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Abstract: Adding a linear trend in regressions is a frequent detrending method in economic literatures.
The traditional literatures pointed out that if the variable considered is a difference-stationary process,
then it will artificially create pseudo-periodicity in the residuals. In this paper, we further show that
the real problem might be more serious. As the Ordinary Least Squares (OLS) estimators themselves
are of such a detrending method is spurious. The first part provides a mathematical proof with
Chebyshev’s inequality and Sims–Stock–Watson’s algorithm to show that the OLS estimator of trend
converges toward zero in probability, and the other OLS estimator diverges when the sample size
tends to infinity. The second part designs Monte Carlo simulations with a sample size of 1,000,000
as an approximation of infinity. The seed values used are the true random numbers generated by a
hardware random number generator in order to avoid the pseudo-randomness of random numbers
given by software. This paper repeats the experiment 100 times, and gets consistent results with
mathematical proof. The last part provides a brief discussion of detrending strategies.

Keywords: stochastic process; detrending method; spurious regressions; Chebyshev’s inequality;
Monte Carlo simulation; pseudo-randomness

1. Introducing the Problematic

The traditional time-series models focused on stationary processes. As a matter of fact, Wold’s
(1954) [1] famous decomposition theorem indicated that any covariance-stationary process could
be formulated as the sum of infinite white noises. Thanks to this stationary process’ property,
the Autoregressive moving average model (ARMA) models applying the method proposed by Box and
Jenkins (1970) [2] gradually became the main modeling in time-series analysis. However, what happens
when the series are not stationary?

By simulating two distinct random walks and regressing one to another, Granger and Newbold
(1974) [3] revealed the “spurious regression problem.” The OLS estimators of the correlation between
these two independent random walks should be zero, but the Monte Carlo simulations performed by
the econometricians indicated OLS estimators significantly different from zero, along with very high R2.
They put forward the idea that such a regression is “spurious,” because it makes no sense, even when it
exhibits very high R2. Other authors, such as Phillips (1986) [4] or Davidson and McKinnon (1993) [5],
revealed similar results, leading to the following conclusions: (i) If the dependent variable is integrated
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of order 1, that is to say, I(1), then under null hypothesis, the residuals of the regression would also be
I(1). However, as the usual statistical tests of the OLS estimators (Fisher or Student tests) are based on
a hypothesis of residuals as white noise, these tests are no longer effective if such an assumption is not
maintained. (ii) Some asymptotic properties are no longer valid, such as those of the ADF statistics,
because they did not obey the same laws in the case of stationary processes. (iii) As the residuals are also
I(1), the previsions are not efficient—except when a cointegration relationship between variables exists.

Here, we only examine time-series nonstationarity on average, to be distinguished from that in
variance. Since Nelson and Plosser’s (1982) [6] contribution, nonstationarity on average can itself be
classified into two categories: the first one is related to trend-stationary (TS) processes which present
nonstationarity because of the deterministic trends characterizing their structure; the second category
is linked to difference-stationary (DS) processes which contain a stochastic structure, or unit root.
The processes considered can be made stationary by adding or removing the deterministic trends in the
regressions in the case of TS processes, or, alternatively, in the case of DS processes, through difference
operators, going from ARMA to Autoregressive Integrated Moving Average model (ARIMA).

Unit root tests are generally used to identify the nature of a nonstationary process, whether
deterministic or stochastic. For DS, in particular, a solution is offered within ARIMA models through
difference operators or the cointegration methods respectively proposed by Engle and Granger (1987) [7]
in a univariate approach, and by Johansen (1991) [8] in a multivariate approach. Meanwhile, Stock
(1987) [9] has demonstrated that, within such frameworks, the OLS estimators converge toward the
real values if the variables are cointegrated, and the speed of convergence is faster than that of the
usual case (that is, 1/T instead of 1/ √T , where T is the sample size).

The cointegration theory achieved great success, but it has several inconveniences. It requires
that all the variables must be integrated in the same order; otherwise, the cointegration models cannot
be applied. However, it is difficult to make sure that all series have the same order of integration in
the economic model which is tested. For example, GDP growth rates are often I(0), while some price
indices can be I(2). Moreover, a supplementary difficulty in using difference operators destined to
stabilize a DS process comes from the fact that variables in various orders of difference may not match
the theoretical models which are employed.

It follows that the detrending method consisting of adding a linear trend into the regression has
become common in empirical studies, due to its simplicity and its compatibility with a wide range of
models. Many authors have chosen to add a linear trend in their regressions when they considered
their dependent variables as nonstationary. Thus, detrending methods are often used in TS processes
despite the nonstationary nature of the latter. Nevertheless, TS detrending methods cause specific
problems when the series is in fact a DS process.

