 374 

In the present study, the calibration of potential tree growth (i.e., species-specific 375 

parameters gs and 𝐻𝑚𝑎𝑥𝑠
) and the allometry relating tree height and diameter (i.e., parameter 376 

ss) were based on data from the French National Forest Inventory (NFI) (IGN 2018). The values 377 

of other parameters were based on the literature. The NFI sampling design warrants an 378 

exhaustive representation of environmental gradients within the realized distribution of the 379 

species over the mainland French territory, while individual plots may not be locally 380 

representative (Charru et al. 2010). Therefore, we used NFI to calibrate the potential growth 381 

model in ForCEEPS, but did not use it for the validation at the plot level. More detailed 382 

information about NFI data is available in Appendix D. 383 

 384 

Parameter gs. This parameter is the most difficult to calibrate as it requires data from trees 385 

growing in “optimal conditions”, which are scarce in observational datasets as the growth of 386 

trees is usually constrained by environmental conditions or biotic factors (e.g. competition). To 387 

cope with this challenge, we took advantage of the NFI that covers a very wide range of 388 
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conditions (in both space and time), providing a large number of “annual diameter increment 389 

vs. diameter” pairs for each of the 11 species (i.e., the nine main species and C. betulus and Q. 390 

pubescens) for which abundant data were available (n=206,569 for all species confounded, 391 

Table S2). For each of these 11 species, we grouped trees according to their diameter (according 392 

to 1-cm size classes) and selected the 10% of trees with the greatest annual diameter increment, 393 

assuming that these trees grew in “optimal conditions” or at least under almost unconstrained 394 

conditions. However, we note that the annual increments are derived from five-year average, 395 

which may lead to an underestimation of the actual greatest annual diameter increments. Then 396 

we fitted gs from Eq. 1 with this dataset, using a non-linear least squares approach implemented 397 

by the nls function in the R software (R Core Team 2018). For the remaining species (n = 11), 398 

the gs values have been set from previous studies (Didion et al. 2009). 399 

The fitted values for the parameters gs ranged from 79 to 399 (Table S1). These values 400 

are consistent with former estimates for the same or related species (Bugmann 1994, Didion et 401 

al. 2009). 402 

 403 

Parameter ss. The calibration of ss (Eq. 2) relied on NFI data because of their representativeness 404 

of the conditions in which each species occurs. The whole NFI dataset was used for the 405 

calibration to cover the largest range of conditions in which each species occurs. Although 406 

diameter-height relationships were shown to be affected by environmental conditions, e.g. 407 

climate, tree social status and stand density (Trouvé et al. 2015, Fortin et al. 2019), these factors 408 

were not accounted for in the model. The rationale for this lies in our aim to keep the model 409 

structure as simple as possible to allow for an easy parameterization and use at large scale for 410 

a large number of species. We fitted the height-diameter relationships (Eq. 2) on the NFI 411 

dataset, using the nls R function, and extracted ss values for each species. As for gs, this 412 
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calibration was conducted for the 11 main species, while we relied on Didion et al. (2009) for 413 

the 11 additional species. 414 

 415 

Parameter 𝐻𝑚𝑎𝑥𝑠
. This parameter was calibrated using NFI data and/or literature (Rameau et 416 

al. 1989, 2008) for all the species. Maximum height may indeed be underestimated in the NFI 417 

data because forest managers tend to harvest the largest trees before they reach their maximum 418 

height.  419 

 420 

Other parameters. The values of the parameters describing species’ response to abiotic 421 

conditions (i.e. effect of the growing season temperature on tree growth, DDmins; drought 422 

tolerance, DrTols; and soil nitrogen requirement, Nreqs), and species intrinsic characteristics 423 

(i.e. foliage type, fs; maximum age, Amaxs, shade tolerance, ShTols, and shade tolerance of 424 

seedlings ShTol_seedlings, browing susceptibility of seedlings Brs) were based on the literature 425 

(Table 1 and references therein). Parameters describing the thermal regeneration niche for 426 

seedlings (i.e., monthly minimum and maximum winter temperature tolerated for regeneration 427 

WTmins and WTmaxs, Table 1) were calibrated according to species-specific diagrams of 428 

occurrence (San-Miguel-Ayanz et al. 2016). 429 

 430 

Congruence of key parameter values with functional traits.  431 

To gain mechanistic insight into the parameters values derived from the calibration procedure, 432 

we evaluated the congruence of key model parameters with functional traits extracted from the 433 

literature. To do so, we first selected the most meaningful ForCEEPS parameters in terms of 434 

species ecological strategies, including gS, DrTolS, ShTolS, ShTol_seedlingS, and NreqS. Then 435 

we collected data on relevant traits from various database, including: xylem cavitation 436 

resistance (assess through the water potential causing 50% cavitation, Ψ50 in MPa), leaf turgor 437 
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loss point (Ψtlp, in MPa), water potential causing stomatal closure (Ψclose, in MPa) and safety 438 

margins from Ψtlp and Ψclose [from the SurEAu database, Martin-StPaul, Delzon, & Cochard 439 

(2017)], wood density (g/m3, Chave et al. 2009), light saturated CO2 assimilation (or maximal 440 

photosynthesis Amax, in µmol/m2/s), nitrogen content per unit leaf area Na (g/m²) and leaf mass 441 

per area LMA (g/m2) [from the CANTRIP database, Keenan & Niinemets (2016)]. The final 442 

trait database and associated references are reported in Appendix E. For each of the selected 443 

ForCEEPS parameters, we tested the Pearson’s correlations between the ForCEEPS parameters 444 

and some of the traits at the interspecific level. Note that the consistence of the results across 445 

both Angiosperms and Gymnosperms was taken into account to assess the robustness of the 446 

congruence of species parameters with functional traits. 447 

 448 

Validation against forest growth data 449 

Forest growth dataset. The validation of simulated annual productivity at the tree and stand 450 

levels was conducted using a dataset independent from the one used in the calibration process. 451 

