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Abstract

We develop a hydrodynamic approach to non-equilibrium conformal field theory. We study non-
equilibrium steady states in the context of one-dimensional conformal field theory perturbed
by the T T̄ irrelevant operator. By direct quantum computation, we show, to first order in
the coupling, that a relativistic hydrodynamic emerges, which is a simple modification of one-
dimensional conformal fluids. We show that it describes the steady state and its approach, and
we provide the main characteristics of the steady state, which lies between two shock waves.
The velocities of these shocks are modified by the perturbation and equal the sound velocities of
the asymptotic baths. Pushing further this approach, we are led to conjecture that the approach
to the steady state is generically controlled by the power law t−1/2, and that the widths of the
shocks increase with time according to t1/3.

1 Introduction

One of the most powerful ideas in studying the dynamics of quantum field theory is that emerging
from a hydrodynamic description of local averages [1]. Hydrodynamics allows to encode in
a simple way non-equilibrium states, including states with constant flows and approaches to
steady states, by concentrating only on quantities of physical relevance and without having to
deal explicitly with an infinite number of degrees of freedom. In the quantum context, the
passage from strongly interacting many-body quantum dynamics to classical hydrodynamics
involve subtle effects that are sometimes hard to control [2]. It is therefore important to have
simple models and setups where this passage can be studied with more precision.

The main purpose of this paper is to implement the hydrodynamic approach in the context
of perturbed non-equilibrium one-dimensional conformal field theory (Neq-CFT), and show that
it emerges from the quantum description.

Recall that Neq-CFT has been introduced to study out-of-equilibrium quantum phenom-
ena using the extensive toolbox of conformal field theory (CFT) combined with an S-matrix
approach [3]. It aims at describing non-perturbatively, and beyond the linear response theory,
the low-energy sector of gapless one-dimensional quantum systems driven far from equilibrium.
The driving is obtained by unitary evolution of independently thermalized subsystems, a setup
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considered in other contexts before [4, 5, 6]. Exact results in one-dimensional Neq-CFT [3]
have been verified numerically in the Heisenberg chain [7]; other exact results along this line
of thoughts have been obtained for free-fermionic quantum chains [8, 9, 10, 11, 12, 13] and for
higher-dimensional free models [14, 15], and conjectures proposed for certain integrable systems
[16, 17]. In higher-dimensional non-equilibrium CFT, a hydrodynamic approach was used within
this setup in [18, 19], leading to conjectured analytic formulas extending some of the results of
[3] and numerically verified within the Gauge/Gravity duality [20]. As explained in [19], the lack
of integrability plays an important role for the hydrodynamic argument, and, combined with
other ideas, the hydrodynamic data give the exact quantum density matrix of the steady state.

The CFT description of gapless systems is never exact but only asymptotically exact at
low energy [21]. The asymptotic approach to the low energy effective dynamics is controlled
by the so-called irrelevant operators – those which, by definition, do not influence the low-
energy effective dynamics at equilibrium. Perturbations of CFTs by irrelevant operators are
then important, especially far from equilibrium, in order to understand low-energy numerical
[7] and experimental [22] results for non-equilibrium steady states and their universality [23,
24], driven systems [25] and quantum quenches [26]. In this paper we study Neq-CFT with a
particular irrelevant perturbation related to effects of band curvature; as this breaks integrability,
hydrodynamic ideas are expected to be fruitful in this situation.

2 A hydrodynamic approach

Before embarking into the hydrodynamic approach, let us recall some facts about Neq-CFTs
[3]. In the simplest case, one generates an out-of-equilibrium state in a CFT by first preparing
two copies of this CFT on a semi-infinite half line each at different temperatures Tl = β−1

l and
Tr = β−1

r , and then gluing them at some initial time t = 0 through a contact point, say the
origin x = 0. It was shown that a non-equilibrium steady state emerges on any interval [−L,L]
for all times t > L/vF where vF is the Fermi velocity; beyond the interval, the system remains
in its thermal state. That is, two shock waves are associated to this energy flow, which are sharp
within the CFT description and which propagate at the Fermi velocity, along the two branches of
the light-cone. The interior region of the light-cone is in a non-equilibrium state carrying a mean
energy current JE = cπ

12 (T
2
l − T 2

r ) with c the central of charge of the CFT, whereas the regions
at the left and at the right of the light-cone remain at thermal equilibrium at temperature Tl

and Tr respectively. Since there are no fixed reservoirs in this setup, in general local energy
gradients decrease as time evolves, so that the emerging steady state must be controlled by
ballistic transport. A similar framework for generating non-equilibrium steady states was first
studied in the context of electronic transport [4, 5] and in harmonic chains [6] and originally
named the partitioning approach.

Within the CFT approximation, the Hamiltonian is HCFT =
∫

dx (T (x)+ T̄ (x)) where T (x)
and T̄ (x) are the two chiral components of the stress tensor [27]. They have scaling dimension
2, so that the Hamiltonian has the correct dimension 1 1. The most natural irrelevant operators
are bilinear in the stress tensor components, that is T T̄ , and T 2 or T̄ 2. For simplicity, we
shall restrict ourselves to the T T̄ perturbation, associated to curvature effects in the dispersion
relation of the underlying gapless microscopic model. The perturbed Hamiltonian we shall

1By convention, we normalize the Fermi velocity to vF = 1. We set kB = 1 and ~ = 1.
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consider is thus

H =

∫

dx (T (x) + T̄ (x)) + g

∫

dxT (x)T̄ (x). (1)

At equilibrium this perturbation is irrelevant because the operator T T̄ has dimension 4 and
hence g scales like a2 with a the short distance (UV) scale of the microscopic model.

In the following sub-sections we use a hydrodynamic approach to study the effects of the T T̄
perturbation on the non equilibrium steady state, on the approach to the steady regime, and on
the structure of the associated shock waves, and we show by a direct perturbative computation
that these hydrodynamic considerations are correct.

2.1 Generalities: hydrodynamic description near criticality

The hydrodynamic approach is rooted in two principles [28]: the first consists in assuming that
there is some kind of local thermalization and the second that the equations of motion follow
from conservation laws.

Local thermalization assumes that at every point x and time t, the state may be described,
locally in a neighborhood Nx,t, by an effective density matrix ρlocal of the form of an equilibrium
density matrix, but involving all available local conserved charges of the theory. Near criticality
in non-integrable models, omitting internal symmetries as we are only considering energy trans-
port, the only charges that may describe transport are the hamiltonian H and the momentum
P , associated to invariance under time and space translations. In non-integrable systems there
are no other local conserved charges. With h and p the hamiltonian and momentum densities
respectively, ρlocal is of the form

ρlocal ∝ exp
(

− βh(x, t)

∫

Nx,t

dx′ h(x′) + βp(x, t)

∫

Nx,t

dx′ p(x′)
)

(2)

with x, t-dependent parameters (local potentials) βh and βp. This implies that the expectations
of local observables can be computed as in a generalized thermal state of the form e−βhH+βpP

(generalized by the presence of the momentum operator P ), but with local effective inverse
temperature βh and momentum potential βp that depend on space and time.

In quantum chain models, there is of course no continuous space translation, hence no con-
served momentum operator. Continuous space translation only emerges near criticality, where
low-energy excitations are supported on such large scales that the underlying lattice structure
is not important. Without a conserved momentum operator, the density matrix is locally ther-
mal, hence it cannot describe energy transport2. It is the presence of a conserved momentum
near criticality that allows, within this hydrodynamic description, for a possibly nonzero energy
current to develop at large times in the partitioning approach. This agrees with the intuition ac-
cording to which only ballistic currents may develop in this approach, while the lattice structure
introduces diffusion away from criticality.