2. Literature Review

Studying the implications of treating TS processes as DS processes with the application of a
difference operator, Chan, Hayya and Ord (1977) [10] found that the difference operator creates an
artificial disturbance in the differentiated series. Indeed, the autocorrelation function equals to −1/2
when lag = ±1. Later, Nelson and Kang (1981) [11] examined the reverse case, in other words, the effects
of treating DS processes as TS processes by adding a linear trend into the regression, and stated
that, when a detrending method is used, the covariance of the residuals depends on the size of the
sample and on time. By simulation, they showed that adding a linear trend into the regressions for
TS processes generates a strong artificial autocorrelation of the residuals for the first lags, and thus
induces a pseudo-periodicity—the corresponding spectral density function exhibiting a single peak
at a period equal to 0.83 of the sample size. More precisely, treating TS processes as DS processes by
difference operator artificially creates a “short-run” cyclical movement in the series, while, conversely,
a “long-run” cyclical movement is artificially generated when treating DS processes as TS processes
(we speak about “short-run,” since the disturbance happens when lag = ±1, and “long-run,” because
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the problem appears when the period corresponds to 0.83 of the sample size, or almost the same
importance than the latter).

These fundamental studies have shown the importance of distinguishing between TS and DS
processes, but remained concentrated on artificial correlations of the residuals. None of them focused on
the OLS estimators themselves. In addition, the samples which are used are relative small. Following
Nelson and Kang’s (1981) [11] research line, we shall mathematically demonstrate that the OLS
estimators of detrending method by adding a linear trend in DS processes can be considered as
spurious. As we shall see, the OLS estimator of the trend tends to zero when the sample size tends to
infinity, while the other OLS estimator (intercept) is divergent in the same situation. After this, we shall
design a simulation series to be experimented on by a sample of a million observations. The seed values
are given by Rand Corporation (2001) [12]. As the dataset of simulation contains more than 100 million
points, we shall present the program built by SAS with the seed values table in the Appendix A, so that
readers will be in a position to reproduce the simulations with the same codifications.

3. A Mathematical Proof

We suppose that yt is a DS; for example, the random walk:

yt = yt−1 + vt

where vt is a white noise—and considering a weak form of stationarity, or of the second order.
Let us apply a time detrending method by adding a linear trend into the regression; that is to say,

we have the model:
yt = α+ βt + εt

where α and β are coefficients to be estimated, and t is the time variable: t = 1,2,3 . . . T, with T the
sample size, or number of observations. εt is the innovation.

Suppose: Xt =

(
1
t

)
, γ =

(
α
β

)
, and bT is the OLS estimators of γ based on a sample of size T.

We get:

bT =

(
α̂T

β̂T

)
=

 T∑
t=1

XtX′t


−1 T∑

t=1

Xtyt


For the term: T∑

t=1

XtX′t

 = ( ∑
1

∑
t∑

t
∑

t2

)
=

(
T T(T + 1)/2

T(T + 1)/2 T(T + 1)(2T + 1)/6

)
As (

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
Then: T∑

t=1

XtX′t


−1

=
1

T2(T + 1)(2T + 1)/6− T2(T + 1)2/4

(
T(T + 1)(2T + 1)/6 −T(T + 1)/2
−T(T + 1)/2 T

)

=
12

T2(T + 1)(T − 1)

 T(T+1)(2T+1)
6 −

T(T+1)
2

−
T(T+1)

2 T


=

2
T(T − 1)

(
2T + 1 −3
−3 6/(T + 1)

)
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Additionally, for the term:  T∑
t=1

Xtyt

 =


T∑
t=1

yt

T∑
t=1

tyt


So: (

α̂T

β̂T

)
= 2

T(T−1)

(
2T + 1 −3
−3 6/(T + 1)

)
T∑

t=1
yt

T∑
t=1

tyt


= 2

T(T−1)

(
(2T + 1)

∑
yt − 3

∑
tyt

−3
∑

yt +
6

T+1
∑

tyt

)
Thus, we have, respectively: α̂T = 2

T(T−1) ((2T + 1)
∑

yt − 3
∑

tyt)

β̂T = 6
T(T−1)

(
−

∑
yt +

2
T+1

∑
tyt

) (A)

However, initially we have seen that:

yt = yt−1 + vt

Additionally
vt ∼WN

That is:

yt = y0 +
t∑

j=1

v j

Therefore:

T∑
t=1

yt =
T∑

t=1

y0 +
t∑

j=1
v j

 = Ty0 + Tv1 + (t− 1)v2 + · · ·+ 2vT−2 + vT

= Ty0 +
T∑

t=1
(T + 1− t)vt = Ty0 + (T + 1)

T∑
t=1

vt −
T∑

t=1
tvt

Additionally:

T∑
t=1

tyt =
T∑

t=1
t

y0 +
t∑

j=1
v j

 = y0
T∑

t=1
t +

T∑
t=1

t

 t∑
j=1

v j


= y0

(T+1)T
2 + (1 + · · ·+ T)v1 + (2 + · · ·+ T)v2 + · · ·+ (T − 1 + T)vT−2 + TvT

= y0
(T+1)T

2 +
T∑

t=1

(t+T)(T−t+1)
2 = y0

(T+1)T
2 +

T(T+1)
2

T∑
t=1

vt −
1
2

T∑
t=1

t2vt +
1
2

T∑
t=1

tvt

It becomes:

α̂T = y0 +
(T + 1)(T + 2)

(T − 1)T

T∑
t=1

vt −
4T + 5
T − 1

T∑
t=1

t
T

vt +
3T

T − 1

T∑
t=1

t2

T2 vt

Additionally

β̂T = −
6

(T + 1)
·
1
T

T∑
t=1

vt −
6T2

(T + 1)(T − 1)
·
1
T

T∑
t=1

t2

T2 vt +
6T(T + 2)

(T + 1)(T − 1)
·
1
T

T∑
t=1

t
T

vt
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When T→ +∞ , we respectively get:

(T + 1)(T + 2)
(T − 1)T

→ 1, −
4T + 5
T − 1

→ −4,
3T

T − 1
→ 3, −

6
(T + 1)

→ 0, −
6T2

(T + 1)(T − 1)
→ −6,

and
6T(T + 2)

(T + 1)(T − 1)
→ 6.