Following Guillemot et al. (2017), we primarily relied on the RENECOFOR permanent forest 452 

plot network (Ulrich 1997) that includes 103 half-hectare plots in even-aged managed forests 453 

covering most of the main tree species and climate conditions in France. After excluding the 454 

plots that had experienced a natural or anthropic disturbance (e.g., thinning) less than 4 years 455 

before the last diameter inventory, 77 plots remained. Most of the stands included in the 456 

validation dataset are monospecific or strongly dominated by one species 457 

The RENECOFOR network does not include forests growing under Mediterranean 458 

conditions. Therefore, we completed the validation by using data from the long term 459 

experimental sites of Puéchabon (Quercus ilex, Rambal et al. 2014) and Font Blanche (mixed 460 

forest dominated by Pinus halepensis, Simioni et al. 2016). Diameter inventories were used to 461 

estimate the tree and stand basal area increment (BAI) in all validation plots. The time interval 462 
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between the initial and final inventories in RENECOFOR plots varied between 4 and 14 years, 463 

while they were of 14 and 10 years for the Puéchabon and Font Blanche sites, respectively (see 464 

further details about the validation datasets in Appendix D). The BAI data recorded over 465 

contrasted time intervals were normalized to mean annual BAI. Local measurements of soil 466 

water holding capacity (SWHC) were available for all plots, and climate time-series were 467 

obtained from the SAFRAN atmospheric reanalysis (Vidal et al. 2010) for the RENECOFOR 468 

plots, and from on-site measurements for the Puéchabon and Font Blanche plots. The validation 469 

plots covered a large range of environmental conditions, with mean annual temperature (MAT) 470 

ranging between 5.8°C and 14.3°C, mean annual precipitation sum (MAP) between 700 and 471 

2030 mm, while the drought index ranged from 0.003 to 0.35 (values below 0.05 indicate there 472 

is no marked drought stress for the trees, while values above 0.3 indicate strong stress for most 473 

tree species) (Fig. S2). 474 

 475 

ForCEEPS simulations. We initialized the model for each stand using the first inventory 476 

campaign of the respective plot. For each RENECOFOR plot, 5 patches of 1000 m² were 477 

simulated, in order to obtained comparable observed and simulated forest plot areas (the 478 

average size of the observed plots is ca. 5000 m²). To simulate the patches, trees were randomly 479 

sampled in the inventory dataset of a given plot until the stand basal area per square meter of 480 

the simulated patch was comparable to the observed stand basal area per square meter. Local 481 

measurements of SWHC and local climate time-series were used as inputs. ForCEEPS 482 

simulations were run over the time period for which BAI measurements were available in each 483 

plot (i.e. from 4 to 14 years), and subsequently normalized to mean annual BAI. As the results 484 

were very consistent across the five repetitions carried out per plot (as shown in Fig. S3 for the 485 

RENECOFOR plots), we only present the results for one repetition at the tree level for the sake 486 

of clarity (the results for each repetition are shown in supplementary material - Table S4 and 487 
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Fig. S3). For results at stand level, we present averages across the five repetitions (the results 488 

for each repetition are shown in supplementary material - Table S4). 489 

Gap models like ForCEEPS are designed to explore processes occurring at the stand 490 

level and are thus more relevant at this scale. However, as neighborhood interactions are 491 

reported to be key in driving BEF relationships and for the sake of comprehensiveness, we also 492 

present the results at the tree level (Schnabel et al. 2019, Jourdan et al. 2019a). 493 

 494 

Quantifying the importance of the hypotheses embodied in ForCEEPS for forest growth 495 

After simulating BAI for each plot using the full model, we carried out three types of 496 

simulations to quantify the importance of some hypotheses and ecological processes embedded 497 

in ForCEEPS. First, we ran simulations without the new module for competition for light, to 498 

test whether an explicit representation of individual crown lengths in the vertical canopy space 499 

increased the prediction accuracy of stand growth (Test 1). Second, we ran simulations without 500 

considering the limiting effect of drought stress and thermal constraints on tree growth, i.e. 501 

under optimal climatic conditions (Test 2). Third, we aimed at testing the importance of the 502 

species-specific tolerance to shade in ForCEEPS (Test 3), as it has been shown to be a key 503 

parameter driving diversity effects in ForClim 2.9.6 (Morin et al. 2011). To do so, we changed 504 

the specific values of the parameter ShTolS by assigning the maximum value to all species. Note 505 

that this kind of tests has been rarely done with gap models [but see (Morin et al. 2011, Huber 506 

et al. 2018)]. 507 

 508 

Validation against potential natural vegetation 509 

Study sites. To validate the model’s predictions in terms of outcomes of climate effects and 510 

interspecific competition in the long term, we compared the community composition simulated 511 

by ForCEEPS with the tree species composing the potential natural vegetation (PNV) along an 512 
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environmental gradient. Defining PNV for a given site is subject to personal judgment. Here, 513 

similarly as in Bugmann (1996), we simply relied on the assumed dominant tree species 514 

(assuming no large disturbances) in a space spanned by annual precipitation (MAP) and mean 515 

annual temperature (MAT), following Ellenberg (1986), Rameau et al. (1989, 2008) and San-516 

Miguel-Ayanz et al. (2016) (Fig. 4-B). More precisely, we selected 14 sites with contrasted 517 

conditions among the 79 plots used for the validation of forest growth simulations. This gradient 518 

thus includes dry and warm conditions through the two Mediterranean sites, but it did not 519 

include the coldest conditions in which forests can grow in France. Therefore we added another 520 

site with average MAT of 2.9°C (±0.64) and ASP of 1577 mm (±253), corresponding to the 521 

conditions of a subalpine site according to Ellenberg (1986) (grey dot in Fig. S2, and site 1 in 522 

