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ABSTRACT: Cyclic (alkyl)- and (aryl)-(amino)carbenes (CAACs and CAArCs) are stronger s-

donors and p-acceptors than imidazol-2-ylidenes and imidazolidin-2-ylidenes, the well-known N-

heterocyclic carbenes (NHCs). Consequently, they form strong bonds with coinage metals, and 

stabilize both low and high oxidation states. This Focus Review shows that CAACs and CAArCs 

have allowed for the isolation of copper and gold complexes which were believed to be only 

transient intermediates. This has not only allowed for a better understanding of the mechanism of 

known processes but has also led to the development of novel coinage metal-catalyzed reactions. 

In addition to their role in homogeneous catalysis, CAAC and CAArC coinage metal complexes 

have recently found applications in medicinal chemistry, as well as in materials science. When 

possible, the performance of CAAC and CAArC ligands are compared with those of classical 

NHCs. 
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1. INTRODUCTION 
 
Since their discovery in 2005,1,2  five-membered cyclic (alkyl)(amino)carbenes (CAAC) 1 have 

been the subject of several reviews.3,4,5,6,7,8 However none of them have comprehensively covered 

their coordination chemistry towards coinage metals. Even more importantly many significant 

discoveries in this field have been made in recent years and thus have not been discussed in the 

previous review articles. This Focus Review will not be limited to CAACs 1, but will also include 

six-membered cyclic (alkyl)(amino)carbenes (CAAC-6) 2, 9  bicyclic (alkyl)(amino)carbenes  

(BiCAAC) 3, 10  the so-called saturated abnormal NHCs (saNHC) 4, 11  as well as cyclic 

(aryl)(amino)carbenes (CAArC) 512 and 6,13 (Figure 1). Because of the importance of classical 

NHCs in coinage metal chemistry,14,15,16,17,18,19 we will compare the results obtained with 1-6 with 

those of imidazol-2-ylidenes 720 and imidazolidin-2-ylidenes 8.21  

To understand the advantages and disadvantages of carbenes 1-6 compared to classical 

NHCs 7 and 8, a comparison of their electronic properties is necessary. This will be only briefly 

summarized since detailed analyses have already been reported in the previous reviews mentioned 

above. Although the calculated energy of the HOMO and LUMO of carbenes vary slightly 

depending on the level of theory, the same trend has been observed. Figure 1 summarizes the 

results obtained at the B3LYP/def2-TZVPP level of theory with ultrafine grid. With the exception 

of the so-called saNHC 4, all the cyclic (alkyl)(amino)carbenes 1-3 are both more s-donating and 

p-accepting than NHCs 7 and 8,22 because of the presence of the electropositive carbon and of 

only one p-donor amino group. Cyclic (aryl)(amino)carbenes 5-6 are still strong electron donors, 

but they are by far more p-accepting than all the other carbenes considered in this review, although 

less than the diamidocarbenes reported by Hudnall and Bielawski (LUMO: - 2 eV). 23  It is 

important to note that although carbenes 1-3 as well as NHCs 7 and 8 can be isolated and are stable 

in solution and in the solid state, carbenes 4-6 have not yet been isolated. 
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Figure 1. Calculated energy of the HOMO and LUMO of carbenes 1-6, considered in this Focus 
Review, and of NHCs 7 and 8 for comparison (B3LYP/def2-TZVPP level of theory with ultrafine 
grid). 
 
2. COORDINATION CHEMISTRY OF CYCLIC (ALKYL)- AND (ARYL)-

(AMINO)CARBENES WITH COINAGE METALS 

 
2.1. Synthesis of (CAAC)MCl (M = Cu, Ag, Au) Complexes 

The steric bulk and flexibility of the substituents on the a-carbon of CAACs have a dramatic effect 

on their complexation to gold24 and silver25 (Scheme 1). When bulky and rigid substituents, such 

as menthyl or adamantyl, are present, the corresponding LAuCl complexes 9a and 9b, as well as 

LAgCl 10b can readily be isolated. When the smaller and flexible cyclohexyl, cyclohexylene, ethyl 

or methyl groups are used, the mono-carbene gold and silver complexes can be observed and 

utilized as such, but are difficult to isolate; instead, the cationic bis(carbene) complexes such as 

11c-e and 12f are obtained. Since cationic bis(carbene) complexes 11 and 12 are certainly more 

inert than the mono-carbenes counterparts 9 and 10, these findings provide a good indication of 

the range of substituents, which might allow CAAC gold and silver complexes to find catalytic 

applications. In contrast, mono-carbene copper complexes are readily isolable even with small 
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 5 
be prepared by simple addition at room temperature of the free carbene 1 to Au(SMe2)Cl, AgCl 

and CuCl, respectively. Alternatively, following the seminal discovery by Lin et al.28  on the ability 

of Ag(I)-NHC complexes to transfer Ag-bound NHC ligands to another metal, both the silver 1025 

and even the copper complexes 1329 can undergo a transmetallation to give the desired CAAC-

coinage metal complexes. 

Scheme 1. Synthesis of (CAAC)MCl complexes (M = Au, Ag, Cu) 

 

Cyclic (alkyl)(amino)carbene gold complexes have also been prepared via an elegant cyclization-

rearrangement cascade (Scheme 2).30  This protocol allows for the preparation of a variety of chiral 

CAAC–gold complexes in a highly stereoselective manner.  

Scheme 2. Synthesis of CAACAuCl complexes via a cyclization-rearrangement cascade. 
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 6 
2.2. Synthesis of Various Gold(I) and Gold(III) Complexes from (CAAC)AuCl and 
(CAAC)AuOH 

Romanov and Bochmann prepared a variety of gold(I) and gold(III) complexes, 31  using 

(CAAC)AuCl and (CAAC)AuOH complexes, the latter being more basic than (NHC)AuOH32 

(Scheme 3). Indeed, by studying the reactivity of (CAAC)gold-hydroxide complexes towards a 

variety of fluoroarenes, they concluded that they can activate C−H bonds with pKa values lower 

than about 31.5. Surprisingly, despite the more electron-donating properties of CAACs, compared 

to NHCs, their gold complexes proved to be more resistant to oxidation and more prone to halogen 

cleavage of the Au−C bonds than (NHC)gold(I) complexes.   

 Scheme 3. Synthesis of various gold(I) and gold(III) complexes from (CAAC)AuCl and 
(CAAC)AuOH 
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 7 
room temperature.42 Interestingly, addition of an L ligand to 15 led to 16 in which the hydride has 

shifted to the carbene carbon. This unprecedented rearrangement suggests that the presence of a 

second L ligand, in addition to the extremely strong s-donating CAAC, makes the copper very 

electron-rich, and confirmed the low-lying LUMO of CAACs.  