Thus, we need to determine the convergence of the six terms:
T∑

t=1
vt,

T∑
t=1

t
T vt,

T∑
t=1

t2

T2 vt, 1
T

T∑
t=1

vt,

1
T

T∑
t=1

t
T vt and 1

T

T∑
t=1

t2

T2 vt. Intuitively, they seem to tend toward zero when T→ +∞ .

Both
T∑

t=1
vt and 1

T

T∑
t=1

vt converge to zero; as vt is a white noise, its expectation is zero. However,

for the other terms, that multiply a coefficient situated between 0 and 1, the symmetry of white noises
in infinity is not valid. So, t

T vt or t2

T2 vt cannot be cancelled by each other. Additionally, as vt may be

positive, negative or zero, the inequality 0 < t
T vt < vt (or 0 < t2

T2 vt < vt) does not hold true; however,
we cannot use the squeeze theorem to prove that the limits of the remaining four terms exist and that
they are equal to zero.

Consequently, we turn now to the Chebyshev’s inequality (see here, among many others: Fischer
(2010) [13], Knuth (1997) [14] and originally, Chebyshev (1867) [15]). If X is a random variable, E(X) = µ,
V(X) = σ2 for ∀k ∈ R and k > 0, and then:

Pr
(∣∣∣X − µ∣∣∣ ≥ kσ

)
≤

1
k2

Here, it is clear that, if we could demonstrate that the variances of the four terms are bounded,
the convergence in probability of the four terms is also proven. Let us note:

A = 1
T

T∑
t=1

t
T vt B =

T∑
t=1

t
T vt

C = 1
T

T∑
t=1

t2

T2 vt D =
T∑

t=1

t2

T2 vt

We first study the convergences of A and B, then, symmetrically, we shall get the conclusions for
C and D.

As vt is a white noise, that is, E(vt) = 0, so V(vt) = σ2 is constant over time and, for ∀i , j,
Cov(vi, v j) = 0. Obviously, E(A) = 0 and E(B) = 0:

V(B) =
12

T2 V(v1) +
22

T2 V(v2) + · · ·+
T2

T2 V(vT) +
T∑

i, j

Cov(
i
T

vi,
j
T

v j)

As Cov(vi, v j) = 0 for ∀i , j, then: Cov( i
T vi,

j
T v j) = 0 and V(vt) = σ2 for any t. We have:

V(B) = σ2
B =

σ2

T2

(
12 + 22 + · · ·+ T2

)
=
σ2

T2
1
6

T(T + 1)(2T + 1) =
(T + 1)(2T + 1)

6T
σ2

Additionally,

V(A) = σ2
A =

1
T2 V(B) =

(T + 1)(2T + 1)
6T3 σ2
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According to the general version of the Chebyshev’s inequality, we know that, for variable A:

Pr
(∣∣∣A− E(A)

∣∣∣ ≥ kσA
)
≤

1
k2

Pr(|A− 0| ≥ kσA) ≤
1
k2

1− Pr(|A| ≥ kσA) ≥ 1−
1
k2

As
1− Pr(|A| ≥ kσA) = Pr(|A| ≤ kσA)

Pr(|A| ≤ kσA) ≥ 1−
1
k2

When T→ +∞ ,

σA =
√

V(A) =

√
(T + 1)(2T + 1)

6T3 σ2 = 0

So:
lim

T→+∞
Pr(|A| ≤ kσA) = Pr(|A| ≤ 0) ≥ 1−

1
k2

For any k > 0, when k→ +∞ , Pr(|A| ≤ 0) ≥ 1. Obviously: Pr(|A| = 0) = 1. Consequently, we can

infer that, when T→ +∞ , then: A P
→0.

Nevertheless, regarding B, as its variance tends to infinity when T→ +∞ , so B is divergent.

Symmetrically, we can demonstrate that, when T→ +∞ , C P
→0 and D are divergent, because:

V(D) =
T(T + 1)(2T + 1)

(
3T2 + 3T − 1

)
30T4

σ2

Additionally,

V(C) =
T(T + 1)(2T + 1)

(
3T2 + 3T − 1

)
30T6 σ2

When T→ +∞ , V(C)→ 0 and V(D)→ +∞ .
Turning back to the OLS estimator bT, we see that, when T→ +∞ , α̂T is not convergent, and β̂T

converges to zero in probability. So, when the sample size grows to infinity, the coefficient of the trend
will tend to zero. This means that this trend is useless. We are indeed still regressing from a random
walk to another one. The high R2 of the regressions observed in the literature might just be caused by
the similarity between a trend and a random walk in the short run, as seen in the simulations performed
by Newbold and Granger (1974) [3]. In other words, adding a linear trend in the regressions for DS
processes would not play any significant role; and it would even involve “new” spurious regressions
in the sense of Granger and Newbold (1974) [3].

