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Longitudinal Modes in Diffusion and Localization of Light

B.A. van Tiggelen∗ and S.E. Skipetrov†

Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
(Dated: December 18, 2020)

In this work we include the elastic scattering of longitudinal electromagnetic waves in transport
theory using a medium filled with point-like, electric dipoles. The interference between longitudinal
and transverse waves creates two new channels among which one allows energy transport. This
picture is worked out by extending the independent scattering framework of radiative transfer to
include binary dipole-dipole interactions. We calculate the diffusion constant of light in the new
transport channel and investigate the role of longitudinal waves in other aspects of light diffusion by
considering the density of states, equipartition, and Lorentz local field. In the strongly scattering
regime, the different transport mechanisms couple and impose a minimum conductivity of electro-
magnetic waves, thereby preventing Anderson localization of light in the medium. We extend the
self-consistent theory of localization and compare the predictions to extensive numerical simulations.
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I. INTRODUCTION

The traditional and widely used picture of elastic mul-
tiple scattering of light is one of a plane wave that expo-
nentially extincts on the length scale of a mean free path
while propagating from one particle to another, with an
electric field orthogonal to the direction of propagation,
and with subsequent scattering into a different direction
in space, with exactly the same frequency. It is well
known that transversality in real space (r · E(r) = 0)
is only valid in the far field of the scatterers, at distances
much larger than the wavelength. In the near field of a
dielectric object, the electric field achieves a “dipolar”
structure, with a component directed along the prop-
agation direction, while still being divergence-free, i.e.
∇ ·E(r) = 0. In many approaches of multiple light scat-
tering, these longitudinal modes are widely appreciated,
yet considered “virtual”, in the sense that they do not
carry a Poynting vector so that they cannot transport
electromagnetic energy themselves, though they can me-
diate the propagation of other waves, such as mechanical
[2] or matter [3] waves.

However, in inhomogeneous media, the dielectric con-
stant ε(r) of the matter varies in space, and Gauss’ equa-
tion imposes ∇ · [ε(r)E] = 0. As a result, true longitudi-
nal electric fields exist, with ∇·E 6= 0 and a finite density
of states (DOS) in phase space, to which elastic scatter-
ing could take place. Induced polarization charges pos-
sess Coulomb energy, and also stock dipole-dipole energy
among different scatterers but have no Poynting vector,
so how can they transport energy? In atomic physics,
the well-known process of Förster coupling [1] facilitates
a non-radiative transport mechanism to exchange quan-
tum states and to move Coulomb energy from one atom
to another. Like spontaneous emission, this process is
inherently inelastic and incoherent, and is de facto ex-
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cluded in a picture where only elastic multiple scattering,
including interferences, is allowed. Much in the spirit
of Förster coupling, Ref. [4] added explicitly the quasi-
static dipole-dipole coupling as a new channel in trans-
port theory of electromagnetic waves. In this work we
will show that this transport channel naturally emerges
from a rigorous electromagnetic transport theory. The fi-
nite Poynting vector of this channel is shown to originate
from the interference between longitudinal and transverse
modes.

The transverse picture of electromagnetic waves
emerges naturally in the so-called “independent scatter-
ing approximation” (ISA) of diffuse transport. In this ap-
proximation, the longitudinal waves are usually ignored,
and only transverse, propagating states are counted, as-
sociated with damped plane waves with wave numbers
close to the frequency shell p ≈ k = ω/c0 in phase space.
A fundamental question is whether this picture is signifi-
cantly altered, within and beyond the ISA, or if just quan-
titative modifications occur. Longitudinal states have a
finite density of states (DOLS), proportional to the imag-
inary part of the (longitudinal) dielectric constant of the
effective medium. Being mainly confined to scatterers,
they exist far from the frequency shell in phase space,
typically at very large wave vectors p� k. We will show
that, due to the dipole size that is much smaller than
the optical wavelength, excitations with large wave num-
bers can scatter and mode-convert to both transverse and
longitudinal states. As such they take fully part in the
diffuse transport.

The purpose of this work is to include longitudinal
waves into the transport theory of electromagnetic waves
at scales well beyond the mean free path, identify sin-
gularities, thereby respecting the conservation of energy.
Finally we will perform the first study about the role
that longitudinal electromagnetic waves play in weak and
strong (Anderson) localization. Static electric dipole cou-
pling was already identified as a possible source of de-
localization of mechanical waves [2]. Recent numerical
simulations with electromagnetic wave scattering from
point-like electric dipoles revealed the absence of a mo-
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bility edge [5], and are difficult to explain within the tra-
ditional picture that only acknowledges the transverse
field as a mechanism for diffuse transport.

II. TRANSPORT OF ELECTROMAGNETIC
WAVES

In standard transport theory [6], the dispersion and ex-
tinction of waves are described by a complex self-energy
Σ(k,p), associated with the effective medium. For elec-
tromagnetic waves this is a second-rank tensor, depend-
ing on frequency and wave vector p. Scattering between
two states in phase space is described by the four-rank
scattering vertex Upp′(k). Energy conservation in mul-
tiple scattering is guaranteed by the Ward identity [6, 7],

−Im Σ(k + iε,p) =
∑
p′

Upp′(k) · −Im G(k + iε,p′) (1)

with the notation Im A ≡ (A−A∗)/2i where A∗ denotes
the Hermitian conjugate of a 3×3 matrix A (A∗ij = Āji).
The left hand side stands for the extinction of an elec-
tromagnetic excitation at wave vector p, the right hand
side puts this equal to the elastic scattering of the same
excitation from p towards all other accessible states p′ in
the phase space. The “spectral tensor” −Im G(k+ iε,p′)
is positive (as ε ↓ 0, for positive frequencies) and deter-
mines the availability of microstates at the wave vector
p′, given the frequency ω = kc0 that is conserved in
elastic scattering. For convenience we will drop explicit
reference to ε and assume its presence in k + iε implic-
itly. Both Σ(k,p) and Upp′(k) will be discussed in more
detail below.

A. Dyson Green’s function

In Fourier space the Dyson Green’s tensor of an elec-
tromagnetic “quasiexcitation” with frequency ω = kc0
and wave vector p of the effective medium is given by [6]

G(k,p) =
[
k2 − p2∆p −Σ(k,p)

]−1

=
p̂p̂

k2 − ΣL(k, p)
+

∆p

k2 − p2 − ΣT (k, p)
(2)

split up into a longitudinal and a transverse part, with
Σ(k,p) = ΣL(k, p)p̂p̂ + ΣT (k, p)∆p, with ∆p = 1− p̂p̂
the projection tensor to transverse states. In transport
theory, the tensor G(k,p) ⊗ G∗(k,p′) is the building
block of multiple scattering, and it is important to un-
derstand G(k,p) in great detail on all scales.

The longitudinal part of G(k,p) is associated with lo-
cal Coulomb interactions between induced charges inside
scatterers, often referred to as “non-radiative, static”,
dipole-dipole coupling at a distance. The transverse part
describes propagating waves. In the following we inves-
tigate both components in real space for small and large

distances. We demonstrate that at small distances, the
longitudinal part of the Dyson Green’s function domi-
nates very generally and takes the form of dipole-dipole
coupling with the usual Lorentz contact term [28], and
surprisingly, is seen not to be static. At large distances,
only transverse excitations contribute and G(k, r) is un-
der very general conditions equal to an exponentially
small, propagating excitation with a polarization trans-
verse to the direction of propagation r. This implies that
G(k, r) contains the familiar near and far fields of elec-
tromagnetism, without the need to add the first by hand
[4]. At large distances the traditional picture, described
earlier, emerges.

In real space, the Green’s tensor G(k, r) is the Fourier
transform of Eq. (2) and describes the propagation of
electromagnetic waves over a distance r in the effective
medium. The near-field component is “non-radiative” in
the sense that a longitudinal field E ‖ k induces no mag-
netic field as kB ∼ k×E = 0. Alone, it carries therefore
no Poynting vector. However, we will show later in this
work that the interference of longitudinal and transverse
components in the tensor product G ⊗G∗ does carry a
Poynting vector and facilitates a new channel to trans-
port energy.

With K2
L(p) ≡ k2 − ΣL(k, p) the square of a complex

longitudinal wave vector, one obtains in real space,

GL(k, r) =
∑
p

p̂p̂

K2
L(p)

exp(ip · r)

=
δ(r)

3K2
L(∞)

+
1− 3r̂r̂

4πK2
L(∞)r3

+ D(r) (3)

where we have split off the singularity of the integral at
large wave numbers, leaving the rest term D(r) as a con-
tribution to the traceless dipole-dipole coupling described
by the second term. Since D(r) is, by construction, the
Fourier transform of a function that decays to zero for
large p, it is free from a Dirac distribution, and even
non-singular as r → 0. We will show this explicitly in
section II C for the recurrent scattering from two dipoles.
As a result, the first two terms in Eq. (3) dominate on
small scales. The first, subtle Lorentz contact term is a
genuine Dirac distribution and vanishes for r 6= 0, but
for r = 0 makes a genuine contribution to DOS. Since
the transverse field GT (r) ∼ 1/r for kr < 1 is much less
singular, we conclude that

G(k, r→ 0)→ G0,L(KL(∞), r) (4)

This takes the same form as the familiar dipole-dipole
regime of the bare Green’s function G0(r), with how-
ever the wave number k = ω/c0 in vacuum replaced by
a complex-valued and frequency-dependent wave-vector
KL(∞). For finite-size dielectric scatterers one may ar-
gue that at small scales described by p→∞ the effective
medium is homogeneous and KL(∞) must be some real-
valued wave number. For atomic atomic dipolar scatter-
ers however, we will see that the complex value of KL(p)
extends up to infinity. The complex value of KL(∞) indi-
cates that the dipole-dipole coupling, dominating in the
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near field, is not static but depends on frequency and
contributes to the DOS. In section II D we will calcu-
late KL(∞) numerically in all orders of the density for a
model of randomly positioned electric dipoles.

At long distances kr →∞, small wave numbers prevail
in Eq. (3) so that

GL(k, r→∞) =
1− 3r̂r̂

4πK2
L(0)r3

(5)

with KL(p) now evaluated at p = 0. If this propa-
gator would not be compensated, the far field would
contain an algebraically small longitudinal term which
would severely affect the random-walk picture of trans-
verse electromagnetic wave transport. However, it is
compensated very generally by a part of the transverse
propagator GT (k,p). For kr � 1 it is useful to make the
following decomposition,

GT (k, r) =
∑
p

∆p

K2
T (p)− p2

exp(ip · r)

=
1

2π2

(
−∇2 + ∇∇

) 1

2ir

∫
Γ

dp
eipr

p

1

K2
T (p)− p2

+
(
−∇2 + ∇∇

) 1

4πK2
T (0)r

(6)

Here Γ denotes the line (−∞,+∞) that avoids the origin
p = 0 via a small contour in the upper complex p-plane,
and which generates the last term. In the far field, since
necessarily KT (0) = KL(0), the last term of Eq. (6) can-
cels exactly against the longitudinal far field in Eq. (5).
The Green’s function G(k, r) as a whole is therefore de-
termined by the denominator of the first term and

G(k, r→∞) =
∆r

4π2ir

∫ ∞
−∞

dp
p eipr

K2
T (p)− p2

(7)

This indicates that the electric field is asymptotically
dominated by transverse modes and also transverse to
the direction of propagation r. If KT (p) has an analyt-
ical extension at least over a small sheet Im p < K ′′T in
the upper complex p-plane, G(k, r) will decay at least as
exp(−K ′′T r)/r. Different “effective medium” approaches
exist to calculate G(k, r) for various models [7]. The eas-
iest method is to assume the presence of a simple pole
KT (p) = kT + i/2`, in which case normal exponential
behavior emerges with the decay length equal to (twice)
the elastic scattering mean free path `.

We conclude that the Green’s tensor of the ef-
fective medium has a true longitudinal component
(∂iGij(k, r) 6= 0) that affects wave propagation at small
scales r < 1/k. In the far field, the electric field is always
transverse to propagation (r̂iGij(k, r) = 0). Decay is ex-
ponential under broad conditions with a decay length `.
This implies that radiative transfer should still be com-
patible with a random walk with step length `, though
with possibly new mechanisms for energy transport in
the near field provided by the presence of longitudinal
fields, that can become dominant when k` ≈ 1. This

idea will be worked out concretely in the next sections
for an ensemble of randomly distributed dipolar electric
scatterers (“dipoles” for short).

B. Independent electric dipole scattering

In the independent scattering approximation (ISA) ap-
plied to point-like electric dipole scatterers with num-
ber density n and T -matrix t(k), ΣISA(k,p) = nt(k).
In this work we assume each dipole to be impenetra-
ble for light outside, and to have only longitudinal ex-
citations in its vicinity, at scales much smaller than the
wavelength. This conveniently labels material energy as
longitudinal states that take part in the scattering pro-
cess. By definition, the T -operator of a general polar-
izable scatterer perturbs wave propagation in free space
according to G(k) = G0(k) + G0(k) ·T(k) ·G0(k). If we
set T(k) = |rd〉t(k)〈rd| to describe an a electric dipole at
position rd, and impose 〈r|G(k)|rd〉 = 0 for any r 6= rd
for it to be “impenetrable”, then it follows that

t(k) =
−1

〈rd|G0(k)|rd〉
= −

[∑
p

(
p̂p̂

k2
+

∆p

k2 − p2 + i0

)]−1

(8)
This model can be refined to acknowledge finite penetra-
tion of light into the dipoles [8], but the present choice
highlights the role of longitudinal waves and is arguably
the best description of elastic scattering from an atom
without going into the details of atomic physics. Both
the longitudinal and the transverse integral diverge, the
first essentially due to the Lorentz contact term. We will
regularize the first as

∑
p p̂p̂ = 1/3u and the transverse

part as
∑

p ∆p/p
2 = 1/6πΓ. It follows that

t(k) =
−6πΓk2

k2
0 − k2 − ik3Γ

(9)

Both Γ (with dimension of length) and u (a volume)
are genuine properties of the dipole, independent of fre-
quency or polarization of the light. In particular k2

0 =
2πΓ/u determines the resonant frequency of the dipole.
For k = k0 longitudinal and transverse singularities, op-
posite in sign, cancel each other.