Fig. 4-B).  523 

 524 

ForCEEPS simulations. For each of the 15 sites, we ran 2500-yr simulations, starting from bare 525 

ground. Thus, the PNV simulations accounted for seedling establishment, tree growth and 526 

mortality. This simulation duration was necessary to avoid the communities to be in a transient 527 

phase and to ensure that they reached a pseudo-equilibrium in terms of composition and basal 528 

area. The 2500-yr climate time-series were obtained by randomizing the years from which time-529 

series were available for each site. In other words, we considered inter-annual variability in 530 

climate, but there was no trend in the long term, as commonly done in studies aiming at 531 

depicting forest succession with gap models (e.g., (Bugmann 1996, Morin et al. 2011, Chauvet 532 

et al. 2017). We considered 200 patches of 1000 m² for each simulation. At the end of the 533 

simulation, we extracted the mean basal area per hectare of the simulated stands and the basal 534 

area of each species.  535 
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The performance of the model was assessed using Pearson correlation coefficient (r), 536 

the root mean square error (RMSE), and the average bias (AB) between observations and model 537 

predictions. 538 

 539 

RESULTS 540 

Prediction of aboveground tree growth. 541 

ForCEEPS was able to capture the observed mean annual BAI (Fig. 2) at the tree level, with a 542 

good correlation between observations and predictions (r=0.72, n=2662; Table 2), while the 543 

difference between observations and predictions was satisfactory (RMSE = 0.0012, AB = 544 

12.4%). There was, however, a slight tendency to underestimate the growth of the most 545 

productive trees (Fig. 2), and the uncertainty of the model predictions increased with tree 546 

diameter (Fig. S6). When the species were examined separately, the Pearson correlation 547 

coefficient ranged from 0.49 (P. sylvestris) to 0.77 (F. sylvatica) (Table 2, Fig. S4) but the 548 

difference between observations and predictions strongly varies between species (RMSE = 549 

0.0013 and AB = 21.8%, on average). 550 

 551 

Prediction of aboveground stand growth. 552 

At the stand level, ForCEEPS showed a good ability to reproduce observed mean annual BAI 553 

regardless of the species or the environmental conditions. Across all plots, the correlation was 554 

strong between observations and predictions (r=0.79, P<0.001, Table 3) with a very low 555 

difference between observations and predictions (RMSE = 0.019 and AB=4.5% – Fig. 3-A, 556 

Table 3) without strong bias related to the basal area of the stand (Fig. S7). When species were 557 

examined separately, the accuracy varied across species, but the results did not show strong 558 

systematic bias (Fig. S5, RMSE = 0.014 and AB = 26.7% on average, Table 3-b) except for Q. 559 

petraea, for which productivity of the most productive plots was underestimated (RMSE=0.016 560 
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and AB=-16.7%, Fig. S5), and P. pinaster, which showed the highest variability (RMSE=0.034 561 

and AB = 50.3%, but it is the species with the smallest number of observations – except Q. ilex 562 

and P. halepensis for which one can hardly make any conclusion with only three plots).  563 

 564 

The importance of light competition, environmental conditions and shade tolerance for 565 

simulating forest growth in ForCEEPS. 566 

Testing the representation of light competition. 567 

The new module for competition for light, which include an explicit representation of individual 568 

crown lengths in the vertical canopy space, yielded on average better results than the former 569 

version (decrease by 15.4% in RMSE; Table 3-a). The former version tended to underestimate 570 

the productivity of the most productive plots, while this was not the case with the new version 571 

(Fig. 3-A and 3-B).  572 

Testing the effect of environmental conditions.  573 

The model without climatic constraints on tree growth was less accurate than the full version 574 

(increase by 69.7% in RMSE; Fig. 4-A and 4-C; Table 3-a), except for a few plots - especially 575 

for Q. petraea stands. The simulations without climatic constraints logically tended to 576 

overestimate stand productivity (Fig. 3-C). It is thus noticeable that on average, the effect of 577 

climatic conditions improved the accuracy of the simulations over such a large range of 578 

environmental conditions tested in this study (illustrated in Fig. S2). One may also notice that 579 

this improved accuracy is consistent across species, regardless their averaged productivity. 580 

Testing the importance of the variability in the shade tolerance parameter. 581 

When the variability in the ability of species to tolerate shade was not taken into account in 582 

ForCEEPS, the model’s performance strongly decreased, with an increase in RMSE by 85.11% 583 

across plots (Fig. 3-A and 3-D; Table 3-a). The bias notably increased for the most productive 584 

stands, especially dominated by A. alba and P. abies (Fig. 3-D).  585 
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 586 

Prediction of species composition in the long term. 587 

When comparing the distribution of the dominant tree species at the end of the 2500-yr 588 

simulations carried out along the environmental gradient covered by the 15 sites (Fig. 4), it 589 

appeared that the ability of ForCEEPS to predict reliable PNV varied across sites: the overall 590 

likelihood of the simulated communities is strong, but with be a greater uncertainty about 591 

Mediterranean forest types. In 10 out of the 15 sites, the dominating species were accurately 592 

predicted according to the PNV diagram (green dots in Fig. 4-B). In the five other sites, at least 593 

one of the dominating species was accurately predicted (blue dots in Fig. 4-B), while there was 594 

no site in which the simulated community was dominated by species other than those expected.  595 

Long-term simulation of stand basal area cannot be directly evaluated against field 596 

observations as there is no forest stands unaffected by management for several centuries at these 597 

sites. Yet, one may notice that the values appear consistent (albeit a bit low) with mature stands, 598 

and that the simulated basal area was lower in the harshest conditions (i.e., at both extremes of 599 

the gradient). However, the basal area for the Font Blanche site seemed to be underestimated 600 