Scheme 4. The crystalline copper hydride dimer supported by bulky NHCs (14) and CAACs 
(15), and the unprecedented rearrangement of the latter by addition of a L ligand 

 

 

2.4. Synthesis of CAAC-Coinage Metal Alkene, Alkynes, and Aryl p-Complexes 

a- and b-Hydride abstractions from alkyl complexes, affording metal–carbene and metal–alkene 

complexes, respectively, are well known reactions. However, it was only in 2013 that such 

processes were reported for gold. 43  When the tert-butyl gold complex 17 was treated with 

triphenylcarbenium tetrafluoroborate, an instantaneous reaction occurred, affording the gold(I)–

alkene complex 18, demonstrating the possibility of b-hydride abstraction (Scheme 5). To probe 

the a-hydride abstraction, the gold(I)-neopentyl complex 19 was reacted with Ph3C+BF4-, and the 

two diastereomeric gold(I)-(2-methylbut-2-ene) complexes 21 were isolated, although the reaction 

was drastically slower than in the case of 17. All attempts to characterize the putative carbene 

intermediate 20 failed, which is not surprising since, with rare exceptions,44,45,46,47,48,49,50  non-

N
Dipp

iPr

Cu OtBu
LiHBEt3

16

Me3P

14

N

N

Ar**

Ar**

Cu
H

Cu
H

Ar** =
N

N

Ar**

Ar**

15

Cu
H

Cu
H

N
Dipp

iPr
N

Dipp

iPr
N
Dipp

iPr

Cu
H

PMe3



 8 
heteroatom substituted carbene gold complexes are very unstable. However, when 

triphenylcarbenium tetrafluoroborate was reacted with the gold(I) dithianyl complex 22, the 

expected cationic bis(carbene) gold(I) complex 23 was obtained, demonstrating the a-hydride 

abstraction process. 

Scheme 5. a- and b-hydride abstractions from alkyl gold complexes 17 and 19, respectively, 
lead to alkene p-complexes, whereas a-hydride abstraction from 22 affords the 
corresponding carbene complex 23 
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 9 
cationic dinuclear complex 25, which proved to be air-stable and thermally robust. In solution, a 

very fast exchange between the two (CAAC)Cu units occurred, but in the solid state an X-ray 

diffraction study shows two different types of coordination, p and s. The isolation of complex 25 

has allowed for a detailed mechanistic study of the Cu-catalyzed azide-alkyne “click reaction” 

(See Section 3.3.). 

Scheme 6. Synthesis of the monocopper acetylide 24 and supposedly unstable dinuclear 
complex 25, which is the catalytically active complex in the Cu-catalyzed azide-alkyne 
cycloaddition “click reaction” 
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Scheme 7. Synthesis of the crystalline [(CAAC)Au(η2-toluene)]+[B(C6F5)4]− complex 26  
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2.5. Synthesis of CAAC-Coinage Metal PCO Complexes 

The ability of CAACs to efficiently stabilize metals in low oxidation states has been used to study 

the complexation of phosphaethynolate salts M+(PCO)-, which are strong reducing agents.59 It has 

been found that NaPCO reacts with (CAAC)AuCl and (CAAC)CuOtBu cleanly affording 27 and 

29, respectively (Scheme 8).60 Despite the similarities of the solid state structures, a computational 

study shows that the coordination modes of PCO with gold and copper are h1 and h2, respectively, 

which leads to a difference in reactivity. The gold complex 27 is stable in the solid state but 

rearranges over the course of a week in solution at room temperature into the trinuclear complex 

28. The copper complex 29 decomposes in a few hours and is very reactive. A simple addition of 

free CAAC 1f to 29 gives rise the cationic bis(CAAC)Cu complex 30, in which the PCO fragment 

is the anionic counterpart. 

Scheme 8. The coordination modes of PCO with gold and copper are h1 and h2, respectively, 
which induces different reactivity 
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formal oxidation state zero (Scheme 9).67 In both cases, X-ray diffraction studies revealed a linear 

geometry with both five-membered ring CAACs being co-planar. The bonding situation for both 

complexes is very similar. Calculations, using the NBO method, showed that the spin density is 

localized on the carbene carbons (31: 60 %; 32: 68%) and the nitrogen atoms (31: 20 %; 32: 18%) 

while only 17 % and 10% resides at gold and copper. The shape of the SOMO indicates that the 

unpaired electron is delocalized over the p(π) AOs of the carbene and the p(π) AO of Au; 

consequently, the electronic configuration of gold is d10s0p1. Similarly, in complex 32 the copper 

center has a d10 electronic configuration, the unpaired electron being delocalized over two carbene 

carbon atoms.68 

Scheme 9. Synthesis of mononuclear gold(0) and copper(0) complexes 31 and 32; solid state 
structure and SOMO of 31; synthesis and solid state structure of the dinuclear gold(0) 
complex 33 
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 12 
note that before this work, apart from elemental gold, the zero oxidation state had only been found 

in mixed gold(0)/gold(I) complexes, 70  as exemplified by [(Ph3PAu)6]2+2(BF4–) 71  and 

[(tBu3PAu)4]2+2(BF4–).72  A nice demonstration of the efficiency of CAACs to stabilize gold(0) 

complexes comes from the work of Sadighi et al.73  who have shown that, in contrast to 33, 

(NHC)Au-Au(NHC) complexes were unstable and led to colloidal gold.  

CAACs also allowed for the isolation of neutral, paramagnetic, formally gold(0) 

(allenylidene)(carbene) and bis(allenylidene) complexes (Scheme 10).74 Note that although a large 

number of allenylidene transition metal complexes are known,75 this is rare with gold, and all 

involve gold(I)76 and gold(III).77 The (allenylidene)(carbene)Au(I) complex 34 was obtained in a 

few steps, and subsequent reduction with one equivalent of KC8 in THF at room temperature, 

afforded the neutral gold complex 35 as yellow crystals. The Mulliken spin density analysis 

showed that 93.9% of the spin density resides on the CCC fragment, with only 3.8 and 1.8% 

located on the CAAC ligand and the Au atom, respectively. Consequently, 35 has very weak 

gold(0) character, and can be viewed as a gold(I) complex with a paramagnetic anionic ligand. 

Scheme 10. Preparation of (allenylidene)(carbene) and bis(allenylidene) gold complexes 35 
and 38, respectively 
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of 37 showed two well-defined one-electron reversible reductions at -1.69 and -2.04 V versus 

Fc+/Fc. The first reduction potential is shifted to an even more positive value than that of the 

(allenylidene)(CAAC)gold(I) complex 34 (-1.73 V) demonstrating that the allenylidene behaves 

as a stronger p-acceptor than CAACs. However, chemical reduction of 37 resulted in a dark green 

solution, which was EPR active, but all attempts to grow single crystals of 38 led to decomposition. 

Notably, only bis(allenylidene) complexes of Ag,78 Pd,78,79 Pt,79 and Ru80 have been isolated so 

far. 