For small k, the static polarizability α(0) is related
to the t-matrix as t = −α(0)k2 [6], and we can iden-
tify α(0) = 3u. This relation can be understood from
classical electrodynamics. We recall the Lorentz rela-
tion E(0) = E − 1

3P for the homogeneous electric field
inside the dipole, assumed spherical. Since we have im-
posed E(0) = 0, the polarization density must equal 3
times the local electric field E. The dipole moment is
thus uP ≡ α(0)E = 3uE with u the volume of the
dipole, and hence α(0) = 3u. The line width in fre-
quency near the resonance is related to Γ according to
γ = k2

0c0Γ = α(0)k4
0c0/6π, a known relation for the ra-

diative decay rate of a semi-classical two-level atom in



4

the electric-dipole approximation [9]. We can identify
the quality factor Q0 = ω0/γ = 6π/α(0)k3

0. Near the
resonance, we can thus write

t(k = ω/c0) = −6π

k0

γ/2

ω0 − ω − iγ/2
(10)

The t-matrix satisfies the optical theorem,

−Im t =
∑
p′

|t(k)|2 ·∆p πδ(k
2 − p2) =

|t(k)|2k
6π

This expression is consistent with Eq. (1), worked out lin-
early in the dipole density n on both sides, with U ISA

pp′ =

n|t(k)|2 the ISA collision operator and ΣISA(p) = nt(k).
For its relative simplicity, many exact numerical simula-
tions have been carried out with media filled randomly
with electric dipoles [5, 10–12], and many theoretical
treatments exist already [13–15], not only because one
can go far without making further approximations but
also because they constitute a good and complete model
for multiple scattering of light from simple atoms. We
notice that the t-matrix of a single dipole is independent
of both polarization, p and p′. As a result, a single dipole
can scatter microstates with arbitrary state of polariza-
tion, and with arbitrary p towards arbitrarily large p′.

C. Extinction involving two electric dipoles

The extinction caused by recurrent scattering from two
dipoles was discussed in Ref. [15] for scalar waves, in Ref.
[16] for low-energy electrons, and in Refs. [13, 17, 19]
for electromagnetic waves. The last two works mainly
focused on diffusion of transverse light, but used the full
Green’s tensor (2) to describe recurrent scattering. In
Ref. [19] correlations between dipoles were included and
compared successfully to numerical simulations. Despite
the singular Green’s tensor G0(k, r) in the near field, no
new divergencies were encountered provided the whole
series of recurrent scattering is summed. In the following
section we will explicitly include the longitudinal field in
the transport. To that end, we need to understand the
behavior of the self-energy tensor Σ(k,p) at large p. The
self-energy involving one or two different dipoles is given
by [13]

Σ(k,p) = nt1 + n2

∫
d3r

t3G2
0(r)

1− t2G2
0(r)

+ n2

∫
d3r

t4G3
0(r)

1− t2G2
0(r)

eip·r +O
(
n3 log n

)
(11)

We have dropped the explicit reference to k = ω/c0 in
t(k) and in G0(k + iε, r). The first term is the ISA,
the second term involves recurrent loops between two
dipoles. They are both independent of p and necessar-
ily isotropic tensors. We will show in Sec. II D that, in
our model, loop diagrams of arbitrary order rigorously
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Figure 1. Real (top, on resonance) and imaginary (bot-
tom, for a detuning δ = (ω − ω0)/γ = 1.5) part of the
wave-number dependent “boomerang” self-energy associated
with two dipoles. The wave number p (“momentum”) is ex-
pressed in units of k = ω/c0 in free space, the self-energy
is expressed in units of (4πn/k3)2 × k2. The transverse
self-energy ΣT (k, p) converges asymptotically to zero (dashed
line) for all detunings, meaning that the Lorentz local field
term ΣLL(k, p) = − 1

3
n2t2, part of the boomerang diagrams

but independent of p, is canceled. The longitudinal self-
energy ΣL(k, p), on the other hand, converges asymptotically
to −n2t2 (dashed line), as expressed by Eq. (13). The struc-
ture visible near p = 3k is caused by the triple round trip
of light between two dipoles in the boomerang diagrams de-
scribed by Eq. (11).

determine the energy stored in longitudinal modes, and
exploit this notion numerically. The third term, sum-
ming up the so-called boomerang diagrams ΣB (see Fig.
1) provides the first p-dependent contribution and causes
ΣT (p) 6= ΣL(p). Higher orders in number density involve
3 different dipoles or more. The boomerang diagrams
generate a subtle contribution via the Lorentz contact
term δ(r)/3k2 in G0(r) [14, 18], which gives rise to the
well-known Lorenz-Lorentz correction −n2t2/3k4 to both
the longitudinal and transverse dielectric functions, and
that is independent of p. Nevertheless, as p → ∞, this
term is compensated, again subtly, in the transverse self-
energy and reappears as a purely longitudinal self-energy.
This can be seen by subtracting the transverse photon
field G0,T (r) in free space, derived in Eq. (6) for the ef-
fective medium, which is free from the Lorentz contact
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term. The boomerangs become,

ΣB(p) = n2t2
∫
d3r

[
G0(r)

1− t2G2
0(r)

−G0,T (r)

]
exp(ip · r)

+ n2t2
∫
d3r [G0,T (r)−G0(r)] exp(ip · r) (12)

In the first term, the Lorentz contact term at r = 0 no
longer contributes and the integral vanishes for large p.
The second integral is just equal to (minus) the longitu-
dinal Green’s tensor GL,0(k,p) in Fourier space. Hence
we find the somewhat surprising relation for infinite p,

lim
p→∞

Σ(p) = ΣISA + ΣLoop −
n2t2

k2
p̂p̂ (13)

Figure 1 illustrates by numerical integration of Eq. (11)
that for large wave vectors, the Lorentz contact term
is canceled in the transverse (boomerang) self-energy.
It converges always to zero, whereas the longitudi-
nal boomerang self-energy converges asymptotically to
ΣL(p) = −n2t2/k2. Neither one of them converges to
−n2t2/3k2, associated with the Lorentz contact term.
The asymptotic limit established in Eq. (13) is impor-
tant since it demonstrates that KL(∞) 6= KT (∞), the
first introduced earlier in Eq. (3) describing the dynamic
dipole-dipole coupling in the near field.

It is instructive to calculate the longitudinal Green’s
function (3) associated with the self-energy in Eq. (11).
Only the boomerang diagrams ΣB depend on wave num-
ber p. Hence, up to order n2,

GL(k, r) =
∑
p

p̂p̂
1

k2 − ΣL(p)
exp(ip · r)

= −∇∇ ·
∑
p

[
1

k2 − Σ0
+

1

k4
ΣB(p)

]
exp(ip · r)

p2

with Σ0 = ΣISA + ΣLoop. Upon inserting the boomerang
diagrams and using −∇∇(1/4πr) = δ(r)/3 + (1 −
3r̂r̂)/4πr3 = k2G0,L(r), one obtains,

GL(k, r) = G0,L((k2 − Σ0)1/2, r)

+
n2

k2

∫
d3r′G0,L(r− r′) · t4G3

0(r′)

1− t2G2
0(r′)

This determines the longitudinal Green’s tensor at all dis-
tances, and also depends on frequency for all distances.
The first term stands for ordinary dipole-dipole coupling
of the type 1/r3 with a modified prefactor from the ef-
fective medium that arises because we consider the elec-
tromagnetic Green’s tensor and not the potential energy
of the dipoles. The second term really changes the prop-
agator from r = 0 to r′, because a dipole can be situated
at r = 0, that first couples via a high-order dipole in-
teraction to a dipole at r′ (a single coupling is already
counted in the effective medium) before finally arriving
at r. In the following we show 1) that this coupling fully
disappears at large distance (contrary to Ref. [4]) and
2) that for small distances we recover the dipole-dipole

coupling found earlier in Eq. (3), with the complex wave
number KL(∞).

For kr � 1, we can take G0,L(r) out of the inte-
gral, and recognize the remainder as the boomerang self-
energy at p = 0. Hence,

GL(k, r→∞) = G0,L(KL(0), r) (14)

This result agrees with Eq. (5) and was seen to cancel
against a similar term in the transverse part of the Dyson
Green’s function. For kr � 1 we can write,

GL(k, r→ 0) = G0,L((k2 − Σ0)1/2, r)

− n2t2

k2

∫
d3r′G0,L(r− r′) ·G0(r′)

+
n2

k2

∫
d3r′G0,L(r− r′) · t2G0(r′)

1− t2G2
0(r′)

The last term is regular and r = 0 can be inserted. The
second term is equal to −(n2t2/k4)G0,L(r) and adds up
to the first term. Since by Eq. (13) we have K2

L(∞) =
k2 − Σ0 + n2t2/k2,

GL(k, r→ 0) = G0,L(KL(∞), r) + D(0)

This agrees with Eq. (3) and attributes a finite complex,
frequency-dependent value to D(r = 0),

D(0) =
n2t2

k2

∫
d3r′

G0,L(r′) ·G0(r′)

1− t2G2
0(r′)

(15)

We note that D(0) is negligible compared to the dipolar
coupling GL ∼ 1/r3.

D. Density of states

The total electromagnetic spectral density at frequency
ω = kc0 in a polarizable medium is defined by

Ntot(k) =
|k|
c0

TR δ
(
k2 −H

)
with H = ε(r)−1/2(p2−pp)ε(r)−1/2 the Helmholtz oper-
ator and TR the trace in the Hilbert space spanned by all
eigenfunctions, including a strongly degenerate longitu-
dinal eigenspace with eigenvalue 0. Written in this way,
the spectral density is defined (and equal) for positive
and negative frequencies and normalized to the dimen-
sion of the Hilbert space,∫ ∞

−∞
dωNtot(k) = TR

independent of ε(r), and formally infinite. We can work
out the trace in real space as

Ntot(k) =

∫
d3r
|k|
c0
〈r|Tr δ

(
k2 −H

)
|r〉
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with Tr the trace over 3 polarizations only, and identify
the integrand as the local density of states,

N(k, r) = − k
c0

1

π
ImTr GH(k + iε, r, r)

with GH = [(k+ iε)2−H)]−1 . After ensemble-averaging
it becomes independent of r, and we can express it in
terms of the Dyson Green’s function (2),

〈N(k, r)〉 =

〈
− k
c0

1

π

× ImTr 〈r| ε1/2(r) ·G(k + iε) · ε1/2(r)|r〉
〉

= − k
c0

1

π

∑
p

Im Tr
p2∆p

k2
·G(k + iε,p) (16)

Both lines in this expression count, by construction, all
states but, quite surprisingly, the second line projects on
the transverse states only with however a large weight on
large wave numbers p � k. The reason is that the first
line counts electrical energy, including the longitudinal
modes, whereas the second line counts magnetic energy,
that has only transverse modes. Equation (16) states
that the density of states can be calculated from either
the magnetic or electrical energy, provided the latter in-
cludes also the longitudinal states.

For our model of electric dipoles we expect that the
DOS is the sum of transverse traveling waves and stocked
longitudinal waves. To show this we go back to the first
line of Eq. (16). For ε(r) = 1 + δε(r), we identify V =
−δε(r)k2 as the interaction operator in the Born series
of light scattering [6]. Before doing the configurational
average, we can consider M dipoles in a finite volume
V (see also Appendix A). Rigorous scattering theory
imposes the operator identity V·G(k) = T·G0(k). Hence

N(k, r) = − k
c0

1

π
ImTr G(k + iε, r, r)

+
k

c0

1

π
ImTr〈r|T

k2
·G0(k + iε)|r〉

This equation is still exact and depends on the position
r. Since the polarizability density δε(r) has disappeared
explicitly we can consider the special case of scattering
from identical, impenetrable electric dipoles, associated
with a dielectric susceptibility δε(r)→∞, and described
by Eq. (8). For M such dipoles,

T(k) =

M∑
mm′

Tmm′(k)|rm〉〈rm′ | (17)

with, for m,m′ fixed, the 3×3 matrix Tmm′(k). To have
G(rm, r) = 0 inside all dipoles at rm and for arbitrary r
outside imposes that Tmm′(k) be given by the inverse of
the 3M × 3M matrix −G0(k, rm, r

′
m). It easily follows

that

〈r|T ·G0(k + iε)|r〉 = −1

M∑
m=1

δ(r− rm) = −n(r)
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Figure 2. The contribution of dipole-dipole coupling to the
DOS as a function of distance between the dipoles. The vol-
ume integral of the functions shown produces the second term
of Eq. (22). UP (r) is associated with the electric field perpen-
dicular to r, UQ(r) with the electric field directed along r.
Top: δ = (ω − ω0)/γ = −0.5 (redshift). Bottom: δ = 0.5
(blueshift). UP (r) has a subradiant peak only for positive
detuning whereas UQ(r) only for negative detunings.

Since this is purely real-valued, it cancels in the ex-
pression above for N(k, r). Upon averaging and letting
M,V → ∞ at constant number density, the remaining
term yields

〈N(k)〉 = − k
c0

1

π

∑
p

ImTr G(k + iε,p) (18)

in terms of the Dyson Green’s function (2). This is rec-
ognized as 〈|E(r)|2〉, proportional to the energy density
〈E(r)2〉/8π, averaged over disorder and cycles, and hav-
ing both longitudinal NL(k) and transverse NT (k) parts.
We emphasize that Eq. (18) only applies for our model
that excludes any light inside the scatterer. As a result
no stored energy density 〈E(r) · P(r)〉 exists as e.g. in
Mie scattering [6]. In this model, the stocked dipole-
dipole energy is entirely described by longitudinal (elec-
tric) waves.

We can insert the Dyson Green’s function obtained in
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Figure 3. The contribution of dipole-dipole coupling to the
DOS (in units of N0 × Q0 × (4πn/k30)2) as a function of de-
tuning δ = (ω − ω0)/γ. The dashed lines show the separate
contributions of the modes with electric field perpendicular
(P ) and parallel (Q) to the separation vector r.

