B A Van Tiggelen 
email: bart.van-tiggelen@lpmmc.cnrs.fr
  
S E Skipetrov 
email: sergey.skipetrov@lpmmc.cnrs.fr
  
Longitudinal Modes in Diffusion and Localization of Light

Keywords: light scattering, radiative transfer, Anderson localization

In this work we include the elastic scattering of longitudinal electromagnetic waves in transport theory using a medium filled with point-like, electric dipoles. The interference between longitudinal and transverse waves creates two new channels among which one allows energy transport. This picture is worked out by extending the independent scattering framework of radiative transfer to include binary dipole-dipole interactions. We calculate the diffusion constant of light in the new transport channel and investigate the role of longitudinal waves in other aspects of light diffusion by considering the density of states, equipartition, and Lorentz local field. In the strongly scattering regime, the different transport mechanisms couple and impose a minimum conductivity of electromagnetic waves, thereby preventing Anderson localization of light in the medium. We extend the self-consistent theory of localization and compare the predictions to extensive numerical simulations.

I. INTRODUCTION

The traditional and widely used picture of elastic multiple scattering of light is one of a plane wave that exponentially extincts on the length scale of a mean free path while propagating from one particle to another, with an electric field orthogonal to the direction of propagation, and with subsequent scattering into a different direction in space, with exactly the same frequency. It is well known that transversality in real space (r • E(r) = 0) is only valid in the far field of the scatterers, at distances much larger than the wavelength. In the near field of a dielectric object, the electric field achieves a "dipolar" structure, with a component directed along the propagation direction, while still being divergence-free, i.e. ∇ • E(r) = 0. In many approaches of multiple light scattering, these longitudinal modes are widely appreciated, yet considered "virtual", in the sense that they do not carry a Poynting vector so that they cannot transport electromagnetic energy themselves, though they can mediate the propagation of other waves, such as mechanical [2] or matter [START_REF] Menottia | Dipolar interaction in ultra-cold atomic gases[END_REF] waves.

However, in inhomogeneous media, the dielectric constant ε(r) of the matter varies in space, and Gauss' equation imposes ∇ • [ε(r)E] = 0. As a result, true longitudinal electric fields exist, with ∇•E = 0 and a finite density of states (DOS) in phase space, to which elastic scattering could take place. Induced polarization charges possess Coulomb energy, and also stock dipole-dipole energy among different scatterers but have no Poynting vector, so how can they transport energy? In atomic physics, the well-known process of Förster coupling [1] facilitates a non-radiative transport mechanism to exchange quantum states and to move Coulomb energy from one atom to another. Like spontaneous emission, this process is inherently inelastic and incoherent, and is de facto ex-cluded in a picture where only elastic multiple scattering, including interferences, is allowed. Much in the spirit of Förster coupling, Ref. [START_REF] Th | [END_REF] added explicitly the quasistatic dipole-dipole coupling as a new channel in transport theory of electromagnetic waves. In this work we will show that this transport channel naturally emerges from a rigorous electromagnetic transport theory. The finite Poynting vector of this channel is shown to originate from the interference between longitudinal and transverse modes.

The transverse picture of electromagnetic waves emerges naturally in the so-called "independent scattering approximation" (ISA) of diffuse transport. In this approximation, the longitudinal waves are usually ignored, and only transverse, propagating states are counted, associated with damped plane waves with wave numbers close to the frequency shell p ≈ k = ω/c 0 in phase space. A fundamental question is whether this picture is significantly altered, within and beyond the ISA, or if just quantitative modifications occur. Longitudinal states have a finite density of states (DOLS), proportional to the imaginary part of the (longitudinal) dielectric constant of the effective medium. Being mainly confined to scatterers, they exist far from the frequency shell in phase space, typically at very large wave vectors p k. We will show that, due to the dipole size that is much smaller than the optical wavelength, excitations with large wave numbers can scatter and mode-convert to both transverse and longitudinal states. As such they take fully part in the diffuse transport.

The purpose of this work is to include longitudinal waves into the transport theory of electromagnetic waves at scales well beyond the mean free path, identify singularities, thereby respecting the conservation of energy. Finally we will perform the first study about the role that longitudinal electromagnetic waves play in weak and strong (Anderson) localization. Static electric dipole coupling was already identified as a possible source of delocalization of mechanical waves [2]. Recent numerical simulations with electromagnetic wave scattering from point-like electric dipoles revealed the absence of a mo-bility edge [5], and are difficult to explain within the traditional picture that only acknowledges the transverse field as a mechanism for diffuse transport.

II. TRANSPORT OF ELECTROMAGNETIC WAVES

In standard transport theory [6], the dispersion and extinction of waves are described by a complex self-energy Σ(k, p), associated with the effective medium. For electromagnetic waves this is a second-rank tensor, depending on frequency and wave vector p. Scattering between two states in phase space is described by the four-rank scattering vertex U pp (k). Energy conservation in multiple scattering is guaranteed by the Ward identity [6,[START_REF] Sheng | Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF],

-Im Σ(k + i , p) = p U pp (k) • -Im G(k + i , p ) (1)
with the notation Im A ≡ (A-A * )/2i where A * denotes the Hermitian conjugate of a 3 × 3 matrix A (A * ij = Āji ). The left hand side stands for the extinction of an electromagnetic excitation at wave vector p, the right hand side puts this equal to the elastic scattering of the same excitation from p towards all other accessible states p in the phase space. The "spectral tensor" -Im G(k + i , p ) is positive (as ↓ 0, for positive frequencies) and determines the availability of microstates at the wave vector p , given the frequency ω = kc 0 that is conserved in elastic scattering. For convenience we will drop explicit reference to and assume its presence in k + i implicitly. Both Σ(k, p) and U pp (k) will be discussed in more detail below.