2.7. Synthesis of CAAC-Coinage Metal Clusters 

A variety of gold clusters,81,82 including nanoparticles are available, and have found numerous 

applications.83,84,85 All of these species are positively charged, and the isolation of 31, 33 and 35 

indicate that CAACs might also be able stabilize neutral clusters of different sizes, mimicking gold 

surfaces. Therefore, the preparation of the smallest possible clusters, namely tris(gold) clusters, 

was attempted.86 Note that before this work, there was only one example of such a small cluster, 

namely the NHC supported cluster 39 reported by Sadighi et al.87 (Scheme 11). Small phosphine-

supported gold clusters are usually prepared by reduction of µ3-oxo complexes [(R3PAu)3O]+X- 

42.88,89  Although, it has been reported that the analogous NHC-supported µ3-oxo species cannot 

be prepared,87 the reaction of (CAAC)AuCl complex 9c with Ag2O, in presence of NaBF4, cleanly 

gave rise to the desired cluster 40c. Subsequent reduction with carbon monoxide90 afforded the 

cationic tris(gold) cluster 41c. Interestingly, similar CAAC-supported clusters such as 41e and 

mixed (CAAC)(phosphine)-supported cluster 43 can be obtained by ligand exchange, using the 

readily available phosphine-supported µ3-oxo complex 42 as a precursor. Unfortunately, all 

attempts to obtain the corresponding neutral trinuclear Au(0) clusters failed. 
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 Scheme 11. The only known trinuclear Au cluster 39; preparation of CAAC-Au clusters 41e 

and 43 
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Scheme 12. Preparation of CAAC copper(I) clusters with main group elements.  
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(Au− N > 3.39 Å). However, upon addition of biphenylene at room temperature, in the presence 

of KB(C6F5)4, the gold(III) complex 45 was obtained, in which the imine ligand coordinates the 

gold center (Au−N = 2.25 Å). Since a stoichiometric mixture of monodentate (CAAC)AuCl 

complex and KB(C6F5)4, does not react with biphenylene even upon heating to 80 °C, it can be 

concluded that the pendant imine moiety stabilizes the gold(III) center. This result suggests that 

hemilabile bidentate CAACs should be suitable ligands for catalysis involving high oxidation 

states and might outcompete the corresponding NHCs.101 

Scheme 13. The imine nitrogen of 1g favors the oxidative addition of biphenylene by 
stabilizing the resulting gold(III) center 

 

2.9. Coordination Chemistry of CAAC-6 and BiCAACs 

Six-membered ring CAAC gold(I) complexes have been used to compare the steric properties of 

CAAC-6 with those of five-membered ring CAACs.9 From the X-ray data of 9b and 46b, it was 

found that the corresponding CAAC-6 2b has a percent buried volume (%Vbur )102,103,104  of 51.2% 

compared to 47.8% for CAAC 1b (Figure 2). This is mainly due to the wider carbene bond angle 

(2b: 117.9 o; 1b: 106.4 o). 
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Figure 2. Probing sterics of CAAC-5 versus CAAC-6. Modified with permission from ref 9. 
Copyright 2018 American Chemical Society.  
 

BiCAAC 3, due to its higher HOMO and lower LUMO, forms even stronger gold−carbon bonds 

than CAAC 1e.10 Indeed, when one equivalent of BiCAAC 3 was added to the (CAAC)AuPh 

complex 47, an equilibrium featuring a 65/35 ratio of (BiCAAC)AuPh 48 and (CAAC)AuPh 47, 

along with free CAAC 1e and BiCAAC 3, was observed after 40 h at 60 ° C (Scheme 14).  

Scheme 14. Ligand exchange reactions at gold showing that BiCAAC 3 forms even stronger 
gold−carbon bonds than CAAC 1e 

 

2.10. Synthesis of Saturated Abnormal Carbene and Cyclic (Aryl)(amino)carbene Coinage 

Metal Complexes 

The so-called saturated abnormal carbenes 4 reported by Hashmi et al.11,105 have not yet been 

isolated, nor is its cationic precursor readily prepared. Therefore, saNHC-gold complexes 49 have 

to be synthesized in the coordination sphere of gold, through a [3+2] dipolar cycloaddition of 

isonitrile gold complexes to an azomethine ylide, generated from the commercially available N-

benzyl-N-methoxymethyl-N-(trimethylsilyl)methylamine (Scheme 15).  
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Scheme 15. Synthesis of the saturated abnormal carbene-gold complex 49 

 

Cyclic (amino)(aryl)carbenes 5-6 have never been isolated either, but their cationic precursors are 

readily available. Gold complexes can be prepared by deprotonation of the corresponding 

aldiminium salts with LiN(SiMe3)2 at -78 oC in the presence of (Me2S)AuCl as shown for 50a,12 

whereas the copper analogue is obtained by treatment of the salt precursor with CuOAc. 106 

Alternatively, a transmetallation route can be used as exemplified by the preparation of 

51,13,107,108,109 or even by reaction with the Nolan NHC gold(I) hydroxide [IPrAuOH}32,110 as 

described by Breher et al111 for the dinuclear complex 52 (Scheme 16).  Note that complexes based 

on ditopic NHCs, analogous to 52 have been discussed as building blocks for electronically 

coupled systems.112,113 

Scheme 16. Synthesis of cyclic (amino)(aryl)carbene gold and copper complexes  
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3. CYCLIC (ALKYL)(AMINO)CARBENE COINAGE METAL COMPLEXES IN 

CATALYSIS 

In the past two decades, efficient and selective gold and copper catalysts have been developed to 

promote a variety of chemical transformations, as evidenced by the number of reviews 

summarizing various aspects of this growing field.114,115,116,117,118,119 Due to the peculiar electronic 

and steric properties of cyclic (alkyl)(amino)carbenes, their coinage metal complexes were found 

to be active in new catalytic reactions, which are discussed below.  

3.1. Catalytic Cross-Coupling of Two Unsaturated Carbon Centers Leading to Allenes 

The first breakthrough in catalysis with (CAAC)gold complexes was the serendipitous discovery 

that the gold cation 26, either isolated or prepared in situ by mixing (CAAC)AuCl 9b with one 

equivalent of KB(C6F5)4 in toluene, promotes the cross-coupling of enamines and terminal alkynes 

to yield allenes (Scheme 17).57 This observation was very surprising since this reaction usually 

affords propargyl amines as observed with other catalysts, 120  including (CAAC)AuCl 9b or 

(Ph3P)AuCl/KB(C6F5)4. Mono-, di-, and tri-substituted enamines and aryl-, alkyl-, and 

trimethylsilyl-substituted alkynes can be used, including sterically hindered substrates. 

Scheme 17. In contrast with other catalysts, the (CAAC)gold cation 26 promotes the cross-
coupling of enamines and terminal alkynes to yield allenes 

 

Gold complex 26 is also a very efficient catalyst for hydroamination of alkynes (see Section 3.2.). 

Of particular interest, it promotes the addition of secondary amines, which allowed for the 

N R2

R3

iPr
R4H

iPr

R1
+

90 oC, 16 h

(Ph3P)AuCl/ KB(C6F5)4
5 mol%

C
H

R4
R2

R3

R1
+ N

90 oC, 16 h

26 or
9b/KB(C6F5)4

5 mol%

20 examples

NiPr

iPr

R1

R3R2

R4

Au

26

NDipp

B(C6F5)4



 20 
synthesis of tertiary enamines with alkyl substituents at nitrogen.121 Therefore, taking into account 

the results discussed above, a one-pot preparation of allenes was developed by coupling two 

alkynes, using a sacrificial secondary amine. This synthetic strategy was applied to the homo- and 

hetero-coupling of alkynes. For example, in the presence 1,2,3,4-tetrahydroisoquinoline as 

dihydrogen donor, the homocoupling of tert-butylacetylene gave rise to allene 53 in 89% yield 

(Scheme 18). This allene results from the anti-Markovnikov addition of the amine to the alkyne 

and the same regioselectivity was observed with trimethylsilylacetylene, probably because of the 

steric hindrance of both reactants. However, with n-butyl acetylene, the allene 54, resulting from 

the Markovnikov addition of the amine was formed, whereas with cyclohexylacetylene a 14/86 

mixture of the two isomeric allenes 53 and 54 was obtained. For the cross-coupling reaction, a set 

of four different terminal alkynes was tested with 3-hexyne as an internal alkyne, and again 1,2,3,4-

tetrahydroisoquinoline as a sacrificial amine. After heating at 130 oC for 16 h, the expected allenes 

were obtained in good to excellent yields. 
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Scheme 18. One-pot preparation of allenes by homo- and heterocoupling of two alkynes, 
using a sacrificial secondary amine 