The choice of the local observables that should be described by local thermalization is im-
portant. For instance, in a thermal state, averages of derivatives of local observables are zero by
translation invariance in space and time. On the other hand, in a locally thermalized state the
derivative of the average of an observable is generically nonzero. Hence in a locally thermalized

2With integrability, this problem can be circumvented by the presence of appropriate non-trivial conserved
charges.
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state, the choice of putting the derivative inside the average or outside matters, and this is
guided by the physical scale on which the derivative is to be taken: either at the microscopic
level (inside a hydrodynamic cell, where quantities are effectively constant), or at the hydrody-
namic level (there are variations from one hydrodynamic cell to the next). In the hydrodynamic
description of QFT one assumes that conserved densities and currents are locally thermalized,
and that hydrodynamic equations are determined by the conservation laws.

In the present situation we have two local conservation laws, those of time and space trans-
lation invariance:

∂th+ ∂xj = 0, ∂tp+ ∂xk = 0. (3)

Within the (pure) hydrodynamic approximation, expectations of the densities h and p and the
currents j and k are evaluated by local thermalization: they are first evaluated in generalized
thermal states, then the local potentials are made dependent on space and time. Hence they
become functions of the local potentials βh(x, t) and βp(x, t). Let us denote these expectations
by h, p for the densities and j and k for the currents. From eq.(3) we get two equations

∂th+ ∂xj = 0, ∂tp+ ∂xk = 0. (4)

These are non-linear differential equations for βh and βp, which are the hydrodynamic equations.
Notice that we have two equations for two functions with given initial condition, so that in
principle the problem is reduced to solving non-linear PDEs.

In thermal equilibrium, the energy current and momentum density are zero by time-reversal
and space-reversal symmetry. Since there is only one parameter (the temperature), there is an
equation of state k = F (h) relating the pressure k to the energy density h. In the generalized
state, the equations of state may be generalized to k = F (h, p), and j = G(h, p). With the
generalized equations of state, the hydrodynamic problem is recast into equations for local
energy and momentum densities, instead of equations for βh and βp

Other parametrizations of the hydrodynamic problem are possible, and one often uses “fluid
velocities”. In some situations, it is possible to use a parametrization that explicitly separates
“dynamical” degrees of freedom from “thermal” ones. Assume that there is an additional dy-
namical symmetry of boost: a space-time transformation operator B that transforms energy into
momentum, [B,H] = P , and that preserves the space spanned by H and P . Two immediate
examples are the relativistic and the galilean boosts, [B,P ] = H (with Casimir H2 − P 2) and
[B,P ] = m1 (with Casimir H − P 2/(2m)), respectively. The former applies to critical points
with dynamical exponent z = 1, the latter with z = 2 (see for instance [29] for a hydrodynamic
study of non-equilibrium states in this context). Using the boost operator, we can always write
βhH − βpP = βrest e

−θBHeθB . The choice of B is not unique, and for every space-time point
x, t we have a boost Bx,t that keeps x, t invariant. The local density matrix can be written as a
local boost of a local thermal state,

ρlocal ∝ exp
(

− βrest(x, t)

∫

Nx,t

dx′ e−θ(x,t)Bx,th(x′)eθ(x,t)Bx,t

)

. (5)

The local boost parameter θ(x, t) is the dynamical part, and the local rest-frame inverse tem-
perature βrest(x, t) is the thermal part. This hydrodynamic parametrization was used in [19]
in order to give a characterization of higher-dimensional non-equilibrium CFT and describe the
steady state as a boosted thermal state.
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It turns out that the requirement that the momentum density be equal to the energy current
up to, possibly, an even derivative term, p = j+µ∂2ℓ

x j, is essentially enough to imply relativistic
invariance. Further, this implies that, in a thermal state,

T
d

dT
k = h+ k, (6)

and that, given the thermal equation of state k = F (h), all generalized thermal averages are
explicitly expressed as functions of θ and h, see eq.(54) in Appendix A. These facts, which we
show within the general context of local many-body systems in Appendix A, can be useful to
simplify the description of the hydrodynamic problem.

Finally, the hydrodynamic approximation discussed above is the “pure” hydrodynamics. It
can be made more accurate by adding derivative corrections, including viscosity terms. These
are corrections, in the expressions for the densities and currents, involving higher derivatives of
the basic quantities (for instance corrections to the equations of state involving derivatives of
energy and momentum densities), and are associated with shrinking the hydrodynamic cell in
order to take into account more and more of the microscopic variations.

We will make all these concepts more precise in the example of the perturbed CFT studied
in the present paper.

2.2 The exact first-order hydrodynamic description of T T̄ perturbed CFT

In the present setting of perturbed conformal field theory, the hamiltonian density could be taken
as T (x) + T̄ (x) + gT (x)T̄ (x), and the momentum density p(x) = T (x)− T̄ (x). Of course, these
are defined up to total derivatives of local densities, and for our purposes it will be convenient to
add the term −gc/(24π)∂2

x(T (x) + T̄ (x)) to the above energy density. The equations of motion
are then determined by the Hamiltonian (1), via ∂tO = i[H,O] for any operator O. The basic
commutation relations for the stress-energy tensor are

−i[T (x), T (y)] = −(T (x) + T (y)) δ′(x− y) +
c

24π
δ
′′′

(x− y),

with c the central charge of the CFT [27], and similarly for the T̄ commutation relation except
for the change of i → −i. The T and T̄ components commute. Hence, we have

h(x) = T (x) + T̄ (x)− gc

24π
(T ′′(x) + T̄ ′′(x)) + gT (x)T̄ (x)

j(x) = T (x)− T̄ (x) +O(g2) (7)

for the energy density and current, and

p(x) = T (x)− T̄ (x)

k(x) = T (x) + T̄ (x)− gc

24π
(T ′′(x) + T̄ ′′(x)) + 3gT (x)T̄ (x) +O(g2) (8)

for the momentum density and current. Here and below primes denote space derivatives.
Let us briefly analyze the case g = 0. In this case, the local density matrix is

ρlocal ∝ exp
(

− β(x, t)

∫

Nx,t

dx′ T (x′)− β̄(x, t)

∫

Nx,t

dx′ T̄ (x′)
)

(9)
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with x, t-dependent parameters β = βh − βp and β̄ = βh + βp, and we have j = p = T − T̄
and k = h = T + T̄ . Hence the averages of T and T̄ can be used as hydrodynamic variables,
and the expectations of any local observables, say products or powers of T and T̄ at some point
x and time t, can be computed, within the hydrodynamic approximation, as in equilibrium
CFT but with local effective “temperatures” β(x, t) and β̄(x, t). In particular, there is chiral
factorization: right-movers and left-movers are independently thermalized. At g = 0 the CFT
enjoys relativistic invariance, with boost operator B = −i

∫

dxxh(x) satisfying [B,H] = P and
[B,P ] = H, and the above can be interpreted as a boosted density matrix with rest-frame

inverse temperature βrest =
√

ββ̄ and boost parameter given by tanh θ = (β̄ − β)/(β̄ + β). The
thermal average at temperature τ is [30, 31]

〈T 〉 = 〈T̄ 〉 = cπ

12
τ2, (10)

and with the initial condition where left and right halves are independently thermalized at
temperatures Tl and Tr respectively, the hydrodynamic problem gives β(x, t) = T−1

l Θ(x + t)
and β̄(x, t) = T−1

r Θ(−x+ t). As was shown in [3, 19], this hydrodynamic description is in fact
exact, and does not necessitate any derivative corrections: it is a direct consequence of chiral
factorization at the level of the quantum equations of motion. This solution represents sharp
shocks emanating from the contact point and propagating at the speed of light in opposite
directions, between which the steady states lies.