As Box and Draper (1987) [16] pertinently wrote it: “Essentially, all models are wrong, but some
are useful” (p. 424).

4. Verification by Simulation

In order to verify this mathematical proof, let us simulate the model by SAS through Monte
Carlo simulation. The Monte Carlo simulations are widely used computational methods that rely
on repeated random sampling to obtain numerical results. It is now more and more popular, in the
research of economics based on the use of randomness, to solve deterministic problems (for a
more introductive presentation of Monte Carlo simulations, see Rubinstein and Kroese (2016) [17]).
The Monte Carlo simulations have the following advantages in economic fields (for a survey on
the application of Monte Carlo simulations in economics, see Creal (2012) [18]): (1) some economic
models are too complicated to find analytical solutions in short time, or even impossible, as in this
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situation, Monte Carlo simulations are efficient methods to find numerical solutions (for example,
see Kourtellos et al. (2016) [19]). (2) For some economic models, it is difficult to find practical examples
in the real world that strictly meet the conditions of the theoretical models (Lux (2018) [20]). For instance,
the sample size of macro variables are relatively short, it is difficult to meet the statistical credibility.
However, in this situation, Monte Carlo simulations provide the possibility of large samples to verify
some economic theories. (3) Due to the methods of data collection, the endogenous problems and
identification problems sometimes exists in economic modeling (see the critical of Romer (2016) [21]).
As a consequence, the estimated statistical relationships are no longer reliable. Monte Carlo simulations
provide an effective way to explore the relationships between economic variables (for example,
Reed and Zhu (2017) [22]).

The Monte Carlo simulations also have their disadvantages: (1) Monte Carlo simulations cannot
replace the strict mathematical proof, but only provide approximate calculations based on probability
when the analytic solutions cannot be provided or cannot be provided temporarily. That is to say
it is just a non-deterministic algorithm opposite to the deterministic algorithm. This is why in the
first section we also provide a strict mathematical proof. (2) Monte Carlo simulations only provide a
possibility of exploring the problems, but the results of experiments may depend on the scientificity of
the experimental design. For instance, this paper underlines the importance of true randomness in the
experimental design.

The aim of the Monte Carlo simulations in this research is to reveal that, when the considered
variable is a DS process, what kinds of problems will appear if we treat it as a TS process. So we
need three basic assumptions: (1) the variable is DS, to strictly guarantee this point, the experimental
design chooses the simplest and most common DS process, namely, random walk. (2) Infinite sample
size; the mathematical proof based on asymptotic consistent theory requires an infinite sample size.
Additionally, Monte Carlo simulations are probabilistic methods, which also need a large enough
sample size. Thus, one million is chosen as the approximation of infinity. (3) True randomness.
To avoid false conclusions caused by pseudo-random numbers, the experimental design takes a
two-step strategy to ensure the true randomness of generated random numbers. That is to say, in the
first step, we generate true random numbers by hardware random number generator as seed values;
in the second step, we use the true random numbers as seed values to generate the samples of 1
million size.

That is to say, to do that, we shall follow four successive steps:

• Step 1: We generate a white noise, vt, with a sample size of T = 1,000,000. Here, we set the white
noise as Gaussian. The seed values (see Table A1) employed for the simulations at this step are
provided by the Rand Corporation (2001) [12] with a hardware random number generator to
make sure that the simulations effectively use true random numbers, because the random number
generated by software is in fact a “pseudorandom.”

• Step 2: We generate a random walk, yt, in our original equation by setting y0 = 0:

yt = yt−1 + vt

yt also having a million observations.
• Step 3: We then regress the DS, yt, to a linear trend with an intercept.
• Step 4: We repeat this experiment 100 times successively, and each time we use a different true

random number as a seed value.

The simulation results appear to be consistent with the mathematical proof. The details of α̂T, β̂T

and R2 are summarized in Table 1 and in Table A2 of Appendix C. The simulation program by SAS is
provided in Appendix B, the reader could reproduce our work with the same codes. Besides, Figures 1
and 2 (presenting only the first 10 simulations to make them concise) show the evolutions of α̂T and β̂T

when the sample size grows from 100 up to 1,000,000 points, while the simulations of α̂T, β̂T, t̂α̂T
and

t̂
β̂T

generated by various seed values with a true random number are shown in Figures 3 and 4.
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Table 1. Summary of the simulation results, with a sample size of T = 1,000,000.

α̂T t̂α̂T β̂T t̂
β̂T

R2

Mean 6.11764361 6.14650186 0.00002174 60.0860629 0.45983

Variance 143,633.942 554,191.079 1.57763 × 10−6 2,744,822.52 0.10287

Standard Deviation 378.990689 744.440111 0.00125604 1656.75059 0.32073

Max 867.64848 1707.15789 0.00307578 5799.95595 0.97113

Min −743.23667 −1501.88113 −0.00245505 −3604.89913 1.15357 × 10−5

P-value of null test 0 - 0 - -

Note: The location tests of α̂T and β̂T cannot be the judgments of convergence to zero because the convergence
means that the latter occurs within the sample when T tends to infinity.

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 21 

 

 
Figure 1. Evolutions of 𝛼  when the sample size increases from 100 up to 1,000,000. 