 

The coupling of two alkynes to form allenes is one of the very rare chemical transformations that 

combines two different reactions, yet relies on a single catalyst. Since gold complexes are known 

for their excellent functional group tolerance, this one-pot process should find applications in the 

synthesis of complex molecules. 
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with the homogeneous catalytic functionalization of NH3. Indeed in 2006, Shen and Hartwig,127  

and Surry and Buchwald 128  reported the palladium-catalyzed coupling of aryl halides with 

ammonia in the presence of a stoichiometric amount of base. The difficulties in using NH3 as a 

reagent for transition metals 129 , 130 , 131   stems from the formation of inert Lewis acid–base 

complexes, the so-called Werner complexes.  

Despite these challenges, in the presence of 5 mol% of (CAAC)AuNH3 57, NH3 adds to terminal 

alkynes at 110 oC leading to the Markovnikov imine, whereas for internal alkynes heating at 160 

oC is necessary to obtain the expected tautomer of the corresponding enamines (Scheme 19). A 

very detailed computational study by Ujaque et al.132 concluded that the electronic properties of 

CAACs render the formation of the alkyne complex energetically achievable, despite the stability 

of the Werner complex, thus enabling for the hydroamination reaction to take place. Nitrogen 

heterocycles, such as pyrroles, could also be prepared in excellent yields in one step from diynes. 

These products result from the Markovnikov addition of NH3, followed by ring-closing 

hydroamination. The scope of the reaction is not limited to alkynes, complex 57 also promotes the 

NH3 hydroamination of allenes. For the parent allene and the 1,1-dialkyl substituted derivative, 

the NH2 group adds exclusively at the less-hindered terminus; however mono-, di-, and 

trisubstituted amines are formed. Tetrasubstituted allenes also undergo hydroamination with 

ammonia, but a different regioselectivity was observed. The NH2 fragment adds to the central 

carbon, probably because of steric factors, and only the monohydroamination product was 

obtained. 
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Scheme 19. (CAAC)AuNH3 complex 57 was the first complex able to promote the 
hydroamination of alkynes and allenes with ammonia 

 

 

Like NH3, parent hydrazine is a difficult substrate for transition metal catalyzed reactions. Before 

our work,133 there was no report on hydroamination reaction with hydrazine, and only one example 

of transition-metal catalyzed functionalization of H2NNH2, namely the palladium catalyzed cross-

coupling with aryl chlorides and tosylates. 134  There are several difficulties associated with 

hydrazine. Akin to ammonia, H2NNH2 forms inert Werner complexes. In addition, hydrazine is 

known to be a strong reducing reagent that leads to inactive metal(0) particles. As an illustration, 

the formation of gold particles has been reported in the reaction of gold chloride with hydrazine,135 

and cationic trinuclear phosphine–gold complexes of the type (R3PAu)3(O)+X_ have been shown 

to promote the dehydrogenation of H2NNH2 to give N2 complexes.136 In contrast, a stoichiometric 

amount of (CAAC)AuCl 9a133 and KB(C6F5)4 reacts cleanly with hydrazine to give the 

corresponding Werner complex 58, which is active for the hydrohydrazination of a variety of 
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other words complexes featuring rather p-accepting carbenes, promote the same reaction at room 

temperature, although the scope of applications is much narrower. Indeed, with complex 49 the 

hydrohydrazination of alkyl substituted alkynes as well as internal alkynes does not occur. Lledos 

et al.140 performed a very sophisticated computational study and concluded that the mechanism of 

the hydrazination reaction involved the substitution of the hydrazine ligand by the alkyne, leading 

to a gold π–complex. After the nucleophilic attack of hydrazine on the activated carbon-carbon 

triple bond, nitrogen to carbon atom proton transfer occurs assisted by the nucleophile. Then 

carbon to nitrogen atom gold migration yields the enamine intermediate. Lastly, a second 

nucleophile-assisted nitrogen to carbon atom proton transfer leads to the more stable imine 

tautomer. 

Scheme 20. (CAAC) and (saNHC) gold complexes 58 and 49 promote the 
hydrohydrazination of alkynes with parent hydrazine 
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involvement of an imido complex (LxM=NR) in the catalytic cycle.141 Consequently, there are 

very few examples of intermolecular hydroamination reaction with secondary amines. It was found 

that a stoichiometric amount of KB(C6F5)4 and gold(I) complex 9b121 or 9g142  catalyzes the 

addition of many types of secondary amines to terminal as well as internal alkynes, including the 

first examples of intermolecular hydroamination of internal alkynes with secondary alkyl amines 

(Scheme 21). In the presence of KB(C6F5)4, complex 9b also promotes the hydroamination of 

allenes with secondary amines, including dialkylamines. 143  Interestingly, for all the amines 

considered, the amino fragment always adds to the less substituted terminus of the CCC skeleton, 

giving access to allyl amines, which are important building blocks.  

Scheme 21. CAAC-catalyzed intermolecular hydroamination of alkynes and allenes with 
secondary dialkylamines 
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works by Yi et al.144 and Che et al.,145 our group developed a one-pot three-component synthesis 

of 1,2-dihydroquinolines, involving a tandem hydroamination-hydroarylation protocol.142 

Interestingly, for both the ruthenium-based and the (NHC)AuCl/AgSbF6 catalysts of Yi and Che, 

respectively, only terminal alkynes could be used and since the second molecule of alkyne reacts 

quickly, the C2 and C4 substituents are the same (Scheme 22). With a stoichiometric mixture of 

9g and KB(C6F5)4 (5 mol%) the only serious limitation for the three-component cyclization is the 

use of a terminal alkyne for the second step. Consequently, the dihydroquinoline skeleton can be 

readily decorated with three different R1, R2 and R3 substituents. 

Scheme 22. Comparison of the scope of the previously reported one-pot three-component 
synthesis of 1,2-dihydroquinolines with that observed with CAAC-gold 9g /KB(C6F5)4 
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benzenamines giving rise to the corresponding indoles 60 in very good yields after 20 h at 160 oC. 

This cyclization tolerates aryl or alkyl substituents on the alkyne, but is limited to N,N’-dimethyl-

benzenamines. 

Scheme 23. Intramolecular hydroammoniumation and aminomethylation of carbon–carbon 
triple bonds giving 59 and 60, respectively 

 

Importantly, many of the reactions described in this section required very drastic conditions, as 
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Scheme 24. Both the mono-copper 24 and the bis-copper acetylide 25 are active in the 
CuAAC reaction, but the latter is more efficient. The alkyne is the proton source for the 
demetallation step, which regenerates 25, thereby excluding 24 from the preferred catalytic 
cycle. Reproduced with permission from ref 51. Copyright 2015 AAAS. 
 