Let us now consider the first order correction in g. We first use the facts that, in a generalized
thermal state, there is translation invariance, 〈T ′′〉 = 〈T̄ ′′〉 = 0, and that to leading order in
g there is chiral factorization g〈T T̄ 〉 = g〈T 〉〈T̄ 〉 + O(g2). We can then parametrize averages
using the two quantities w(x, t) = 〈T (x, t)〉 and w̄(x, t) = 〈T̄ (x, t)〉 evaluated within the pure
hydrodynamic approximation using ρlocal, and we get

h = w + w̄ + g ww̄ +O(g2), j = w − w̄ +O(g2),

p = w − w̄, k = w + w̄ + 3g ww̄ +O(g2).
(11)

Recall that the equations of motion are ∂th+∂xj = 0 and ∂tp+∂xk = 0. These are two equations
for the two unknowns w and w̄, chosen as a parametrization of the two unknown local potentials
βh and βp.

This description is not exact at order g: there are derivative corrections. Fortunately, in the
present case it is possible to obtain the full, exact derivative corrections at order g: they are
a direct consequence of the quantum equations of motion. It turns out that these derivative
corrections are “trivial”: they can be entirely absorbed into appropriate definitions of basic
hydrodynamic quantities, in such a way that the hydrodynamic equations remain unchanged.
Writing the conservation laws for quantum averages using (7) and (8) without assuming local
thermalization, using only chiral factorization at g = 0, the definitions

w(x, t) = 〈T (x, t)〉 − gc

48π

(

〈T ′′(x, t)〉+ 〈T̄ ′′(x, t)〉
)

w̄(x, t) = 〈T̄ (x, t)〉 − gc

48π

(

〈T ′′(x, t)〉+ 〈T̄ ′′(x, t)〉
)

(12)

give rise to the pure-hydrodynamic equations for the quantities (11). That is, in terms of these
exact quantum averages, the conservation equations for the densities and currents (11) are a
consequence of the quantum equations of motion, hence are exact for all x and t to order g. All
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derivative corrections have been absorbed into the definitions (12) and the choice of the energy
density in (7).

The initial conditions are those reflecting that initially the left and right parts are inde-
pendently thermalized at temperatures Tl and Tr respectively. At thermal equilibrium with
temperature τ , the average momentum density is zero (and averages are space-time indepen-
dent), hence w = w̄ =: wth(τ). By dimensional analysis

wth(τ) =
cπ

12
τ2f(gτ2) (13)

for some function f with f(0) = 1. We expect f to have an expansion in positive integer powers
of g, and the normalization of the zeroth order (10) gives

f(u) = 1 + au+O(u2). (14)

Hence, at initial time,

w = w̄ =
cπ

12
T 2
l

(

1 + agT 2
l +O(g2)

)

on the left (x < 0)

w = w̄ =
cπ

12
T 2
r

(

1 + agT 2
r +O(g2)

)

on the right (x > 0) (15)

with an abrupt crossover in the neighborhood of the contact point (that is, close to the origin).
Below we compute the constant a by using relativistic invariance, giving

a = −cπ

6
. (16)

This fully fixes the hydrodynamic problem (with all derivative corrections) at order g.

Remark 2.1 Given any solution w(x, t) and w̄(x, t), the quantum averages 〈T (x, t)〉 and 〈T̄ (x, t)〉,
obtained by solving (12), are naively not uniquely fixed:

〈T (x, t)〉 = w(x, t) +
gc

48π

(

w′′(x, t) + w̄′′(x, t)
)

+ ω(x, t)

〈T̄ (x, t)〉 = w̄(x, t) +
gc

48π

(

w′′(x, t) + w̄′′(x, t)
)

+ ω(x, t)

where ω(x, t) is solution of the equation ω − gc
24π ω′′ = O(g2) whose kernel is of the form

A+e
x/
√

gc/(24π) +A−e
−x/

√
gc/(24π). However, this kernel is non-perturbative in g, hence beyond

the present order-g calculation.

2.3 Equation of state and relativistic structure at order g

The thermal equation of state relating the pressure k to the energy density h can be obtained
from (11) by using the fact that w = w̄ in a thermal state:

k = F (h) = h+
g

2
h2 +O(g2). (17)

The generalized equations of state can be obtained similarly,

k = h+
g

2
(h2 − p2) +O(g2), j = p+O(g2). (18)
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Associated to the equilibrium equation of state (17) is the sound velocity (at temperature τ)

vs =
√

F ′(h) = 1 +
g

2
h+O(g2) = 1 +

gcπ

12
τ2 +O(g2) (19)

Remark from (11) that to order g, we have j = p. This equality implies propagation of small
disturbances of energy, momentum and pressure densities near their equilibrium values occurs
through sound-like waves with this sound velocity (see for instance the arguments presented in
[32, 33]). We will see below that the sound velocities also play a role far from equilibrium at
order g.

Further, observe from (7) and (8) that the equality j = p holds at the operator level at
order g. This implies that relativistic invariance emerges (see Appendix A for the general
theory). Indeed one can verify explicitly that the boost operator B = −i

∫

dxxh(x), with h(x)
the perturbed energy density (7), satisfies [B,H] = P + O(g2) and [B,P ] = H. Therefore,
the averages in the generalized thermal state are expressed in terms of relativistically boosted
observables in a thermal state. Using the result (54) along with (17), we may express them as

h = cosh 2θ hrest +
g

4
(cosh 2θ − 1) h2rest +O(g2)

j = p = sinh 2θ
(

hrest +
g

4
h2rest

)

+O(g2)

k = cosh 2θ hrest +
g

4
(cosh 2θ + 1) h2rest +O(g2). (20)

where hrest is the rest-frame thermal energy density hrest = hth(Trest), deduced from (11), (13)
and (14), given by hth(τ) =

cπ
6 τ

2
(

1 + gτ2
(

a+ cπ
24

)

+O(g2)
)

. The relation (6) can be combined
with the thermal equation of state (17) and the form (21) of the thermal energy density. A
simple calculation shows that this fixes a to (16), and thus

hth(τ) =
cπ

6
τ2

(

1− gcπ

8
τ2 +O(g2)

)

. (21)

Remark 2.2 Formally extending the above thermodynamic equations to large values of |g| one
finds that, in some respects, g < 0 appears to be more natural. For instance, the energy density
(21) has an unphysical maximum, as a function of temperature, if g > 0. Further, if g >
0, the sound velocity (19) is greater than the Lorentz speed of light (which is set to unity)
associated to the (order-g) relativistic invariance. However, these facts do not lead to perturbative
inconsistencies, and none of the perturbative calculations below are affected by the sign of g.
The temperature at which the energy density is maximal is nonperturbative (of order 1/g); and
a Lorentz transformation from a point in the space-time region lying between the light cone and
the sound cone to a point at a time t = 0 would involve a very large boost parameter (non-
perturbative in g), thus precluding, in perturbative considerations, the conclusion of nonzero
equal-time correlations (breaking of causality). In fact, the Lieb-Robinson velocity vLR can be
shown perturbatively to be greater than 1 + Ag for any constant A > 0, and thus greater than
the sound velocity no matter the sign of g. Below we keep g arbitrary, and all conclusions stay
valid perturbatively in g independently of its sign.

8



2.4 Light cone effects, shocks and steady states

In this section, we solve the hydrodynamic problem (4) associated to the T T̄ perturbation, using
the parametrization in terms of the functions w and w̄ in Eqs. (11). We decipher how the T T̄
perturbation modifies the shock propagation, the structure of the shocks as well as the approach
to the steady states and the steady state itself. We shall work to first order in g only.

