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Constrained Cramér-Rao lower bounds for
CP-based hyperspectral super-resolution
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Pierre Comon, Fellow, IEEE, David Brie, Member, IEEE.

Abstract—We propose a theoretical performance analysis for
the hyperspectral super-resolution task, formulated as a coupled
canonical polyadic decomposition. We introduce two probabilistic
scenarios along with different parameterizations, then derive
constrained Cramér-Rao lower bounds (CCRB) for the proposed
scenarios. We then illustrate the versatility of the CCRB through-
out a set of experiments, including its usefulness to design the
hyperspectral measurement system. We also assess the relative
performance of existing estimators and use the CCRB as a tool
to design more efficient algorithms.

Index Terms—hyperspectral super-resolution, multimodal data
fusion, coupled tensor decompositions, Cramér-Rao bounds.

I. INTRODUCTION

Hyperspectral super-resolution (HSR) [1] is a problem
of growing interest in the signal processing community. It
consists in fusing a multispectral image (MSI), which has
a good spatial resolution but few spectral bands [2], and a
hyperspectral image (HSI), whose spatial resolution is lower
than that of the MSI. The aim is to recover a super-resolution
image (SRI), which possesses both high spatial and spectral
resolutions. This problem lies in the framework of multimodal
data fusion [3] between heterogeneous datasets. The datasets
have different parametric models with shared variables, linked
through possibly non-linear deterministic relations.

Many methods were developed for solving the HSR prob-
lem. Early matrix-based approaches include coupled nonneg-
ative matrix factorization [4] (CNMF), methods based on
solving Sylvester equations [5], Bayesian approaches (HySure
[6]), FUMI [7], to name a few. Most of these methods are
based on a coupled low-rank factorization of the matricized
hyperspectral and multispectral images.

In [8], a promising tensor-based method was proposed,
making use of the inherent 3D nature of spectral images.
Assuming that the SRI itself admits a low-rank canonical
polyadic (CP) decomposition (CPD), the HSR problem is
reformulated as a coupled CP approximation. An alternating
least squares (ALS) algorithm called Super-resolution TEnsor
REconstruction (STEREO) is proposed, achieving high recon-
struction performance. In some cases, the spatial degradation
operator is unknown, therefore blind algorithms are needed. A
blind version of STEREO was proposed in [8] that also uses
an ALS algorithm for a coupled CP model.
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In parallel, Cramér-Rao bounds (CRB) for tensor CP models
have been studied in a general context. In [9], [10], [11],
performance bounds for uncoupled CP models have been
provided. In [12], a Bayesian framework was proposed for
flexible coupling models and hybrid Cramér-Rao bounds were
derived. Constrained Cramér-Rao bounds (CCRB) for partially
coupled complex tensors admitting a CPD and possibly non-
linear couplings were explored in [13]. The expression of
the bound was based on the work in [14], which considers
a specific case where the Fisher information matrix (FIM) for
the parameters is invertible.

Only recently the performance bounds have been studied
for the HSR problem [15], [16]. Based on the above works, in
[15], constrained performance bounds for the estimation of the
latent CP factors were provided in a simple case. This work
was extended to the case of constraints involving a random
parameter in [16].

In this paper, we study performance bounds for coupled
CP tensors in the HSR framework: in particular, we adopt
a degradation model that is more general than that of [15],
and thus, that is more fair to the specific acquisition scenario
of HSIs and MSIs. We introduce two probabilistic scenarios,
leading to different choices of parameterizations. For each
scenario, we derive the CCRB for the model parameters, based
on the results in [17], [18], extending that of [14]; in particular,
they do not require identifiability of the model at hand. We
use the CCRB as a tool to study the impact of the design of
the acquisition of the HSI on the theoretical performance of
the model for the estimation of the latent CP factors.

Notation. In this paper, we follow [19], [20] for tensor
notations. We use the following fonts: lower (a) or uppercase
(A) plain font for scalars, boldface lowercase (a) for vectors,
boldface uppercase (A) for matrices and calligraphic (A) for
tensors. The elements of vectors, matrices, and tensors are
denoted to as ai, Ai,j and Ai1,...,iN , respectively. For a matrix
A, we denote its transpose by AT. We use the notation IN for
the N ×N identity matrix and 0L×K for the L×K matrix of
zeros. The symbols � and � denote the Kronecker and Khatri-
Rao products, respectively. The operator ⊗ stands for the
vector outer product. We use vec{·} for the standard column-
major vectorization of a matrix or a tensor. For a vector a, the
operator diag{a} produces a diagonal matrix whose diagonal
entries are the elements of a. For two matrices A and B,
the operation Diag{A,B} produces a block-diagonal matrix
whose diagonal blocks are A and B.

II. BACKGROUND ON TENSORS AND HSR

A. Tensor algebra preliminaries

A third-order tensor X ∈ RI×J×K can be viewed as a
three-dimensional array indexed by the elements Xi,j,k, for
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i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and k ∈ {1, . . . ,K}. Each
dimension of a tensor is called a mode. A mode-p fiber of X
is a vector obtained by fixing all but the p-th dimension.

Definition II.1. Tensor unfoldings – The mode-p unfolding
of a tensor X , denoted by X(p), is the matrix whose rows are
the p-mode fibers of X , ordered according to the vectorization
order. For a third-order tensor X ∈ RI×J×K , we haveX(1) ∈
RJK×I , X(2) ∈ RIK×J and X(3) ∈ RIJ×K .

Definition II.2. Matrix mode product – The matrix p-mode
product between a tensor X and a matrix M is denoted by
X •pM and is evaluated such that each mode-p fiber of X
is multiplied by M . For instance, the elements of the mode-1
product between X ∈ RI×J×K and M ∈ RL×I are accessed
as (X •1M)`,j,k =

∑
i

Xi,j,kM i,`, ` ∈ {1, . . . , L}.

Moreover, we have Y = X •kM ⇔ Y (k) = X(k)MT.

Definition II.3. Outer product – The outer product between
three vectors a ∈ RI , b ∈ RJ , c ∈ RK is a rank-one tensor
X = a ⊗ b ⊗ c ∈ RI×J×K whose elements are accessed as
Xi,j,k = aibjck.

B. Canonical polyadic decomposition
Definition II.4. Canonical polyadic decomposition – A third-
order tensor admits a CPD as X = [[A,B,C]], where
A ∈ RI×N , B ∈ RJ×N , C ∈ RK×N are the latent CP
factors of the decomposition. When minimal, the integer N
denotes the tensor rank of X . Each entry of X can be
expressed equivalently as

Xi,j,k =

N∑
n=1

Ai,nBj,nCk,n. (1)

The CPD enjoys powerful uniqueness conditions: indeed,
the CP factors A, B, C are essentially unique up to scaling
and permutation ambiguities, if the rank N is not too large
[19], [20]. Permutation ambiguity means that the columns
of the latent CP factors can be reordered arbitrarily by any
permutation matrix Π ∈ RN×N as

X = [[A,B,C]] = [[AΠ,BΠ,CΠ]].

The scaling ambiguity means that the the individual factors
can be scaled as

Xi,j,k =

N∑
n=1

(αnAi,n)(βnBj,n)(γnCk,n), (2)

with αnβnγn = 1 for n ∈ {1, . . . , N}. When deriving
Cramér-Rao bounds, permutation ambiguities can be neglected
while a proper factor normalization is required to fix the
scaling ambiguities. Throughout the paper, we correct this
ambiguity by setting the first rows of the A and B factors to
ones. This corresponds to rescaling eq. (2) with αn = 1

A1,n
,

βn = 1
B1,n

and γn = 1
αnβn

.

Property II.5. Tensor unfoldings under CP model – The
unfoldings of X admitting a CPD (1) can be expressed as

X(1) = (C �B)AT ∈ RJK×I ,
X(2) = (C �A)BT ∈ RIK×J ,
X(3) = (B �A)CT ∈ RIJ×K .