 

 

The CuAAC reactions promoted by CAAC-supported copper complexes are slow enough to be 

monitored, and to study the successive steps of the catalytic cycle. Of particular interest, the 

influence of the X ligand has been investigated by carrying out stoichiometric reactions.149 For the 

metalation step giving 24 (step 1), which involves a deprotonation of the alkyne, basic ligands are 

the most efficient (Scheme 25). Indeed, with X= tBuO, the metalation is fast and irreversible, 

whereas with PhO, a dynamic equilibrium can only be observed by NMR. Lastly, with TfO, no 

spectroscopic evidence for the formation of 24 can be found, but the latter can be obtained by 

adding an external base like triethylamine. In contrast, the formation of the bis(copper)acetylide 

25 (step 2) is favored by non-nucleophilic ligands with TfO being the best. For step 3, the 
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10−4 s−1 and 2.2 10−4 s−1), except for the acetate (kobs > 370 10−4 s−1). This acceleration is 

characteristic of a base assisted proton transfer mechanism as observed in biological systems.150 
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From these results, it appears that the acetate is a good compromise, basic enough for the 

metalation step, not too nucleophilic to prevent the formation of the bis(copper)acetylide 25, and 

very efficient in promoting the proto-demetalation step. This rationalized why the acetate is often 

used in CuAAC reactions. 

Scheme 25. Influence of the X ligand on the first two steps of the CuAAC reaction 

 

The knowledge of the influence of the X ligand151 on the formation of 24 versus 25 has allowed 

for the rational design of copper catalysts that selectively promote either the hydroboration152 or 

the dehydrogenative borylation153 of terminal alkynes with pinacolborane (Scheme 26). Indeed, in 

complexes 24, which can be prepared with LCuOPh, the triple bond is available for hydroboration 

leading to alkenyl boronic esters 62. In contrast, in dinuclear complexes 25, which are readily 

obtained by reacting LCuOTf with terminal alkynes in the presence of triethylamine with 

ammonium triflate as the byproduct, the triple bond is protected. The polarized copper–carbon 

bond of 25 can undergo a s-bond metathesis with pinacolborane giving rise to the alkynyl boronic 

ester 63, along with the copper hydride 64 (Scheme 27). The latter reacts with ammonium triflate 

to regenerate LCuOTf and triethylamine with the elimination of dihydrogen.  

Scheme 26. Influence of the X ligand on the fate of the reaction of pinacolborane with phenyl 
acetylene 
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Scheme 27. Postulated catalytic cycle for the dehydrogenative borylation of terminal alkynes 
with pinacolborane. Modified with permission from ref 153. Copyright 2017 Royal Chemical 
Society. 

 

Both the dehydrogenative borylation and the hydroboration processes are readily applicable to a 

broad range of terminal alkynes bearing functionalities such as OMe, CN, F, Cl, TMS and CO2Me. 

Importantly, the alkenyl (62) and alkynyl boronic esters (63) were isolated in good to excellent 

yields via simple filtration through a short plug of dry neutral alumina. This straightforward 

protocol allows for gram-scale synthesis of these boronic esters. 

Note that the catalytic dehydrogenative borylation of C(sp3)–H and C(sp2)–H bonds discovered by 

Hartwig et al.154 and Smith et al.155  are well studied.156 In contrast, there are only a few reports by 

Ozerov et al.157,158,159 for C(sp)–H bonds, using iridium and palladium complexes supported by 

pincer ligands, and one by Tsuchimoto et al.160 with zinc triflate, which has a rather narrow scope. 

3.4. (CAAC)-Coinage Metals for the Activation of Small Molecules 

3.4.1. (CAAC)-CuBH4 Complexes for the Catalytic Hydrolytic Dehydrogenation of 

BH3NH3 and for the Reduction of CO2 into Formate with H2.  

Ammonia borane (BH3NH3) and metal borohydrides M(BH4)n are excellent hydrogen storage 

materials.161 Developing catalysts based on cheap transition metals capable of releasing H2 at room 
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temperature with a high rate of hydrogen generation is vital for the large-scale application of these 

inorganic compounds.162 It was first observed that the CAAC copper complex 13e reacts with 

BH3NH3 or NaBH4 to give 65 in which two hydrogen atoms of BH4 interact with the metal (Scheme 

28). Interestingly, in contrast to other LCuBH4 complexes, as exemplified by (Ph3P)CuBH4 which 

decomposes at -20 oC,163 65 is perfectly stable at room temperature. Then, it was found that 

(CAAC)CuBH4 65 and (CAAC)CuCl 13e complexes are highly efficient catalyst for the hydrolytic 

dehydrogenation of BH3NH3.26 Indeed, when a 1 mol% acetone/water solution of 13e was added 

to BH3NH3, 2.6 moles of H2 were released per mole of BH3NH3 over 5 minutes, which corresponds 

to a turnover frequency (TOF) of 3100 mol of H2 per mol of 13e per hour. More impressive, by 

using 1 mol% of 65, the hydrolytic dehydrogenation reaction was finished within 2 minutes at 

room temperature, with 2.8 moles of H2 released per mole of BH3NH3, thus giving a TOF of 8400. 

This TOF is more than 1000 times higher than that reported with CuCl2,164 and compares well with 

those obtained in the hydrolytic dehydrogenation of ammonia borane promoted by noble metal 

catalysts.161 Importantly, 13e and 65 are very robust. The catalytic solution can be handled in air 

and recycled more than 15 times without significant loss of activity. 

 

Scheme 28. Preparation of (CAAC)CuBH4 65 and hydrolytic dehydrogenation of BH3NH3 
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to 3,500,000.167 However, this is not the case with abundant and inexpensive first-row metals such 

as copper. Indeed, although copper hydrides efficiently insert CO2 as shown by the numerous 

copper-catalyzed carboxylation reactions, 168 , 169  they have difficulty activating molecular 

hydrogen; consequently, TONs below 500 are usually obtained.170 On the other hand, frustrated 

Lewis pairs (FLPs)171,172 are well-known to activate H2173,174 but cannot reduce CO2 catalytically 

because of the formation of a strong B–O bond.175 It then became reasonable to believe that a 

copper hydride activating CO2, working in tandem with a Lewis pair as H2 activator, would provide 

an efficient synergy for the catalytic reduction of CO2 with H2. Indeed, it was found that using the 

copper borohydride complex 65 as a copper hydride surrogate and B(C6F5)3/DBU as the frustrated 

Lewis pair, CO2 was cleanly reduced into the formate after 24 hours at 100 oC with TONs reaching 

1880 (Scheme 29).176,177  

Scheme 29. Tandem copper hydride–Lewis pair catalyzed reduction of carbon dioxide into 
formate with dihydrogen.  

 

Interestingly, the elementary steps of the catalytic cycle were reproduced 

stoichiometrically (Scheme 30). The copper borohydride complex 65 reacted with CO2 (10 bar) at 

80 °C giving the insertion product 66 upon elimination of BH3. Then it was confirmed that a known 

FLP, namely B(C6F5)3 and 1,2,2,6,6-pentamethylpiperidine (PMP), cleaved molecular hydrogen 

to give 67.178 Lastly, it was shown that at room temperature a stoichiometric amount of 66 reacted 

within minutes with 67 to give the formate and the borane-stabilized monomeric (CAAC)CuH–

BCF adduct 68. 
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Scheme 30. Stoichiometric reactions mimicking the elementary steps of the catalytic cycle 
of the tandem copper hydride–Lewis pair catalyzed reduction of carbon dioxide by H2 

 

These results suggest that the synergy between a transition metal center and a Lewis pair 

could be extended to other reactions. 