(ca. 15 m²) (Simioni et al. 2016).  601 

It is noticeable that the cumulated basal area of the species that were not validated 602 

against forest growth data in the present study (ie. the “other species” in Table S1) represent on 603 

average only 17% (across the 15 sites) of stand basal area at the end of the simulations, and it 604 

remains below 25% at all sites. 605 

 606 

Congruence of key parameter values with functional traits. 607 

We found correlations between traits and ForCEEPS parameters, but their sign and significance 608 

strongly varied. The species nitrogen requirement NreqS was found to correlate with Na (Table 609 

S5). The growth parameter gS was significantly negatively correlated with wood density (Figure 610 
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5), while the correlation with LMA was not consistent for Angiosperms and Gymnosperms 611 

(Table S5). Seedling and adult shade tolerance were correlated with light saturated 612 

photosynthesis (Amax, Fig. 5 and Table S5). Other traits, including LMA and wood density were 613 

poorly correlated with shade tolerance. Finally, correlations were found between DrTolS and 614 

different drought-related functional traits. In particular, a strong correlation was found between 615 

DrTolS and the stem xylem embolism resistance (assessed by P50, i.e., the water potential 616 

causing 50% embolism, Fig. 5). The correlation between DrTolS and P50 was very strong for 617 

angiosperms (r²=0.7, p<0.001) but not significant for gymnosperms (p = 0.1), which could be 618 

explain by the fact that the studied conifers all belong to the Pinaceae family that rely on a tight 619 

stomatal control of transpiration during drought. Positive but less pronounced relationships 620 

were found between DrTolS and the turgor loss point (Table S5). DrTolS was also correlated 621 

with wood density and LMA but to a lower extent (Table S5). 622 

 623 

DISCUSSION 624 

A gap model predicting annual productivity and community composition. 625 

ForCEEPS relies on ecological hypotheses, notably the trade-off between maximum growth 626 

and tolerance to competition (Rees et al. 2001) and the fact that cyclical succession is occurring 627 

in each individual patch (Botkin et al. 1972), allowing to simulate long-term species ecological 628 

succession. Although most biogeochemical processes are implicit in the model, as in most gap 629 

models, our results show that ForCEEPS accurately predicts both the dominant species 630 

occurring at a site in the long term and the wood productivity of monospecific stands across a 631 

few years. 632 

Gap models have long demonstrated their ability in predicting the long-term dominant 633 

species of forests (Bugmann 2001), but it is noticeable that ForCEEPS appeared robust across 634 

a large range of environmental conditions, i.e. from alpine to Mediterranean forests. Indeed, if 635 
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gap models were already shown to accurately predict dominant species composition in 636 

temperate and subalpine forests (e.g. Bugmann 1996; Didion et al. 2009), the good 637 

performances of ForCEEPS at Mediterranean sites appears as a major achievement. Although 638 

this validation remains mostly qualitative, the accuracy of predicted community composition 639 

from the long-term simulations is remarkable, and suggests that the interspecific competition 640 

and abiotic constraints are well represented in ForCEEPS. The good performances of 641 

ForCEEPS across large environmental gradients and for the most important tree species found 642 

in mainland France, suggest that the model could be applied to a large part of the European 643 

forest ecosystems. 644 

The validation of the ability of ForCEEPS to predict forest functioning in the short term 645 

(i.e. across a few years) was conducted using forest growth data from monospecific stands. The 646 

rationale for this choice was to evaluate its behavior and predictive ability in a context with low 647 

influence of complex interspecific interactions. Because gap models are often validated using 648 

species composition of PNV at selected sites, their validation is actually conducted in mixed 649 

forests in most cases (Bugmann 2001). Thus, this test of the ability of gap models to accurately 650 

simulate the functioning of monospecific stands in various environmental conditions and for a 651 

wide range of species has been very rarely assessed. Yet, monocultures are often compared to 652 

mixed stands to quantify biodiversity effects in forests (e.g., as in Morin et al. 2011). Ensuring 653 

that the functioning of monospecific stands is well reproduced by a gap model is thus a sine 654 

qua non condition to simulate non-biased biodiversity effects in tree communities. 655 

Validation against forest growth data was rarely done for gap models (Bohn et al. 2014), 656 

especially for such a wide range of species and conditions. Gap models have not originally been 657 

designed to work at short temporal scales, and are thus not expected to accurately simulate 658 

annual tree or stand growth (Mette et al. 2009, Fyllas et al. 2014). Although ForCEEPS may 659 

never offer detailed mechanistic insights into ecosystem biogeochemistry and tree growth as 660 
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ecophysiological models do (Makela et al. 2000, Dufrêne et al. 2005, Guillemot et al. 2017), it 661 

can nevertheless be considered as a parsimonious alternative – notably in terms of calibration 662 

– to explore how productivity will respond to changes in species composition and climate.  663 

Recent advances in forest ecology have resulted in physiological process-based models 664 

that can be fully parameterized (e.g. Maréchaux and Chave 2017, Martin-StPaul et al. 2017) 665 

using functional traits available from global databases (Kattge et al. 2011). Although these 666 

models provide a unique insight on the physiological mechanism driving forest growth and 667 

survival, they are not aimed to describe the long-term ecological processes shaping forest 668 

composition on the long-term. In this study, we evidence that the processes embodied in gap 669 

models to simulate long-term forest succession can also predict annual forest growth in species 670 

with contrasted ecology and under various climate conditions, making them an important tool 671 

to study forest responses to climate change. ForCEEPS requires a rather small number of 672 

parameters to describe a species, allowing both a straightforward calibration of some 673 

parameters using forest inventory data and an a priori-calibration of the other parameters 674 

relying on literature and ecological knowledge. Consequently, the hypotheses embodied in 675 