Sec. II A into Eq. (18),

〈N(k)〉 = − k

πc0
Im

[
1

K2
L(∞)

∑
p

+
∑
p

(
1

K2
L(p)

− 1

K2
L(∞)

)

+2
∑
p

1

K2
T (p)− p2

]

Only the first term, stemming from the singular Lorentz
cavity and entirely governed by longitudinal excitations,
diverges and is regularized using

∑
p = 3/α(0) =

k3
0Q0/2π consistent with section II B. The second term,

proportional to D(r = 0) in Eq. (3), is non-zero but a
factor Q0 smaller and shall be neglected. Finally the last
term is just the density of states of transverse waves. We
shall assume the existence of a well-defined complex pole
KT = kT + i/2`. This gives

〈N(k)〉 =
k

2π2c0

[
−Q0Im

k3
0

K2
L(∞)

+ kT

]
(19)

The ratio of longitudinal and transverse LDOS is thus

〈NL(k)〉
〈NT (k)〉

= −Q0
k3

0

kT
Im

1

K2
L(∞)

(20)

In view of the factor Q0 this can be a large number,
proportional to the density of the dipoles. For low density
is KL(∞) ≈ KT ≈ k+ i/2` so that 〈NL〉/〈NT 〉 = Q0/k`.
This ratio will be discussed in the next section

A rigorous expression can be derived for DOS without
relying on the existence of a complex pole by taking into
account the p-dependence of the self-energy ΣT (k, p) as-
sociated with the scattering from two electric dipoles. A

direct expansion in dipole density yields

〈N(k)〉 = − k

πc0
ImTr

∑
p

[
G0(k,p)

+G0(k,p) ·Σ(k,p) ·G0(k,p)

+ G0(k,p) ·Σ(k,p) ·G0(k,p) ·Σ(k,p) ·G0(k,p)
]

+O(n3)

Several singular longitudinal terms, stemming from the
Lorentz cavity can be seen to cancel. The first term
describes the free electromagnetic field and the longi-
tudinal field drops out trivially. The longitudinal com-
ponent of the second term contains a singular Lorentz
cavity (nt+ ΣLoop − n2t2/k2)

∑
p G2

L(p) stemming from

Eq. (13). Similarly, the third term generates a singu-
lar longitudinal contribution n2t2

∑
p G3

L(p) that cancels

exactly against the local field −n2t2/k2 generated by the
previous term. We can work out the wave number in-
tegral in the expression for 〈N(k)〉 exactly by inserting
Eq. (11), and use the cyclic property of the trace,

〈N(k)〉 =
k2

2π2c0
+

k

πc0
ImTr

[
nt

∂

∂k2
G0(k, 0)

+ n2t3
∫
d3r

G2
0(r)

1− t2G2
0(r)

· ∂

∂k2
G0(k, 0)

+ n2t4
∫
d3r

G3
0(r)

1− t2G2
0(r)

· ∂

∂k2
G0(k, r)

+ n2t2
∫
d3r G0(k, r) · ∂

∂k2
G0(k,−r)

]
We have transformed the integral over wave vectors p of
the last term G0 ·Σ ·G0 ·Σ ·G0 in 〈N(k)〉 to real space.
Using again the relation 1/t(k) = −G0(k, r = 0) this can
be rearranged to

〈N(k)〉 −N0(k) = −3n

2π

d

dk
Im log t

− n2

4πc0

d

dk
ImTr

∫
d3r log

[
1− t2G2

0(r)
]

(21)

with N0 = k2/2π2c0 the LDOS of transverse waves in
free space. The appearance of a full frequency derivative
in the DOS is a manifestation of Friedel’s theorem [20].
The second term is recognized as the dipole-dipole energy
expressed as the “return trip operator”, widely used in
the theory of Casimir energy in matter [21], and involves
loop paths only. The integral is well-defined at both r = 0
and r →∞. Since the dominating frequency dependence
comes from dt/dk ≈ −2Q0t

2/6π,

〈∆N(k)〉
N0(k)

= − Q0

3k2
ImTr

[
nt1 + n2

∫
d3r

t3G2
0(r)

1− t2G2
0(r)

]
= −Q0

k2
Im (ΣISA + ΣLoop) (22)

This expression suggests that in general the modification
of DOS is dominated by ISA + loop diagrams, describing
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Figure 4. Top: Numerical simulation of the averaged imagi-
nary part of the diagonal elements of the T -matrix as a func-
tion of detuning, for several densities n of the dipoles. Via
Eqs. (19) and (23) this quantity determines the longitudinal
density of states LDOS. Bottom: Same but with the ISA
approximation subtracted and normalized by 4πn/k30. The
dashed line shows the second-order in density term in Eq. (22)
as also shown in Fig. 3.

longitudinal excitations, even if mediated by transverse,
propagating waves. This, in turn, implies that the com-
plex longitudinal wave number KL(∞) is governed by
loop diagrams only. In Appendix A we demonstrate that
this statement holds rigorously. More precisely, if we re-
call the T -matrix (17) of M electric dipoles randomly
distributed in a volume V , then

1

K2
L(∞)

=
1

k2
+

1

3k4
n 〈Tr Tmm(k)〉 (23)

for M → ∞ at constant M/V = n. The first two terms
in the density expansion clearly coincide with Eq. (22).
All higher order terms are rigorously loop diagrams and
the ensemble-average of the diagonal element Tmm over
all other M − 1 dipoles must make it proportional to the
identity matrix.

Near resonance the first ISA term of 〈∆N〉/N0 has
a Lorentzian profile with a large peak height inversely
proportional to Q0, to be associated with the excita-
tion of a single dipole. The second term of Eq. (22)
becomes important when 4πn/k3

0 ≈ 1 and constitutes

an inhomogeneous contribution to the line-profile. Us-
ing G0(k, r) = − exp(ikr)/(4πr)[P (kr)∆r+Q(kr)r̂r̂] for
r 6= 0 [6] the integrand can be split up into two interac-
tions UQ(r) and UP (r), that govern the near-field cou-
pling of two dipoles in real space. Both are shown in
Fig. 2. The total dipole-dipole coupling, shown in Fig.
3, is negative around the resonance. Because local field
singularities cancel in the DOS, the solid curve in Fig. 3
is the same as found in Ref. [17].

In Fig. 4 we have calculated numerically the diagonal
elements of the 3M × 3M matrix Tmm for M = 104

dipoles homogeneously distributed in a sphere at den-
sity n = M/V , thereby averaging over all 3M diagonal
elements as well as over 10 independent random config-
urations of the dipoles. This calculation confirms that
KL(∞) is a genuine complex quantity and in general dif-
ferent from the complex wave vector KT = kT + i/2` as-
sociated with the transverse modes (see also Figs. 11 and
12 in Appendix B). For low dipole densities, the calcula-
tion agrees accurately with the analytical calculation of
the loops between two dipoles in Eq. (22). The line pro-
file of the longitudinal DOS broadens significantly well
beyond the single-dipole line profile as the dipole density
increases. Nevertheless, the total surface underneath re-
mains constant. This is to be expected since each dipole
contributes exactly 3 microstates to the DOS and this
number cannot be affected by dependent scattering (see
Appendix A).

E. Equipartition between longitudinal and
transverse waves

If we acknowledge the finite density of longitudi-
nal states (DOLS) proportional to −ImGL(k, p) ≈
−nIm t(k)/k4, the right hand side of Eq. (1) allows the
scattering towards longitudinal states with arbitrary p′,
even in independent single scattering. The scattering is
independent of initial wave number p, but of course re-
quires the existence of this initial state, governed by the
spectral function −ImGL,T (k, p). For transverse waves
the rate is proportional to the occupation number nT (p)
of the transverse states with wave number p and the total
available number of longitudinal states,

ρT (p)/τ ISA
T→L ∼ nT (p)(−)ImGT (p)

×
∑
p′

U ISA · p̂′p̂′(−)ImGL(p′)

= −Q0
n2|t|2Im t

6πk
× nT (p)(−)ImGT (p) (24)

Since the integral diverges at large p′, we have used the
same regularization as the one employed earlier for the
T -matrix of one dipole. The resulting scattering rate is
positive, converting the transverse state with wave vector
p to available longitudinal state with mostly large wave
vector p′.

The matrix element U
(2)
pp′ involving recurrent scattering
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from two dipoles [17] can mode-convert any initial state
to transverse states, with a rate proportional to n2, as is
the process in Eq. (24). A close look identifies only one

event part of U
(2)
pp′ that gives rise to a singular scattering

rate (see Fig. 5). The irreducible ladder diagrams, as
part of Upp′ without external lines, add up to

U
(LAD)
pp′ = n2|t|4

∫
d3r[

G0

1− t2G2
0

(
G0

1− t2G2
0

)∗
−G0G

∗
0

]
(25)

Our tensor notation is (AB)ij|kl = AikBlj , equivalent
to (AB)·S = A·S·B. This event scatters again indepen-
dent of p and p′. The second term must be subtracted
since it stands for a reducible event that is not part of
the collision operator. However, the substraction creates
a diverging contribution at r = 0 in the integral due to
the singular longitudinal field. To repair this in a way
consistent with previous sections, we extract the trans-
verse photon propagator G0,T (r), and write

U
(LAD)
pp′ = n2|t|4

∫
d3r

[
G0

1− t2G2
0

(
G0

1− t2G2
0

)∗
− G0,TG∗0,T

]
+ n2|t|4

∑
p′′

[
G0,T (p′′)G∗0,T (p′′)−G0(p′′)G∗0(p′′)

]
We have used Parseval’s identity to convert the second
integral into an integral over wave vectors. The first term

of U
(L)
pp′ now converges at small r, the second term can

be dealt with as before, giving

U
(LAD,s)
pp′ = −Q0

3n2|t|4

6πk
S +Q0

n2|t|4

6πk0

(
1

3
11− S

)
(26)

with S ≡ 〈p̂p̂p̂p̂〉 the fully symmetric four-rank tensor.
The first term of this collision operator can convert both
transverse and longitudinal waves to available transverse
waves with wave number p′. The rate is proportional to

ρT (p)/τLAD
T→L ∼

nT (p)(−)ImGT (p)
∑
p′

U
(LAD,s)
pp′ ·∆p′(−)ImGT (p′)

= −Q0
n2|t|4

(6π)2
× nT (p)(−)ImGT (p) (27)

Since t satisfies the optical theorem, the two secular scat-
tering rates (24) and (27) compensate each other on the
left hand side of the Ward identity (1), consistent with a
total scattering rate for transverse waves that was seen
in Eq. (11) not to suffer from any singularity.

Nevertheless, the two scattering events produce each a
different polarization and thus affect the balance of lon-
gitudinal and transverse energy. In the Bethe-Salpeter
equation—to be introduced in Eq. (33) of the next
section—the scattering rate for longitudinal states to

Figure 5. Diagrammatic presentation of the ladder se-
ries (without external lines) involving two different electric
dipoles. Dashed lines connect identical dipoles, solid lines
denote the Green’s tensor G0(r), crosses denotes transition
matrix t(k), bottom line denotes Hermitian conjugation. The
first diagram on the left is reducible (a simple product) and
is not part of the collision operator Upp′ .

convert back to a transverse mode with wave number
p must have the same matrix element as in Eq. (24) but
now depends on the total number of occupied longitudi-
nal states nL(p′), and the number of available transverse
states,

ρL(p)/τ ISA
L→T ∼ (−)ImGT (p)

×
∑
p′

U ISA · p̂′p̂′nL(p′)(−)ImGL(p′) (28)

This conversion, again arbitrarily fast for longitudinal
excitations with arbitrarily large p′, does not cancel in
general the reverse process of Eq. (24) unless nT (p) =
nL(p) = n for all p. This implies that the occupied phase
space is proportional to the number of available states
and equipartition of energy has been reached. These sin-
gular terms therefore lead to a very fast equipartition be-
tween longitudinal and transverse modes in phase space,
and once established, stay constant and cancel in the suc-
ceeding transport dynamics. In this regime, the ratio of
longitudinal and transverse energy densities is

〈ρL〉
〈ρT 〉

=
NL(k)

NT (k)
=
Q0

k`
(29)

The rate for LT-mode conversions associated with the
singular event can be compared to the rate that governs
the equipartition among wave vectors of traveling trans-
verse waves, and is in the same units proportional to
UISA × k/6π = k/`. Hence

τ−1
TL

τ−1
S

=
1

3

Q0

k`
(30)

If k`/Q0 � 1 we see that 〈EL〉 � 〈ET 〉 and 1/τTL �
1/τS . This means that longitudinal states dominate in
energy, and equilibrate in phase space as fast as the trans-
verse waves. In fact, when k`/Q0 < 1, the intermediate
scattering to a longitudinal wave becomes more efficient
for transverse waves to equilibrate among themselves
than accomplished by ISA single scattering. The atomic
quality factor Q0 is large, and experiments [22] and nu-
merical simulations [5, 10, 12] exist where Q0 � k`.
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III. KUBO FORMALISM

In this section we use the rigorous Kubo formalism
for the DC conductivity, adapted from electron conduc-
tion [20] to scalar classical waves [23] and electromag-
netic waves [24]. We investigate how photon diffusion is
affected by the existence of longitudinal waves.

Before averaging over the disorder, the electric field at
frequency ω = kc0 is given formally by the operator iden-
tity E(k) = G(k)⊗s(k), with s(k) a source (⊗ stands for
the matrix product in full Hilbert space, whereas · stands
for matrix product in 3×3 polarization space). Transport
theory describes the correlation function φij = 〈EiĒj〉 of
the electric field at two different frequencies and for two
different positions. We can formally relate it to the source
correlation function S according to φij = Rij|kl ⊗ Skl,
which introduces the reducible four-rank vertex R. It
satisfies the Bethe-Salpeter equation,

R = GG† + GG† ⊗ U ⊗R (31)

This equation identifies the irreducible vertex U as the
scattering operator, and GG† as the transport between
scattering events. (We use † for Hermitian conjugate
in full Hilbert space as opposed to ∗ for Hermitian con-
jugate of a 3 × 3 matrix with polarization components;
a bar denotes complex conjugation of a scalar.) The
Green’s function of the effective medium was introduced
in Eq. (2) and has transverse and longitudinal parts.
We recall the tensor convention AB · S = A · S · B, or
equivalently (AB)ij|kl = AikBlj , with the matrix B dis-
played as the bottom line of a Feynman diagram, prop-
agating backwards in time. Similarly in Hilbert space,

(GG†)αβ|κγ = GακG
†
γβ = GακḠβγ . After averaging,

translational symmetry can be exploited so that the ver-
tex in Fourier space (Fig. 6) can be written as Rpp′(q),
with p′ and p interpreted as incident and outgoing wave
numbers, and q conjugate to distance between source and
observer. Thus, the electromagnetic “Wigner function”
takes the form

φij(p,q) ≡ 〈Ei(p+)Ēj(p
−)〉 =

∑
p′

Rpp′;ij|kl(q)Skl(p
′,q)

(32)
and

Rpp′(q) = G(p+)G∗(p−)δpp′

+ G(p+)G∗(p−) ·
∑
p′′

Upp′′(q) ·Rp′′p′(q) (33)

with p± = p±q/2 (see Fig. 6) and δpp′ ≡ (2π)3δ(p−p′).
The two terms describe direct propagation with extinc-
tion of the mode p and scattering from p′ towards p, re-
spectively. One important property is reciprocity [24, 25].
Since without external magnetic fields, the (unaver-
aged) Green’s function satisfies 〈p, i|G(k + i0)|k,p′〉 =
〈−p′, k|G(k + i0)|i,−p〉 we easily check that

Rij|kl,pp′(q) = Rkl|ij,−p′−p(−q) (34)

Figure 6. The diagrammatic convention associated with the
reducible vertex Rij|kl,pp′(q), with external lines. Top line
denotes retarded Green’s function G(k + i0), bottom line
G†(k + i0) = G(k − i0) is the advanced Green’s function
and travel in the opposite direction. The polarization labels
are ij on the left hand side (“observer”) and kl on the right
hand side (“source”).The sum of incoming and outgoing wave
numbers is conserved.

A second property follows from complex conjugation,
equivalent to switching bottom and top lines of the dia-
gram,

Rij|kl,pp′(q) = R̄ji|lk,pp′(−q) (35)

If Eq. (1) is satisfied, R is known to exhibit long-range dif-
fusion (q → 0), as its equivalent in electron-impurity scat-
tering [20], that decouples input and output, and takes
the form

Rij|kl,pp′(q) =
dij(p,q)dkl(p

′,q)

πN(k)D(k)q2
(36)

where N(k) is the DOS given in Eq. (16) and the eigen-
function associated with long-range diffusion is written
as

d(p,q) = −Im G(p)− i

2
J(p,q) +O(q2) (37)

The first term −Im G(p) ≡ −[G(p) − G∗(p)]/2i is
proportional to the spectral function and implies per-
fect equipartition of the electromagnetic energy in phase
space. The second term is linear in q and describes a
small perturbation due to gradients of Φij(r) in real space
that trigger diffuse energy flow. For it to be small for all
momenta p imposes constraints to be discussed later. Be-
cause d(p,q) describes an electric field correlation func-
tion, it must satisfy dij(p,q) = d̄ji(p,−q), consistent
with Eqs. (35) and (34). Thus, J(p,q) = −J∗(p,−q)
and, being linear in q by construction, we conclude that
the tensor J(p,q) is Hermitian.