C. Uniqueness of the CPD

Definition II.6. Kruskal rank – The Kruskal rank of a matrix
M , denoted κ(M), is defined as the maximum value k such
that any k columns of M are linearly independent [21], [22].

One of the most general and well-known sufficient condi-
tions on uniqueness of the CPD is due to Kruskal [21], [23]
and reads as follows:

κ(A) + κ(B) + κ(C) ≥ 2N + 2.

Stronger results are available for generic uniqueness. We
say that the CPD X = [[A,B,C]] of rank N is generically
unique if, for random matrices A, B, C distributed according
to an absolutely continuous probability distribution, we have

min(I,N) + min(J,N) + min(K,N) ≥ 2N + 2. (3)

Equivalently, the set of A, B, C not leading to unique
decomposition has measure zero. In this case, the Kruskal
condition implies (3).

In [24], another sufficient condition was provided:

N ≤ 2blog2(J)c+blog2(K)c−2. (4)

However, it should be mentioned that (3) and (4) are only
sufficient conditions ensuring generic uniqueness.

The best known bounds on generic uniqueness are given
in [25, Theorem 1]. In particular, it is shown that generic
uniqueness takes place for all N such N < d IJK

I+J+K−2e (i.e.
all ranks smaller than the generic rank) except few special
cases and so-called unbalanced tensors, see [25] for more
details.

D. Coupled CP Model for hyperspectral super-resolution

We consider two tensors Y1 ∈ RIH×JH×K and Y2 ∈
RI×J×KM . In HSR, Y1 and Y2 represent the HSI and MSI,
respectively. The spectral resolution of the MSI is lower than
that of the HSI (KM � K), while its spatial resolution
is higher (I > IH , J > JH ). Under the same acquisition
conditions, the MSI and HSI usually represent the same target,
hence Y1 and Y2 are viewed as two degraded versions of a
single SRI X ∈ RI×J×K . The HSR problem thus consists in
recovering the SRI X from Y1 and Y2.

We adopt the following degradation model that can be
compactly written as contraction of X ∈ RI×J×K with
matrices P , Q, R:{

Y1 = X •1P •2Q+ E1,

Y2 = X •3R+ E2,
(5)

where P ∈ RIH×I , Q ∈ RJH×J , and R ∈ RKM×K have full
row rank. The matrix R is the spectral degradation matrix
containing the spectral response functions [26] of each band
for the multispectral sensor, and P , Q are the spatial degrada-
tion matrices, i.e., we assume (for simplicity) that the spatial
degradation is separable. For instance, the commonly accepted
Wald’s protocol [27] uses separable Gaussian blurring and
downsampling in both spatial dimensions. The entries of the
noise terms E1 ∼N (0,Σ1), E2 ∼N (0,Σ2) are independent
and identically distributed (i.i.d.) real Gaussian tensors with
zero mean and variances Σ1 = σ2

1I and Σ2 = σ2
2I .



3

Following [8], we assume that X admits a CPD with rank
N . The degradation model (5) becomes{

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,
(6)

where A1 = PA2,B1 = QB2,C2 = RC1, (7)

and A1 ∈ RIH×N , B1 ∈ RJH×N , C1 ∈ RK×N , A2 ∈
RI×N , B2 ∈ RJ×N , C2 ∈ RKM×N are the factor matrices
of the CPD. With this notation, the SRI admits a CPD

X = [[A2,B2,C1]].

While (6) only is an uncoupled model, the addition of the
constraints in (7) lead to the fully-coupled HSR.

In some applications, the spatial degradation matrices P
and Q are unknown, and we refer to this case as blind-HSR.
Similarly to model (6)–(7), we define the blind CP model as
follows: {

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,
(8)

where C2 = RC1, (9)

thus blind-HSR only accounts for the knowledge of the
spectral degradation matrix R.

E. Estimation

In the uncoupled case, estimation of the CP factors can be
performed by applying the uncoupled ALS algorithm [28] to
Y1 and Y2. The identifiability of both CPDs is required. For
instance, for Y1, ALS minimizes the following cost function:

min
A1,B1,C1

1

σ2
1

‖Y1 − [[A1,B1,C1]]‖2F ,

which corresponds to the Maximum Likelihood (ML) Estima-
tor (MLE) for A1,B1,C1.

The fully-coupled HSR problem (6)–(7) can be solved by
the algorithm STEREO proposed in [8]. It is a coupled ALS
algorithm minimizing the criterion

min
A2,B2,C1

‖Y1 − [[PA2,QB2,C1]]‖2F (10)

+ λ‖Y2 − [[A2,B2,RC1]]‖2F .

Assuming independent Gaussian noise and λ =
σ2
1

σ2
2

, STEREO
corresponds to the MLE for coupled Y1 and Y2. In [8,
Theorem 3], a sufficient condition for generic uniqueness of
the CPD of the SRI recovered by STEREO in the noiseless
case was provided:

N ≤ min
(

2blog2(JKM )c−2, IHJH

)
. (11)

In the proof of [8, Theorem 3], it is specified that identifiability
of Y1 (HSI) (i.e., generic uniqueness of its CPD) is not needed
to establish uniqueness of the recovered SRI. The link between
identifiability and uniqueness of the coupled CP model will be
provided in section III-A.

In the blind-HSR, the spatial degradation matrices P and
Q are unknown. In order to estimate the CP factors, we use
Blind-STEREO, which is a coupled ALS algorithm that only

accounts for the spectral degradation matrix R. The criterion
minimized by Blind-STEREO is

min
A1,B1

A2,B2,C1

‖Y1 − [[A1,B1,C1]]‖2F (12)

+ λ‖Y2 − [[A2,B2,RC1]]‖2F ,

which is the ML criterion for the Blind-HSR problem if λ =
σ2
1

σ2
2

. According to [8, Theorem 4], identifiability of Y1 and Y2

is required to ensure unique recovery of the SRI by Blind-
STEREO in the noiseless case.

III. CRAMÉR-RAO LOWER BOUNDS FOR COUPLED MODELS

A. Link between uniqueness and identifiability

First, we explain how uniqueness of the coupled CP model
(6)–(7) in the noiseless case is related to the calculation of
the CRB. In estimation theory, the notion of identifiability
lacks a unified definition. In the literature, it is also called
“observability” [29], [30]. In this paper, we propose to define
it as the uniqueness of the proposed model.

Let us consider the probability density function (PDF) fY;ω

of the random real dataset Y ∈ Rn parameterized by the
unknown real deterministic parameter ω ∈ Ω ⊆ Rm. We
assume that Y is a random real Gaussian dataset parameterized
by its mean, that is, Y ∼N (µ(ω),Σ) with Σ a known, non-
singular covariance matrix.

We say that the statistical model F = {fY;ω : ω ∈ Ω}
is identifiable if the mapping ω 7→ fY;ω is injective [31], i.e.,
any distribution fY;ω corresponds to a single parameter ω. For
the case of our Gaussian dataset, the following holds true:

fY;ω1
= fY;ω2

⇔ µ(ω1) = µ(ω2). (13)

Thus, identifiability of the distributions is equivalent to identi-
fiability of the means, i.e., identifiability in the noiseless case.

Definition III.1. Identifiability at a point – The noiseless
model Y = µ(ω) is identifiable at the point ω0 if

(ω 6= ω0)⇒ (µ(ω) 6= µ(ω0)) ∀ω ∈ Rm. (14)

Definition III.2. Local identifiability – The noiseless model
Y = µ(ω) is locally identifiable at ω0 if there exists an open
subset Ω0 ⊆ Rm containing ω0 such that

(ω 6= ω0)⇒ (µ(ω) 6= µ(ω0)) ∀ω ∈ Ω0. (15)

In the above model, the Fisher information matrix (FIM)
for ω is obtained via the Slepian-Bangs formula [32]:

F(ω) =
[
∂µ(ω)
∂ωT

]T
Σ−1

[
∂µ(ω)
∂ωT

]
∈ Rm×m, (16)

where ∂µ(ω)
∂ωT is the Jacobian of µ(ω). If the FIM in (16) is

non-singular, then µ(ω) is locally identifiable in the noiseless
case [29, Theorem 5].