2.4.1 Shock wave assumption

The simplest analysis of the hydrodynamic problem is that which assumes that the picture of
shocks emanating from the contact point, which holds exactly at g = 0, is accurate even with
g 6= 0 at large scales. This picture was used in [18, 19] in order to generalize results to higher-
dimensional CFT. More precisely, we make the assumption that, with exponential accuracy,
averages of local observables as functions of the space-time point (x, t) take steady and uniform
values whenever |x+ vlt| ≫ ξl(t) and |x− vrt| ≫ ξr(t), for some ξl,r(t) bounded from above by
a power law ∝ ta for all t with some exponent a < 1. This represents shocks at speeds vl > 0
and vr > 0, propagating towards the left and the right respectively, with time-dependent widths
ξl(t) and ξr(t), respectively, which grow sublinearly at large times. By the initial conditions,
two the left (right) of both shocks, averages are evaluated in the initial left (right) reservoir, and
the steady state lies between both shocks, described by a generalized thermal state.

It turns out that this shock assumption, along with the knowledge of the averages in the
generalized thermal states, is sufficient to fix both the shock velocities and the steady-state
parameters. It does not, however, give any information on the approach to the steady state and
on the structure of the shocks themselves.

Consider the conservation laws (3) integrated along a rectangular contour crossing a shock
and whose diagonal goes from (x1, t1) to (x2, t2). That is,

∫ x2

x1

dx (h(x, t2)− h(x, t1)) +

∫ t2

t1

dt (j(x2, t)− j(x1, t)) = 0,

with (x1, t1) and (x2, t2) both lying inside the shock, and similarly for p and k. These equations
can be written for the left and the right shocks. We can choose the rectangle such that |x2−x1| =
vl,r|t2 − t1| with |x2 − x1| much larger than the width of the shock. Using the assumptions that
the densities and the currents are asymptotically uniform and steady away from the shocks, that
the shocks are of extent that grows sublinearly in time, and that the current vanishes outside
the light-cone, this yields two sets of two equations, one for the left shock the other for the right
shock,

vl(hl − hs) = js, vlps = kl − ks, vr(hs − hr) = js, vrps = ks − kr, (22)

where indices l, r, s indicate the averages in the left reservoir, right reservoir and in the steady-
state region, respectively. Adding them allows to eliminate hs and ks, keeping only the densities
hl,r and the pressures kl,r evaluated in the asymptotic region at equilibrium,

(vl + vr) ps = kl − kr, (v−1
l + v−1

r ) js = hl − hr. (23)

Combining them, we find the two equations

(hl − hs)(kl − ks) = (hr − hs)(kr − ks) = jsps. (24)

9



These are two equations for two steady-state unknowns. The steady-state unknowns can be
taken as ws and w̄s using the parametrization (11), the boost and rest-frame temperature θ and
Trest using the relativistic parametrization (20), or simply the steady-state energy density and
current hs and js using the generalized equations of state (18). A calculation up to order g
gives, within the latter parametrization,

hs =
hl + hr

2
+

g

8
(hl − hr)

2 +O(g2)

js =
hl − hr

2
+

g

8
(h2l − h2r) +O(g2). (25)

The thermal averages hl,r can be evaluated in terms of the temperatures Tl,r using (21), and in
particular we obtain

js =
cπ

12
T 2
l

(

1− gcπ

12
T 2
l

)

− cπ

12
T 2
r

(

1− gcπ

12
T 2
r

)

+O(g2). (26)

The shock velocities can now be evaluated through

vl,r =

∣

∣

∣

∣

js

hl,r − hs

∣

∣

∣

∣

= 1 +
gcπ

12
T 2
l,r +O(g2). (27)

We make several observations.

• First, to this order in g, the steady-state current is still a difference of a function of
the left-reservoir temperature minus the same function of the right-reservoir temperature,
js = J(Tl)−J(Tr). In the unperturbed case this had important echoes on the full counting
statistics, and in general this implies that the non-equilibrium current can be obtained
purely from the linear-response conductivity G(τ) = djs/dTl

∣

∣

Tl=Tr=τ
= dJ(τ)/dτ as js =

∫ Tl

Tr
dτ G(τ) [7].

• Second, the shock velocities vl and vr are exactly the sound velocities (19) of the left and
right reservoir, respectively. That is, it is the linear sound velocities of the reservoirs that
control the speed of the shocks describing the far-from-equilibrium steady state.

• Third, parametrizing the reservoirs using w (with the thermal result (13), (14), (16)) we
note that the current takes the simple form

js = vlwl − vrwr +O(g2). (28)

This can naturally be interpreted as the ballistic transport of energy by independent
left/right movers, with chiral energy densities wl,r and velocities vl,r that are solely deter-
mined by the reservoirs’ temperatures. One may understand this as a generalization of the
case g = 0, where w and w̄ are right- and left-moving quantities at the speed 1: to order
g, w and w̄ may still be seen as independent right- and left-moving energy densities, but
their velocity is “dressed” into the sound velocity by the reservoirs’ state. This is also an
extension of the picture that holds near equilibrium. With Tl ≈ Tr, there is linear wave
propagation with the sound velocity v. The natural independent right- and left-moving
energy densities are the combinations of space-time dependent small variations (near the
equilibrium values) δε± = (δh ± v−1δj)/2, and the current is v(δε+ − δε−).
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• Fourth, near equilibrium (i.e. with Tl ∼ Tr), linear wave propagation implies that [33]
js ∼ (kl − kr)/(2v) where v is the equilibrium sound velocity. One can indeed check that
this agrees with (28), using d(vw)/dτ = (1/2v) dk/dτ (where v, w, k are at equilibrium
with temperature τ).

• Fifth, one can verify that the inequality js > (kl − kr)/(2vLR) [33] is verified, where vLR
is the Lieb-Robinson velocity (see Remark 2.2 concerning vLR).

• Finally, we quote the steady-state rest-frame temperature and boost velocity from its
relativistic parametrization:

Trest =
√

TlTr

(

1− gcπ

48
(Tl − Tr)

2 +O(g2)
)

, tanh θ =
Tl − Tr

Tl + Tr

(

1− gcπ

12
TlTr +O(g2)

)

.

(29)
In particular, this means that in the steady state, the potential βh associated with the
hamiltonian in the density matrix as in (9) takes the simple form

βh =
βl + βr

2
. (30)

2.4.2 Solution to the hydrodynamic problem: appearance of shocks

In the previous paragraph, we have made the assumption that two shocks emanate from the
connection space-time point. In the present paragraph, we provide the solution to the full order-g
hydrodynamic problem. The main observations from the calculation below are as follows:

• The problem does not have a unique solution. The space of solution includes the two-shock
solution above, but also contains solutions with additional “remnant” shocks at x = ±t.

• Nevertheless, the steady state is unique: every solution gives rise to the same state in the
central region (this state is in agreement with that found from the two-shock assumption).

Let us discuss briefly the first point above. The non-uniqueness of the weak solutions to
the Riemann problem (the step initial conditions) for pure hydrodynamic equations has been
observed before [19]. In standard hydrodynamic problems, it is usually possible to lift this non-
uniqueness by considering the entropy current or any other inequality condition [36]. With the
requirement that the entropy cannot decrease at the shocks (a local implementation of the 2nd

law of thermodynamics), this may forbid certain shocks and lead to rarefaction waves (transition
regions of extent growing linearly with t). Positivity of local entropy production occurs with
viscosity terms, and weak solutions to pure hydrodynamics should be seen as emerging, at
large scales, from viscous hydrodynamics; thus positive local entropy production at the shocks
becomes a condition for selecting weak pure hydrodynamics solutions. In the present case,
higher-derivative corrections are completely absorbed into redefinitions, hence at order g there
is no positivity condition that can fix the solution. We hope to come back to this problem in
the future by analyzing higher orders in g.