Following common treatments in radiative trans-
fer, many microscopic approaches interpret the expan-
sion (37) as one in the angular anisotropy of scattered
radiation with wave numbers in equipartition and im-
posed near the frequency shell, as described by the first
term. If we ignore electromagnetic polarization and with-
out any kind of explicit anisotropy in space, the only
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possible choice of this expansion is,

d(p,q) = −Im G(p) [1− iJ0(p)p · q + · · · ] (38)

For diffusion of cold atoms, J(p,q) was obtained by solv-
ing numerically the Bethe-Salpeter equation [26]. Alter-
natively, the unknown function J0(p) can be chosen such
that the first angular moment

∑
p pd(p,q) matches the

divergence −iq · K of the energy current density. This
leads to J0(p) = 1/p2 [7] and makes the vector K the only
unknown. This choice conveniently circumvents diver-
gencies that occur in rigorous theory for large p. For vec-
tor waves, J(p,q) is a tensor containing longitudinal and
transverse components, and even their interferences. We
will derive it more rigourously from the Bethe-Salpeter
equation (33) whose orders linear in q give us

J(p,q) = JD(p,q)

+ G(p)G∗(p) ·
∑
p′

Upp′ · δqG(p′,q)

+ G(p)G∗(p) ·
∑
p′

Upp′ · J(p′,q) (39)

The first term is often referred to as the Drude con-
tribution to diffusion and depends only on the effective
medium properties. It reads

JD(p,q) = G(p) · L(p,q) ·G∗(p)− δqRe G(p,q) (40)

in terms of the bilinear Hermitian tensor Lij(p,q) = 2(p·
q)δij − piqj − qipj and the notation is δqRe G(p,q) =
(q · ∂p)Re G(p). The second and third terms in Eq. (39)
are genuine contributions from scattering. They vanish
only for isotropic events in Upp′ but not in general. It is
straightforward to demonstrate that the (cycle-averaged)
Poynting vector K = c0Re (E × B̄)/8π is related to the
correlation function of the electric field according to

Kn(k,q) =
c0

8πk

∑
p

(
pnδik −

1

2
pkδin −

1

2
piδkn

)
φki(p,q)

+
c0

8πk

∑
p

qk
1

2
(φkn(p,q)− φnk(p,q)) (41)

In the absence of external magnetic fields, φki(p,0) =
φik(p,0) so that the second term vanishes in linear order
of q. Upon inserting Eq. (37), the first term involves only
the diffusion current tensor J. Some manipulations lead
to

iqnKn =
1

4πN(k)

∑
p

Lik(p,q)Jki(p,q)

× 1

D(k)q2

c0
8πk

∑
p′

−ImGlj(p
′) · Slj(p′) (42)

The factor that has been split off on the right hand side
can be identified as the (cycle-)averaged energy density
ρ(r) = 〈|E|2 + |B|2〉/16π released by the source and dif-
fusing out. This can be established by noting that the

tensor J, being odd in p, does not contribute to the
energy density. Since the first term in Eq. (37) obeys
equipartition, 〈|E(r)|2〉 = 〈|B(r)|2〉, the energy density
is

〈ρ(q)〉 =
1

πN(k)

k

c0
Tr
∑
p

p2

k2
∆p · −Im G(k,p)

× 1

D(k)q2

c0
8πk

Tr
∑
p′

−Im G(p′) · S(p′) (43)

If we recall that the electromagnetic DOS is given by
Eq. (16), the first factor in Eq. (43) equals one. In real
space Eq. (42) thus becomes ∇ ·K = −D∇2ρ(r) with

πN(k)D(k) =
1

4
Tr
∑
p

L(p, q̂) · J(p, q̂) (44)

This is the Kubo formula for the electromagnetic diffu-
sion constant. Since D is a scalar in this work, the right
hand side does depend on the direction of q. The left
hand side can be identified as the electromagnetic DC
conductivity σ(k) (here in units of 1/m) expressed as the
(Einstein) product of DOS and diffusion constant. With
this definition, that we prefer in view of the presence of
πND in Eq. (36), the ”electromagnetic conductance” of
a slab with surface A and length L takes the form of
a Landauer formula 〈

∑
ab Tab〉 = 4σA/L [27]. In terms

of the energy density ρ(q) the electric field correlation
function is

φij(p,q) =
dij(p,q)

πN(k)
× 8πk

c0
ρ(q) (45)

A. Diffusion current tensor

The diffusion current tensor J(p,q) must be a parity-
even, Hermitian tensor, linear in the gradient vector q.
For our problem, with no explicit anisotropy present, this
leaves us with the following general form

J(p,q) = J0(p)(p · q)∆p + J1(p)(p · q)p̂p̂

+J2(p)(pq + qp) + J3(p)i(pq− qp) (46)

with four real-valued functions Ji(p) to be determined. A
fifth term iεijkqk is in principle allowed but is excluded
for scattering that respects parity symmetry. Alterna-
tively, we could have defined the mode J2(p) in terms of
the tensor pq+qp−2(p · q̂)p̂p̂ in which case all 4 modes
would be mutually orthogonal.

The four functions can be associated with four different
aspects in diffuse transport. By restricting only to the
first, the transport problem reduces to the common ap-
proximation made in Eq. (38). The modes J1, J2 and J3

are clearly genuine vector effects, absent in a scalar the-
ory. However, only J0 and J2 carry a Poynting vector,
with J0 associated with the transport of transverse waves
in the far field, and J2 associated with a novel process
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that involves the interference of longitudinal and trans-
verse waves. By restricting to the purely transverse term
J0(p), transport theory almost reduces to a scalar theory.
The term J1 describes how the longitudinal energy den-
sity |EL(p)|2 achieves an anisotropy in phase space due
to the spatial gradient of energy, but without inducing
an energy current. The presence of J3 is more subtle and
can be associated with the imaginary part of the com-
plex Poynting vector, discussed for instance in Ref. [28].
Let us call Im K = c0Im (E × B̄)/8π. We readily find,
similar to the derivation of its real part in Eq. (41), that
in terms of the field correlation function φik(p,q),

ImKn(k,q) =
−ic0
8πk

∑
p

(
qnδik −

1

2
qkδin −

1

2
qiδkn

)
φki

− ic0
8πk

∑
p

pk(φki − φik) (47)

The first term is independent of J and can be evaluated
without any approximation. The integral over wave num-
bers is proportional to the total DOS N(k) and cancels
this same factor in the denominator of Eq. (45). As a
result it is completely independent of the presence of the
dipoles. The second term requires anti-symmetry in the
diffusion tensor Jij , described only by J3(p). We obtain

Im K(k,q) =
2

3

(
c0
k

+
1

πN(k)

∑
p

p2J3(p)

)
(−iq)ρ(q)

(48)
Like the real part, the “current density” Im K is pro-
portional to minus the gradient in energy density, with
however a very small “fictitious” diffusion constant DI =
2
3c0/k associated with Im K, and a correction from J3

calculated in the next section.
Even if J1 and J3 do not carry current themselves,

they cannot be ignored because the Bethe-Salpeter equa-
tion (39) couples in principle all Ji through scattering.
From Eq. (39) we can identify four different contribu-
tions to J(p,q), written as

J(p,q) = JD + JδΣ + JδG + JS (49)

In this expression, the Drude diffusion current in Eq. (40)
has been further split up into the first two terms above.
The first is given by,

JD(p,q) = G(p) ·L(p,q) ·G∗(p)−G(p) ·L(p,q) ·G(p)
(50)

The second term is generated by the explicit dependence
of the self-energy on wave number,

JδΣ(p,q) = −Re G(p) · (q · ∂p)Σ(p) ·G(p) (51)

with the convention that Re A = (A + A∗)/2. The fi-
nal two terms JδG and JS are defined as the two last
scattering terms involving Upp′ in Eq. (39).

The mode J2 implies a new mechanism of long-range
diffusion mixing near and far fields. One peculiarity is

the direction of the Poynting vector associated with the
diffuse mode expressed by Eq. (37). The mode J0 of the
pure transverse field generates a Poynting vector whose
component along the gradient varies as cos2 θ in phase
space, with θ the angle between wave vector p and gra-
dient vector q, and is thus largest along the gradient
vector. For the mode J2 this component varies as sin2 θ,
which is largest orthogonal to the gradient vector.

In the following subsections III A 1–III A 3 we discuss
these 4 contributions to J separately, and show that the
scattering from two electric dipoles generates all four
channels in Eq. (46). The results are summarized in sub-
section III A 5 and in Table (I).

1. Drude current tensor

The Drude current tensor JD(p,q) defined Eq. (50) is
independent of the collision operator Upp′ and is there-
fore the easiest to calculate. We will split JD(p,q) fur-
ther up into a pure transverse part and an interference
term and write

JD(p,q) = JDTT (p,q) + JDTL(p,q) (52)

The first part stems from purely transverse propagation
and contributes only to the J0-channel in Eq. (46). The
second term is produced by a mixture of longitudinal and
transverse propagation and contributes to the channels
J1, J2 and J3. Since p ·L(p,q) ·p = 0, the Drude current
tensor features no purely longitudinal mode JDLL(p,q),
proportional to |GL(p)|2.

The transverse Green’s function GT (p) is given by the
second term in Eq. (2). It follows

JDTT (p,q) = 2(p · q)∆p

(
|GT (p)|2 − ReGT (p)2

)
= 4(p · q)∆pIm

2GT (p) (53)

This function is heavily peaked near the frequency shell
of the effective medium. We can ignore any p-dependence
in ΣT (p) and approximate it by ΣT (p = k). For GT =
(K2

T − p2)−1 and KT = ke + i/2` a complex wave vector
independent of p, we can use,∑

p 2p2Im2GT (p)∑
p−ImGT (p)

= ke`

In terms of the density of transverse states (DOTS) this
produces the classical Drude diffusion constant in the J0-
channel,

DD
0 (k) =

1

3
×
(
c0
ke
k

NT (k)

N(k)

)
× `(k) ≡ 1

3
vE` (54)

It is customary to write ke/k = c0/vp in terms of the
phase velocity vp. The ratio NT /N = NT /(NL + NT )
is a factor that can be very small near the resonance
ω0. We recall that for our electric dipole scatterers all
stored energy resides in the longitudinal field. In the
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Drude approximation for the transverse field we recover
the familiar picture of light diffusion, with the extinction
length as the mean free path, and vE as energy transport
velocity [6].

The perturbation expansion in q is valid for the trans-
verse waves as long as 2pq|ImGT (p)|2 < |ImGT (p)|.
This is most stringent near the frequency shell p = ke
where the spectral function |ImGT (p)| is maximal and
not stringent at all for large momenta. This gives q <
|Im ΣT (ke)|/2ke = 1/2`. This could have been an intu-
itive estimate.

The diffusion tensor JDTL is given by

JDTL(p,q) = 2ImGT ImGL (2p̂p̂(p · q)− pq− qp)

+ iIm [ḠLGT ] (pq− qp) (55)

with contributions to the channels J1, J2 and J3 in
Eq. (46). We focus first on the Poynting vector for which
only the channel J2(p) is relevant. Inserting the first term
into Eq. (44) gives

πN(k)DD
2 (k) =

∑
p

ImGT (p)ImGL(p) [p2 − (p · q̂)2]

(56)
This diffusion is clearly determined by the overlap of
transverse and longitudinal modes in phase space. Be-
cause the longitudinal spectral function is essentially in-
dependent of p, this overlap is significant and the integral
even diverges as

∑
p 1/p2. We can extract and regularize

it as earlier by Q0k0/4π,

πN(k)DD
2 (k) =

Q0

6π

(ImΣISA)
2

k3
(57)

This singular term is proportional to the square of the
density of the dipoles and will later be seen to cancel. As
a result, the leading current tensor is,

JDTL =
2π

k`
δ(k2 − p2)

1

p2
(2p̂p̂(p · q)− pq− qp)

+ iIm [ḠLGT ] (pq− qp) (58)

The use of the Dirac distribution implies here implicitly
that a typical Kubo integral of the kind

∑
p pJ(p,q) con-

verges for large p, with no need for regularization. This
expression will turn out to be leading for J2 and domi-
nating for J3. The Drude diffusion constant associated
with the mixture of transverse and longitudinal waves is
thus given by

DD
2 =

1

3πN(k)

∑
p

2π

k`
δ(k2 − p2) ≈ 1

3
vE

1

k2`
(59)

This diffusion constant can be considered as the ISA of
electromagnetic diffusion in the J2-channel. Its value is
positive and, apart from the universal pre-factor vE in
diffusion, depends linearly on the density of the dipoles.
In Ref. [4] one finds a correction induced by dipole-dipole
coupling that can be written as ∆D = 1

3vEF (δ)/k3
0`

2,

with the function F varying over the resonance. Like the
diffusion found in Eq. (59), it is positive and proportional
to vE , but unlike Eq. (59) it scales as n2. The interfer-
ence of longitudinal and transverse waves is excluded in
Ref. [4] which explains why this leading term (59) is not
found.

For the hydrodynamic expansion made in Eq. (37)
to hold for the transport channel J2, we must have
|ImGT (p)| > |JDTL(p)|pq/2, or equivalently, pq <
1/|ImGL| ≈ |k2/|Im Σ|. Since transverse waves already
impose q < 1/` we conclude that p < k3`2. This becomes
restrictive once k` approaches unity.

It is straightforward to obtain the Drude approxima-
tion for the fictitious diffusion constant in Eq. (48) asso-
ciated with Im K, and which was seen to be governed by
J3. Since J3 = Im (ḠLGT ) we can write

1

πN
Im
∑
p

p2 (ḠLGT ) =
1

πN
Im
∑
p

[
p2ḠL

1

−p2
+
z2

z̄2
GT

]

≈ −c0
k

NL + 1
2NT

NL +NT

where we used the expression (18) of the DOS split up
in its longitudinal part NL and its transverse part NT .
With vE = c0NT /(NL +NT ) we find from Eq. (48),

DD
I =

1

3
vEk

−1 (60)

The singular longitudinal DOS, proportional to Q0, can-
cels. In the Drude approximation the fictitious diffusion
constant DI of the mode J3 is a factor k` larger than
the diffusion constant D2 of the channel J2, and a fac-
tor k` smaller than the transverse diffusion of mode J0.
This suggests that they all become of the same order near
k` = 1.