3.4.2. Trinuclear (CAAC) Gold Clusters as Catalysts for the Carbonylation of Amines 

In 2012 Corma et al.179, 180,181 reported that very small metallic gold clusters could display 

catalytic activities that are much higher than those obtained with gold nanoparticles and 

mononuclear homogeneous gold catalysts. This striking discovery led to the question of whether 

very small, well-defined clusters, capped with ligands, such as 40-43 (Scheme 11), could also 

behave as efficient catalysts.86 To tackle this question, the carbonylation of amines, which is the 

simplest and most environmentally friendly route for the preparation of urea derivatives,182 was 

chosen. It was found that 2.5 mol% of trinuclear gold complex 41e catalyzed the carbonylation of 

cyclohexylamine under 30 psi of CO and 10 psi of O2. After 2 days at 90 oC, the N,N’-

dicyclohexylurea was formed in 69% yield (Scheme 31). Similarly, benzyl amine and 2-

phenylethylamine were converted into the corresponding urea in 74% and 72% yields, 

respectively. In the case of the more sterically hindered substrates, such as 2-adamantylamine, the 

conversion was significantly decreased, while no reaction was observed with the less basic aniline. 

Importantly, no decomposition of 41e could be observed during these reactions, demonstrating its 

robustness. 
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Scheme 31. Carbonylation of amines catalyzed by the trinuclear gold cluster 41e 

 

The well-defined nature of 41e allowed for a mechanistic study of the carbonylation 

reaction. It has been found that CO does not react with 41e or the amine in the absence of air. 

However, 41e reacts with cyclohexylamine in the presence of oxygen, leading after two days at 70 

oC to the dinuclear complex 69, which was isolated (Scheme 32). Then, when CO was added to 

69, the trinuclear cluster 41e was recovered along with cyclohexyl isocyanate and traces of urea. 

Note that upon addition of amine, which transforms 41e into 69, two gold centers are oxidized, 

while in the addition of CO to 69 giving back 41, two gold centers are reduced. This is a very rare 

example of a gold catalyzed process involving a definite change of oxidation state of the 

metal.183,184,185 

Scheme 32. Stoichiometric reactions for a better understanding of the catalytic cycle of the 
carbonylation of amines 
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3.5. Miscellaneous 

3.5.1. (CAAC)-Gold and -Copper Catalysts for the Hydroarylation of Styrene with 

Anilines 

Friedel−Crafts reactions, such as the intermolecular hydroarylation of alkenes, 186 , 187  usually 

require Lewis acid catalysts, and are therefore rarely efficient for basic substrates, such as amines. 

However, in the presence of KB(C6F5)4, the (CAAC)AuCl complex 44, featuring the hemilabile 

CAAC 1g, promoted the hydroarylation of α-methylstyrene with N,N-dimethyl aniline (Scheme 

33).94 A 97% conversion was observed after only 12 h at 120 °C, which is slightly better than that 

with the CAAC supported gold complex 9e, and even the anti-Bredt gold complex 71, which 

requires 24 h at 135 °C.188 Even more striking, the analogous copper complex 70 also promotes 

the same hydroarylation reaction at 120 oC with a 97% conversion after 12 h. Importantly, under 

the same experimental conditions, the monodentate CAAC copper complex 13e gave only traces 

of the hydroarylation product. The superiority of complex 70 over 13e might be due to the presence 

of a basic moiety on the side chain of the CAAC ligand, which could assist a formal proton transfer. 

Although examples of intramolecular copper-catalyzed hydroarylation of alkenes have been 

reported,189 70 was the first copper complex able to promote the intermolecular version. 

 

Scheme 33. Comparison of (carbene)-gold and -copper catalysts for the hydroarylation of a-
methylstyrene with anilines 
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3.5.2. (CAAC)Gold(I) Complexes in Gold/Palladium Dual Catalysis 

Blum et al. developed elegant dual-catalytic systems combining the Lewis acidic activity 

of Au(I) with a Lewis basic transition metal catalyst.190,191 They reported that a stoichiometric 

mixture of (CAAC)AuCl 13b and NaBArF (5 mol%), with Pd2dba3 (2.5 mol%) promotes at room 

temperature the rearrangement of vinyl aziridines into pyrrolizidine and indolizidine frameworks 

(Scheme 34).192 The scope of the reaction is reasonably broad as long as bulky R substituents are 

used to increase the Thorpe-Ingold effect. Methyl substitution at the internal position of the 

tethered alkene was tolerated, as well as increasing the olefin tether length.  

Scheme 34. Gold/palladium promoted rearrangement of vinyl aziridines into pyrrolizidines 

 

 

Following a very detailed mechanistic study, the authors concluded that the reaction did 

not proceed through carbophilic Au(I) catalysis. Instead, the Au(I)complex would act as an 

azaphilic Lewis acid helping the aziridine oxidative addition to Pd(0) (Scheme 35). The resulting 

Pd(II) intermediate would then undergo a syn-aminometalation, followed by a reductive 

elimination from the palladacyclic intermediate. This mechanistic hypothesis seems to contradict 

most of the reports emphasizing the carbophilicity of Au(I) towards carbon-carbon multiple bonds. 

However, most of these reports deal with alkynes, and therefore, the competitive binding of gold 

to heteroatoms should be seriously considered, when alkenes are involved. 
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Scheme 35. Postulated catalytic cycle for the gold/palladium promoted rearrangement of 
vinyl aziridines into pyrrolizidines. Modified with permission from ref 191. Copyright 2012 
American Chemical Society. 

 

3.5.3. (CAAC)-Gold(III) Complexes in Migratory Insertion of Carbenes into Au(III)-

C Bonds. 

In 2018, Toste et al.193 reported the first examples of migratory insertion of carbenes 

generated from silyl- or carbonyl- diazoalkanes into Au−carbon bonds. Indeed, abstraction of 

chloride from 72 with AgNTf2 or NaBArF followed by addition of ethyl diazoacetate at room 

temperature, led to the formation of the fluorene derivative 73 as the major product (Scheme 36). 

This reaction appeared very sensitive to the experimental conditions used, especially the solvent 

and the amount of water, and its scope is rather limited. Interestingly for this Focus Review, a 

detailed study of the influence of the ligand has been done, and CAACs led to the highest yields, 

presumably through promotion of reductive elimination after migratory insertion in favor of other 

processes. It is noteworthy that although the migratory insertion of unsaturated carbon-based 

species into metal−carbon bonds is well-established for most transition metals,194 this is not the 

case for gold,195,196,197 with rare exceptions.198 Therefore, as concluded by the authors, “This study 

paves the way for homogeneous gold-catalyzed processes incorporating carbene migratory 

insertion steps.” 
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Scheme 36. The superiority of CAAC ligands for the migratory insertion of carbenes 
generated from diazoalkanes into Au−carbon bonds. 