ForCEEPS regarding the complex feedback loops and threshold mechanisms that drive forest 676 

functioning and forest community dynamics can be conceptualized, parameterized and 677 

evaluated against measured field data. This limits the uncertainty that can affects model 678 

predictions in case of equifinality. Of course, ForCEEPS - like all gap models - could also 679 

greatly benefit from the current increasing availability of forest inventory data to improve its 680 

calibration using inverse modeling approaches (Hartig et al. 2012).  681 

 682 

Hypotheses, limitations and future directions to improve the model 683 

The high accuracy of ForCEEPS in predicting mean annual stand productivity of forests over a 684 

few years thus opens great perspectives for ecological studies. However, this potential should 685 
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not conceal the simplifications and limits of our approach. Our results showed that explicitly 686 

representing 2D-competition for light by considering crown size in the vertical canopy space 687 

improved the accuracy of the predictions of short-term productivity compared to the ‘classic’ 688 

scheme of gap models (Bugmann 2001). Meanwhile, this novel development did not affect the 689 

reliability of the model’s predictions of community composition and standing biomass in the 690 

long term. Yet, introducing this change in the model implied to make some assumptions on 691 

crown traits and foliage distribution in vertical space. There is an increasing number of studies 692 

showing that these properties vary depending on species identity (Bayer et al. 2013, Forrester 693 

and Albrecht 2014, Forrester et al. 2018), and the size and identity of neighboring trees (Poorter 694 

et al. 2006, Williams et al. 2017, Niklaus et al. 2017). While future work may further improve 695 

the representation of canopy space exploration by taking into account the plasticity of tree 696 

architecture, we believe that the current version of the model relies on a sufficiently 697 

parsimonious approach to explore new questions regarding above-ground tree-tree interactions 698 

in mixed stands. Keeping track of tree coordinates in horizontal space - as already done in other 699 

models (Bohn et al. 2014, Maréchaux and Chave 2017) - would allow to more finely tackle the 700 

mechanism driving tree interactions, but this may come at the cost of losing the generality of 701 

the model, as well as strongly increasing the simulation time.  702 

We demonstrate in this study that both the climatic constraints and the variability in 703 

species’ shade tolerances are crucial to predict short-term productivity with gap models. In 704 

particular, we showed that differences in shade tolerance among species are key community 705 

features driving diverse forest productivity, which has not been shown across such a wide 706 

environmental gradient to our knowledge (Toïgo et al. 2018, Van de Peer et al. 2018). In turn, 707 

this reinforces the need for further exploration of light-mediated tree interactions to understand 708 

the mechanisms driving species assemblage and productivity in mixed forests. Although these 709 

quantifications are necessarily related to the way the climatic growth-reducing factors and 710 
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competition for light are modelled, they nevertheless provide an a posteriori justification of the 711 

processes embedded in these models. This also confirms the large potential of such models for 712 

exploring how diversity affects forest functioning (Toïgo et al. 2018, Van de Peer et al. 2018, 713 

Cordonnier et al. 2018a) and how climate change is mediating this effect (Morin et al. 2018).  714 

Yet, this study considered short-term growth, i.e. tree or stand growth averaged across 715 

a few years. Testing the performance of ForCEEPS on actual annual data of tree and stand 716 

increments would have constituted an even stronger test. However, this kind of data is rarely 717 

available for all trees on ~1000 m2 plots (see Nehrbass-Ahles et al. 2014), especially for large 718 

number of species and range of environmental conditions. 719 

For the sake of generality, ForCEEPS relies on generic DBH-height relationships, 720 

although DBH-height relationships are known to change with tree age and tree density (Trouvé 721 

et al. 2015, Fortin et al. 2019). Improvements in this direction may be possible, even though 722 

calibrating this allometric parameter would require more detailed inventory data (Rasche et al. 723 

2012), and may have a very limited effect on the model’s results when compared to the effect 724 

of other parameters (see sensitivity analysis of the ForCLIM model by Morin et al. 2011 and 725 

Huber et al. 2018). 726 

More generally about long term predictions, reaching stronger robustness in predicting 727 

long-term species coexistence and community composition would necessitate to better model 728 

the occurrence of mortality events and regeneration. In fact, improving the representation of 729 

these two processes is a main challenge in forest modelling, especially to better assess climate 730 

change impacts on forest functioning (e.g. for mortality Bugmann et al. 2019, Cailleret et al. 731 

2017, Hülsmann et al. 2018, Vanoni et al. 2019). Besides, although nutrients and water content 732 

in the soil indirectly affects competition between trees (see Methods section), future 733 

developments may lead to a multi-dimensional competition along several niche axes. One may 734 

also notice that the results for the two Mediterranean sites presented here are already satisfying. 735 



32 
 

Furthermore, the impacts of abiotic (e.g., fire, extreme drought events) and biotic (e.g., 736 

pathogens, herbivory) disturbances are also key factors, that should be better considered by 737 

these models in the future (Seidl et al. 2017). 738 

 739 

Mechanistic relevance of ForCEEPS parameters 740 

The analysis exploring the congruence between key ForCEEPS’ parameters and 741 

functional traits retrieved from the literature aimed at highlighting to what extent the parameters 742 

describing species in ForCEEPS can be linked to their ecophysiology. First the negative 743 

correlation between the growth parameter (gS) and wood density appears meaningful as wood 744 

density describes the carbon investment per unit volume of stem (Chaves et al 2009), thus 745 

indicating that fast-growing species favored wood volume (i.e., space exploration) at the 746 

expense of wood resistance to mechanical or biotic damages.  747 

Shade tolerance is one of the features that segregates ecological groups of tree species 748 

and that explain BEF patterns in forests. Some studies indicate that shade tolerance is related 749 

to a combination of structural properties maximizing leaf area per unit of respiring biomass, 750 

and to a combination of leaf properties optimizing photosynthesis per unit of nitrogen 751 

investment. In particular shade-intolerant or pioneer species are frequently thought to display 752 

higher light-saturated net photosynthesis (Amax) than shade-tolerant or late successional species 753 