A question that arises from the previous paragraph is
whether local identifiability implies non-singularity of the
FIM. For the case of tensor decompositions, the answer
is positive. Let us consider that Y is a vectorized tensor
of subgeneric rank admitting a CPD as in (1), and that
ω = [vec{A}; vec{B}; vec{C}], µ(ω) = vec{[[A,B,C]]}.
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Generic uniqueness of the CPD of Y implies that the rank of
the Jacobian of µ(ω) in the generic case is equal to

rank
(
∂µ(ω)

∂ωT

)
= (I + J +K − 2)N

generically1 (i.e., except for a set of parameters ω of measure
zero), see [34, Sec. 3.2], [35], and [36, Def. 3.5]. Thus,
the Jacobian is full rank once the scaling ambiguities in (2)
are corrected; see section IV-B for more details on scaling
ambiguities for coupled cases. Finally, from (16) it follows
that full rank in the Jacobian implies that the FIM is invertible.

B. Coupled model with constraints

Let fY1;ω and fY2;ω be the PDFs of the random real datasets
Y1 ∈ Rn1 and Y2 ∈ Rn2 , parameterized by the unknown
deterministic real parameter vector ω ∈ Ω.

A general coupled model with constraints is expressed as:{
Y1 ∼ fY1;ω and Y2 ∼ fY2;ω,

g(ω) = 0,
(17)

with g a non-redundant deterministic vector function differ-
entiable ∀ω ∈ Ω. Non-redundancy means that the system of
equations gi(ω) = 0 is not reducible [13].

We assume that:
(i) the PDFs fY1;ω and fY2;ω are non-redundant functions

differentiable w.r.t. ω, and that their supports do not
depend on ω;

(ii) the variables Y1 and Y2 are statistically independent.
In some cases, the model parameter ω ∈ Ω corresponds to the
stacking of two parameters ψ ∈ Ψ ⊆ Rm1 and ξ ∈ Ξ ⊆ Rm2

(m = m1 +m2) such that

ω =

[
ψ
ξ

]
,

where ξ can be expressed as a function of ψ, i.e., ξ = h(ψ).
The function h is a non-redundant, differentiable function
∀ψ ∈ Ψ. This results in the constraint

g(ω) = ξ − h(ψ) ∈ Rm2 , (18)

which can also be directly inserted in ω, leading to the
following reparameterization

ω(ψ) =

[
ψ

h(ψ)

]
. (19)

The model (17) can thus be reformulated as the following
unconstrained coupled model{

Y1 ∼ fY1;ψ and Y2 ∼ fY2;ψ. (20)

Here, the PDFs are solely parameterized by the unknown
deterministic real parameter vector ψ ∈ Ψ, under the same
assumptions (i) and (ii) on the PDFs as in model (17).

1This results is well-known for complex tensors, but it is also valid for real
tensors, see [33].

C. Uncoupled CRB

We consider that Y1 and Y2 are random real Gaussian
distributed datasets parameterized by their mean, i.e., Y1 ∼
N (µ1(ω),Σ1) and Y2 ∼ N (µ2(ω),Σ2) where Σ1 and Σ2

are known covariance matrices. The parameter ω is unknown
real and assumed to be deterministic. The uncoupled FIM for
ω is obtained by using the Slepian-Bangs formula [32]:

F (ω) =

[
∂µ1(ω)
∂ωT

∂µ2(ω)
∂ωT

]T
Diag{Σ1,Σ2}−1

[
∂µ1(ω)
∂ωT

∂µ2(ω)
∂ωT

]
. (21)

If the FIM is non-singular, then the uncoupled CRB for
ω (namely CRB(ω)) is obtained as CRB(ω) = F−1(ω).
From section III-A, we see that invertibility of the FIM implies
local identifiability of the whole parameter ω.

In some cases, however, the FIM can be singular (and thus,
non-invertible): common practice is to resort to the Moore-
Penrose pseudo-inverse of the FIM for the computation of the
CRB [37], [38]. In such cases, any estimator of ω must have
infinite variance [38]: in this paper, we choose not to compute
the CRB when the FIM is singular. For uncoupled estimation,
the constraint g(ω) = 0 is ignored.

D. Expression for CCRB

Numerous works have addressed performance bounds on ω
under the constraint g(ω) = 0, leading to the definition of
the constrained FIM and the constrained CRB (CCRB). The
versatility of the CCRB has been illustrated in a number of
studies [38], [39], [40], [41], extending the results of [14] and
proving its utility for performance analysis and design of a
measurement system [18].

In the seminal paper [14], the CCRB for ω is expressed as

CCRB(ω) = F−1 − F−1GT
[
GF−1GT

]−1
GF−1 � 0,

(22)
where F def

= F (ω) and G =
[
∂g(ω)
∂ωT

]
∈ Rm2×m is a full

row-rank matrix, which is equivalent to requiring that the
constraints are non-redundant. We can express G as

G =
[
∂g(ω)

∂ψT

∂g(ω)

∂ξT

]
=
[
−∂h(ψ)

∂ψT Im2

]
. (23)

It is easy to see from eq. (22) that the CCRB is lower than the
CRB. However, this formulation explicitly requires the FIM to
be non-singular, and inversion of the FIM can be costly.

In [17], [40], an alternative expression for the CCRB is

CCRB(ω) = U
[
UTFU

]−1
UT, (24)

where U def
= U(ω) ∈ Rm×m1 is a basis of ker(G). The matrix

UTFU is called the constrained FIM.
Contrary to eq. (22), eq. (24) does not require invertibility

of F . The above expression does not depend on the choice
of U either [17]. It is also noticeable that if F is invertible,
then the expressions in eq. (22) and eq. (24) are equivalent
[40, Corollary 1]. Here, we choose to compute eq. (24) when
we mention the CCRB.
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E. Reparameterized CRB

Let us now consider a reparameterization of the PDFs fY1;ω

and fY2;ω for the unknown parameter ψ ∈ Ψ ⊆ Rm1 where
ω = ω(ψ). We consider the particular case where ψ is a
subset of parameters in ω; then, arbitrarily we can rearrange
the components of ω as in eq. (19).

In [31, p.125], an expression for the reparameterized FIM
for ψ (namely Fc(ψ)) is given:

Fc(ψ) =

[
∂ω(ψ)

∂ψT

]T
F (ω(ψ))

[
∂ω(ψ)

∂ψT

]
. (25)

Contrary to the uncoupled case, we notice that uniqueness of
model (19) only requires identifiability of the sub-parameter
ψ. Additionally, we can express the reparameterized CRB for
the parameter ξ (namely CRBc(ξ)) as

CRBc(ξ) =

[
∂h(ψ)

∂ψT

]T
Fc
−1(ψ)

[
∂h(ψ)

∂ψT

]
.

In [17], it is shown that for the parameter ψ, eq. (24)
and eq. (25) lead to the same bound. Indeed, expressing the
parameter ω as in eq. (19) is equivalent to introducing the set
of constraints in eq. (18). We can check that

∂ω(ψ)

∂ψT
=

[
Im1
∂h(ψ)

∂ψT

]
∈ Rm×m1 ,

∂g(ω)

∂ωT
=
[
∂g(ω)

∂ψT

∂g(ω)

∂ξT

]
=
[
−∂h(ψ)

∂ψT Im2

]
∈ Rm2×m.

Therefore, U def
= ∂ω(ψ)

∂ψT is a basis of ker
(
∂g(ω)
∂ωT

)
, which

shows that the constrained FIM in eq. (24) and eq. (25) are
equivalent 2.