Let us proceed with the calculation. The full order-g hydrodynamic problem is given, in
terms of the parametrization w, w̄ as defined in (12), by the conservation equations (4) with
(11), along with the initial conditions (15).

11



At g = 0, denoting w = w0, these equations simplify to ∂xw0 = −∂tw0 and ∂xw̄0 = ∂tw̄0.
With the initial conditions, the solution is immediately given by

w0 =
cπ

12

(

T 2
l Θ(t− x) + T 2

r Θ(x− t)
)

, w̄0 =
cπ

12

(

T 2
l Θ(−t− x) + T 2

r Θ(x+ t)
)

. (31)

This indeed represents two sharp shock waves both at velocity 1.
Up to first order in g, we may solve the hydrodynamic problem by using this zeroth-order

solution in order to simplify the bilinar terms proportional to ww̄ in (11). The main idea is that,
at order g, we may replace gw and gw̄ by gw0 and gw̄0 respectively. We first divide space-time
(with positive times t > 0) into three regions: the left (L) x < t, the center (C) −t < x < t
and the right (R) x > t. Within each of these regions, w0 and w̄0 are both constant, with
w0 = cπ

12T
2
l in the center and left, w0 = cπ

12T
2
r in the right; and w̄0 = cπ

12T
2
r in the center and

right, w̄0 =
cπ
12T

2
l in the left. Hence we may write g∂t(ww̄) ≈ gw0∂tw̄+ gw̄0∂tw with w0 and w̄0

piecewise constant, and similarly for g∂x(ww̄). These transform the bilinear terms into linear
terms with piecewise constant coefficients. The equations then become

(∂x + (1 + gw̄0)∂t)w − (∂x − (1 + gw0)∂t)w̄ = 0

(∂t + (1 + 3gw̄0)∂x)w − (∂t − (1 + 3gw0)∂x)w̄ = 0.
(32)

Eqs. (32) are linear equations which we can solve, within each region, by looking for solu-
tions of the form ei(px−Ept). A straightforward calculation shows that these plane waves have
dispersion relations with two branches:

Ep =

{

p(1 + gw̄0 +O(g2))

− p(1 + gw0 +O(g2)).
(33)

We observe that the dispersion relation, to order g, is still linear, and hence only changes the
propagation velocities. This means that the solutions for w(x, t) and w̄(x, t) have the form, up
to O(g2) terms,

w(x, t) = w+(x− v+t) + w−(x+ v−t), w̄(x, t) = w̄+(x− v+t) + w̄−(x+ v−t) (34)

where v+ = 1 + gw̄0 and v− = 1 + gw0. In the left (L), center (C) and right (R) regions we
obtain the velocities:

v±L = v−C = 1 +
gcπ

12
T 2
l , v±R = v+C = 1 +

gcπ

12
T 2
r , (35)

and within these regions we denote the left- and right-moving waves by w±
L,C,R and w̄±

L,C,R. Note
that the propagation velocities (35) are the shock velocities vl and vr obtained in paragraph 2.4.1
from assuming the presence of two shocks.

For definiteness we assume that g > 0, so that all velocities are greater than one; a similar
calculation can be done for g < 0, leading to the same conclusions.

The functions w+, w−, w̄+ and w̄− in (34) are related to each other. This can be obtained
by putting (34) into any one of the two equations (32), for instance the first one. Since the
arguments of the functions are either x − v+t or x + v−t and the equation holds for all x and
t (within a given region), this single equation leads to two relations, one for the right movers
the other for the left movers. These two relations contain single-derivative terms with constant
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coefficients, as in (32). Integrating, one obtains similar relations but without derivatives. The
integration constants may be set to zero, which accounts for the “gauge symmetry” in (34),
w± 7→ w± ± A and w̄± 7→ w̄± ±B for constants A and B. After these operations, we find that
the relations are

(1∓ v+v±)w± = (1± v+v∓)w̄± +O(g2). (36)

Since the velocities are of the form v± = 1 + O(g), we see that w̄+ = O(g) and w− = O(g). It
is then convenient to work solely with w+ and w̄− instead, and using (36) and the form of v±

we find that (34) becomes

w = w+ − gw0w̄
− +O(g2), w̄ = w̄− − gw̄0w

+ +O(g2). (37)

The boundary conditions are conditions on the functions wR,L and w̄R,L. On the right, we
have wR(x, 0) = w̄R(x, 0) = wr for all x > 0, and on the left we have wL(x, 0) = w̄L(x, 0) = wl for
all x < 0, where we recall that wl,r are the thermal values wth(Tl,r). Using the decomposition (37)
and the velocities (35), as well as the leading part of the thermal values wl,r = (cπ/12)Tl,r+O(g),
this gives

w+
R(x) = w̄−

R(x) = wr + gw2
r +O(g2) (x > 0)

w+
L (x) = w̄−

L (x) = wl + gw2
l +O(g2) (x < 0).

(38)

The full solution to the problem is obtained by supplementing the boundary conditions
with the continuity conditions between the regions, at the interfaces x = ±t. The continuity
conditions are obtained by considering the integrated version of the equations (32), which, we
recall, are the full order-g equations and are equivalent to (4). Consider first the jumps at the
interface x = t between the center and right regions. For a shock of velocity 1 between the
center and right regions across the interface x = t, this is (using j = p+O(g2))

hC − hR = jC − jR = kC − kR.

From (11), the first equation is equivalent to

w̄R − w̄C =
g

2
(wC − wR)w̄R +O(g2),

while the second is similar but with g replaced by 3g. Combining, one possible solution is
w̄R = O(g); but it turns out that this is inconsistent with the boundary condition. Hence the
only consistent solution is

wR − wC = O(g), w̄R − w̄C = O(g2) (at x = t). (39)

That is, to order g there is no jump in w̄ at that interface, but there may be an O(g) jump in
w. A similar calculation at the interface x = −t gives

w̄L − w̄C = O(g), wL − wC = O(g2) (at x = −t). (40)

Let us now combine the continuity condition at the interface x = t with the boundary
conditions. Using the decomposition (37) and the velocities (35), the second relation of the
continuity condition (39) is

w̄−
C ((1 + vl)t)− gwrw

+
C ((1− vr)t) = w̄−

R((1 + vr)t)− gwrw
+
R((1− vr)t) +O(g2)
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while the first is w+
C ((1− vr)t) = w+

R((1− vr)t) +O(g), thus leading to

w̄−
C ((1 + vl)t) = w̄−

R((1 + vr)t) +O(g2). (41)

With the initial conditions (38) we then find

w̄−
C (x) = wr + gw2

r +O(g2) (x > 0). (42)

A similar calculation combining the initial conditions with the continuity conditions (40) at the
interface x = −t gives

w+
C (x) = wl + gw2

l +O(g2) (x < 0). (43)

These then imply, using the above assumption that the velocities are greater than 1,

w+
R(x) = wl +O(g) (x < 0), w̄−

L (x) = wr +O(g) (x > 0). (44)

Equations (38) fully fix wR to the right of the right shock, x > vrt, and wL to the left of the
left shock, x < −vlt. Further, since the velocities are greater than 1, equations (42) and (43)
fully fix wC in the center region, −t < x < t. The remaining parts are the areas between the
regions’ interfaces and the shocks, t < x < vrt and −vlt < x < −t. These are fixed by equations
(44), but only up to O(g) terms. Hence, the order g problem does have a unique solution. The
space of solutions include the two-shock solution considered in paragraph 2.4.1, which is that
obtained by setting w+

R(x) = wl + gw2
l +O(g2) (x < 0) and w̄−

L (x) = wr + gw2
r +O(g2) (x > 0).