(Coste et al., 2005; Reich & Walters, 1994). Consistent with this later assertion, we found a 754 

significant and consistent correlation between ShTol_seedlingS and Amax (Fig. 5), and to a lower 755 

extent between ShTolS and Amax (Table S5). However no correlation was found with LMA, 756 

which echoes the debate regarding the multiple factors influencing this trait - including 757 

ontogeny, leaf life span, and light environment - that can blur any expected pattern (Lusk & 758 

Warton, 2007).  759 
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Drought tolerance (DrTolS) is another key parameter that was positively correlated with 760 

a number of functional traits (Table S5, Fig. 5). The best correlation, however, was found with 761 

species embolism resistance (assessed through the water potential causing 50% loss of 762 

conductivity, P50). This pattern is consistent with current ecophysiological knowledge that 763 

xylem embolism is a key driver of species mortality during drought (Martin-StPaul et al 2017; 764 

Adams et al 2018). Additionally, a significant but weaker correlation was found between DrTolS 765 

and the turgor loss point – a trait linked to the maintenance of leaf hydration and functions at 766 

low water potential (Bartlett, Scoffoni, & Sack, 2012) and to stomatal control (Brodribb & 767 

Holbrook, 2003; Martin-StPaul et al., 2017). This lower correlation is consistent with the fact 768 

that the variability of turgor loss point is much more constrained among plants than the P50 769 

(Martin-StPaul et al 2017). Interestingly, as for Sh_tolS, DrTolS was only weakly correlated with 770 

wood density and LMA, which is probably related to their poor mechanistic relevance in the 771 

species resistance to drought (Chave et al 2009 ; Bartlett et al 2012). Although performed on a 772 

relatively small number of species, these results nevertheless pave the way for potential 773 

improvement of the representation of drought tolerance in ForCEEPS, for instance by 774 

implementing an hydraulic failure module that mechanistically integrate multiple traits (e.g., 775 

Martin-StPaul et al 2017). More generally, exploring the mechanistic relevance of gap model 776 

parameters allows using functional trait databases to constrain them within realistic values and 777 

avoid equifinalities issues.  778 

 779 

Research avenues for a new generation of forest gap models 780 

The large potential of forest dynamic models to tackle key questions in forest ecology has been 781 

reviewed elsewhere (Ruiz-Benito et al. 2020), but we highlight that their role in providing more 782 

robust predictions in response to global change components is increasingly emphasized 783 
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(McDowell 2020). Furthermore, we would like to focus on two related perspectives that are 784 

arising from the validation at both short and long term shown here. 785 

 786 

Biodiversity and ecosystem functioning in forests 787 

The validation presented here opens perspectives for further tests of the effects of species 788 

richness or functional diversity on forest productivity. Several attempts were conducted to use 789 

gap models for studying diversity-productivity relationships (Morin et al. 2011, Bohn et al. 790 

2017). Nevertheless, the models used had not been validated rigorously for monospecific 791 

forests across such a wide range of species and environmental conditions, although the analyses 792 

about the effect of diversity on ecosystem functioning strongly rely on the comparison with 793 

monospecific stands (Loreau and Hector 2001, 2019). More precisely, the increased confidence 794 

in the ability of gap models to simulate monospecific stands will improve their ability to test 795 

non-additive effects in species mixtures (Gamfeldt and Roger 2017), i.e., effects directly related 796 

to interspecific interactions. Furthermore, as ForCEEPS accurately predicts stand productivity 797 

and long-term composition for the main species in Western Europe under a wide range of 798 

conditions, we may expect a high robustness of the simulated BEF relationship. 799 

Forest gap models simulate local interactions among trees, which have been reported as 800 

fundamental drivers of mixture effects on forest functioning (Fichtner et al. 2018). Thus, the 801 

simulated biodiversity patterns necessarily emerge from selection and complementarity effects 802 

(Loreau and Hector 2001), the latter referring to niche differentiation processes among co-803 

existing species (as detailed in Morin et al. 2011) but also facilitative processes, depending on 804 

the model structure. Niche differentiation processes notably include complementarity in 805 

occupying canopy space (Jucker et al. 2015, Williams et al. 2017), and the 2-D crown 806 

representation of ForCEEPS enables to better explore the way canopy packing occurs in 807 

simulated mixtures and affects forest productivity. More generally, a growing body of evidence 808 
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suggests that structural diversity is a key driver of productivity in forests, independently of the 809 

potential effects of other facets of diversity such as species richness and functional diversity 810 

(Dănescu et al. 2016, Schnabel et al. 2019, Gough et al. 2019, Aponte et al. 2020). ForCEEPS 811 

is a suitable tool to quantify the importance of these - often tangled - diversity facets across 812 

large environmental gradients, with important consequence for our understating of BEF 813 

relationships and for the management of diverse forests.  814 

Furthermore, plasticity in crown size (or more precisely tree foliage area) may emerge 815 

in the simulations due to species complementarity in light capture and/or response to 816 

environmental fluctuations (e.g., climate). Intraspecific changes in crown architecture are 817 

ultimately determined by changes in within-tree biomass allocation and branching patterns, 818 

which have been shown to occur in mixed stands (Pretzsch 2014, Kunz et al. 2019, Guillemot 819 

et al. 2020) but are not considered here. The modelling of such mixture effects is currently 820 

hindered by data scarcity, and would probably necessitate implementing the spatial distribution 821 

of the simulated trees in the horizontal space (Forrester et al. 2018).  822 

 823 

Testing coexistence mechanisms in the short and long term 824 

Species coexistence in forest gap models is based on two main mechanisms: first, trade-offs 825 

arising from the life-history strategies such as high rates of colonization often being tied to low 826 

shade tolerance, or a typically short lifespan of early successional, fast-growing trees; and 827 

second, the fact that cyclical succession is occurring on each individual patch, so that species 828 

with different properties are able to dominate during different parts of the cycle (Bazzaz 1979, 829 