IV. DIFFERENT PARAMETERIZATIONS AND ESTIMATION
SCENARIOS

To derive appropriate performance bounds, it is necessary to
embed the HSR problem in an appropriate probabilistic frame-
work requiring to properly define the probabilistic model, the
parameters of interest and possible associated constraints, and
to fix the ambiguities resulting from the coupled CP model.

A. Model parameters

We first define the model parameters3 that describe the
coupled CP model in eq. (6) . Here, we follow the notations of
[15]. Since the spatial and spectral degradations are considered
to be separable, and never occur simultaneously in model (5),
we separate the CP factors into distinct parameters θ1 ∈ RKN ,
θ2 ∈ RKMN , φ1 ∈ R(IH+JH)N and φ2 ∈ R(I+J)N as

θT1 = vec{C1}T, φT
1 =

[
vec{A1}T vec{B1}T

]
,

θT2 = vec{C2}T, φT
2 =

[
vec{A2}T vec{B2}T

]
. (26)

2As a result, invertibility of the constrained FIM in eq. (24) also implies
that ψ is identifiable

3To provide a link with the notation of section III, we can define the
parameters ψ ∈ R(I+J+K)N and ξ ∈ R(IH+JH+KM )N such that

ψ =
[
φT

2 θT1

]T
, ξ =

[
φT

1 θT2

]T
.

The above vectors can be stacked into one global parameter
ω ∈ Rm (m = (I + J +K + IH + JH +KM )N ) defined by

ωT =
[
φT

1 θT1 φT
2 θT2

]T
.

From eq. (7), we can see that the model parameters can be
linked together through non-redundant functions as

g1(θ1,θ2) = 0, g2(φ1,φ2) = 0,

where g1 and g2 are differentiable ∀(θ1, θ2) (resp. (φ1, φ2)).

B. General framework for the fusion problem
For the HSR problem formulated as a fully-coupled CPD,

we wish to estimate the parameters φ2 and θ1, i.e., the factor
matrices of the SRI. In order to illustrate the advantage of data
fusion over uncoupled estimation, we are also interested in the
performance of the uncoupled and blind-HSR models: these
cases require the calculation of performance bounds for the pa-
rameters φ1 and θ2 as well. As a result, we can distinguish two
probabilistic scenarios, regarding if i) we are only interested
in performance bounds and an analysis for the fully-coupled
HSR problem, or ii) we want to compare the performance of
the coupled CP approach to that of the uncoupled and blind
approaches. Case i) allows for a bound calculation for the
fully-coupled HSR problem only and will be referred to as
scenario 1, while ii) can encompass uncoupled and Blind-HSR
and will be referred to as scenario 2.

We consider that the low-resolution tensors Y1 ∈
RIH×JH×K and Y2 ∈ RI×J×KM are random real Gaussian
datasets. For all models and scenarios, Y1 and Y2 are dis-
tributed as in (17). Here, from the relationships between the
model parameters, we can express eq. (18) as

g(ω) =
[
g1(θ1,θ2) g2(φ1,φ2)

]
. (27)

For each scenario and estimation framework (uncou-
pled, blind-HSR or fully-coupled HSR), the expression of
g1(θ1,θ2) and g2(φ1,φ2) might change, resulting in different
sets of constraints between the parameters. As in section III,
the PDFs might only be parameterized by a subset of ω; in
the following subsections, the expressions of these PDFs will
be provided for each scenario.

Calculation of CRBs often requires inversion of a FIM, as
explained in Section III. For the FIM to be full rank, scaling
ambiguities in the CPDs need to be solved [9] regarding the
parameters we wish to estimate: indeed the manifold of rank-
N tensors in RI×J×K has dimension (I + J +K − 2)N . For
each aforementioned scenario, we will provide different scal-
ing options, allowing for the calculation of the performance
bounds. We will also introduce different parameterizations and
distributions for the observed datasets.

C. Scenario 1 – Performance bounds for fully-coupled HSR
In this first scenario, we are only interested in the perfor-

mance analysis for the fully-coupled HSR problem. This case
boils down to a performance analysis for φ2 and θ1 only.
Thus, in this scenario, we only need uniqueness of the CPD
of the SRI tensor to calculate the bounds. As discussed in
section II, we set (A2)1,: = (B2)1,: = 1 to fix the correct the
scaling ambiguities in φ2.

As a result, we define the reduced parameter

φ̃
T

2 =
[
vec{(A2)2:I,:}T vec{(B2)2:J,:}T

]
∈ R(I+J−2)N .
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that is only composed of the unknown entries of φ2. The full
and reduced parameters can be linked through the relationship
φ̃2 = M2φ2. Here, the matrix M2 ∈ R(I+J−2)N×(I+J)N is
a selection matrix constructed from I(I+J)N by removing the
2N rows corresponding to known entries of φ2.

In that case, we can express the coupled CP model as{
Y1 = [[PA2,QB2,C1]] + E1,

Y2 = [[A2,B2,RC1]] + E2,
(28)

that directly includes the constraints between the factor matri-
ces. Since the entries of the noise terms E1 and E2 are i.i.d.,
Y1 and Y2 are distributed according to

fY1;φ̃2,θ1
=
(
2πσ2

1

)−IHJHK
2

e

(
− 1

2σ21
‖Y1−[[PA2,QB2,C1]]‖2F

)
,

fY2;φ̃2,θ1
=
(
2πσ2

2

)−IJKM
2

e

(
− 1

2σ22
‖Y2−[[A2,B2,RC1]]‖2F

)
,

(29)

In model (28), the constraints between the factor matrices are
such that A1 = PA2, B1 = QB2 and C2 = RC1. These
equalities translate in terms of model parameters as

g1(θ1,θ2) = θ2 − (IN �R)θ1,

g2(φ1, φ̃2) = φ1 −

[
IN �P 0

0 IN �Q

]
MT

2 φ̃2.
(30)

From (30), we can see that the functions g1 and g2 are linear
and thus, in this scenario, we will refer to the relationship
between the model parameters as linear constraints.

D. Scenario 2 – Comparing performance bounds for the HSR
problem

1) Specific scaling option: In this second scenario, we want
to compare performance bounds for the fully coupled problem
to those in the uncoupled and blind case. This case requires
the calculation of the bounds for the parameters φ2 and θ1, as
well as for φ1 and θ2 for blind and uncoupled HSR. Contrary
to scenario 1, inversion of the FIM in the blind and uncoupled
case require both CPDs to be generically unique. As a result,
we also define the reduced parameter ω̃ ∈ Rm−4N as

ω̃ =
[
φ̃

T

1 θT1 φ̃
T

2 θT2

]T
.

We solve scaling ambiguities in φ1 by setting the first rows
of A1 and B1 to ones. As a result, we define the reduced
parameter vector

φ̃
T

1 =
[
vec{(A1)2:IH ,:}T vec{(B1)2:IH ,:}T

]
∈ R(IH+JH−2)N ,

that is only composed of the unknown entries of φ1. As in
the previous subsection, we can express the reduced parameter
vector through the relationship φ̃1 = M1φ1, with M1 ∈
R(IH+JH−2)N×(IH+JH)N constructed as M2.

Given eq. (7), solving the scaling ambiguities for the cou-
pled CP factors of Y1 imposes that (PA2)1,: = (QB2)1,: =
1. However, in a realistic coupled framework, it is unlikely
that the spatial degradation matrices P and Q make the
above equality valid, even if (A2)1,: = (B2)1,: = 1, as it
would require that (P )1,: =

[
1 01×(I−1)

]
and (Q)1,: =

[
1 01×(J−1)

]
. The performance analysis for this case was

addressed in [15].
Here, to circumvent this limitation and address a more

general case, we introduce the scaling diagonal factors

Dα = diag{(PA2)1,:} and Dβ = diag{(QB2)1,:} (31)

such that (A1 ·D−1α )1,: = (B1 ·D−1β )1,: = 1. We also need
to rescale C2 as C2 = RC1 · (DαDβ)−1 so that Y1 and Y2

are degraded versions of the SRI

X = [[A2,B2,C1(DαDβ)−1]].