But it also includes a continuum of solutions, which in general present four shocks, at x = vrt,
x = −vlt and also at x = ±t.

Despite the non-uniqueness of the solution to order g, it is clear that the steady state is
unique. Indeed, the steady state is completely determined by the center region, fixed by equa-
tions (42) and (43) and the decomposition (37). We find

wC = wl − gwl(wr − wl), w̄C = wr + gwr(wr − wl), (45)

and this leads to the following steady-state energy current and density:

js = wC − w̄C = (wl − wr)(1 + g(wl + wr) +O(g2)), (46)

hs = wC + w̄C + gwCw̄C = wl +wr + g(w2
l − wlwr + w2

r) +O(g2), (47)

in agreement with the two-shock solution (25).

2.4.3 Approach to the steady state and spreading of the shocks

We now consider how the steady states is approached, and study the internal structure of the
shocks. In order to do so, we extend beyond the first order in g the analysis by using properties
we expect to be valid at higher orders. The following results are conjectural.

Approach to the steady state. The steady state emerges at large time in the center region.
In order to understand how the system approaches steadiness we have to look at the large time
behavior of w and w̄ in this center region, say at x ≈ 0. Let us solve (32) to all order in g.
Continuing the solution in the central region all the way beyond the region, at t = 0 we find an
initial condition that is a sharp profile (modified by the jumps through the shocks). Because of
this sharp profile, it is better to consider the space derivatives w′ and w̄′, whose initial conditions
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are then of the form w′(x, t = 0) = w̄′(x, t = 0) ∝ δ(x). These have smooth Fourier transforms,
and the solution can be written as

w′(x ≈ 0, t) ≃
∫

dp
[

Upe
i(px−E+

p t) + Vpe
i(px−E−

p t)
]

,

with E±
p the two branches of the dispersion relation in the center region and Up and Vp smooth

functions of p. In the bulk of the steady state, we assume that we can solve recursively, order
by order in g, the system of differential equations by bringing it to linear equations. Thus the
above form should also be valid, but with modified dispersion relation. This is our working
hypothesis. Assuming that Up and Vp stay smooth (because we are dealing with the derivative
of w), for x fixed the large time behavior of the integral representing w(x, t) can be evaluated
by a saddle point approximation. The saddle is at some p∗ and the saddle point integral is then
of the form

∫

dp ei const (p−p∗)2t. As a consequence, w′(x, t) decreases as 1/
√
t. This behavior has

been seen in the approach to the steady state of the non-equilibrium Ising model [12] and in
Ising quantum quenches [34].

Estimating the width of the shocks. We consider a similar type of calculation in order to
estimate the width of the shocks. For this purpose, let us assume that E±

p is of the form
E±

p = ±p(α±+γ±p2+ · · · ), where the coefficients γ± are of order g2. Although parity constrains
the possible dispersion relations, we do not know how to justify within this picture the absence
of a p2 term in full generality, except that it is valid in the Ising case, but we will see that the
result agrees with an independent argument based on quantum flows.

We want to probe points at the “shoulders” of the shocks, so that we set x±v±C t = ǫ t and we
look at the large time behavior with ǫ fixed but large enough. Again, we perform a saddle point
approximation. A simple calculation gives the saddle point to be p⋆ ∼

√
ǫ, and the saddle phase

is ei const ǫ
3/2t. Replacing ǫt by x ± v±C t leads to the phase exp

[

i const
(

(x±v±C t)3

t

)1/2
]

, and thus

we estimate the width of the shocks to be δξshock ≃ (gt)1/3. This scaling relation is reminiscent
to that appearing in KP or KdV equations [35].

Of course this result is conjectural because the argument is based on hypothesis that are
not fully supported by calculations: the use of the linear approximation near the shock, and the
form of the dispersion relation. Nevertheless we find the same estimate using a quite different
approach in the following section.

3 Quantum Virasoro flows and quantum hydrodynamics

In this short Section we would like to make a step towards connecting the previous hydrody-
namic formalism to possible quantum flows on Virasoro modules3. The first step consists in
reformulating the T T̄ perturbations as random diffeomorphisms. This connection, based on the
fact that the stress tensor is the generator of diffeomorphisms, is made here only to first order
in g. We will use it to recover some of the previous results from the quantum flow perspective.

3This tentative formulation was motivated by a seminar given by J. Cardy in December 2014, at the conference
“Mathematical physics of non-equilibrium quantum systems”, King’s College London, in which he presented a
possible connection between T T̄ perturbations and CFTs in random metrics [26]. The approach we follow is
different from that of J. Cardy, as we use a purely algebraic setup without appealing to Hubbard-Stratonovich
transformations.
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To be more specific, let φ(x) be a chiral primary field on the line – with scaling dimension h –
and consider its time evolution φ(x, t) with respect to the perturbed hamiltonian (1). Because T̄
commutes with φ and since T is the generator of diffeomorphisms, we claim that the hamiltonian
flow on chiral fields such as φ is that induced by the “vector field” v(x) := 1 + gT̄ (x), that is:

φ(x, t) := e−itH φ(x) e+itH = [X ′
t(x)]

h φ(Xt(x)), (48)

with Xt the flow line generated by v and started at x at time t = 0, i.e.

Ẋt(x) = v(Xt(x)) = 1 + gT̄ (Xt(x)), with Xt=0(x) = x. (49)

The statement (48) is actually valid to first order in g only, because claiming that φ(x, t) com-
mutes with T̄ is true only to first order in g.

To prove eq.(48) we have to prove that φ(x, t) = [X ′
t(x)]

h φ(Xt(x)) is solution of ∂tφ(x, t) =
−i[H,φ(x, t)]. Let us first recall well-known relations between diffeomorphisms, flow lines and
the stress tensor. Since T is the generator of diffeomorphisms, its commutation relation with a
primary field φ of conformal dimension h read

−i
[

∫

dy ξ(y)T (y) , φ(x)
]

= h ξ′(x)φ(x) + ξ(x)φ′(x).

Hence, for φ(x, t) = [X ′
t]
h φ(Xt) we have

−i
[

∫

dy ξ(y)T (y) , [X ′
t]
h φ(Xt)

]

= h ξ′(Xt) [X
′
t]
hφ(Xt) + ξ(Xt) [X

′
t]
hφ′(Xt),

provided that Xt commutes with T . The latter commutator coincides with the time derivative
∂tφ(x, t) provided we choose Xt such that Ẋt = ξ(Xt), because then Ẋ ′

t = X ′
t ξ

′(Xt) by the
chain rule. That is: to solve for the time evolution we have to choose Xt as the flow line
started at x associated to the vector field ξ. Now, our perturbed CFT hamiltonian is H =
∫

dy
(

T (y)+ T̄ (y)+gT (y)T̄ (y)
)

. Since T̄ commutes with any chiral field, we can apply the above
remark to first order in g provided we identify the vector field ξ with 1 + gT̄ .

Thus, at least to first order in g, the dynamics of chiral fields is encoded into properties
of the flows (49) that we would like to call quantum Virasoro flows. These flows are random
because T̄ is a fluctuating data. We do not yet know whether these quantum flows can be made
mathematically rigorous – of course defining the probability distribution functions of the flow
trajectories from data on the Virasoro algebra requires appropriate regularization.