 
Figure 2. Evolutions of 𝛽  when the sample size increases from 100 up to 1,000,000. 

 

beta

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

900

bootstrap

0 10 20 30 40 50 60 70 80 90 100
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(1) From Figures 1 and 2, we can observe that α̂T is divergent, with its variance increasing when

the sample size grows, while β̂T converges to zero. The simulation results therefore confirm the
mathematical proof previously provided. In addition, from Figure 2, we see that the sample
size should be greater than at least 1000 to get a conclusion of convergence becoming clear.
That is, the size of the samples simulated by Granger and Newbold (1974) [3] or Nelson and Kang
(1981) [11] seem to not be big enough to support their conclusions; even if the latter are right,
and can be confirmed and re-obtained by our own simulations mobilizing 1,000,000 observations
as an approximation of infinity (the sample size was 50 for Granger and Newbold (1974) [3]
and 101 (in order to calculate a sample autocorrelation function of 100 lags) for Nelson and Kang
(1981). This is probably because computers’ calculation capacities were much less powerful in the
1970s than today. Thanks to the progress in computing science, we can reinforce the statistical
credibility of their findings).

(2) From Figure 3, we observe that, as expected, when T→ +∞ , β̂T converges to zero (the magnitude

level of β̂T is 10−5 considering that the decimal precision of the 32-bit computer used is 10−7,
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which is almost not-different from zero) and α̂T is divergent even if the seed values are modified.
For 100 different simulations, the conclusions still hold, which indicates that there is no problem
of pseudo-randomness in our simulations (even if their conclusions are correct, the simulations by
Granger and Newbold (1974) [3] as well as by Nelson and Kang (1981) [11] did not pay attention
to the pseudo-randomness, nor specify how the random numbers are obtained). By performing
them, as we set all y0 equal to zero, if α̂T is convergent, then it must converge to y0, in other words,
to zero. However, α̂T seriously deviates from its mathematical expectation zero for different
simulations. Thus, the regressions are spurious because the OLS estimator of the trend converges
to zero and the other OLS estimator diverges when the sample size tends to infinity.

(3) From the last column of Table 1, we see that, sometimes, these regressions get a very high R2

(the highest being 0.97, with an average of 0.45 for the 100 experiments). This is a classic result
associated to spurious regressions, already pointed out by Granger and Newbold (1974) [3].

(4) From Table 1 and Figure 4, we see that the t-statistics of the OLS estimators are very high, and that
all the p-values of H0 : t̂α̂T

= 0 and H0 : t̂
β̂T

= 0 are zero. Thus, the OLS estimators are definitely
significant when the sample size tends to infinity. This is also a well-known result associated to
spurious regressions, since the residuals are not white noises (as indicated above, and studied
by Nelson and Kang (1981) [11], we did not test the correlation of the residuals here). In these
conditions, we understand that the usual and fundamental Fisher or Student tests of the OLS
estimators are no longer valid, precisely because they are based on the assumption of residuals as
white noises. If we use such a detrending method in DS processes, we will indeed get wrong
conclusions of significance of the explicative variables.

We understand that our results call for a re-examination of the robustness of the classic findings
in macroeconomics. To give an example, in a famous paper, Mankiw, Romer and Weil (1990) [23]
identified a significant and positive contribution of education to the per capita GDP growth rate. In a
theoretical framework close to a Solowian model, their approach consisted in augmenting a production
function with constant returns to scale and decreasing marginal factorial returns, by including a
variable of human capital in order to regress, in logarithms, per capita GDP to the investment rates of
physical capital and of schooling. Their conclusion is probably accurate; but, as they added a linear
trend as a detrending method, whatever the input variable that is selected, it will be found statistically
significant as long as the size of their sample is sufficiently large. Our own study has described, in an
original manner, the behavior of OLS estimators themselves when the sample size tends to infinity.
By comparison, the samples used for simulation by Chan, Hayya and Ord (1977) [10], or Nelson and
Kang (1981) [11], are relatively small—even if, obviously, they were extremely useful.

5. Concluding Remarks

The introduction of a linear trend generally aimed at avoiding spurious regressions. However,
Nelson and Kang (1981) [11], following Chan, Hayya and Ord (1977) [10], had showed that, in OLS
estimates, the assimilation of a difference-stationary process (DS)—the most probable process for GDP,
with that of unit root, according to Nelson and Plosser (1982)—to a trend-stationary process (TS), (as did
Chow and Li (2002) [24], among others, while the log of China’s GDP may present a unit root) can lead
to a situation where the covariance of the residuals depends on the size of the sample, which artificially
induces an autocorrelation of the residuals for the lags, and, by generating a pseudo-periodicity in
the latter, generates a cyclical movement into the series. However, their analyses mainly focused on
the residuals, and their simulated sample size remained small. Here, following Nelson and Kang’s
(1981) research line, and using the Chebyshev’s inequality, we have given a strict mathematical proof
of the fact that the OLS estimators of a detrending method by adding a linear trend in DS processes are
spurious. When the sample size tends to infinity, the OLS estimator of the trend converges toward zero
in probability, while the other OLS estimator is divergent. The empirical verification attempted by
designing a series through the Monte Carlo method and by performing simulations on a sample of a
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million observations as an approximation of infinity and true random numbers as seed values has
finally provided results consistent with the mathematical proof.