2) Model and parametrization for fully-coupled HSR: The
particular scaling option (31) leads to the following model
with additive constraints between the CP factors:{

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,
(32)

subject to A1 = PA2 ·D−1α ,B1 = QB2 ·D−1β ,

C2 = RC1 · (DαDβ)−1

for the fully coupled case.
The datasets are thus distributed according to

fY1;φ̃2,θ1
=
(
2πσ2

1

)−IHJHK
2

e

(
− 1

2σ21
‖Y1−[[PA2·D−1

α ,QB2·D−1
β ,C1]]‖2F

)
,

fY2;φ̃2,θ1
=
(
2πσ2

2

)−IJKM
2

e

(
− 1

2σ22
‖Y2−[[A2,B2,RC1·(DαDβ)

−1]]‖2F
)
,

(33)

which is a parameterization different from eq. (29). The only
case where the PDF in eq. (29) and eq. (33) are equivalent is
the specific case where Dα = Dβ = IN , addressed in [15].

In eq. (32), we can see that the relationships linking the
CP factors involve the scaling factors Dα and Dβ . Rewriting
these relationships in terms of the model parameters gives:

g1(θ1,θ2) = θ2 −
(
(DαDβ)−1 �R

)
θ1,

g2(φ̃1, φ̃2) = φ̃1 −M1

[
D−1α �P 0

0 D−1β �Q

]
MT

2 φ̃2.

(34)

Due to the definition of Dα and Dβ in (31), we refer to (34)
as non-linear constraints on the model parameters.

3) Parametrizations for uncoupled and blind-HSR: In the
uncoupled case, the datasets are distributed according to

fY1;φ̃1,θ1
=
(
2πσ2

1

)−IHJHK
2

e

(
− 1

2σ21
‖Y1−[[A1,B1,C1]]‖2F

)
,

fY2;φ̃2,θ2
=
(
2πσ2

2

)−IJKM
2

e

(
− 1

2σ22
‖Y2−[[A2,B2,C2]]‖2F

)
,

(35)

and follow model (6).
For the Blind-HSR problem, we have the following model:{

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,
(36)
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subject to C2 = RC1 · (DαDβ)−1.

The datasets are distributed according to

fY1;φ̃1,θ1
=
(
2πσ2

1

)−IHJHK
2

e

(
− 1

2σ21
‖Y1−[[A1,B1,C1·(DαDβ)

−1]]‖2F
)
,

fY2;φ̃2,θ1
=
(
2πσ2

2

)−IJKM
2

e

(
− 1

2σ22
‖Y2−[[A2,B2,RC1·(DαDβ)

−1]]‖2F
)
.

(37)

For the blind case, we only consider the constraint
g1(θ1,θ2) = θ2 −

(
(DαDβ)−1 �R

)
θ1 instead of (34).

E. Performance of the reconstruction of the SRI
Additionally to the model parameters in (26), we also define

x = vec{X} ∈ R` (` = IJK), that represents the vectorized
SRI. Parameter x can be linked to the model parameters
through the relationship

g3(x, φ̃2,θ1) = 0.

In order to get the bounds for x, we utilize relationships
between tensor unfoldings

x = [(C1 �B2)� II ]︸ ︷︷ ︸
S1

vec{A2} (38)

= Π(2,1) [(C1 �A2)� IJ ]︸ ︷︷ ︸
S2

vec{B2} (39)

= Π(3,1) [(B2 �A2)� IK ]︸ ︷︷ ︸
S3

vec{C1}, (40)

where Π(2,1) and Π(3,1) are permutation matrices that link
the second (resp. third) unfolding of X to the first unfolding.
As a result, the expression of g3(x, φ̃2,θ1) is given by

g3(x, φ̃2,θ1) = x−
[
S1 S2 S3

]
MT

3

[
φ̃2
θ1

]
,

where M3 = Diag{M2, IKN}.

V. PERFORMANCE BOUNDS FOR THE HSR PROBLEM

In this section, we derive performance bounds for the HSR
problem in the uncoupled, blind, and fully coupled cases. For
the case of fully coupled datasets (i.e., all degradation matrices
are known), we address both scenarios described above.

A. Uncoupled CRB
In the uncoupled case, the CRB for the parameter ω̃ is

obtained by inverting the uncoupled FIM. To do so, scaling
ambiguities in the CPDs of Y1 and Y2 need to be solved so
that the FIM is full rank.

In practice, the FIM for ω̃ (namely F (ω̃)) is computed by
applying (21) to the tensors Y1 and Y2:

F (ω̃) =

[
∂µ1(ω̃)

∂ω̃T

∂µ2(ω̃)

∂ω̃T

]T
Diag{Σ1,Σ2}−1

[
∂µ1(ω̃)

∂ω̃T

∂µ2(ω̃)

∂ω̃T

]
. (41)

Here, the expressions of µ1(ω̃) and µ2(ω̃) are obtained from
relationships between tensor unfoldings; please see [13] for a
full derivation.

As in previous related works [11], [13], [15], we consider a
case where the scaling ambiguities on Y1 and Y2 are solved,
meaning that the FIM is non-singular. Thus, the CRB for ω̃ can
be obtained by inversion of the FIM: CRB(ω̃) = F−1(ω̃).
The CRB for each sub-parameter can be obtained by applying
the block inversion lemma [42] to F (ω̃). Please note that the
uncoupled CRB can only be computed in scenario 2.

B. Blind-CCRB

We now address the case of blind-HSR and compute the
CCRB associated with model (36). The Blind-CCRB can only
be computed in scenario 2 due to the correction of scaling
ambiguities on A1,B1.

We apply formula (24) to model (36), with F def
= F (ω̃),

G =
[
∂g1

∂φ̃
T

1

∂g1

∂θT
1

∂g1

∂φ̃
T

2

∂g1

∂θT
2

]
;

note that, due to the non-linear constraints at hand, we have
∂g1

∂φ̃
T

1

= 0 but ∂g1

∂φ̃
T

2

6= 0.

Derivation of g1(θ1,θ2) w.r.t. the parameters gives:

∂g1

∂φ̃
T

1

= 0,
∂g1

∂θ1
T

= −Z1,

∂g1

∂φ̃
T

2

= −Diag{Z2,Z3}MT
2 ,

∂g1

∂θ2
T

= IKMN .

The matrices Z1,Z2,Z3 are given in Appendix A. As a result,
we have a basis U of ker(G) such that

U =

[
I(I+J+IH+JH)N−4N[

0 Z1 Diag{Z2,Z3}MT
2

]] .
We thus obtain the Blind CCRB (Blind-CCRB):

Blind-CCRB(ω̃) = U
[
UTFU

]−1
UT. (42)

C. Performance bounds for fully-coupled HSR

For the fully-coupled HSR problem, we can compute the
CCRB and reparameterized CRB in both scenarios.

1) Scenario 1 – linear constraints: In the first scenario, the
most straightforward approach is to compute the reparameter-
ized CRB using the fully-coupled model (6)–(7).

We consider the random real Gaussian distributed dataset
Y such that Y ∼N (µ(φ̃2,θ1),Σ), with

Y =
[
vec{Y1}T vec{Y2}T

]T
, Σ = Diag{Σ1,Σ2},

µ(φ̃2,θ1) =

[
vec{[[PA2,QB2,C1]]}
vec{[[A2,B2,RC1]]}

]
=

[
IK �Q�P
R� IIJ

]
︸ ︷︷ ︸

P̃

vec{[[A2,B2,C1]]}.