Rees et al. 2001). Exploring the relative importance of these mechanisms for allowing species 830 

coexistence of simulated communities, but also for creating and maintaining diversity effects 831 

on ecosystem functioning is a promising avenue for gap model applications (Falster et al. 2017, 832 

Cordonnier et al. 2018b), especially if such an exploration is to be carried out across a large 833 
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range of conditions. This may ultimately lead to the formulation of new hypotheses, for instance 834 

about the impact of climate change on species coexistence and forest functioning. 835 

Finally, we also see further potential applications of models like ForCEEPS in the 836 

design of forest policy. Large-scale forest restoration and reforestation programs are key to 837 

prevent the most deleterious effects of climate change in the coming decade (Lewis et al. 2019). 838 

Global initiatives such as the Bonn challenge are planning restoration at an unprecedented scale 839 

(Verdone and Seidl 2017). Yet, we currently lack science-based guidelines for the design of 840 

productive and resilient forest plantations in most environmental contexts. As mixed-species 841 

plantations are thought to be a crucial nature-based solution for climate mitigation and 842 

adaptation (Paquette et al. 2018), a generic and validated tool such as ForCEEPS can be used 843 

to explore “management versus climate scenario” interactions and promote climate-smart 844 

forestry at large scale. Thus, a new generation of forest gap models could foster the transfer of 845 

BEF knowledge into forestry practice.  846 

Generating new hypotheses from model outcomes is one of the main reasons of using 847 

models in ecology in the first place, together with the support they may provide for better 848 

understanding the systems and processes at play, and their ability to yield predictions across 849 

spatial and temporal scales (Levins 1966). As they did for more than 50 years, we believe that 850 

gap models in general, and the ForCEEPS model presented here in particular, maintain a key 851 

role for these purposes in forest ecology and management. More generally, because they seek 852 

for generality while aiming at relying on functional processes, such models are likely to be 853 

highly relevant to provide robust predictions of ecosystem composition, structure and 854 

functioning in a context of very uncertain future for forests (McDowell et al. 2020). 855 

 856 

 857 

  858 
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Tables legend 1288 

 1289 

Table 1: Description of the species parameters in ForCEEPS. References refer to the literature 1290 

used to calibrate all or part of the species for the specific parameter. 1291 

 1292 

Table 2: ForCEEPS accuracy in predicting tree growth across all species and for each species 1293 

separately, through Pearson correlation, root mean square error (RMSE) and average bias (AB) 1294 

between observed and predicted tree growth. Significance of the Pearson correlation coefficient 1295 

(***: p < 0.001; **: p < 0.01; *: p < 0.05; ns: p > 0.05). 1296 

 1297 

Table 3: ForCEEPS accuracy in predicting stand productivity and test of the differences 1298 

between the various versions tested: 1299 

(a) Across all plots, though through Pearson correlation, root mean square error (RMSE) 1300 

and average bias (AB) between observed and predicted stand productivity. Full: 1301 

ForCEEPS simulations with the new crown length module, climatic constraints on tree 1302 

growth and interspecific variability in parameter ShTolS; noCrownL: ForCEEPS 1303 

simulations without the new crown length module; noClim: ForCEEPS simulations 1304 

without climatic constraints on tree growth; noVarShTol: ForCEEPS simulations 1305 

without interspecific variability in parameter ShTolS. %RMSE: percentage difference 1306 

between the RMSE of the version tested and the “full” version. 1307 

(b) For each species taken separately for the full version, through Pearson correlation, root 1308 

mean square error (RMSE) and average bias (AB) between observed and predicted 1309 

stand productivity tree growth. 1310 

Significance of the Pearson correlation coefficient (***: p < 0.001; **: p < 0.01; *: p < 1311 

0.05; ns: p > 0.05). 1312 
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Table 1 1313 

Parameter Details Unit 
Example      

(Fagus sylvatica) 
Calibration References 

fs Foliage type 

Unitless  

D3 Literature Rameau et al. 1989; Didion et al. 2009 E - evergreen - or D - deciduous and a 
number between 1 and 5 

Hmaxs Maximum height m 50 Literature +  NFI Rameau et al. 1989, 2008 

ss Allometry Unitless  76 Literature +  NFI Didion et al. 2009 

gs Optimal growth rate Unitless  260 Literature +  NFI Didion et al. 2009 

Amaxs Maximum age years 400 Literature Rameau et al. 1989; Bugmann 1994 

Ddmins 
Minimal required annual or seasonal 

degree-days sum 
°C 841 Literature San-Miguel-Ayanz et al. 2016 

DrTols 
Drought tolerance index, to be compared 
to the evapotranspiration deficit based on 

a bucket model of soil moisture 

Continuous index with values between 
0.25 Literature 

Ellenberg and Mueller-Dombois 1966; 
Niinemets and Valladares 2006; 

Rameau et al. 1989, 2008 0 (sensitive) to 1 (tolerant) 

Nreqs Soil nitrogen requirement 
Integer Index with values between 

2 Literature 
Ellenberg and Mueller-Dombois 1966; 

Bugmann 1994 
1 (weak requirements) to 5 (strong req.) 