Thus, in the context of what has been specified here, our main conclusion according to which the
OLS estimators themselves are spurious when the sample size increases also implies that identifying
the nature of time series becomes extremely important. For example, it is crucial to decide whether GDP
series are to be treated as TS or DS processes—in a short-run context in which random walks usually
look like TS processes (on the basis of many macroeconomic series, Nelson and Plosser (1982) [6] have
stated that GDP series would be DS rather than TS processes. More recent studies, such as that by Darné
(2009) [25], have reexamined GNP series with new unit root tests, and shown that the US GNP expressed
in real terms seems to be a stochastic trend). Even if their effectiveness is questioned, especially because
of the sensitivity of the choice of the truncation parameters, we recommend using unit root tests to
reduce the risk of inappropriately selecting the detrending method, but by regressing the variables of
the models used in the first differences of the logarithm forms when such tests show that they contain
unit roots (such an advice has been applied in a recent study on China’s long-run growth using a
new time-series database of capital stocks from 1952 to 2014 built through an original methodology.
See Long and Herrera (2015, 2016) [26,27]). From a theoretical point of view, regressions in the first
differences of the logarithm forms are acceptable both by neoclassic and Keynesian modeling, in which
they can easily be interpreted in terms of growth-rate dynamics; and from an econometric point of
view, logarithms might be useful when a problem of heteroscedasticity appears, while difference
operators can help to avoid spurious regressions if there are unit roots. To avoid the over-differencing
problem, we finally recommend using inverse autocorrelation functions (IACFs) to determine the
order of integration, along with unit root tests and correlogram (See Cleveland (1972) [28], Chatfield
(1979) [29] and Priestey (1981) [30]). That is to say, we suggest the following modeling strategy: (i) if the
unit roots tests and correlogram indicate that the variables are stationary in the first differences of
the logarithm forms; we stay in traditional time series regressions. (ii) If the variables contain unit
roots in the first differences of the logarithm forms, we could pass to cointegration framework or
effectuate a second difference operation. (iii) If unit root tests and correlogram both indicate that the
series seem be stationary but IACF indicates that the series might be over-differenced (in this case,
Autoregressive Function (ACF) and Partial Autoregressive Function (PACF) present characteristics of
stationary process (or decrease hyperbolically) while IACF presents characteristics of nonstationary
process) that implies an integer order of integration is not sufficient, the true order of integration
might be between 0 and 1. That is to say, we might need to pass from traditional time series models to
fractal theory (Hosking (1981) [31]) such as AutoRegressive Fractionally Integrated Moving Average
(ARFIMA) models or fractional cointegration.
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Appendix A Simulation Program by SAS, with Explanation Annotations

data simulation1;
call streaminit(77381); *The number in parenthesis is the seed value in Appendix B;
do t=1 to 1000000; *The sample size is one million;

v1=rand(“normal”); *Set the white noises series as Gaussian;
output; *Repeat the simulation 100 times and respectively obtain the white noises v1,v2...v100;

end; *Use a different seed value in Appendix B for each replication;
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run; *Use the true random number generated by hardware random number generator in order to avoid
the pseudo-randomness of random numbers given by software.;

data simulation; *Merge the white noises into a single dataset;
merge simulation1-simulation100;

run;

data simulation0; *Generate 100 random walks by setting all the initial values equal to 0;
set simulation;
array randomwalk(*) v1-v100;*Define an array with do loop in order to reduce the code;
array y(100);

do i=1 to 100;*The random walk is the accumulated sum of white noise;
y(i) + randomwalk(i);

end;
run;

proc reg data=simulation0 outest=reg;
model y1-y100=t/RSQUARE; *Get 100 regressions and store the R2;

run;
quit;

proc reg data=simulation0 outest=reg0 TABLEOUT;
model y1-y100=t/ RSQUARE;

run; *Create another dataset in order to store the student statistics of OLS estimators;
quit;

data reg1;
set reg0;
if _TYPE_=“T”;
rename Intercept=t_alpha t=t_beta;
drop _MODEL_ _TYPE_ _RMSE_ y1-y100 _IN_ _P_ _EDF_ _RSQ_;

run; *Only reserve the student statistics of OLS estimators;

data reg;
merge reg1 reg;
by _DEPVAR_;

run; *Merge the datasets;

data reg;
set reg;
rename t=beta;
rename Intercept=Alpha;
rename _DEPVAR_=bootstrap;
drop _MODEL_ _TYPE_ _IN_ _P_ _EDF_ _RMSE_ y1-y100;
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run; *Rename the variables from automatic SAS names to specific names and drop all information we
don’t need;

data reg;*As the variable bootstrap is character it will sort in order y1 y10 y100 y2 y21 y3....y99 in
figures. We change them into numeric.;

set reg; *We can also correct this problem in the array statement step by adding a leading zero such
as y01 y02....y09 y10...y100.;

bootstrap=substr(bootstrap,2,3);
run;

data reg;
set reg(rename=(bootstrap=bootstrap_char));

bootstrap = input(bootstrap_char,best.);
drop bootstrap_char _MODEL_ _TYPE_ y1-y100;

run; *Change the variable bootstrap from character to numeric;

proc univariate data=reg;
var alpha beta t_alpha t_beta;
histogram alpha beta t_alpha t_beta / kernel normal;

run; *Calculate some elements in Table 1;
proc gplot data=reg;

plot beta*bootstrap alpha*bootstrap/overlay;
symboli=join;

run;*Represent Figures 3 and 4;