Note that the matrix P̃ is constant, which means that we
only have to compute the derivatives of vec{[[A2,B2,C1]]}
w.r.t. (φ̃2,θ1). Those can be obtained from relationships
between tensor unfoldings as in (38)–(40). As a result, we
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can compute the reparameterized FIM for (φ̃2,θ1) (denoted
to as Fc(φ̃2,θ1)) from the Slepian-Bangs formula as

Fc(φ̃2,θ1) = M3

ST
1

ST
2

ST
3

 P̃ T
Σ−1P̃

[
S1 S2 S3

]
MT

3 .

(43)

The reparameterized CRB for (φ̃2,θ1) can be then com-
puted as CRBc(φ̃2,θ1) = Fc

−1(φ̃2,θ1). We can also
compute the reparameterized CRB for the parameter x as

CRBc(x) =
[
∂g3

∂φ̃
T

2

∂g3

∂θT
1

]
CRBc(φ̃2,θ1)

[
∂g3

∂φ̃
T

2

∂g3

∂θT
1

]T
.

Equivalently, we can compute the CCRB from F (ω̃) with

G =

 ∂g2

∂φT
1

∂g2

∂θT
1

∂g2

∂φ̃
T

2

∂g2

∂θT
1

∂g1

∂φT
1

∂g1

∂θT
1

∂g1

∂φ̃
T

2

∂g1

∂θT
1

 . (44)

Here, due to the linear constraints, we have ∂g2

∂θT
1

= ∂g2

∂φ̃
T

2

= 0

and ∂g1

∂φT
1

= ∂g1

∂φ̃
T

2

= 0. For other derivatives, we have

∂g2

∂φ̃
T

2

= −
[
IN �P 0

0 IN �Q

]
MT

2 ,

∂g2

∂φT
1

= I(IH+JH)N ,
∂g1

∂θT1
= −IN �R,

∂g1

∂θT2
= IKN .

The CCRB can then be computed using eq. (24).
2) Scenario 2 – non-linear constraints: In this subsection,

the non-linear constraints in (32) yield to different bounds. In
(44), we now have ∂g1

∂φ̃
T

2

6= 0 and

∂g1

∂θT1
= −Z1,

∂g1

∂θT2
= IKN ,

∂g1

∂φ̃
T

1

= 0,
∂g1

∂φ̃
T

2

= −M1 Diag{Z2,Z3}MT
2 ,

∂g2

∂φ̃
T

1

= I(IH+JH−2)N ,
∂g2

∂φ̃
T

2

= −M1 Diag{Z4,Z5}MT
2 .

The matrices Z4 and Z5 are given in Appendix A, and the
CCRB for ω̃ is computed using eq. (24).

We can also consider the reparameterized CRB: we assume
that Y ∼N (µ(φ̃2,θ1),Σ), with

Y =
[
vec{Y1}T vec{Y2}T

]T
, Σ = Diag{Σ1,Σ2},

µ(φ̃2,θ1) =

[
vec{[[PA2D

−1
α ,QB2D

−1
β ,C1]]}

vec{[[A2,B2,RC1(DαDβ)−1]]}

]
.

The Jacobian of µ(φ̃2,θ1) is the matrix[
∂µ

∂φ̃
T

2

∂µ
∂θT

1

]
= M1

[
X1 X2 X3

X5 X6 X4

]
MT

2 .

The matrices Xi (i = 1, . . . , 6) are given in Appendix B.

VI. COMPUTER RESULTS

All simulations were run on a MacBook Pro with 2.3 GHz
Intel Core i5 and 16GB RAM. For basic tensor operations
we used TensorLab 3.0 [43]. The code is implemented in
MATLAB and available online at https://github.com/cprevost4/
CCRB Software.

A. Simulations setup
The entries of the true CP factors A2, B2, C1 were

generated once as i.i.d. real standard Gaussian variables, and
the first rows of A2, B2 were set to ones. The true CP factors
A1, B1, C2 were constructed according to the parameter
constraints for each scenario.

In all experiments, the spatial degradation matrices P andQ
are generated following Wald’s protocol [27] with a Gaussian
filter of length q and a downsampling ratio d. We also assume
that P = Q. The spectral degradation matrix R is a selection-
and-averaging matrix that selects the common spectral bands
of the SRI and MSI. We refer to Appendix C for more details
on the construction of these matrices.

We simulate the performance of the coupled CP model
under additive Gaussian noise. The SNR on the observed ten-
sors in dB is defined as SNRi = 10 log10

(
‖Yi‖2F /‖Ei‖2F

)
,

(i = 1, 2). We fix SNR2 to 20dB while SNR1 varies from
5 to 60dB, unless otherwise specified.

The model parameters are retrieved using MLE. For esti-
mation in the uncoupled case, we use ALS [28] with random
initialization for the factor matrices. For the fully-coupled case,
STEREO, the algorithm proposed in [8] is used. For the blind
case, we use Blind-STEREO [8]. For all algorithms, at most
5000 iterations are performed. To speed up the convergence of
the coupled algorithms, the CP factors obtained by uncoupled
ALS are used as initialization. The permutation ambiguities in
the estimated factors are corrected by searching for the best
column permutation of C2 with fixed C1 and applying that
same permutation to A2 and B2. This step is performed by
merely maximizing the correlation between the estimated and
true CP factors; but it could be performed optimally using the
Hungarian algorithm [44].

We evaluate the total MSE on the parameters by averaging
the squared errors through 500 noise realizations. For each
realization, the best out of 10 initializations is picked. In the
following figures, we plot our results for the parameters

ψ̃ =

[
φ̃2
θ1

]
, ξ̃ =

[
φ̃1
θ2

]
,

which correspond respectively to the CP factors of the SRI
and the degraded factors.

B. Equivalence between CCRB and reparameterized CRB
In this subsection, we illustrate the results of [17], [31]

regarding the equivalence between the CCRB in section III-D
and reparameterized CRB in section III-E for the parameter
ω̃ with the models introduced above. For this first set of
experiments, we first consider I = J = 18, IH = JH = 6,
K = 16 and KM = 8, and N = 3. In Figure 1, we show
the total CCRB and reparameterized CRB for ω̃ for the fully
coupled model on a semi-log scale, for scenario 1 (linear
constraints). In Figure 2, we consider scenario 2 and plot the
total uncoupled CRB, CCRB and reparameterized CRB for ω̃
in the fully-coupled and blind cases.

For both fully-coupled and blind-HSR, the CCRB and
the reparameterized CRB for ω̃ are numerically equivalent.
Moreover, the Blind-CCRB is above the fully-coupled CCRB.

C. Choice of the rank
In this subsection, we investigate the choice of the tensor

rank for the CPD of X . We suppose that we wish to recover

https://github.com/cprevost4/CCRB_Software
https://github.com/cprevost4/CCRB_Software
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Fig. 1. Total bounds or ω̃ with linear constraints
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Fig. 2. Total bounds for ω̃ with non-linear constraints

the CP factors of the SRI, namely A2,th, B2,th and C1,th with
a rank Nth = 3. First, we fixed the “true” A2,th, B2,th and
C1,th with i.i.d. real standard Gaussian entries. The unknown
entries of the true factors were grouped in the parameter ψ̃th:

ψ̃th =

vec{(A2,th)2:I,:}
vec{(B2,th)2:J,:}

vec{C1,th}

 .
We generate the CP model with the dimensions in sec-

tion VI-B and ranks N varying from 3 to 16. Thus, the first Nth
columns of the true factors A2, B2, C1 are A2,th, B2,th and
C1,th, respectively. The remaining columns of these factors
have i.i.d. real standard Gaussian entries. The first columns
of A2, B2 are also set to ones. The factors A1,B1,C2 are
constructed according to model (6)–(7), that corresponds to
the first scenario. The low-resolution tensors are constructed
from these augmented CP factors. The CCRB is averaged over
100 realizations of the factors Ai,Bi,Ci (i = 1, 2).

For N ∈ {3, . . . , 16}, we compute CCRB(ψ̃th). In Figure
3, we plot the averaged CCRB as a function of SNR1 and N .