Let us nevertheless use this flow to deduce properties that were found in the previous sections.
The temperature dependent deformation of the light cone is easy to understand using quan-

tum Virasoro flows. The light cone velocity is simply the mean velocity 〈1+ gT̄ (Xt)〉, evaluated
in the initial state. It is equal to vl,r = 1 + g cπ

12T
2
l,r, with Tl,r the left/right temperatures,

depending in which region the shock front is moving.
The quantum Virasoro flows also give an alternative understanding (based on scaling argu-

ments) for the t1/3-scaling behavior we have been arguing for in the previous Section. Indeed
let us consider two (quantum) trajectories started at neighborhood points x and x + δx, and
let δXt be their separation after a time duration t. By construction, its time evolution is

˙(δXt) = g δT̄ (Xt). Since T̄ is of scaling dimension 2, δT̄ typically scales like 1/(δXt)
2, or

equivalently ˙(δXt) ∼ g/(δXt)
2. By integration this yields that (δXt)

3 scales linearly in time,
(δXt)

3 ∼ g t, which indicates that the correlation length in quantum Virasoro flows scales with
time as (g t)1/3, which thus gives the natural width of the shocks. It would be interesting to
make such arguments less conjectural.
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4 Conclusion

In this paper, we reviewed the general hydrodynamic approach to non-equilibrium quantum
field theory. In order to study non-equilibrium effects it was important to keep two conserved
quantities, including a parity-odd conserved charge, in the local fluid description. We then
applied these ideas to develop a hydrodynamic approach for conformal field theory perturbed
by the T T̄ operator. We verified by direct quantum computations that the main aspects of
hydrodynamics emerge at first nontrivial order in the coupling g.

An immediate question is about the higher orders in perturbation theory. Clearly there were
many simplifications at first order, in particular the emergence of Lorentz invariance, which are
not present at higher orders. At higher orders, the fact that the perturbation is irrelevant may
become more crucial and generate non-universal contributions.

It will also be interesting to study the internal structure of the shocks, already at first order
in g. We believe that the conjectured scaling relations are correct and universal. An important
further question concerns the existence or not of universal structures inside the shocks, in a way
similar to what has been revealed in classical fluctuating hydrodynamics [37].

In this paper we have focussed on mean transport phenomena and it will be very interesting
to describe fluctuations and their large deviation functions. In particular one may wonder
whether the extended fluctuation relations [38], proved in pure non-equilibrium conformal field
theory and in integrable systems (and conjectured to hold as well in higher-dimensional CFT
[19]), remain valid once the T T̄ perturbation has been turned on.
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A Relativistic thermodynamics

Consider a one-dimensional quantum system with the following general structure: a hamiltonian
H generating time translations and a momentum operator P generating space translations, both
expressed as integrals of local densities:

H =

∫

dxh(x), P =

∫

dx p(x); (50)

and the conditions that (1) both are conserved:

∂th+ ∂xj = 0, ∂tp+ ∂xk = 0, (51)

and that (2) the momentum density is equal to the energy current, plus possibly an even deriva-
tive of the energy current:

p = j + µ∂2ℓ
x j, ℓ ≥ 1 (52)
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where µ is some constant. We are interested in the “generalized thermal” state, where both
the hamiltonian and the momentum operator are present. We parametrize it by a “rest-frame
temperature” T and a “boost parameter” θ:

〈· · ·〉θ =
Tr

(

e−
1

T
(cosh θH−sinh θ P ) · · ·

)

Tr
(

e−
1

T
(cosh θ H−sinh θ P )

) ,

and below we will denote hθ = 〈h〉θ, etc.
We assume that there is parity symmetry whereby H is invariant and P changes sign, that

the ground state is parity invariant, and that the limit T → 0 of the state 〈· · ·〉θ is the ground
state, independently of θ. Further, we assume that the densities are homogeneous and (as
the notation suggests) not explicitly time dependent: for instance, [P, h(x)] = i∂xh(x) and
[H,h(x)] = −i∂th(x). Note that there is a simple gauge symmetry: we may change h(x) 7→
h(x) + α1 and k(x) 7→ k(x) + α′1 for any constants α and α′ without changing any of the
conditions. We will also use the principle according to which

[P,O] = 0 ⇒ O ∝ 1 (53)

for local densities O. Note that pθ = jθ since the average of a derivative of a homogeneous
density is zero.

It turns out that this structure is constraining enough to imply relativistic invariance. We will
indeed show from the above that averages in a generalized thermal state take their relativistic
form, and that a standard thermodynamic relation between the variations of pressure and of
temperature hold: under the choice of gauge such that h0 + k0 → 0 as the temperature T goes
to 0,

hθ = cosh2 θ h0 + sinh2 θ k0

kθ = sinh2 θ h0 + cosh2 θ k0

pθ = sinh θ cosh θ
(

h0 + k0
)

(54)

and
(h0 + k0)dT = Tdk0. (55)

Remark that, from (55), if h0 ∼ AT q for some q > 1 as T → 0, then k0 ∼ A′ T + AT q/(q − 1),
where A and A′ are some constants4 (the case q ≤ 1 would pose physical problems as it implies
that the pressure becomes negative in some temperature range). Equations (54) can also be
written in the Lorentz-invariant form T

µν
θ = k0 η

µν + (h0 + k0)u
µ
θu

ν
θ , where ηµν = diag(−1, 1) is

the Minkowsky metric, Tµνθ =

(

hθ pθ

pθ kθ

)

is the stress-energy tensor and uµθ =

(

cosh θ
sinh θ

)

is the

relativistic velocity.
These are purely dynamical relations. All the information about the particular model at

hand may be imbedded into the “equation of state”, and once this information is given, the
above provide all averages explicitly in terms of the temperature and the boost parameter. By

4In fact, there is a stronger statement, based on a weaker assumption: if h0 ≤ AT q
∀ T > 0 small enough,

then k0 = A′ T + g(T ) with g(T ) ≤ Aq
q−1

T q
∀ T > 0 small enough.

18



parity invariance in the thermal state, p0 = 0. Hence there is one parameter characterizing h0

and k0, so we can define the function F such that the following equation of state holds:

k0 = F (h0). (56)

Then, given F the relation (55) provides the explicit temperature dependence in the thermal
state,

log T =

∫

k0 dℓ

ℓ+ F−1(ℓ)
=

∫

h0 dℓ F ′(ℓ)

ℓ+ F (ℓ)
. (57)

Note that in the generalized thermal state, the equation of state is more complicated, and, from
relations (54), takes the form

√

(

hθ + kθ
)2 − 4p2θ − hθ + kθ = 2F

(

√

(

hθ + kθ
)2 − 4p2θ + hθ − kθ

)

. (58)

Although we restricted the analysis to one-dimensional systems, the above hold as well
in higher dimensions, where the effective one-dimensional system is obtained by averaging on
hyper-surfaces transverse to the x direction in a d-dimensional space. Denote by Tµν the cur-
rent associated with invariance under translation in the direction xν , with x0 = t, x1 = x and
transverse direction x⊥ = (x2, . . . , xd). Then h(x), p(x) and k(x) are transverse averages of the
energy density V −1

∫

V d⊥x T00(x), of the x-momentum density V −1
∫

V d⊥x T01(x), and of the
x-pressure density V −1

∫

V d⊥x T11(x), respectively, where V is the transverse volume. This is
particularly relevant for energy transport, as the direction of transport makes the system effec-
tively one-dimensional. We note that, for instance, in scale invariant systems in d dimensions,
the equation of state is

k0 = d h0 (59)

Proofs

First we may redefine the energy density and current as follows:

h̃ = h+ µ∂2ℓ
x h, j̃ = j + µ∂2ℓ

x j. (60)

This is such that h̃ is still an energy density, H =
∫

dx h̃ up to local densities at infinity, that
the conservation equation holds, ∂th̃+∂xj̃ = 0, and that the new energy current is exactly equal
to the momentum density, j̃ = p. Further, these re-definitions do not affect the properties of
the energy density and current under a parity transformation. Hence without loss of generality,
below we assume that h and j have been chosen in such a way that j = p.