%macro reg(size);*define a macro program to consider the behaviors of OLS estimators when sample
size increase from 100 to 1000000;

%do i = 100 %to &size %by 10000;
%let j= %sysevalf((&i−100)/10000);

proc reg data=simulation0(where=(t<=&i))
outest=out&j(keep=intercept t) noprint;
model y1=t;
run;
quit;

%end;
%mend;

%reg(1000000) *Invoke the macro reg(size) and let size=1000000;

data reg1; *merge the datasets;
set out0-out99;
run;

%macro rename;*Define a new macro program in order to rename variables because SAS automatically
creates the same names in each regression;
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%do i=1 %to 10;
data reg&i;
set reg&i;
rename intercept=intercept&i t=t&i;
run;

%end;
%mend;

%rename *Invoke the macro program;

data order(keep=size); *Create an index variable;
do n=0 to 99;

size=100+10000*n;
output;
end;

run;

data reg0; *Merge the datasets;
merge order reg1-reg10;

run;

proc gplot data=reg0; *Represent Figures 1 and 2;
plot (intercept1-intercept10)*size/ overlay;

symboli=join;
plot (t1-t10)*size / overlay;

symboli=join;
run;
quit;

Appendix B

Table A1. Table of Seed Values.

18200 77381 59443 87430 77462 41440 75496 49906 09823 81293 89793
18201 79729 86526 22633 99540 23354 55930 37734 97861 68270 33174
18202 82377 53502 13615 21230 25741 59935 60282 90430 66251 75758
18203 31592 30957 14458 77037 10777 45252 69494 74509 16031 80045
18204 33553 07210 29127 18634 71052 35182 89048 04978 00451 46072
18205 59326 45916 55698 08330 92541 10196 37699 81162 65562 24792
18206 61082 83586 98989 78927 68800 44882 96851 79167 92786 82529
18207 14373 76009 65876 29319 63212 22002 57795 28772 74823 95093
18208 90754 76767 81309 32874 61792 63659 10851 29106 84988 63128
18209 33936 11659 56754 48332 08687 41299 31220 37709 28335 91985

Source: Rand Corporation (2001) [12], p. 365. Online: http://www.rand.org/pubs/monograph_reports/MR1418.html.
Note: Here, the computer operating system used is Windows7-32 bits Home premium, with the 9.3 version of SAS.
The results might be a little bit different in another operating environment—most programming languages use the
IEEE 754 international standard. With this standard, a 32-bits computer can use a 23-bits precision when decimal
numbers have no accurate representation in binary. However, for a 64-bits computer, it can use a 52-bits precision.

http://www.rand.org/pubs/monograph_reports/MR1418.html
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Appendix C

Table A2. Simulation Results (Using a sample size of a million points).

Bootstrap Alpha T_Alpha Beta T_Beta _RSQ_

1 −516.428 −994.213 0.001478 1642.975 0.729684

2 −197.89 −454.435 0.001673 2218.098 0.83108

3 −270.459 −441.39 −0.00137 −1293.6 0.625945

4 −319.191 −499.053 0.00172 1552.42 0.706746

5 59.65598 147.5 −0.0021 −3001.91 0.900115

6 128.2268 303.2709 0.000895 1222.664 0.599184

7 340.0485 723.4509 −0.00085 −1049.39 0.524084

8 106.5433 173.9056 −0.0005 −473.332 0.183036

9 312.9737 707.3468 −0.00201 −2623.79 0.873166

10 706.1975 1119.959 −0.00064 −587.675 0.256706

11 −127.036 −339.147 0.000358 552.4023 0.233804

12 543.8749 1136.501 0.001163 1402.911 0.663091

13 588.8941 1529.704 −0.00052 −783.353 0.380284

14 −648.32 −813.506 −0.00027 −192.58 0.035761

15 656.4477 765.2626 −0.00222 −1496.84 0.69141

16 11.84133 27.68874 0.000893 1205.204 0.592256

17 488.6455 598.7078 −4.9 × 10−5 −34.3688 0.00118

18 −465.545 −725.822 0.000631 568.3724 0.244169

19 −248.422 −564.73 0.000643 844.1401 0.416084

20 48.52915 105.5969 −0.00044 −549.449 0.231889

21 −101.445 −287.474 0.000207 338.1793 0.102628

22 127.0612 299.2239 0.002335 3175.413 0.909774

23 −33.161 −99.9226 −1.3 × 10−5 −22.9001 0.000524

24 −453.84 −745.754 0.001144 1085.507 0.540932

25 235.6821 619.602 −0.00118 −1797.21 0.763592

26 −218.546 −584.063 −0.00084 −1290.12 0.624682

27 −440.194 −973.892 6.51 × 10−5 83.11338 0.00686

28 −449.678 −1043.2 0.000493 660.5926 0.303807

29 112.1348 289.5755 −0.00141 −2105.15 0.815894

30 581.1902 1689.905 −0.00215 −3604.9 0.928548

31 −587.032 −1501.88 0.002193 3239.642 0.913008

32 −369.762 −1367.25 −0.00042 −889.29 0.441602

33 −389.217 −555.687 0.000312 256.8726 0.061899

34 867.6485 1281.799 −0.00091 −772.52 0.373743

35 436.7767 1145.472 0.000166 251.6912 0.059575

36 270.2492 565.8382 −0.0021 −2537.89 0.865607

37 216.3166 600.8799 −0.00052 −837.362 0.412172

38 −231.201 −467.153 −0.00027 −319.307 0.092524
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Table A2. Cont.