2. Self-energy dependent on wave number

Any dependence on p of the self-energy contributes
to the diffusion current via the term JδΣ derived in
Eq. (51). For electric dipoles such dependence on wave
number comes in via the boomerang diagrams discussed
in Eq. (11) with the subtle local field correction at large
momenta derived in Eq. (13), on which we shall focus. If
we insert this term into Eq. (51) we find an interference
term between longitudinal and transverse propagation,

JδΣ(p,q) = −Re

(
n2t2

k2
GT (p)GL(p)

)
1

p

× (2p̂p̂(p̂ · q)− p̂q− qp̂)

Its contribution to the Poynting vector in the J2-channel
diverges again as

∑
p 1/p2. Restricting to large wave

vectors,

πN(k)DδΣ
2 (k) =

Q0

12π

Re
(
n2t2

)
k3

(61)
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The remainder of Σ(p) in Eq. (11) provides contribu-
tions to J0, J1 and J2, and is proportional to n2 once the
divergency has been removed. Some formula manipula-
tion gives the following closed expression for the diffusion
constant caused by the dependence on wave number of
the self-energy of two electric dipoles,

πN(k)DδΣ(k) =
1

4
n2Re Tr

∫
d3r(r · q̂)2(

t2G2
0

1− t2G2
0

− t2G0 ·G0,T

)
(62)

This expression is free from any singularity but is beyond
the scope of this work, being a factor 1/k` smaller than
what was found in Eq. (59) for the J2-channel, and even
a factor 1/(k`)3 smaller than the leading contribution in
the J0-channel.

3. Scattering diffusion current tensor

The scattering diffusion current tensor JδG(p,q) is
given by the second term in Eq. (39). It vanishes for
any isotropic scattering in Upp′ , among which (here)
single scattering. Among the different scattering events
generated by two electric dipoles, only the most-crossed
diagrams and the forward-crossed diagrams induce an
anisotropy in scattering. They are given by

UMC
pp′ = n2|t|2

∫
d3r

tG0

1− t2G2
0

(
tG0

1− t2G2
0

)∗
ei(p+p′)·r

(63)
and

UFC
pp′ = n2|t|2

∫
d3r[

1

1− t2G2
0

(
1

1− t2G2
0

)∗
− 11

]
ei(p−p

′)·r (64)

The most-crossed diagrams generate a contribution to
JδG(p,q) of the type J2 leading to a diffusion constant
free from any singularity at large p, and of the same order
as was found in Eq. (62). We will ignore them for the
same reason and focus on the forward-crossed diagrams.
We can write∑

p′

UFC
pp′ · δqG0(p′) = n2|t|2

∫
d3r (iq · r)

[
1

1− t2G2
0

· Re G0 ·
(

1

1− t2G2
0

)∗
− Re G0

]
eip·r

This integral is regular for all p, but does not decay fast
enough with p to prevent singularities in the channels J2

and J3. To see this, the factor between brackets is written
as F = F0(r)1 + F1(r)r̂r̂. The space integral above can
be done to get,

JδG(p,q) = n2|t|2G(p)G(p)∗ ·
(p̂ · q)f0(p) + p̂p̂f1(p) + (p̂q + qp̂)f2(p)

with 3 known functions related to Fi(r). The first term
with f0(p) is part of J0, and constitutes a high-order
correction to transverse diffusion, of no interest here. The
longitudinal term with f1 produces no Poynting vector.
We concentrate on the term with f2, given by

pf2(p) = −
∫
d3rF1(r)j2(pr)

This integral is finite for all p but does not decay with p
since

lim
p→∞

pf2(p) = lim
p→∞

−1

p3

∫
d3yF2(y/p)j2(y)

= − 3

4πk2

∫
d3y

j2(y)

y3
= − 1

k2

We have used that for small r, F(r) = −δ(r)/3k2 − (1−
3r̂r̂)/4πk2r3. The local contact term does not contribute.
The diffusion constant in the J2-channel is given by,

πN(k)DδG
2 (k) = −1

3
n2|t|2

∑
p

pf2(p)ReG0,L(p)Ḡ0,T (p)

(65)
This equation thus suffers from a divergence. Upon split-
ting it off and regularizing

∑
p 1/p2 = Q0k/4π we find

πN(k)DδG
2 (k) = −Q0

n2|t|2

12πk3
+O(n2) (66)

This is the third diverging term that will cancel against
the two already found earlier. The term proportional to
f2(p) also produces a contribution to the J3-channel,

JδG3 (p) = −n
2|t|2

k2

f2(p)

p
ImGT (p) (67)

This function decays rapidly as 1/p6 for large p. It is eas-
ily checked that the integral

∑
p pJ3(p) is not singular at

large p and produces a correction of order n2 in Eq. (47)
that will not be further discussed.

4. Weak localization

The last term in Eq. (39), defined as JS(p,q), mixes in
principle all four transport mechanisms Ji. For our model
of electric dipoles, the ISA makes no contribution since
isotropic, but the diagrams (63) and (64) do. The leading
order is obtained by inserting on the right hand the Drude
expression for the transverse diffusion current tensor JTT

found in Eq. (53). Since this current is strongly peaked
near p = k we can approximate JTT (p,q) = 2π`(p̂ ·
q)∆pδ(k

2 − p2) so that,

JS(p,q) =
k`

2π
G(p)G(p)∗ ·

∫
dk̂

4π
Upk ·∆k(k̂ · q) (68)

Only the angle-dependent scattering UMC and UFC sur-
vive this integral. For convenience we can summarize
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Eqs. (63) and (64) by

Upp′ =

∫
d3r

[
UMC(r)ei(p+p′)·r + UFC(r)ei(p−p

′)·r
]

(69)

The angular integral over k̂ can be performed to get

JS(p,q) =
k`

2πi
G(p)G(p)∗ ·

∫
d3r eip·r ·[

UMC(r)− UFC(r)
]
·[

j2(kr)

kr
(r̂q + qr̂)− (r̂ · q)

(
j1(kr)− j2(kr)

kr
+ j3(kr)r̂r̂

)]
The integrand of this equation for JS(p,q) involves
the difference U = UMC − UFC between most-crossed
and forward-crossed diagrams. They both contain sub-
radiant poles (where t2G2

0 ≈ 1), and quite remarkably,
this singularity cancels significantly in this subtraction.
The equation generates all 4 transport modes,

JS(p,q) = JS0 (p)(p̂ · q) + JS1 (p)p̂p̂(p̂ · q)

+ JS2 (p)(p̂q + qp̂) + JS3 (p)i(p̂q− qp̂)

We will show that the mode JS0 exhibits the standard
weak localization correction, of relative order 1/k` and
negative in diffusion constant. Also the mode JS2 is sub-
ject to a weak localization correction, of order 1/(k`)2

and positive, showing that not all modes are affected sim-
ilarly by interference.

We first focus on JS0 . Contrary to UFC , UMC asso-
ciated with two dipoles induces a singular angular de-
pendence of the kind 1/|p + p′|, and therefore dom-
inates JS0 . The space integral is dominated by large
r so we insert UMC = (6π/`)2C(r)C(r)∗ with C ≈
−∆r(exp(ikr)/4πr). The angular integral over r̂ can be
done. The end result is written as

JMC
0 (p) = −9

2

k

`
|GT (p)|2

×
∫ ∞

0

dr

(
4

5
j1(kr)− 1

5
j3(kr)

)(
4

5
j1(pr)− 1

5
j3(pr)

)
= −3π

20

1

`
|GT (p)|2

(
2
k2

p2
+

9

7

k4

p4

)
The last equality holds only for p ≥ k; JMC

0 (p) decays
rapidly as 1/p6 and has most of it weight near p = k.
The weak localization correction can be obtained from
Eq. (44),

∆DWL
0 =

1

4πN(k)
Tr
∑
p

L(p, q̂) ·∆p(p̂ · q̂)

× −3π2

20k

23

7
δ(k2 − p2) = −1

3

vE
k

69π

280
(70)

or equivalently ∆DWL
0 /DT = −0.774/k`. The numeri-

cal factor is actually larger than the leading one (π/6 =
0.523) obtained for scalar waves [16]. We can compare
this weak localization correction to the positive diffusion

constant (59) found for the J2 channel. If we extrapo-
late to small values for k`, we conclude that the diffusion
in the J2-channel compensates the first weak localization
correction in the J0-channel for k` < 1.3.

The channel JS2 is more complicated. It is instructive
split the Green’s function up into G0(r) ∼ P (r)∆r +
Q(r)r̂r̂, and to express the tensor U(r) = UMC − UFC
as,

U(r) = UTT (r)∆r∆r + ULLr̂r̂r̂r̂

+ReUTL(r̂r̂∆r + ∆r r̂r̂) + iImUTL(∆r r̂r̂− r̂r̂∆r)

This corresponds to 4 different scattering events involv-
ing two dipoles at distance r with the electric field vector
either along or perpendicular to r, as well as their in-
terferences. With the angular integral of r̂ performed
analytically, they give each the following contribution to
JS2 ,

JTT2 (p) =
2`

k
ReGT (p)

∫ ∞
0

dr r2 UTT (r)

×
(
j1(kr)− j2(kr)

kr

)
j2(pr)

pr

JLL2 (p) = −4`

k
ReGT (p)

∫
dr∞0 r2 ULL(r)

j2(kr)

kr

j2(pr)

pr

JTL1
2 (p) =

2`

k
ReGT (p)

∫ ∞
0

dr r2 ReUTL(r)

×
(
j1(pr)− 2

j2(pr)

pr

)
j2(kr)

kr

and finally

JTL2
2 (p) =

2`

k
ImGT (p)

∫ ∞
0

dr r2 ImUTL(r)j1(pr)
j2(kr)

kr

The weak localization correction is found by

∆D2(k) = −1

3

1

πN(k)

∑
p

p2(JTT2 + JLL2 + JTL1
2 + JTL2

2 )

(71)
To perform the integral over the wave vector p we use
that ∑

p

p

(k + iε)2 − p2
j1(pr) = − ik

2

4π
h

(1)
1 (kr)

and∑
p

p

(k + iε)2 − p2

j2(pr)

pr
= − ik

4πr

[
h

(1)
2 (kr) +

3i

(kr)3

]
Consequently, only the radial integrals

∫
dr remain to

be done numerically. The weak-localization correction
∆D2(k) is proportional to the density of the electric
dipoles.

Figure 7 shows the total diffusion constant DD
2 + ∆D2

in the J2 channel around the resonance frequency, as
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Figure 7. The diffusion constant in the J2 channel (solid
line), being the sum of the Drude approximation DD

2 plus
the weak-localization correction ∆D2(k) in Eq. (71) from two
dipoles, as a function of the detuning δ = (ω − ω0)/γ. It is
normalized by the diffusion constant in the J0 channel. The
4 weak localization corrections discussed in this section are
shown separately as dashed lines.

well as the contributions stemming from the 4 individual
terms in Eq. (71). The weak localization correction ∆D2

is dominated by the purely transverse and longitudinal
channels TT and LL between the two dipoles, who have
competing signs. For negative detuning the purely lon-
gitudinal mode LL dominates, for positive detunings the
TT channel dominates and is more than twice as large
as the Drude contribution DD

2 . We note that the weak
localization correction to the diffusion constant D2 of the
channel J2(p,q) is of the same order as the Drude ap-
proximation in Eq. (59). The sum of the 4 weak localiza-
tion terms and the Drude approximation is strictly pos-
itive. At fixed density, positive detuning has the largest
diffusion constants in the J2 channel. Note that the ra-
tio D2/D0 is of same order 1/(k`)2, but of opposite sign
compared to the standard (Cooperon) weak localization
correction −1/(k`)2. This will be discussed more in de-
tail in the next section, for which it will turn out useful
to define a function F (δ) = (k`)2D2/D0.

5. Summary of previous subsections

We have identified four mechanisms in the transport of
electromagnetic waves, expressed by the diffusion current
tensor (46). The results have been summarized in Ta-
ble I. The mechanism described by J0(p) is the familiar
picture of transverse wave diffusion near the shell p ≈ k
and results in the diffusion constant (54). It is inversely
proportional to the density of the electric dipoles and
contains an energy velocity that can be small since the
impenetrable electric dipole scatterers contain temporar-
ily stored, longitudinal energy. The mechanism associ-
ated with J2 is caused by interference of longitudinal and

Drude JD JδΣ JδG WL JS

J0 +` 1/k3`2 1/k3`2 −0.774/k

(54) (62) NC (70)

J2 +1/k2` −Q(δ)/2k3`2 −Q(δ)/2k3`2 +F (δ)/k2`

+Q(δ)/k3`2 (59) (61) (66) (71) Fig. 7

J3 +1/k 1/k3`2 1/k3`2 1/k2`

(60) (62) (67) NC

Table I. Contributions to the transport mean free path for
various transport channels Ji and the 3 different diagram-
matic classes identified in the Bethe-Salpeter equation (49).
When an explicit sign is found, it is indicated. Most values
depend also explicitly on detuning, not indicated if not cal-
culated. Numbers refer to the corresponding equations. The
channel J1 does not contribute to transport mean free path,
J3 only contributes to the transport mean free path associated
with the imaginary part of the Poynting vector. NC stands
for “not calculated”, WL for “weak localization”. The terms
proportional to Q(δ) are regularized singularities depending
on detuning δ that cancel in the transport mean free path.

transverse fields, necessary condition to carry a Poynting
vector. The leading term (59), linear in the dipole den-
sity, comes from the Drude approximation. Upon consid-
ering all scattering events involving two dipoles, we have
been able to identify three singular terms. After regular-
ization, they are expressed by Eqs. (57), (61) and (66)
and proportional to the large quality factor Q0 and the
density squared. They add up to

πN(k)∆D2(k) =
Q0

6πk3
n2

(
(Im t)2 +

1

2
Re t2 − 1

2
|t|2
)

= 0 (72)

This explicit cancelation in the J2-channel is very im-
portant and not entirely obvious since the 3 terms stem
from entirely different parts in transport theory (Drude
diffusion, Lorentz local field and enhanced forward scat-
tering). Without cancelation they would have given an
electromagnetic conductivityQ0/k`

2, and not small at all
with respect to the traditional transverse conductivity, of
order k2` since Q0 is large for an atomic oscillator. Their
cancelation also supports the general renormalizability of
electromagnetic transport theory with point-like dipoles.
It is highly plausible that this cancelation happens in all
orders of perturbation theory, but this is currently im-
possible to prove in general. We will use this hypothesis
in the next session.

The J2 channel, in the leading order modified by the
weak localization from 2 electric dipoles, exhibits a pos-
itive diffusion constant, linear in the dipole density. Al-
though usually small compared to standard transverse
diffusion, it must be realized that this diffusion stems
from a sofar unexplored mechanism for electromagnetic
wave diffusion, involving the interference of longitudinal
and transverse waves. In this transport channel, the
first weak localization correction induced by two elec-
tric dipoles is actually of the same order as the Drude
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value and again positive, showing that in the channel J2

interferences behave differently in comparison to the tra-
ditional transverse channel.