For lightness of notation we omit the index θ, except when it is equal to 0 (thermal state).
First we show that there exists a boost operator B giving rise to the algebra

[B,H] = P, [B,P ] = H, [H,P ] = 0. (61)

Indeed, consider

B = −i

∫

dxxh(x). (62)

Then we have

[B,H] = −i

∫

dxx[h(x),H] =

∫

dxx∂th(x) = −
∫

dxx∂xp(x) =

∫

dx p(x) = P
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and

[B,P ] = −i

∫

dxx[h(x), P ] = −
∫

dxx∂xh(x) =

∫

dxh(x) = H,

up to local densities at infinity. Local densities at infinity do not contribute whenever the
operators are exponentiated either when acting on local observables by adjoint action, or in
some density matrix where averages of local observables are taken5. �

Remark that we used the fact that the energy current is the momentum density only in
the first calculation: for any translation invariant system we have [B,P ] = H, even without
relativistic invariance.

Naturally, the algebra (61) implies that the generalized thermal state is a boosted state, so
that

Oθ = 〈eθB O e−θB〉0
for any local observable O.

We next show that
∂θh = 2p, ∂θp = h+ k, ∂θk = 2p (63)

under the choice of gauge characterized by the fact that h0 + k0 → 0 as T → 0.
Let B(x) = e−iPxB eiPx be the translated of B. We have B(x) = B + ixH. Let now

[B,h](x) = e−iPx[B,h]eiPx be the translated of [B,h] with h = h(0). Since [B,h](x) =
[B(x), h(x)] we have:

[B,h](x) = [B,h(x)] − x∂xp(x),

where we use the equation of motion i[H,h(x)] = −∂xp(x). Integrating,

P = [B,H] =

∫

dx (−p(x) + [B,h](x)) = −P +

∫

dx [B,h](x)

which is valid up to local densities at infinity, whereby

[B,h](x) = 2p(x) + i∂xb(x)

for some local density b(x).
Let us show that b(x) is a homogeneous density, ∂xb(x) = −i[P, b(x)]. By definition [B,h](x)

is a homogeneous density: −i[P, [B,h](x)] = ∂x[B,h](x). Since also p(x) is, then ∂xb(x) is a local
homogeneous density: ∂x[P, b(x)] = i∂2

xb(x). The last equation means that [P, b(x)] − i∂xb(x)
is independent of x. According to (53), the only local densities that are independent of x are
those proportional to the identity operator 1, hence

[P, b(x)] − i∂xb(x) = α1 (64)

for some constant α. Further, under parity we have that [B,h](x) − 2p(x) changes sign (in
addition to x changing sign). Hence b(x) changes sign, again up to a local density that is
independent of x. That is, under parity, b(x) 7→ −b(−x) + α̃1 for some other constant α̃.
Putting this into (64), we find that the left-hand side changes sign under parity, whereby we
must have α = 0. Therefore

[B,h](x) = 2p(x) + [P, b(x)]. (65)

5That is, this is valid from the point of view of the properties of time and space translations or of states, not
the point of view of the averages of H and P in a state.
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and this leads to the first of (63).
By a similar argument,

[B, p(x)] = x∂xk(x) + [B, p](x)

and integrating,

H = [B,P ] =

∫

dx (−k(x) + [B, p](x))

up to local densities at infinity, therefore

[B, p](x) = h(x) + k(x) + i∂xb
′(x) (66)

for some local density b′(x). Again ∂xb
′(x) is a homogeneous density, so that, by arguments as

above, [P, b′(x)]− i∂xb
′(x) = α′1 for some constant α′. We cannot use parity symmetry in order

to fix the constant α′, however we may absorb it into an appropriate gauge choice for the sum
of the energy density h(x) and the pressure k(x). With this choice of gauge, the second of (63)
follows. Since as T → 0 the state specializes to the ground state, which is assumed to be Lorentz
invariant, then from (63) this choice of gauge can be characterized by the fact that h + k → 0
as T → 0.

Finally, let us set x = 0 in (66), giving

[B, p] = h+ k + [P, b′]− α′1.

We apply [H, ·] on both sides and use the algebra (61) as well as the conservation equations (3).
We obtain on the left-hand side

−[P, p] + [B, [H, p]] = −[P, p] + [B, [P, k]] = [P, [B, k]− p] + [H, k]

and on the right-hand side

[H,h] + [H, k] + [P, [H, b′]] = [P, p] + [H, k] + [P, [H, b′]].

Comparing, and using (53), we get the relation

[B, k] = 2p + [H, b′] + α′′1

for some constant α′′. This gives ∂θk = 2p + α′′. Again, as T → 0 the state specializes to the
ground state which is Lorentz invariance, whence 2p0 + α′′ = 0. Further, by parity invariance
of the ground state p0 = 0, whereby α′′ = 0. This shows the third relation of (63). �

From (63), relations (54) immediately follow: keeping the temperature T fixed, the system
of three first-order ordinary differential equations (63) in θ has a unique solution with the initial
conditions h0, p0 and k0 at θ = 0, and one can check that (54) is a solution. �

Finally we show (55). For this purpose, we show the two relations

sinh θ ∂θp− cosh θ ∂θh = sinh θ T∂Th− cosh θ T∂Tp

sinh θ ∂θk− cosh θ ∂θp = sinh θ T∂Tp− cosh θ T∂Tk (67)

Denote the density matrix as e−βhH−βpP . These two relations are a re-writing of

∂

∂βh
p =

∂

∂βp
h,

∂

∂βh
k =

∂

∂βp
p
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respectively. The first one is trivial as the equality boils down to
∫

dx 〈h(x)p(0)〉c =
∫

dx 〈h(0)p(x)〉c
where 〈· · · 〉c is the connected average. The second one in (67) can be obtained by differentiating
the first one with respect to θ (assuming that the T and θ derivatives can be interchanged), and
by using (63). Then consider the second relation of (67) at θ = 0, which is ∂θ〈p〉|θ=0 = T∂T 〈k〉0.
Using (63) this is 〈h〉0 + 〈k〉0 = T∂T 〈k〉0. �

References

[1] R. Kubo, “Some aspects of the statistical-mechanical theory of irreversible processes”, in
Lecture Notes in Theoretical Physics, ed. by W.E. Brittin, L.G. Dunham, pp. 120, Inter-
science Publ., 1959.
P. Resinous, M. De Leener, “Classical Kinetic Theory of Fluids”, Wiley, New York, 1977.
S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert, “Relativistic Kinetic Theory”, North-
Holland, Amsterdam, 1980.

[2] P. Nozieres, D. Pines, “The Theory of Quantum Liquids”, Benjamin, New York, 1966.
See also: S.Jeon, L.G. Yaffe, “From quantum field theory to hydrodynamics: Transport
coefficients and effective kinetic theory”, Phys. rev. D 53, 5799 (1996).
E. Bettelheim, A. G. Abanov, P. Wiegmann, “Quantum hydrodynamics and nonlinear
differential equations for degenerate Fermi gas”, J. Phys. A 41, 392003 (2008).

[3] D. Bernard, B. Doyon, “Energy flow in non-equilibrium conformal field theory”, J. Phys.
A 45, 362001 (2012).
D. Bernard, B. Doyon, “Non-equilibrium steady-states in conformal field theory”, Ann. H.
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