We can see that, for all N , the CCRB decreases when SNR1

decreases. Moreover, for all considered SNRs, the value of
the CCRB increases when N increases; the best theoretical
performance is obtained for N = Nth = 3.

However, one should note that in the HSR framework,
the observed tensors are unlikely to be low-rank tensors.
Indeed, the coupled CP formulation only performs a low-rank
approximation of the data; in practice, choosing a high N
allows for better modeling power [8].

D. Performance analysis and performance of the estimator
In this subsection, we evaluate the total MSE on the

parameters provided by STEREO and compare it to the CCRB.

Fig. 3. CCRB(ψ̃th) as a function of SNR1 (dB) and N

We keep the same dimensions as in section VI-B. Whenever
possible, we also compare the total MSE given by ALS
and Blind-STEREO to the uncoupled CRB and Blind-CCRB,
respectively. In Figures 4 and 5, we show the total performance
bounds and the MSE for the parameters ω̃ and x respectively,
on a semi-log scale.
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Fig. 4. Total bounds and MSE for ω̃ (left) and x (right): scenario 1
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Fig. 5. Total bounds and MSE for ω̃ (left) and x (right): scenario 2

We can see that the total MSE given by STEREO follows
the CCRB in both scenarios. When the scaling ambiguities are
corrected on both tensors, the total MSE given by ALS reaches
the uncoupled CRB. For the Blind-HSR problem, the total
MSE given by Blind-STEREO is close to the uncoupled CRB
for SNR1 < 20dB and follows the Blind-CCRB for SNR1 ≥
20dB. Thus, in both scenarios, the estimators asymptotically
reach their corresponding bounds.

In the next experiment, we study the convergence of
STEREO with respect to the two estimation scenarios. For the
first scenario, we generate the model according to (6)–(7), that
corresponds to the first scenario. For scenario 2, we generate
model (32) with non-linear constraints between the parameters.
For each model, we compute the CCRBs in section V-C1
and section V-C2 for the parameter ψ̃. We also run STEREO
according to each model.

We can see that, in both cases, the MSE given by STEREO
follows the CCRB that corresponds to the model. On the left,
the CCRB for scenario 1 is lower than that for scenario 2,
while it is the opposite on the right. This figure shows that
STEREO always reaches the CCRB, provided that the right
model is employed.
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Fig. 6. Total CCRB and MSE provided by STEREO for ψ̃

E. Performance of STEREO without identifiability of Y1

In this subsection, we study a case where generic uniqueness
of the HSI is not guaranteed, but the condition for unique
noiseless recovery by STEREO is still satisfied. In particular,
we investigate the performance of STEREO. Contrary to
section VI-D, where the HSI and MSI are generically unique,
we expect to encounter cases where the algorithm does not
converge to a global minimum due to the rank being larger
than (some of) the dimensions of Y1 and Y2. Thus we
consider an adaptive choice of the regularization parameter
λ to circumvent these difficulties.

We first illustrate the influence of λ on the performance
of STEREO with a toy example. For this experiment, we
generate the model as in section VI-B and SNR2 = 40dB. We
calculate CCRB(ω̃) and compare it to the total MSE given by
STEREO. We consider λ = 1 · 107, λ = 1 and λ = 1 · 10−4.
They correspond to the “true” regularization parameters for
SNR1 = 5dB, SNR1 = SNR2 and SNR1 = 60dB, respec-
tively. We plot the results on a semi-log scale in fig. 7.
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Fig. 7. CCRB(ω̃) and total MSE for different λ

For λ = 1 · 107, we notice that the total MSE reaches the
CCRB for SNR1 ≤ SNR2 even if λ is larger than the “true”
λ. For higher SNR, the MSE is almost constant. For λ = 1,
we can see that the MSE is above the CCRB for each noise
level except SNR1 = SNR2. Finally, for λ = 1 · 10−4, while
the MSE is above the CCRB for SNR1 ≤ SNR2, it does reach
the bound for higher SNR. Figure 7 shows that taking a small
λ is likely to improve the performance of STEREO for high
SNR, which is exactly what we are aiming at.

Thus we consider an adaptive choice of λ. That is, for each
noise level, we successively run several iterations of STEREO
with a decreasing λa = c

σ2
2

, possibly different from the “true”
λ. Here, c is a constant that takes 5 decreasing values in
{1, . . . , σ2

1}, evenly distributed on a logarithmic scale. The
value σ2

1 = 1 corresponds to SNR1 = 0dB; hence in our

experiments, we always have σ2
1 < 1. We refer to this setup

as “Adaptative λ” and describe this procedure in Algorithm 1.

Algorithm 1: Adaptive procedure for STEREO
Input: A2,0, B2,0, C1,0, C2,0; λa
repeat

1. Run a few iterations of STEREO with λa;
2. Decrease the value of c;
3. Update λa = c

σ2
2

;

until λa =
σ2
1

σ2
2

;

To study the interest of the above procedure, we take IH =
JH = 4, I = J = 16, KM = 10 and K = 20. We also
use d = 4 and q = 3. We consider SNR2 = 40dB while
SNR1 varies between 5dB and 60dB. For these dimensions, the
generic uniqueness of Y1 is proved for N ≤ 9 [25, Theorem
1.1], while condition (11) on unique recovery of the SRI by
STEREO in the noiseless case gives N ≤ 16. We address
scenario 2 only, and tensor ranks N = 10, N = 12, and N =
14. For such ranks, uncoupled ALS performed on the HSI is
not guaranteed to converge. To circumvent this limitation, in
this subsection, we initialize STEREO as in [8]:{

A2,0,B2,0,C2,0 = CPDN (Y2),

CT
1,0 = (QB2,0 � PA2,0)†Y

(3)
2 ,

(45)

where the operation CPDN returns estimated CP factors4 with
rank N . In fact, initialization (45) implicitly considers that
λ =∞. For this reason, we expect STEREO not to converge
when σ2

1

σ2
2

is low, that is, SNR1 ≥ SNR2.

We run STEREO with λ =
σ2
1

σ2
2

as well as the procedure with
adaptive λ with one noise realization. We plot on a semi-log
scale the total CCRB and MSE for ω̃ as a function of SNR1.

First, in Figures 8–10, we can see that for SNR1 ≥ SNR2,
STEREO with λ =

σ2
1

σ2
2

does not converge indeed. Our guess
is that the performance of the algorithm degrades when N is
very large, especially when it becomes larger than (some of)
the dimensions of the tensors.

However, running the procedure in Algorithm 1 does correct
this behaviour: in all figures, the total MSE provided by
STEREO reaches the CCRB in this setting. It should be
mentioned that, for SNR1 < SNR2, the adaptive procedure is
not needed for the MSE to reach the CCRB, since the “true”
lambda is very large. Initialization (45) with λ = ∞ already
provides a good estimation of the parameter ω̃ in that case.

F. Influence of the spatial degradation matrices
In this subsection, we study the impact of the spatial degra-

dation matrices on the CCRB. In practice, P and Q can be
tuned by adjusting the filter size q and the downsampling ratio
d: changing these parameters result in different acquisition
schemes. On the first hand, when the downsampling ratio d
varies while the filter size q is constant, the HSI possesses fixed
spatial resolution but only contains a portion of the pixels in
the SRI. On the other hand, when q varies while d is fixed,

4In practice, this operation is performed using TensorLab.
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Fig. 10. CCRB(ω̃) and total MSE, N = 14

the HSI can be seen as a blurred SRI, as it contains a given
spatial portion of the SRI, but with different pixel resolutions.

In this subsection, we investigate the influence of d and q
on the reconstruction of the SRI (i.e., we compute the CCRB
for the parameter x). We use the following dimensions: I =
J = 36, IH = JH = 6, K = 16 and KM = 8. Since we are
only interested in the fully-coupled HSR problem, we resort
to scenario 1 for model generation and bound derivation.