IV. RADIATIVE FORCE DENSITY

A well-known relation exists between diffuse flow and
radiative forces. In radiative transfer, the energy flux is
driven by the spatial gradient of the total energy density,
and automatically carries momentum. In the presence of
an induced polarization density P, the electromagnetic
force density f is caused by the Lorentz force acting on
the induced Coulomb charge density ρ(r) = −∇ ·P and
on the induced current density j = ∂tP. Maxwell’s equa-
tions allow the formulation of a momentum conservation
law that is very generally valid. It takes the form (before
cycle averaging) [29, 30],

∂tG + f = ∇ ·T (73)

with G = (E×B)/4πc0 the electromagnetic momentum
density, and T the momentum stress tensor,

T =
1

4π

[
EE + BB− 1

2

(
E2 + B2

)
+ X

]
(74)

The tensor X is related to internal angular momentum
inside the particle that we shall ignore here.

In the regime of multiple scattering, and after cy-
cle averaging, Eq. (37) expresses that 〈Ei(r)Ēj(r)〉 =
1
3 〈|E(r)|2〉δij , and idem for the magnetic field. The
stress-tensor T is thus diagonal on average, meaning
that the ith component of the electromagnetic momen-
tum only flows in the direction i. For stationary flow, we
thus obtain

〈f(r)〉 = −1

3
∇
〈
|E(r)|2 + |B(r)|2

16π

〉
(75)

For a medium filled with impenetrable electric dipoles
we have shown in Eq. (18) that |E|2/16π is the to-
tal electric energy density having both longitudinal
and transverse components, and equal to the mag-
netic energy density. In the diffusion approximation,
we write the averaged Poynting vector as 〈K〉 =
−D∇

〈[
|E(r)|2 + |B(r)|2

]
/16π

〉
. This leads to a simple

relation

〈f〉 =
1

3D
〈K〉 (76)

between Poynting vector and radiative force density. In
the ISA, D = 1

3vE`/(1−〈cos θ〉), and this reduces to the
almost intuitive expression 〈f〉 = nσ(1 − 〈cos θ〉)〈K〉/vE
involving the product of particle density and pressure
cross-section of one scatterer. The second factor ac-
counts for transfer of momentum from the light to a single
scatterer, and of course for independent electric dipoles
〈cos θ〉 = 0.

The factor 1/vE is less intuitive in this model. For
one isolated scatterer this would clearly be 1/c0, since
for a plane wave with arbitrary direction in vacuum, mo-
mentum current density and energy current density (the
Poynting vector) differ by a factor 1/c0. In a medium
filled with resonant dipoles, stocked, longitudinal energy
contributes to the momentum current density T but not
to the energy current density K. Put otherwise, scatter-
ing of a transverse state with wave number p ≈ k to a
longitudinal mode with large wave number induces a sig-
nificant recoil, but does not generate an energy current.
For the medium filled with dipoles, the ratio f/K thus
achieves a factor (NL +NT )/NT c0 ≈ 1/vE .

V. NO ANDERSON LOCALIZATION OF
LIGHT?

In the following we will make a first attempt to include
the 4 transport mechanisms, introduced in the previous
section, into the self-consistent transport theory for lo-
calization of light. This theory is celebrated by some
for its surprisingly simple description of the transition
from long-range diffusion to localization. Others criti-
cize the theory for its oversimplified nature, neglecting
many scattering events in the collision operator Upp′(q)
introduced in Eq. (33). The self-consistent theory pre-
dicts the Ioffe-Regel criterion ke` ≈ 1 for the mobility
edge in 3D, produces the universal finite-size scaling in
arbitrary dimension, and can easily be engineered with.
However, the theory predicts a wrong critical exponent
of the localization transition and fails in the presence of
an external magnetic field.

In the standard theory, adapted from electron localiza-
tion [31], the most-crossed diagrams are included into the
diffusion constant of the light. These diagrams involve
the interference of time-reversed waves and are part of
the scattering vertex Upp′(q). By reciprocity, the most-
crossed diagrams also contain a hydrodynamic pole, fea-
turing the same diffusion constant. This immediately
turns the calculation of D into a self-consistent problem
because the most-crossed diagrams, modify the diffusion
current J(p,q) in Eq. (39). We recall that in the case
of electromagnetic waves the diffusion current is a ten-
sor with 4 independent parts. No Anderson localization
was seen to occur in recent numerical simulations with
electric dipoles [5]. The intention of this section is to
discover what exactly breaks down in this theory when
taking into account longitudinal waves.

We here summarize the various approximations made,
which are basically equivalent to the ones made in previ-
ous works, even if often adopted implicitly [7, 31, 32].

• The most-crossed diagrams, involving scattering
events associated with many dipoles, are the only
angle-dependent scattering events that influence
the diffusion current tensor J(p,q) when going be-
yond the Drude approach. The existence of other
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diagrams is only acknowledged implicitly to guar-
antee flux conservation. Weak localization effects
caused by low-order scattering events, such as those
described by Eqs. (70) and (71) are not included
either, although this could be done without dra-
matic changes in the theory. The implicit exis-
tence of other diagrams is also necessary to jus-
tify the cancelation of UV-singularities in trans-
port theory. For scattering events involving only
two electric dipoles, UV-divergencies were seen to
cancel explicitly earlier in this work, but no general
demonstration is known.

• The diffuse regime of the most-crossed diagrams,
only valid on spatial scales well beyond the mean
free path, is assumed to hold on scales up to the
mean free path. On this scale we may expect the
diffusion kernel to be of the type D(q)q2 which
is disregarded in the standard version of the self-
consistent theory.

• The electromagnetic self-energies ΣT/L(k, p) are as-
sumed not to depend on p. In particular this means
that ΣT (k) = ΣL(k). This is definitely an approxi-
mation, even for point-like dipoles, that needs more
study, but in general, such wave number depen-
dence is not believed to be essential for Anderson
localization.

The contribution of the most-crossed diagrams to the
scattering vertex Upp′(q) can be obtained from the re-
ducible vertex Rpp′(q) introduced in Eq. (31) by re-
moving the four external Dyson propagators, and time-
reversing the bottom line. This gives

UMC
pp′;ij|kl(q) =

d̃il(f + q,Q)d̃kj(−f + q,Q) +O(Q2)

πNDQ2

(77)
with the notation Q = p+p′ and f = (p−p′)/2. In this

expression the tensor d̃(p,Q) is the diffuse eigenfunction
defined in Eq. (37) stripped from the 4 external lines in
Fig. 6 (transforming −Im G + iJ/2 into −Im Σ + ij/2
with j again a Hermitian bilinear form). This leads to

d̃(±f + q,Q) = −Im Σ(±f + q) + j(±f + q,Q).
A generalized Ward identity,

(q · ∂p)Re Σ(p) =
∑
p′

Upp′(0) · (q · ∂p′)Re G(p′)

+
∑
p′

δqUpp′(q) · Im G(p′) (78)

can be used to eliminate the second term in Eq. (39),
which then transforms into

J(p,q) = JD(p,q)

+ G(p) · (q · ∂p)Re Σ(p) ·G∗(p)

− G(p)G∗(p) ·
∑
p′

δqUpp′(q) · Im G(p′)

+ G(p)G∗(p) ·
∑
p′

Upp′ · J(p′,q) (79)

The first and second terms cannot depend on diffusion
constant. Because UMC depends on both diffusion con-
stant D and the entire diffusion tensor J(p,q), the self-
consistent theory would, in its most advanced version, be
a non-linear integral equation for the second-rank tensor
J.

In the following we apply the approximations speci-
fied above. The above hydrodynamic limit of UMC is
assumed valid when |p + p′| � 1/`. In the standard ap-
proach of the self-consistent theory one focusses on its
diffuse pole near p ≈ −p′, and neglects all other de-
pendence on p′. Secondly, wave number dependence of
the self-energy is ignored. In that case the self-consistent
problem simplifies to the following equation,

J(p,q) ≈ JD(p,q) + G(p)G(p)∗ ·∑
|Q|<qm

UMC
Q=p+p′(0) · J(−p,q) (80)

with the Drude current tensor JD given in Eq. (50). In
particular, the third term in Eq. (79) becomes propor-
tional to

∑
Q Q/DQ2 and drops out. The sum over

Q that remains in Eq. (80) is recognized as the return
Green’s function of the diffusion equation in real space
[32], though with short, non-diffusive paths eliminated
by the condition Q < qm.

Diffusion constant and diffusion current tensor are re-
lated by the Kubo formula

σ ≡ πND =
1

4
Tr
∑
p

L(p, q̂) · J(p, q̂)

=
1

6π2

∫ ∞
0

dp p4 (J0(p)− J2(p)) (81)

It can readily be seen that Eq. (80), despite its simplic-
ity, couples the four diffusion current tensors identified
in Eq. (46), among which J0(p) and J2(p) are relevant
in Eq. (81). A mobility edge is characterized by D = 0.
The large weight of large wave numbers (p � k) in the
Kubo formula is evident and UV-divergences will occur
that will be regularized with the argument that other
diagrams exist that compensate.

A. Transverse approximation

In most applications of the self-consistent theory for
localization of light one ignores polarization and focusses
on the transverse channel J0(p) and, not unrelated, as-
sumes this channel to be governed by excitations near
the frequency shell p ≈ ke of the effective medium where
their DOS is largest. In this approximation weak local-
ization of light becomes essentially equivalent to the one
of scalar waves. As a matter of fact, this approximation
applies to localization of elastic waves with all polariza-
tions modes propagating with the same velocity every-
where. We refer to the work of Zhang and Sheng [33]
where the self-consistent theory for localization of scalar
waves is derived and discussed in great detail.
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We will first neglect the weak localization found in
Eq. (70) associated with two dipoles and incorporate it in
the next section when dealing with the mode TL. Upon
putting J(p,q) = J0(p)(p̂ · q)∆p into Eq. (80), and by
assuming that Im Σ(p) is independent of p, the explicit
solution is just

J0(k, p) = JD0 (k, p)
[
1 +

σc
σ
A(k, p)

]−1

(82)

with the dimensionless function A(k, p) = |GT (k, p)|2 ×
Im2ΣT (k, p), and a critical conductivity defined as σc ≡∑
Q 1/Q2 = qm/2π

2. Note that A(k, p) ≤ 1 is a bounded

function of p. Equation (82) says that the amount of
weak localization varies in phase space, and is maximal
at the frequency shell p = ke of the transverse waves,
and small when p� k. From Eq. (81) we obtain a closed
equation for σ,

σ(k) =
1

3

∑
p

p2JD0 (k, p)

1 + (σc/σ)A(k, p)
(83)

The Kubo formula attributes a large weight to large
p, nevertheless the integral converges for all σ > 0. If
σ > σc large wave vectors p are not relevant in the
denominator since JD0 (k, p) = 4(ImGT (k, p))2 decays
rapidly with p. The integral is dominated by p near
the frequency shell p ≈ ke so that

σ(k) ≈ σD(k)

1 + (σc/σ)
⇒ σ(k) = σD(k)

(
1− σc

σD

)
= σD(k)

(
1− 3

π

1

(ke`)2

)
(84)

where qm = 1/` has been chosen. This result, when
extrapolated, locates the mobility edge at ke` = 0.977.

For σ < σc however, the p-dependence of the denomi-
nator shifts the integral over p to larger values for p. At
the mobility edge σ = 0 and

σc =
4

3

∑
p

p2|GT (k, p)|2 (85)

This involves an integral that diverges as
∑
p 1/p2. It can

be verified that this divergence is not an artifact of the
approximation made in Eq. (80). This kind of divergence
is absent in standard approaches of the self-consistent
theory [7, 31] because of the a priori assumptions for
J(p,q) to be “strongly peaked near the frequency shell”
p ≈ ke. This is clearly the case for JD(p,q), but not
necessarily true after solving Eq. (80). Since the mo-
bility edge in scalar wave scattering by point dipoles is
observed in numerical simulations [34] near ke` ≈ 1, this
divergence must be an artifact and should be eliminated.
We could subtract the singularity

∑
p 1/p2 by hand, as-

suming it cancels against other terms that have been ig-

nored, to get

σc =
4

3

∑
p

(
p2|GT (p|2 − 1

p2

)

=
k2
e`

3π

(
1− 3

4(ke`)2

)
(86)

This would locate the mobility edge at ke` = 0.866 with
the choice qm = 1/`. This is close to the extrapolated
value above, and we could argue that the extrapolation in
Eq. (84) is satisfactory up to the mobility edge and con-
sistent with both previous theory [7, 33] and numerical
simulations [34]. It is nevertheless tempting to speculate
that this divergence highlights a true breakdown of the
self-consistent theory and that a more rigorous regular so-
lution may actually exhibit a critical exponent different
from one, the value predicted by the extrapolation (84).

B. Inclusion of longitudinal modes

In this section we give a simplified description of how
the self-consistent theory is extended when the other 3
diffusion modes are included. Let us start with Eq. (46)
and write the diffusion current tensor as

Jij(p,q) =

3∑
n=0

Jn(p)χnij(p, q) (87)

Let us set UMC
ij;kl = (U/σ)δkjδil with U = (Im Σ)2σc (with

dimension 1/m5) and σ = πND the conductivity (with
dimension 1/m). We can check that,

GniG
∗
jmδkjδilχ

0
kl = |GT |2χ0

nm

GniG
∗
jmδkjδilχ

1
kl = |GL|2χ1

nm

GniG
∗
jmδkjδilχ

2
kl = R(χ2

nm − 2χ1
nm) + Iχ3

nm

GniG
∗
jmδkjδilχ

3
kl = −Rχ3

nm + I(χ2
nm − 2χ1

nm)

where we abbreviated R(p) = ReGLḠT and I(p) =
ImGLḠT . This gives the following self-consistent set of
equations

J0(p) = JD0 (p)−
(
U

σ
|GT (p)|2 +

0.774

ke`

)
J0(p)(

1 + |GL|2
U

σ

)
J1(p) = JD1 (p) + 2R(p)

U

σ
J2(p)

+2I(p)
U

σ
J3(p)(

1 +R(p)
U

σ

)
J2(p) + I(p)

U

σ
J3(p) = JD2 (p)

I(p)
U

σ
J2(p) +

(
1−R(p)

U

σ

)
J3(p) = JD3 (p) (88)

The equation for the transverse mode J0 discussed in the
previous section is not altered and decouples from the
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others. We have added the weak-localization contribu-
tion caused by 2 dipoles found in Eq. (70), since it is not
covered by the diffusion approximation, and assumed it
enters just as a number in the equation for J0(p). This is
a clear oversimplification but has no huge consequences
for what follows. The purely longitudinal diffusion cur-
rent J1 is known once the others are known, but is not
relevant for Poynting vector and can likewise be ignored.
The modes J2 and J3 however, couple and the solution
for J2 is

J2(p) =
JD2 (p) + (U/σ)C2(p)

1− U2|GL(p)GT (p)|2/σ2
(89)

We recall from Eq. (55) that JD2 (p) = −2ImGLImGT <
0 and JD3 (p) = −I(p). Thus, with K = ke + i/2` the
complex pole of GT (p), the function C2(p) is given by

C2(p) = I(p)2 − JD2 (p)R(p)