 

3.6. Chiral CAAC Ligands in Enantioselective Catalysis 

Chiral NHCs were first used as ligands for transition metal-based catalysts in 1996.199,200 

However, up until now, only imidazol-2-ylidenes 7, imidazolidin-2-ylidenes 8 and 1,2,4-triazol-

5-ylidenes (Enders carbene)201 have been used as ligands for enantioselective transformations.202 

Since CAACs feature a quaternary carbon adjacent to the carbene carbon, and thus in closer 

proximity to the active site than NHCs, it is surprising that the first report of their use as ligands 

in enantioselective catalysis only appeared in 2019.203  This is even more astonishing since already 

in 2005, it has been shown that enantiopure CAACs, such as 1a, could be prepared without enantio- 

or diastereo-selective separations from inexpensive starting materials such as (-)-menthol.1 The 

key step of the synthesis of enantiopure CAACs is based on the well-known propensity of bulky 

reactants to approach the cyclohexane moiety selectively from the equatorial direction, as shown 

for the menthylCAAC 1a (Scheme 37).  

Scheme 37. Synthesis of the enantiopure menthyl-CAAC 1a with the key step  
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chiral organoboron building blocks.204,205 Although the menthyl CAAC copper complex 13a was 

very active in the addition of bis(pinacolato)diboron to various a,b-unsaturated esters, an almost 

complete lack of asymmetric induction was observed (Scheme 38). In comparison, Hoveyda 

reported that the chiral NHC copper complex 74 gave β-boryl carbonyl compounds in up to 96% 

ee.206  

Scheme 38. Comparing menthylCAAC-CuCl 13a, NHC-CuCl 74 and cholesterolCAAC-
CuCl 75 in the asymmetric conjugate borylation reaction  
 

 

 

The absence of enantioselectivity observed with 13a is believed to be due to a 

conformational inversion of the menthyl ring,207  since the two conformers have antagonistic 

stereo-inducing effects (Figure 3). 

 

Figure 3. Proposed justification for the lack of asymmetric induction with catalyst 13a. Adapted 
with permission from ref 207. Copyright 2019 American Chemical Society. 
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corresponding copper complex 75 show a distinctive orientation of the cholestanyl backbone, 

which gives rise to the topographic steric map showed in Figure 4. As can be seen, the 

corresponding quadrant diagram suggests facial stereoselectivity in catalyst-substrate adducts. As 

the menthylCAAC-CuCl 13a, the cholesterolCAAC-CuCl 75 readily promotes the asymmetric 

conjugate borylation in moderate to good isolated yields (47 to 77%), but with enantiomeric 

excesses reaching 55% (Scheme 38). 

 

Figure 4. X-ray crystal structure of 75 and an overlaid topological steric map with a quadrant 
diagram. Adapted with permission from ref 207. Copyright 2019 American Chemical Society. 

 

These results suggest that the use of chiral CAACs should not be overlooked in metal-

catalyzed asymmetric transformations. These carbenes are readily available from precursors 

belonging to the chiral pool, not restricted to chiral amines (as for NHCs), but extends to chiral 

aldehydes, a much larger feedstock. 
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strains, they are antioxidant and antiparasitic agents that could be relevant in diseases such as 

leishmaniasis where there is no optimal drug treatment, and they have antitumor activity. NHC-

Ag complexes have been shown to be effective against a wide range of both Gram-positive and 

Gram-negative bacterial strains, and they feature comparable or better antitumor activity than 

standard chemotherapeutics such as cisplatin and 5-fluorouracil. 

The success of NHC-coinage metal complexes in medicinal applications has been 

rationalized by their great stability in biological media, which is due to their robustness towards 

ligand dissociation. Since cyclic (alkyl)- and (aryl)-(amino)carbene-coinage metal bonds are even 

stronger than those of NHCs, it seems reasonable to believe that these complexes could find 

medicinal applications. However, this field is still in its infancy. 

In 2012, Huynh et al. 212 , 213  studied the cytotoxic activities of gold(I) and gold(III) 

complexes 76-79, bearing cyclic (amino)carbenes derived from pyrazoles, towards the NCI-H1666 

non-small cell lung cancer cell line (Scheme 39). The neutral monocarbene complexes 76 and 78 

displayed 2 orders of magnitude lower activity as compared to the cationic bis(carbenes) 77 and 

79. This is in line with what has been previously referred to as delocalized lipophilic cations, which 

readily pass through the lipid membrane of mitochondria and eventually lead to mitochondria-

induced apoptosis. Importantly, the cationic bis(carbene) complexes 77 and 79 showed better 

activities than cisplatin.  

Similarly, in 2017, Bochmann et al.214 prepared a series mono- and bis-CAAC complexes 

of copper, silver and gold (Scheme 39). They were tested against a panel of human cancer cell 

lines including leukemia (HL 60), breast adenocarcinoma cells (MCF-7) and human lung 

adenocarcinoma epithelial cell lines (A549), which are known to have varying degrees of cisplatin 

resistance. These complexes appeared to be highly cytotoxic, with IC50 values in the sub-

micromolar to ∼100 nanomolar range, even against cisplatin-insensitive MCF-7 and A549 cells. 

As in the case of complexes 76-79, cationic bis-carbene complexes of Au, Ag and Cu 11f-13f 
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proved particularly effective with the mixed-carbene gold complex 80 being the most potent of the 

series (Scheme 39). Interestingly, the authors concluded that although the mechanism of cell 

growth control by these complexes remains to be established, the inhibition of thioredoxin 

reductase, which is a common pathway for gold NHC compounds could be ruled out as a primary 

pathway. 

Scheme 39. Cationic bis(carbene) gold 77 and 79 displayed 2 orders of magnitude higher 
cytotoxicity than the neutral monocarbene complexes 76 and 78, and are more potent than 
cisplatin towards the NCI-H1666 non-small cell lung cancer cell line. Cationic bis(carbenes) 
11f-13f proved particularly effective against cisplatin-insensitive MCF-7 and A549 cells, the 
mixed-carbene gold complex 80 being the most potent of the series 
 

 

The CAAC–gold complexes, prepared via a cyclization-rearrangement cascade30 (Scheme 

2), feature CAACs based on indole alkaloid scaffolds, which are by themselves often biologically 

active, including against cancer cells. It was found that complexes 81 displayed cytotoxicity 

towards the human ovarian cancer cell line A2780 and colorectal adenocarcinoma cell line HT29 

at low micromolar or submicromolar concentration. Some of these complexes such as 81a 

appeared to have strong but nonselective anticancer activity against all cancer cell lines, while 

others displayed interesting selectivity (Scheme 40). For example, 81b is cytotoxic to HeLa cells 

and was the only complex active against the breast cancer cell line MCF7 in micromolar 

concentration.  
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Scheme 40. Gold complexes based on indole alkaloid scaffolds. 81a displays strong but 
nonselective anticancer activity, while 81b is cytotoxic to HeLa cells and the breast cancer 
cell line MCF7 

 

Overall, these preliminary investigations show that CAAC coinage metal complexes hold promise 

for medicinal applications. 