ShTols Shade tolerance 
Integer index with values between 

1 Literature 
Ellenberg and Mueller-Dombois 1966; 

Niinemets and Valladares 2006; 
Rameau et al. 1989, 2008 1 (shade tolerant) to 9 (shade intolerant) 

ShTol_seedlings 
Shade tolerance of seedlings, to be 

compared to the relative amount of light 
reaching the ground 

Continuous index with values between 
0.05 Literature 

Ellenberg and Mueller-Dombois 1966; 
Niinemets and Valladares 2006; 

Rameau et al. 1989, 2008 0 (tolerant) to 1 (sensitive) 

Wtmins 
Monthly minimum winter temperature 

tolerated for regeneration (°C) 
°C -6 Literature 

Didion et al. 2009 ; San-Miguel-Ayanz 
et al. 2016 

Wtmaxs 
Monthly maximum winter temperature 

tolerated for regeneration 
°C 9 Literature 

Didion et al. 2009 ; San-Miguel-Ayanz 
et al. 2016 

Brs Browsing susceptibility of seedlings 

Integer index with values between 

3 Literature Didion et al. 2009 
 1 (less susceptible) to 5 (more 

susceptible) 
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Table 2 1315 

  All trees F. sylvatica Q. petraea Q. robur A. alba P. abies 
P. 

sylvestris 
P. pinaster Q. ilex 

P. 
halepensis 

Ntrees 2662 877 272 183 367 319 323 197 91 34 

Nplots 82 16 16 10 9 9 11 6 3 2 

Pearson r 0.72*** 0.77*** 0.66*** 0.65*** 0.74*** 0.603*** 0.491*** 0.561*** 0.616*** 0.694*** 

RMSE 0.0012 0.0009 0.0011 0.0014 0.0014 0.0027 0.001 0.0014 0.001 0.0005 

AB 0.124 -0.024 -0.050 0.334 -0.227 0.252 0.367 0.898 -0.073 0.481 

 1316 

 1317 
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Table 3 1318 
 1319 
(a) 1320 
  Full noCrownL noClim noVarShTol 

Nplots 82 82 82 82 

Pearson 0.79*** 0.69*** 0.76*** 0.80*** 

RMSE 0.019 0.022 0.032 0.035 

%RMSE   15.43 69.68 85.11 

AB 0.045 -0.102 0.599 0.363 

 1321 
 1322 
 1323 
(b) 1324 

  
F. 

sylvatica 
Q. 

petraea 
Q. robur A. alba P. abies 

P. 
sylvestris 

P. 
pinaster 

Q. ilex 

Nplots 16 16 10 9 9 11 6 3 

Pearson 0.64* 0.69** 0.71** 0.86** 0.54. 0.83** 0.72. 0.76 ns 

RMSE 0.013 0.016 0.013 0.020 0.003 0.015 0.034 0.001 

AB 0.031 -0.167 0.241 -0.015 0.202 -0.070 0.503 -0.187 

 1325 
  1326 
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Figures legend 1327 

 1328 

Figure 1. Summary of the workflow of the study. This figure illustrates the sequence of the 1329 

main steps of the study. 1330 

 1331 

Figure 2. Predicted (by ForCEEPS) against observed mean annual tree basal area increment 1332 

(BAI) for all considered trees (over 82 sites) and the 5 repetitions. The plain black line is the 1333 

regression line of the linear model of the relationship between observed and predicted tree 1334 

growth, with confidence interval represented with the grey dashed lines; the dashed red line is 1335 

the 1:1 line. Statistics associated: see Table 2. 1336 

 1337 

Figure 3. Predicted (by ForCEEPS) against observed mean annual stand basal area increment 1338 

(BAI) for the 82 sites, using different model configurations: 1339 

A- ForCEEPS simulations with the new crown length module, climatic constraints on tree 1340 

growth and interspecific variability in shade tolerance (parameter ShTols). 1341 

B- ForCEEPS simulations without the new crown length module. 1342 

C- ForCEEPS simulations without climatic constraints on tree growth. 1343 

D- ForCEEPS simulations without interspecific variability in parameter ShTols. 1344 

For all panels: the plain black line is the regression line of the linear model of the relationship 1345 

between observed and predicted stand productivity, with confidence interval represented with 1346 

the grey dashed lines; the dashed red line is the 1:1 line. Statistics associated: see Table 3-a. 1347 

Colour code for the species as follows: 1348 

 1349 
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 1350 

 1351 

Figure 4. (A) Simulated basal area (m² per ha) at the end of long-term ForCEEPS simulations 1352 

along sites representing a gradient of environmental conditions from cold and moist alpine 1353 

conditions (left) to warm-dry Mediterranean conditions (right). The site names and conditions 1354 

are stated in Table S3, with Aa (A. alba); Pa (P. abies); Ps (P. sylvestris); Cb (C. betulus); Fs 1355 

(F. sylvatica); Qp (Q. petraea); Qb (Q. pubescens); Qr (Q. robur); Pp (P. pinaster); Ph (P. 1356 

halepensis); Qi (Q. ilex); MounGymno (mountainous gymnosperm species including L. 1357 

decidua and P. cembra); MounBroad (mountainous broadleaf species including S. aria, S. 1358 

aucuparia and U. glabra); OtherBroad (broadleaf species including B. pendula , F. excelsior 1359 

and P. tremula). (B) Distribution of the 15 tested sites in the PNV diagram of the supposed 1360 

dominating species (built according to mean annual temperature and annual precipitation sum). 1361 

Green dots: sites for which the dominating species in the simulated communities were 1362 

accurately predicted according to the PNV diagram; Blue dots: sites for which at least one of 1363 

the dominating species was accurately predicted but with another dominating species not 1364 

supposed to dominate according to PNV diagram. Red dots: sites in which the simulated 1365 

community was dominated by other species than supposed by the PNV diagram. Numbers refer 1366 

to the site number (see Table S3). PNV dominating species are Pc (P. cembra), Pu (P. uncinata); 1367 
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Aa (A. alba); Pa (P. abies); Fs (F. sylvatica); Qp (Q. petraea); Qr (Q. robur); Pp (P. pinaster); 1368 

Ph (P. halepensis); Qi (Q. ilex). 1369 

 1370 

Figure 5. Correlations between key ForCEEPS parameters and ecophysiological traits extracted 1371 

from the literature (see Appendix E). Blue dots: Angiosperms; orange dots: Gymnosperms. 1372 

Associated statistics are presented in Table S5. 1373 

 1374 
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Figure 1 1376 
 1377 
 1378 
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Figure 2 1381 
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Figure 3 1384 
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Figure 4 1389 
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Figure 5 1391 
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