Bootstrap Alpha T_Alpha Beta T_Beta _RSQ_

39 91.05972 183.4367 −0.00069 −798.691 0.389465

40 −311.184 −661.038 0.000234 287.2567 0.076227

41 88.70737 226.1573 0.000826 1216.426 0.596725

42 −418.93 −845.305 0.00045 523.9499 0.215393

43 139.4184 556.7029 0.000388 895.4936 0.445033

44 131.9699 299.7307 0.001769 2319.397 0.843251

45 235.8081 671.6881 −8.7 × 10−5 −143.432 0.020158

46 −183.356 −385.223 0.001201 1457.079 0.679804

47 −450.714 −849.624 −0.00025 −270.624 0.06824

48 −102.254 −255.019 −0.00238 −3433.09 0.92179

49 −639.041 −1252.14 0.000926 1047.677 0.523272

50 362.1756 950.0575 −0.00026 −398.336 0.136943

51 210.3742 444.9447 −0.00122 −1484.72 0.687928

52 421.0867 909.9346 0.000898 1120.044 0.556443

53 −455.699 −1037.49 −0.00086 −1129.1 0.560416

54 421.7283 649.61 −0.00237 −2104.8 0.815844

55 521.1628 1052.502 −0.0014 −1628.74 0.726237

56 −470.648 −899.902 −0.00035 −387.837 0.130751

57 30.66679 83.32206 6.79 × 10−6 10.65426 0.000114

58 −299.44 −621.459 −0.00184 −2199.16 0.828659

59 83.65093 193.0325 −0.00104 −1381.63 0.656228

60 −144.012 −384.873 0.002268 3500.093 0.924532

61 831.9241 1056.377 0.000812 595.4674 0.261765

62 −261.051 −540.941 0.001855 2219.531 0.831261

63 −98.1186 −153.397 −0.00042 −382.35 0.127545

64 858.1653 1707.158 −0.00167 −1919.83 0.786587

65 −4.99706 −16.7538 0.001905 3686.877 0.931474

66 82.03943 203.1585 −0.00132 −1889.56 0.781203

67 −79.6881 −179.748 0.001974 2570.223 0.868526

68 −144.75 −270.425 0.000239 257.2805 0.062084

69 106.8698 344.2261 −0.00147 −2741.72 0.882588

70 224.7479 457.0921 0.001897 2227.121 0.832217

71 −531.303 −700.132 0.001526 1160.838 0.574023

72 −431.824 −1038.13 0.000284 393.6544 0.134172

73 −209.465 −398.03 0.000603 661.8163 0.304591

74 304.19 458.4119 −0.00137 −1195.68 0.588419

75 406.7961 471.6883 0.000832 556.7575 0.236629

76 −275.16 −545.632 −4.3 × 10−5 −49.7171 0.002466

77 −149.003 −351.097 0.000263 357.8227 0.113505

78 −743.237 −1276.95 0.001326 1315.394 0.633735
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Table A2. Cont.

Bootstrap Alpha T_Alpha Beta T_Beta _RSQ_

79 −562.356 −967.819 0.002533 2516.59 0.863635

80 426.6258 808.3939 −0.00093 −1012.77 0.506345

81 620.8599 946.9761 −0.00246 −2161.95 0.823759

82 206.2948 509.1332 0.001018 1449.979 0.677673

83 658.6789 1399.053 2.77 × 10−6 3.396448 1.15 × 10−5

84 −183.309 −454.236 −0.00093 −1326.52 0.637638

85 −12.3161 −31.8307 −2.7 × 10−5 −40.1805 0.001612

86 −218.468 −581.44 3.37 × 10−5 51.82376 0.002679

87 −183.216 −381.86 0.000529 636.5787 0.288374

88 −286.844 −549.021 0.000599 662.0088 0.304714

89 374.423 746.4409 −0.00154 −1775.53 0.759183

90 418.4504 492.2846 0.00037 251.4381 0.059462

91 −159.337 −361.947 −2.9 × 10−5 −37.6401 0.001415

92 −229.543 −385.27 −0.00095 −915.922 0.456201

93 149.2659 379.5512 0.002918 4283.706 0.948321

94 124.2723 235.9754 −0.00066 −726.347 0.34537

95 −542.8 −1029.7 0.000313 342.646 0.105071

96 335.8 459.1723 9.31 × 10−5 73.50074 0.005373

97 230.6743 753.4047 0.003076 5799.956 0.971131

98 −450.053 −1081.94 0.000144 199.1844 0.038161

99 180.6602 451.0257 −0.00037 −535.181 0.222649

100 −206.238 −370.228 −0.00059 −609.264 0.270714
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