5. OPTOELECTRONIC APPLICATIONS OF CYCLIC (ALKYL)(AMINO)CARBENE 
COINAGE METAL COMPLEXES  
 

Since the pioneering discovery of electroluminescence by French chemist and physicist André 

Bernanose,215,216 and the preparation of an electroluminescent device using organic materials as 

the emitting element by Ching Tang and Steven Van Slyke at Eastman Kodak,217 Organic Light-

Emitting Diodes (OLEDs) have become vital components of many current technologies. In part 

due to their efficiency and greater contrast-ratio (black OLED emits no light), OLEDs are 

traditionally found in television and smartphone displays. However, with the advent of foldable 

and rollable OLED displays, or even 3D printing of transparent OLED displays,218 it is forecast 

that the global demand in light emitting OLED materials will double by 2023. Traditionally, these 

devices rely on expensive heavy transition metals such iridium, platinum, and ruthenium, as well 

as rare metal-based phosphors which intrinsically pose serious economical and sustainable 

challenges in a global economy.219 In recent years, focus has been put toward the development of 

d10-coinage metal alternatives which, aside from their low cost and low toxicity, are inherently  

more advantageous thanks to their fully filled d-orbitals which prevent internal quenching of 

excited states by low-lying d*–d transitions.220 In particular, three- and four-coordinate Cu(I) 

complexes bearing phosphine and N-heterocyclic ligands with good p-acceptor properties 
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exhibiting low-lying metal-to-ligand charge-transfer (MLCT) and thermally activated delayed 

fluorescence (TADF) have been intensely investigated as emitting dopants in OLEDs.221 , 222 

Recently, two-coordinate copper complexes with linear geometry [(L)CuX], where L is a carbene 

and X an anionic ligand, have emerged as a new class of strongly photoemissive materials.223 In 

2016, Bochmann et al. observed that the adamantylCAAC-CuCl complex 13b displayed 

unexpected photoactivity (ØPL = 96% in the solid state) in marked contrast with the gold analogue 

9b which was found to be comparatively inefficient (Scheme 41).224 As highlighted across several 

reports, the quantum yield in (CAAC)CuCl complexes is directly linked to the steric environment 

provided by the ligand in the order 13b225 > 13e225,226 > 13f,226,227 and is a consequence of the 

increased rigidity of the system. Moreover, these reports underline for the first time the unique 

properties of CAACs (i.e. stronger s-donation destabilizing the M(d) orbitals and p- acceptance 

stabilizing the LUMO) with respect to NHC ligands which are much less efficient.222 

Scheme 41. The quantum yield in (CAAC)CuCl complexes is linked to the sterics (F: 
Quantum yield; kr: radiative rate constant)  

 

Examining the influence of the anionic ligand, Romanov et al. prepared the phenolato- 82, the 
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that the later was reported by Steffen et al. to afford dimer 84 with the smaller CAAC 1f.227 
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zwitterionic mix-carbene 91,229 all resulting in distinct changes in photophysical behavior. It is 

worth mentioning that the introduction of flexible electron-rich N-donors such as the 

formamidinato 86 extends the photophysical properties toward the development of power-efficient 

white organic light-emitting diode (WOLEDs).228 With lighting accounting for 15% of global 

electricity consumption and 5% of worldwide greenhouse gas emissions, the production of 

WOLEDs based on abundant copper sources could have a substantial environmental and 

economical impact. 

Scheme 42. Influence of the anionic ligand on the quantum yields 
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assisted spin-state inversion,230 the luminescence properties of linear carbene–metal–amide 

(CMA) complexes were later shown to stem from thermally activated delayed fluorescence 

(TADF) . This occurs through singlet ligand to ligand charge transfer (LLCT) between the electron 

rich carbazole (HOMO) and the electron-accepting carbene (LUMO). This is favored by a coplanar 

ligand conformation and coupling through the metal d orbitals. 231,232,233,234,235 

Scheme 43. Carbene metal amides emitters  

 

Thanks to these CMA emitters, OLEDs devices with external quantum efficiencies (EQEs) up to 

25% have been reported with Cu,230,231 and Au236 ,237 ,238  but also with Ag.25,239  As noted by 

Thompson et al. in a systematic study, 240 despite blatant structural similarities, group 11 metals 

CMA emitters display marked photophysical differences. However, the metal ions in CMA are 

best described as redox “innocent” and only serve as a monatomic electronic conduit that 

modulates communication between the two redox active ligands. Capitalizing on these properties, 

emissions across the visible spectrum are readily achieved by simple modification of the carbazole 

moiety.231 In fact, by combining (1b)gold with sulfone 96, dibenzazepine 97, phenothiazine 98, 

phenoxazine 99 or phenazine 100, as conformationally flexible 7-membered carbazole surrogates, 

Romanov et al. could tune the luminescence from blue to deep red (Scheme 43).241 Note that with 

these non-rigid anionic ligands, copper analogues were found to be less emissive as illustrated by 

96 [ØPL = 89.6% (Au) vs. 49.5% (Cu) - in toluene]. This observation was proposed to parallel the 
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lower oscillator strength coefficients for the S1 ® S0 transition as well as smaller contribution of 

the copper orbitals into the LUMO with respect to the gold analogues. 

Scheme 44. Tuning the luminescence from blue to deep red  

 

A similar effect was also observed in carbazole dendrimers 101, 242 which thanks to their excellent 

thermal stability and solubility allowed for the fabrication of solution-processed OLEDs (EQEs = 

10%; practical brightness of 1000 cd/m2; maximum luminance of 29000 cd/m2). As suggested by 

the authors, the physical properties displayed by these dendridic complexes could be suitable for 

the engineering of flexible OLEDs through inkjet or roll-to-roll printing.243  

Scheme 45. Dendridic phosphor emitters  

 

Recently, Ung et al. opened new avenues in the field of polarized OLEDS in demonstrating that 
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(CPL) in copper complexes 102 (Scheme 46).244  Note that until this report, transition metal 

complexes exhibiting CPL were mainly limited to helical or axially chiral species.245,246  

Scheme 46. Chiral CAAC-Cu complexes for circularly polarized luminescence 

 

We can expect that the broad range of CAACs,6 and especially the emergence of original chiral 

CAACs motifs,203 should allow for further discoveries in the field of CMA emitters and efficient 

chiral CMA CPL emitters. 

6. CONCLUSIONS AND OUTLOOK 
 
Classical NHC (imidazol-2-ylidenes and imidazolidin-2 ylidenes) gold complexes have been 

described as early as 1973,247 and their silver and copper complexes in 1993.248 In marked contrast, 

the first members of CAAC and CAArC coinage metal complexes have only been reported in 

200824 and 2015,12 respectively. Nevertheless, despite their much more recent discovery, they have 

already found numerous applications, which are mainly the result of their peculiar steric and 

electronic properties. These carbenes, initially used in the isolation of low valent metals, have 

shined in the stabilization of transient catalytic intermediates, such as bis(copper)acetylides, the 

active catalytic species of the CuAAC Click reaction. The isolation of these species has led to a 

better understanding of reaction mechanisms, but more importantly to the discovery of new 

catalytic reactions, such as the copper catalyzed dehydroborylation of alkynes. The stability of 

CAAC-coinage metal complexes allowed for carrying out reactions under very drastic conditions, 

and thus to perform very difficult chemical transformations such as the hydroamination of alkynes 
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and allenes with ammonia and parent hydrazine. In addition to their uses in catalysis, recent results 

show that their applications in medicinal and materials science holds an even greater potential. 

Notably, the extent of the recent breakthroughs made in the preparation of efficient coinage metal 

OLEDs could have a tangible technological impact on our society. 

Altogether, we believe that the results summarized in this review article will lead to even more 

innovations with the newer members of the CAAC ligand family, namely, the bicyclic CAACs 

(BiCAACs), the 6-membered CAACs (CAAC-6), the aryl versions (CAArCs), the chiral 

ChiCAACs, and the bidentate CAACs (BICAACs). 
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