1) Influence of the filter size: First, we fix the dowsampling
ratio d = 6 and compute the CCRB for x as a function of q
for SNR1 equal to 10dB, 30dB, and 55dB. We consider odd
values of q ∈ {1, . . . , 36}. We recall that the expression for
the Gaussian filter is available in Appendix C. We run the
simulations for tensor ranks N = 3 and N = 16. Our results
are displayed in Figures 11 and 12.

In both figures, the value of the CCRB decreases when the
SNR increases. For moderate to high SNR (30dB and 55dB),
the CCRB is almost constant. However, for low SNR (10dB),
we can see that the CCRB increases from a certain q.

For N = 3, the filter size for which the CCRB is lowest
becomes smaller when SNR1 increases; for instance, for
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Fig. 11. CCRB(x) as a function of q for various SNR1 and N = 3

5 10 15 20 25 30 35

10
0

10
2

10
4

10
6

10
8

q 11

q 3

q 1

Fig. 12. CCRB(x) as a function of q for various SNR1 and N = 16

SNR1 = 55dB, the optimal filter size is q = 1. This result
means that, from a certain noise level on Y1, the presence of
Gaussian blurring improves the theoretical performance of the
model, which boils down to smoothing the images spatially.

For N = 16, we can draw the same conclusions about the
evolution of the optimal filter size, but we notice that, for
q ≥ 13 and low SNR, the CCRB increases much more than
for N = 3. The optimal value of q in this case is q = 11.

2) Influence of the downsampling ratio: We now fix the
filter size q = 3 and compute the CCRB for x as a function
of d ∈ {1, . . . , 6} (to ensure that P and Q are full rank) and
SNR1. Here, to depict the variations occurring at low-medium
noise level, we separate the results in two subplots. We run
the simulations for N = 3 and N = 16. The CCRB for x is
shown on Figures 13 and 14.

In Figure 13, for medium-high noise level, the value of
d that gives the lowest CCRB is d = q = 3. For d > 3,
the CCRB increases. However, we notice that when SNR1

decreases, the CCRB varies significantly less. For SNR1 equal
to 45dB and 60dB, the lowest CCRB is obtained for d = 6.

In Figure 14, the value d = 5 provides the lowest bound
regardless of the SNR. However, it must be noticed that the
value d ≥ 5 corresponds to the special case d ≥ IH . This
means that more observations are available from the HSI,
resulting in a higher CCRB, as illustrated in section VI-C.

3) Optimal values of q and d: Finally, we investigate
the values of q and d for which the CCRB is lowest. We
compute CCRB(x) for d ∈ {1, . . . , 6} and odd values of
q ∈ {1, . . . , 36}. SNR2 is fixed to 20dB, while SNR1 varies
from 5 to 60dB. We consider tensor ranks N = 3 and N = 16.
For each SNR, we store the pair (q, d) for which the CCRB
is the lowest: we plot our results in fig. 15. In fig. 16, we also
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plot CCRB(x) on a semi-log scale as a function of SNR1

in dB.
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In fig. 15 at low SNR, the optimal values of d are d = 4 and
d = 5 for N = 3, and d = 5 for N = 16. This value decreases
to d = 1 then increases again to d = 3 for SNR1 > 50dB and
both ranks. The optimal filter size is q = 1 at SNR1 ≥ 50 for
both ranks. For lower SNR, this value increases; while almost
constant and equal to q = 6 for N = 16, it fluctuates more for
N = 3. The large discrepancies in optimal d and q occurring at
high SNR indicate that the choice of these parameters has little
impact on the CCRB. Indeed, at high SNR, the cost function
minimized by STEREO is very flat: thus a local minimum can
be reached easily regardless of d and q.

In terms of CCRB, we notice a first elbow in the curves
of fig. 16 at SNR1 = SNR2, then a second one for SNR1 =
45dB. This noise level corresponds to the lowest d and highest
q in fig. 15 for both ranks.

VII. CONCLUSION

In this paper, we provided a full derivation of the CCRB
for the HSR problem under various sets of constraints. In

our simulations, we assessed the performance of the MLE
estimators STEREO and Blind-STEREO in optimal estimation
conditions (i.e., when the rank reduction allows for good
estimation). Moreover, we illustrated the usefulness of the
CCRB in terms of design of the hyperspectral measurement
system. Finally, we displayed some cases where the tensor
rank does not allow for correct estimation of the parameters
by STEREO, and proposed an adaptive procedure to avoid
non-converging cases.

APPENDIX A
DERIVATIVES FOR CCRB

We give the expression of the matrices Zi (i = 1, . . . , 5) for
the CCRB with non-linear constraints in sections V-B and V-C:

Z1 = (DαDβ)−1 �R,

Z2 = −(D2
αDβ)−1 �R)(IN �C1)(IN �P 1,:),

Z3 = −(DαD
2
β)−1 �R)(IN �C1)(IN �Q1,:),

Z4 = (D−1α �P )− (D−2α �P )(IN �A2)(IN �P 1,:),

Z5 = (D−1β �Q)− (D−2β �Q)(IN �B2)(IN �Q1,:).

APPENDIX B
DERIVATIVES FOR REPARAMETERIZED CRB

Here, we give the expression of the matrices Xi (i =
1, . . . , 6) used for the reparameterized CRB in section V-C.
The matrices J (i)

21 ,J
(i)
31 are permutation matrices linking the

second and third unfoldings to the first unfoldings of Yi.

X1 =
[(
IN � (C1 �QB2D

−1
β )
)
D−1α �P

]
[
IIN − (D−1α � II)(IN �A2)(IN �P 1,:)

]
,

X2 = (IN �J (1)
21 )

[(
IN � (C1 � PA2D

−1
α )
)
D−1β �Q

]
[
IJN − (D−1β � IJ)(IN �B2)(IN �Q1,:)

]
,

X3 = (IN �J (1)
31 )[(

IN � (QB2D
−1
β � PA2α

−1)
)
� IK

]
,

X4 = (IN �J (2)
31 )

[
(IN � (B2 �A2)) (DαDβ)−1 �R

]
,

X5 =
[(
IN � (RC1D

−1
β �B2)

)
D−1α � II

]
[
IIN − (D−1α � II)(IN �A2)(IN �P 1,:)

]
,

X6 = (IN �J (2)
21 )

[(
IN � (RC1D

−1
α �A2)

)
D−1β � IJ

]
[
IJN − (D−1β � IJ)(IN �B2)(IN �Q1,:)

]
.

APPENDIX C
DEGRADATION MATRICES

Here, we explain in details how the degradation matrices
are constructed (we consider that P = Q). As in [8], P is
constructed as P = S1T 1, where T 1 is a blurring Toeplitz
matrix and S1 is a downsampling matrix. The blurring matrix
is constructed from a Gaussian blurring kernel φ ∈ Rq×1 with
a standard deviation σ = q·

√
2 log 2
4 . For m ∈ {1, . . . , q} and

m′ = m−
⌈
q
2

⌉
, we have

φ(m) = exp

(
−m′2

2σ2

)
.
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Thus, T 1 ∈ RI×I can be seen as

T 1 =



φ(d q2e) ... φ(q) 0 ... 0

...
. . . . . . . . .

...

φ(1)
. . . . . . 0

0
. . . . . . φ(q)

...
. . . . . . . . .

...
0 ... 0 φ(1) ... φ(d q2e)


.

The matrix S1 ∈ RIH×I , with downsampling ratio d, is
made of IH independent rows such that for i ∈ {1, . . . , IH},
(S1)i,2+(i−1)d = 1 and the other coefficients are zeros.

The spectral degradation matrix R ∈ RKM×K is a
selection-averaging matrix. Each row represents a spectral
band in the MSI; coefficients are set to ones for common
bands with the SRI, and zeros elsewhere. The coefficients
are averaged per-row. In our simulations, we average the SRI
bands two by two. Below is an example of a 3× 6 matrix: 1

2
1
2 0 0 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

 .
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