=

(
ke
`

)2 |G(p)|2 + |K|4|G(p)|4

|K|8
(90)

which is strictly positive.
Before calculating diffusion constant we first discuss

these results. Since the wave number integral of J2(p)
contributes to the diffusion constant via Eq. (81), its de-
nominator cannot possess any non-integrable singularity.
This implies that

σ(k) > U |GL(p)GT (p)| (91)

to be valid for all p. This inequality excludes de facto a
mobility edge. It is most stringent near the transverse
frequency shell p ≈ ke (more precisely p2 = ReK2 =
k2
e − 1/4`2, positive as long as ke` > 1/2) where GT =

1/(−iIm Σ). Furthermore, since we neglect p-dependence
in self-energies we set |GL| = 1/|K|2 and neglect the fact
that near the transverse shell the complex wave num-
bers of longitudinal and transverse modes are not neces-
sarily equal. Recalling that U = (Im Σ)2σc and setting
qm = q/`, with q of order unity, the minimal possible
electromagnetic conductivity is given by

σ(k) > c2(ke`)σD(k) (92)

with c2(x) = (3q/πx)(x2 + 1
4 )−1 for ke` > 1/2. Equiv-

alently, if the transport mean free path `∗ is defined as
usual via σ = k2

e`
∗/6π [27], then

ke`
∗ >

3q

π

1

(ke`)2 + 1
4

(93)

for ke` > 1/2. For ke` < 1/2 the maximum occurs at
p = 0 and we find

ke`
∗ >

3q

π

(ke`)
2

[(ke`)2 + 1
4 ]3

(94)

The very existence of this minimum conductivity for
vector waves is determined by scattering properties of
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Figure 8. The self-consistent solution for the electromagnetic
transport mean free path `∗ defined by σ = k2e`

∗/6π. Shown
are the values for ke`

∗ for the full solution in this section,
the conventional picture described by Eq. (81) with only the
transverse mode J0 considered, with a mobility edge predicted
around ke` ≈ 1, the lower threshold imposed by the existence
of the diffusion modes J2 and J3, as well as ke`

∗ associated
with the fictitious conductivity and J3. We used a cut-off
qm = 1/`.

longitudinal and transverse waves near the frequency
shell and not by large wave numbers p that are subject
to uncertain regularization procedures. It nevertheless
relies on our choice for q, and the approximation that
KL(p) = KT (p) = K. The above lower bound becomes
stringent for ke` ≈ 1 where one would have expected a
mobility edge. In this regime the maximum occurs at
p < k, so that setting KL(p) = KT (p) = K may not be
a bad approximation, knowing that for p � k it is valid
(see for instance the p-dependent self-energies in Fig. 1).
If q = 1, we find for ke` = 1, ke`

∗ > 0.76, and upon
entering the evanescent regime ke` = 1/2, ke`

∗ > 2.19.
For ke` = 0.35 the maximum value is 2.26.

We next calculate the electromagnetic conductivity,
which is the sum of the conductivities of the two chan-
nels, σ̂ ≡ σ/σD = σ̂0 + σ̂2. Since the mobility no longer
vanishes, the transverse diffusion mode J0, which decou-
ples from the others, can be given the same treatment
as done in Eq. (84), with the denominator removed and
taken outside at its maximum value. This gives the first
equation for the conductivity of the transverse channel,

σ̂0 =
1

1 + c1(ke`)/σ̂ + 0.774/ke`
(95)

with c1(x) = 3q/πx2. We can apply the same proce-
dure for the diffusion current J2. However, as was seen
in Eq. (59) to be the case for the Drude component, the
remaining integral suffers from a divergence at large p,
again of the kind (85). The regularization proposed in
Eq. (86) is not satisfactory here since it changes sign at
ke` = 0.86 and would produce a negative Drude con-
ductivity in the TL-channel, arguably not physical. In
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section III A 1 we found that for p > k2
e` the diffusion

theory in the J2 channel breaks down so that the present
theory is not valid for too large p. We therefore propose
a regularization∑

p

p2|GT (p)|2 → |K|2
∑
p

|GT (p)|2 = |K|2 `

4π

with K = ke + i/2` the transverse complex wave num-
ber. In real space is GT (r) = − exp(iKr)/4πr and this
regularization comes down to∫

d3r

∣∣∣∣∇(
exp(iKr)

−4πr

)∣∣∣∣2 → |K|2 ∫ d3r

∣∣∣∣exp(iKr)

−4πr

∣∣∣∣2
meaning that the regularization only considers the far
field when taking the spatial derivative. In particular
this leads to the Drude diffusion constant of channel J2,

DD
2 = − 1

3πN(k)

∑
p

p2JD2 (p) =
4π

3

vE
|K|4`2

∑
p

p2|GT (p)|2

→ 1

3
vE

1

|K|2`

This is a satisfactory, positive extrapolation of the result
1
3vE/k

2` obtained in Eq. (81) for low density, and where
the divergence was seen to cancel explicitly. If we adopt
this regularization, we find in the J2-channel,

σ̂2 =
F (δ)c3(ke`)

1− (c2(ke`)/σ̂)2

(
1− c4(ke`)

σ̂

)
(96)

with c2(x) defined earlier, c3(x) = (x2 + 1/4)−1 and
c4(x) = (3q/2π)(9/8 +x2/2)(x2 + 1/4)−2. We recall that
F (δ) is the function that describes the explicit depen-
dence on detuning of the diffusion constant in the channel
J2, shown in Fig. 7.

Equations (95) and (96) lead to a cubic equation for
σ̂ that can be solved analytically. The resulting formula
is quite lengthy and we do not present it here. The so-
lution for k`∗ = σ̂ × k` is shown in Fig. 8. We have
put F (δ) = 1, its role will be discussed later, in which
case the self-consistent theory has only one parameter,
the product ke`, as in the scalar case. According to
Eqs. (95) and (96) the traditional weak localization cor-
rection δσ0 = −c1 in the transverse channel is partially
compensated by the positive conductivity δσ2 = c3 of
the J2 channel, and even exactly when q ≈ 1. This ex-
plains why ke`

∗ is well in excess of the traditional pre-
diction (84), for values as small as ke` = 1.8, and close
to the Drude value ke` of the transverse channel. The
term containing c4 > 0 tends to suppress diffusion in the
J2 mode as 1/(ke`)

4 but the coupling to J3 described by
c2 reverses this trend. Around the region ke` ≈ 1 where
the conventional picture would locate the mobility edge,
the minimum conductivity starts to impose itself, and
the total conductivity rises.

We recall that the fictitious diffusion is determined by
J3, as described by Eq. (48). The self-consistent solution

Figure 9. The ratio of transport and scattering mean free
paths `∗/` as a function of ke` compared to the self-consistent
theory for 4πn/k30 = 3.77 and q = 0.5 (black solid line, for
the two branches, see text for explanation). Points of different
colors correspond to different scatterer number densities n for
detunings δ = (ω−ω0)/γ ∈ [−3, 6.5] from the resonance. The
dashed line is the lower bound for `∗/` described by Eqs. (93)
and (94), again with q = 0.5.

is given by

J3(p) =
−ImGL(p)GT (p)

1− U2|GL(p)GT (p|2/σ2

×
[
1 +

U

σ
ReGL(p)GT (p)

]
(97)

and upon inserting this into Eq. (48), the same proce-
dure as above provides an expression for the “fictitious”
conductivity

σ̂I =
1

ke`
+

1

1− (c2(ke`)/σ̂)2

(
d3(ke`)

σ̂
− d2(ke`)

σ̂2

)
(98)

with the functions d2(x) = 1
2 (3q/π)2x−1(x2 +1/4)−3 and

d3(x) = (3q/4π)x−1(x2 + 1/4)−2. The transport mean
free path associated with the fictitious diffusion is also
shown in Fig. 8. For ke` ∼ 1 fictitious diffusion is of
same order as the real conductivity and has the same
sign.

For q = 0, Eqs. (95) and (96) simplify to the sum of
the diffusion constants associated with one or two dipoles
in the channels J0 and J2, without any cross-talk,

σ̂ =
`∗

`
=

1

1 + 0.774/ke`
+

F (δ)

(ke`)2 + 1
4

(99)

For ke` < 1 the second term from the J2 channel starts
dominating. If we ignore the explicit dependence on δ by
putting F (δ) = 1, this equation yields σ̂ < 1 for ke` >
1.73 and below this value starts increasing monotonically.
In the same limit of q = 0, we have σ̂I = 1/ke`.
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C. Comparison with numerical simulations

In Fig. 9 we compare the predictions of the self-
consistent theory for electromagnetic waves developed
above to numerical simulations in which we simulate the
multiple scattering of light by an ensemble of dipolar res-
onant point scatterers. The results of the simulations
allow us to estimate ke, ` and `∗. Both the details of
the simulations and the way in which we interpret their
results are detailed in Appendix B. We repeat calcula-
tions for several atomic number densities n and detun-
ings δ = (ω − ω0)/γ; the resulting ratios `∗/` are pre-
sented in Fig. 9 by circles of different colors as functions
of the Ioffe-Regel parameter ke`. The numerical results
are bounded from below by Eqs. (93) and (94) for the
minimum conductivity (dashed line). Equations (93) and
(94) impose a sharp rise of the ratio `∗/` at small values
of ke` where one would normally have expected a mobil-
ity edge. This rise is well reproduced by the numerical
results.

A striking feature of the numerical results is the clear
tendency of data to group together along two different
“branches”. A careful inspection of Fig. 9 shows that
the lower branch is composed of data corresponding to
δ < 0 whereas the upper branch corresponds to simula-
tions with positive detunings δ > 0. This means that -
apart from the absence of a localization transition - there
is no one-parameter dependence with ke` either. The
double-branch structure actually follows from the explicit
dependence of the J2 channel on detuning δ, described
by the factor F (δ), which is larger for positive detunings
(see Fig. 7). Figure 9 shows the prediction of the self-
consistent theory for the ratio `∗/` with the inclusion of
the function F (δ) and with the dimensionless parameter
ke` calculated from the averaged incident field (see Ap-
pendix B) for one fixed dipole density 4πn/k3

0 = 3.77 and
for various detunings. Predictions for ke` correspond-
ing to other densities are not shown since they all ex-
hibit the same overall appearance. Despite the fact that,
strictly speaking, `∗/` is a function of two independent
parameters (ke` and δ or equivalently ke` and 4πn/k3

0,
we see that all results for the quite wide explored den-
sity range 4πn/k3

0 = 0.25–6.28 roughly follow the same
double-branch master curve that is close to the analytical
result for the intermediate density 4πn/k3

0 = 3.77. The
agreement between numerical and analytical results is
not perfect but we believe that it can be further improved
by distinguishing explicitly between transverse and lon-
gitudinal complex wave numbers (see Sec. II D), which
are known to be different (see Appendix A, and Figs. 11
and 12). This can be done in future work.

VI. CONCLUSIONS AND OUTLOOK

In this work we have included longitudinal excitations
into a transport theory for electromagnetic waves prop-
agating in a medium with randomly distributed dipo-

lar electric scatterers (dipoles). We identify four dif-
fuse modes, triggered by the gradient in electromagnetic
energy, among which two carry a Poynting vector and
contribute to the diffusion constant. We have developed
this theory by extending the independent scattering ap-
proximation (the elementary scattering unit is a single
dipole) to include rigourously recurrent scattering from
two dipoles. This has led to the following results. 1) Lon-
gitudinal and transverse waves of the effective medium
are characterized by different complex wave numbers KL

and KT , respectively, and dominate near and far field in
scattering. 2) The interference between longitudinal and
transverse waves creates a new diffuse transport chan-
nel with a diffusion constant proportional to the number
density of dipoles, to be compared to the usual diffusion
constant that is inversely proportional to this density.
3) Divergent terms appear at large wave numbers in the
diffusion constant, in the longitudinal density of states
and in the collision operator. Many of them cancel, in
particular for the electromagnetic Kubo diffusion con-
stant all divergent terms cancel. We postulate that this
cancelation holds in all orders of perturbation theory. 4)
When extending the self-consistent theory of localization,
with all its usual assumptions, to include the four diffuse
modes, we find a minimum conductivity that prevents the
onset of Anderson localization of light, as also observed
in numerical simulations [5]. 5) The predictions of the
developed self-consistent theory are surprisingly close to
the results of independent numerical simulations, includ-
ing the explicit dependence of the new transport channel
on frequency detuning from the dipolar resonance. These
findings demonstrate that, due to the presence of longitu-
dinal, non-propagating waves, (weak) localization of light
is fundamentally different from what was believed so far.

Early stages of this work were supported by collabora-
tions with Yvan Castin, Ad Lagendijk, Nicolas Cherroret
and Dominique Delande. We thank Denis Basko for use-
ful discussions.

Appendix A: Longitudinal and transverse DOS of M
electric dipoles

In this Appendix we pose the problem of light scatter-
ing from M point electric dipolar scatterers (“dipoles” for
short) in a volume V and derive the DOS for both longi-
tudinal and transverse excitations in the thermodynamic
limit M,V →∞ at constant density M/V = n.

The real-space Green’s function G(r, r′) of M point-
like dipoles at positions {rm}, m = 1, . . . ,M , is defined
in terms of their collective T -matrix as

G(r, r′) = G0(r−r′)+
∑
mm′

G0(r−rm)·Tmm′ ·G0(rm′−r′)

(A1)
If we impose that all dipoles be impenetrable, we must
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have G(rn, r
′) = 0 for all r′ outside the dipoles. Thus,

0 =
∑
m′

[
δnm′ +

∑
m

G0(rn − rm) ·Tmm′

]
·G0(rm′ − r′)

For this to be true for all r′, the 3M×3M matrix between
square brackets must vanish,

{Tmm′} = − ({G0(rm − rm′)})−1
(A2)

We can split off the singular diagonal elements and
use the fact that the t-matrix of one single dipole is
t = −G−1

0 (0) and here proportional to the 3× 3 identity
matrix,

{Tmm′} = t (1δmm′ − t {G0(rm − rm′ 6= 0)})−1
(A3)

This matrix is regular as long as the dipoles do not over-
lap. For any point source s(r′) located at r′ the electric
field anywhere in the medium is given by E(r) = G(r, r′)·
s(r′), and the incident field is E0(r) = G(r, r′) · s(r′). If
the source is located in the far field of the M dipoles,
and the origin r = 0 is chosen inside the scattering
medium, we have |rm| � |r′|, and we can approxi-
mate the incident field inside the medium as E0(r) =

[− exp(ikr)/4πr]∆r′ · s(r′) exp(−ikr̂′ · r) and equal to a

transverse plane wave with wave vector k = −kr̂′. It
follows that

E(r) = E0(k, r) +
∑
mm′

G0(r− rm) ·Tmm′ ·E0(k, rm′)

(A4)
The fields {E(rn)} vanish because the T -matrix has ear-
lier been designed to do so. For r = rn we can extract the
singular term G0(rn, rn) = −1/t and define the “macro-

scopic field” Ẽ(rn) in the vicinity of the dipole n as the
one scattered from all others,

Ẽ(rn) = E0(k, rn)

+
∑

m6=n;m′

G0(rn, rm) ·Tmm′ ·E0(k, rm′)

= E0(k, rn) +
∑
m 6=n

tG0(rn, rm) · Ẽ(rm)

=
1

t

∑
m

Tnm ·E0(rm) (A5)

The omission of the diagonal term m = n gives a good
impression of the electric field inside the medium and
the solution of Eq. (A5) is equivalent to the calculation
of the matrix Tmm′ as is apparent from the last identity.
However, it misses completely the singular field scattered
by the dipole at rn. At a small distance x from dipole n
the relation between the fields E(rn) and Ẽ(rn) is

E(rn + x) = Ẽ(rn + x) + tG0(x) · Ẽ(rn) (A6)

Especially the longitudinal part is strongly singular as
x → 0 but carries no energy flux. The transverse part

also diverges as 1/x but carries a finite energy flux and
poses less a problem.

To illustrate this consider first one electric dipole lo-
cated at r = 0, and for which only one diagonal term
exists. Equation (A1) reduces to G(k, r, r) = G0(k, 0) +
tG0(k, r)2. According to the analysis that has led to
Eq. (18), the local density of states (per unit volume,
here per interval dk = dω/c0) at position r is given by
N(k, r) = −(k/π)Im Tr G(k, r, r). Formally, N(k, 0) =
0, but for r 6= 0 we can identify longitudinal states close
to the dipole, and transverse states far away. The total
extra number of states due to the presence of the dipole
is

dΠ(k) = dk

∫
d3r [N(k, r)−N0(k, r)]

= −kdk
π

Im t(k) Tr
∑
p

G2
0(k,p)

= −kdk
π

Im t(k)
∑
p

[
1

k4
+

2

[(k + i0+)2 − p2]2

]
This clearly separates into a strongly diverging longitu-
dinal and a regular transverse component. Regularizing
the first to Q0k

3
0/2π, with Q0 = k0c0/γ the quality fac-

tor, as proposed in section II B, we find that for k within
a line width of k0

dΠ(k) =
dk

2π2

[
−Q0Im t(k) +

1

2
Re t(k)

]
(A7)

The first term is missed by ignoring divergencies, and
thus difficult to capture by a numerical simulation. It
largely dominates near resonance and is Lorentzian as is
the cross-section. The second term describes the mod-
ification of transverse energy density and can be inter-
preted as the change in local refractive index due to the
presence of the dipole. Upon integrating over the entire
resonance, using that∫ ∞

−∞
dk t(k) = −6π2i

Q0

we find that only the first term survives and giving a total
number of extra states per dipole is

∫
dΠ(k) = 3, equal

to the number of degrees of freedom associated with the
optical polarization.

The analysis above can be straightforwardly gener-
alized to M dipoles. This yields expressions such as
Eq. (23) for the longitudinal complex wave number
KL(∞) and associated with the DOS of longitudinal
states, and a similar one for transverse waves. From the
ensemble-averaged Dyson Green’s function G(r, r) in the
unbounded medium, given in Eq. (3), upon splitting off
terms, singular as x→ 0, we obtain

Tr 〈G(0)〉 =
δ(0)

K2
L(∞)

+ Tr D(0)

+
∑
p

2

p2

K2
T (p)

K2
T (p)− p2

−
∑
p

2

p2
(A8)
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The Lorentz contact term of the effective medium
emerges as Tr GL(0) = δ(0)/K2

L(∞) that can be reg-
ularized as before. Since D(0) is a finite longitudinal
contribution, it will be neglected. The transverse diver-
gence described by the last term is real-valued and plays
no role for DOS and is also independent of dipole den-
sity. The integral over transverse wave numbers can be
defined as −iKT /2π, which would be the value if KT (p)
were independent on p. Before ensemble averaging, the
Green’s function satisfies Eq. (A1). Let us first focus on
the trace of the diagonal terms that average to〈

Tr

M∑
m=1

G0(r− rm) ·Tmm ·G0(rm − r)

〉
=

Tr

M∑
m=1

1

V

∫
d3rG0(r− rm) · 〈Tmm〉 ·G0(rm − r)

In the thermodynamic limit, the average 〈Tmm〉 should
be independent of the dipole m and its position rm.
Hence the integral over r can be converted to Fourier
space to become

nTr
∑
p

G0(p)2 · 〈Tmm〉 = n

[
δ(0)

3k4
+

i

12πk

]
Tr 〈Tmm〉

The contact term that occurs in this expression must be
identified with the one in Eq. (A8), so that

1

K2
L(∞)

=
1

k2
+

n

3k4
Tr 〈Tmm(k)〉 (A9)

valid as M,V →∞, at constant density n = M/V . Since
we expect 〈Tmm(k)〉 ∝ 1 the trace compensates the fac-
tor 3 in the denominator.

The off-diagonal elements m 6= m′ in Eq. (A1) are
negligible for the longitudinal states [and identified as
D(0)], but not for the transverse waves,∫
d3r G0,T (rm′ − r) ·G0,T (r− rm)

=
∑
p

G0,T (p)2 exp[ip · (rm − rm′)] ≡ 1

4πk
HT (kr)

with

HT (y) =
1

2

{
ieiy∆y −

d

dy

(
eiy

iy
+
eiy − 1

y2

)
(1− 3ŷŷ)

}
which is regular (HT (0) = i/3). The off-diagonal ele-
ments become

n

4πk
Tr

∑
m′ 6=m

〈Tmm′ ·HT (krmm′)〉

Again, we suppose that the sum over m′ not to depend on
m in the thermodynamic limit. Comparing to Eq. (A8)

this gives the following expression for the complex trans-
verse wave number

KT = k − n

6k
Tr 〈Tmm〉

+ i
n

2k
Tr

∑
m′ 6=m

〈Tmm′ ·HT (krmm′)〉 (A10)

If we neglect any recurrent scattering (r.s.) from two
or more dipoles, we have Tmm = t1 and Tmm′ =
t2G0(rmm′). Converting the sum over m′ into the in-
tegral n

∫
d3r Tr G0(r) ·H(r) = in/4k2 gives

1

K2
L(∞)

=
1

k2
+
nt

k4
+ r.s.

K2
T =

(
k − nt

2k
− n2t2

8k3
+ r.s.

)2

= k2 − nt+ r.s.

and we recover the ISA approximation. In particular, the
off-diagonal elements in Eq. (A10) are not negligible.

We emphasize that the complex wave numbers KT and
KL relate to transverse and longitudinal DOS and should
not be interpreted as effective medium parameters of elec-
tromagnetic excitations.

Appendix B: Numerical simulation of scattering and
transport mean free paths

We consider a sample having the shape of a cylinder
of radius R and thickness L parallel to the z axis of the
reference frame and confined between the planes z = 0
and z = L (see the inset of Fig. 10). The sample is made
of M point-like resonant scatterers described by Eq. (10)
with a resonant frequency ω0 = k0c0 and a decay rate
γ � ω0 of the excited state. The scatterers are located
at random positions rj , j = 1, . . . ,M , inside the sample.
The scatterer number density is n = M/V with V =
πR2L being the volume of the sample. In the following,
we set k0L = 10 and k0R = 30, which implies M =
2827–14137 for n/k3

0 = 0.1–0.5. We have also performed
calculations for a relatively low density n/k3

0 = 0.02 at
which we set k0L = 30, k0R = 60 and M = 6786.

It is convenient to introduce dimensionless quantities
and to neglect the frequency dependence of the Green’s
tensor over the bandwidth of interest that is assumed to
be much less than ω0 though can exceed γ considerably.
Thus we put G0(k) = G0(k0). Given an incident wave
E0(k, r) and using Eqs. (A4) and (A5), we obtain equa-
tions for the electric field E(k, r) at any point in space:

E(k, r) = E0(k, r) + t(k)

M∑
j=1

G0(k0, r− rj) · Ẽ(k, rj)

(B1)

with

G0(k0, r) = −e
ik0r

4πr
[P (k0r)∆r + Q(k0r)r̂r̂] (B2)
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Figure 10. Average, on-resonance, electric field in the most
dense sample. Red and blue lines show the real and imaginary
parts of the field, respectively. The black solid line is the fit of
Eq. (B8) to the numerical data; the dashed line is the result
for the imaginary part obtained from the fit to the real part.

the free-space Green’s tensor for r 6= 0. Here P (x) =
1− 1/ix− 1/x2 and Q(x) = 2/ix+ 2/x2.

The magnetic field B(k, r) can be found by applying
B(k, r) = ∇×E(k, r)/(ik0) to Eq. (B1):

B(k, r) = B0(k, r)− it(k)

M∑
j=1

G
(B)
0 (k0, r− rj) · Ẽ(k, rj)

(B3)

where

G
(B)
0 (k0, r) = − k0

4π
(ε · r̂)eik0r [1− P (k0r)] (B4)

with the transverse, antisymmetric matrix

(ε · r̂) =

 0 z/r −y/r
−z/r 0 x/r

y/r −x/r 0


(B5)

and r = xx̂ + yŷ + zẑ. Note that G
(B)
0 (k0, r) only di-

verges as 1/r2 for small r, whereas G0(k0, r) diverges
as δ(r) + 1/r3. In addition, the angular integral of

G
(B)
0 (k0, r) vanishes. For these reasons, B(k, r) suffers

from less fluctuations and is better suitable for numeri-
cal studies.

Equations (B1) and (B3) can be written for the fields

Ẽ(k, rm) and B̃(k, rm) at each scatterer, excluding the
fields scattered by themselves:

Ẽ(k, rm) = E0(k, rm)

+ t(k)

M∑
j 6=m

G0(k0, rm − rj) · Ẽ(k, rj) (B6)

B̃(k, rm) = B0(k, rm)

− it(k)

M∑
j 6=m

G
(B)
0 (k0, rm − rj) · Ẽ(k, rj) (B7)

Figure 11. The effective wave number obtained from the fit
to the coherent field (see Fig. 10), the real part of KL(∞)
calculated using Eq. (A9), and the ISA result.

We solve the system of equations (B6) for Ẽ(k, rm)
(m = 1, . . .M) assuming that the sample is illuminated
by an incident linearly polarized plane wave: E0(k, r) =
x̂ exp(ik0z). Magnetic fields on the scatterers and elec-
tric and magnetic fields everywhere in space can be then
found from Eq. (B7) and Eqs. (B1), (B3), respectively.

1. Scattering mean free path and effective wave
number of coherent wave

To determine the scattering mean free path `, the so-
lution of Eqs. (B6) is averaged over many (up to 103) in-
dependent configurations of scatterers inside the sample,
over slices of width ∆z = L/100 along the z axis, and over
the central part of the cylinder with radius R1 = R − L
(see the inset of Fig. 10). The average field 〈E(k, z)〉 ob-
tained in this way should mimic the average field in a
slab of infinite lateral extent (R → ∞). A typical result
obtained from these calculations is illustrated in Fig. 10.

To determine the scattering mean free path ` and the
effective wave number ke of the transverse waves, we fit
the results for the real part of 〈Ex(k, z)〉 to the expression

Re〈Ex(k, z)〉 = A cos(kez + φ) exp
(
− z

2`

)
(B8)

where `, ke, φ and A are free fit parameters (see Fig.
10). In order to reduce the influence of boundary effects,
we ignore the data corresponding to z < L/10 and z >
(9/10)L in the fits. The resulting effective wave number
and scattering mean free path are shown in Figs. 11 and
12 (red line) as functions of detuning δ = (ω − ω0)/γ for
n/k3

0 = 0.5.

2. Diffuse field

We compute the average energy density of light inside
the sample ρ̃(k, z) by averaging the square of the macro-
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Figure 12. Scattering and transport mean free paths for
the most dense sample. We also show the scattering length
1/2 ImKL(∞) associated with longitudinal waves.

Figure 13. The average energy density, consisting of a coher-
ent and a diffuse part. The solid straight line is a linear fit to
the diffuse energy density for k0z = 4–9.

scopic magnetic field B̃(k, rm) on the scatterers. The
diffuse energy density is obtained by subtracting the co-
herent intensity:

ρ̃(k, z) =
c0
8π
〈|B̃(k, rm)|2〉 (B9)

ρ̃dif(k, z) = ρ̃(k, z)− c0
8π
|〈B̃(k, rm)〉|2 (B10)

where, as previously, the averaging 〈. . .〉 is done over scat-
terer configurations as well as over the central part of the
cylindrical sample. Because of equipartition, electric and
magnetic energies should be equal on average. Neverthe-
less, because we calculate B̃, and not B, the magnetic
energy density still misses the singular stored energy in-
side the dipole.

A typical profile of energy density inside the sample
is shown in Fig. 13. We fit ρ̃dif(k, z) by a linear func-
tion for k0z between 4 and 9 to determine its gradient
dρ̃dif(k, z)/dz.

The average energy flux is given by the average Poynt-

Figure 14. Transport mean free paths for different densities n.
The dashed line shows the ISA results for the lowest density
4πn/k30 = 0.25.

ing vector

〈K(k, z)〉 =
c0
8π

Re〈E(k, r)× B̄(k, r)〉 (B11)

We compute the z component of 〈K〉 outside scatterers
using Eqs. (B1)–(B4) and extend the calculation to the
space in front and behind the sample. Inside the sample,
the calculation fails to average because of the large fluctu-
ations stemming from the near fields of the M scatterers.
However, the calculation converges very well when aver-
aging the Poynting vector calculated outside the sample.
However, only in a slab of infinite lateral extent (R→∞)
without lateral leakage, the energy flux 〈Kz〉 would be
independent of z and equal in- and outside the sample.
For finite R, this equality is only valid approximately.
To correct for this, we perform a linear fit of 〈Kz(k, z)〉
calculated at z/L ∈ [−0.3,−0.1] in front of the sample,
and z/L ∈ [1.1, 1.3] just behind the sample, and use the
fit to find the value of 〈Kz(k, z)〉 at z/L = 0.65 as the
best estimate of 〈Kz〉 for the slab of infinite lateral ex-
tent. The point z/L = 0.65 is chosen in the middle of
the depth range where ρ̃dif(k, z) is seen to exhibit a clear
linear decay (see Fig. 13).

The transport mean free path `∗ is obtained by using
the Fick’s law

〈Kz〉 = −D d

dz
ρ̃dif(k, z) (B12)

where D = (c20/vp)`
∗/3 is the diffusion coefficient and

vp = c0k0/ke is the phase velocity. No energy velocity
appears here since ρ̃dif(k, z) does not count the stored
energy. Expressing `∗ from this equation yields

`∗ = −3
k0

ke
× 〈Kz〉
dρ̃dif(k, z)/dz

(B13)

The results following from this equation are shown in
Figs. 12 (blue line) and 14. The comparison of these
results with the analytic theory is presented in Fig. 9
and is discussed in the main text.
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Figure 12 shows that the transport mean free path dif-
fers significantly from any of the scattering mean free
paths, including the scattering length 1/2 ImKL(∞) as-
sociated with longitudinal waves. The transport mean

free path is an asymmetric function of the detuning from
the resonance, and it is larger for positive than for nega-
tive detunings.
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