A. Dyson Green's function

In Fourier space the Dyson Green's tensor of an electromagnetic "quasiexcitation" with frequency ω = kc 0 and wave vector p of the effective medium is given by [6] G(k, p) = k 2 -p 2 ∆ p -Σ(k, p)

-1 = pp k 2 -Σ L (k, p) + ∆ p k 2 -p 2 -Σ T (k, p) (2) 
split up into a longitudinal and a transverse part, with Σ(k, p) = Σ L (k, p)pp + Σ T (k, p)∆ p , with ∆ p = 1 -pp the projection tensor to transverse states. In transport theory, the tensor G(k, p) ⊗ G * (k, p ) is the building block of multiple scattering, and it is important to understand G(k, p) in great detail on all scales. The longitudinal part of G(k, p) is associated with local Coulomb interactions between induced charges inside scatterers, often referred to as "non-radiative, static", dipole-dipole coupling at a distance. The transverse part describes propagating waves. In the following we investigate both components in real space for small and large distances. We demonstrate that at small distances, the longitudinal part of the Dyson Green's function dominates very generally and takes the form of dipole-dipole coupling with the usual Lorentz contact term [START_REF] Jackson | Classical Electrodynamics[END_REF], and surprisingly, is seen not to be static. At large distances, only transverse excitations contribute and G(k, r) is under very general conditions equal to an exponentially small, propagating excitation with a polarization transverse to the direction of propagation r. This implies that G(k, r) contains the familiar near and far fields of electromagnetism, without the need to add the first by hand [START_REF] Th | [END_REF]. At large distances the traditional picture, described earlier, emerges.

In real space, the Green's tensor G(k, r) is the Fourier transform of Eq. ( 2) and describes the propagation of electromagnetic waves over a distance r in the effective medium. The near-field component is "non-radiative" in the sense that a longitudinal field E k induces no magnetic field as kB ∼ k × E = 0. Alone, it carries therefore no Poynting vector. However, we will show later in this work that the interference of longitudinal and transverse components in the tensor product G ⊗ G * does carry a Poynting vector and facilitates a new channel to transport energy.

With K 2 L (p) ≡ k 2 -Σ L (k, p) the square of a complex longitudinal wave vector, one obtains in real space,

G L (k, r) = p pp K 2 L (p) exp(ip • r) = δ(r) 3K 2 L (∞) + 1 -3rr 4πK 2
L (∞)r 3 + D(r) (3) where we have split off the singularity of the integral at large wave numbers, leaving the rest term D(r) as a contribution to the traceless dipole-dipole coupling described by the second term. Since D(r) is, by construction, the Fourier transform of a function that decays to zero for large p, it is free from a Dirac distribution, and even non-singular as r → 0. We will show this explicitly in section II C for the recurrent scattering from two dipoles. As a result, the first two terms in Eq. (3) dominate on small scales. The first, subtle Lorentz contact term is a genuine Dirac distribution and vanishes for r = 0, but for r = 0 makes a genuine contribution to DOS. Since the transverse field G T (r) ∼ 1/r for kr < 1 is much less singular, we conclude that

G(k, r → 0) → G 0,L (K L (∞), r) (4) 
This takes the same form as the familiar dipole-dipole regime of the bare Green's function G 0 (r), with however the wave number k = ω/c 0 in vacuum replaced by a complex-valued and frequency-dependent wave-vector K L (∞). For finite-size dielectric scatterers one may argue that at small scales described by p → ∞ the effective medium is homogeneous and K L (∞) must be some realvalued wave number. For atomic atomic dipolar scatterers however, we will see that the complex value of K L (p) extends up to infinity. The complex value of K L (∞) indicates that the dipole-dipole coupling, dominating in the near field, is not static but depends on frequency and contributes to the DOS. In section II D we will calculate K L (∞) numerically in all orders of the density for a model of randomly positioned electric dipoles. At long distances kr → ∞, small wave numbers prevail in Eq. ( 3) so that

G L (k, r → ∞) = 1 -3rr 4πK 2 L (0)r 3 (5) 
with K L (p) now evaluated at p = 0. If this propagator would not be compensated, the far field would contain an algebraically small longitudinal term which would severely affect the random-walk picture of transverse electromagnetic wave transport. However, it is compensated very generally by a part of the transverse propagator G T (k, p). For kr 1 it is useful to make the following decomposition,

G T (k, r) = p ∆ p K 2 T (p) -p 2 exp(ip • r) = 1 2π 2 -∇ 2 + ∇∇ 1 2ir Γ dp e ipr p 1 K 2 T (p) -p 2 + -∇ 2 + ∇∇ 1 4πK 2 T (0)r (6) 
Here Γ denotes the line (-∞, +∞) that avoids the origin p = 0 via a small contour in the upper complex p-plane, and which generates the last term. In the far field, since necessarily K T (0) = K L (0), the last term of Eq. ( 6) cancels exactly against the longitudinal far field in Eq. ( 5). The Green's function G(k, r) as a whole is therefore determined by the denominator of the first term and

G(k, r → ∞) = ∆ r 4π 2 ir ∞ -∞ dp p e ipr K 2 T (p) -p 2 (7) 
This indicates that the electric field is asymptotically dominated by transverse modes and also transverse to the direction of propagation r. If K T (p) has an analytical extension at least over a small sheet Im p < K T in the upper complex p-plane, G(k, r) will decay at least as exp(-K T r)/r. Different "effective medium" approaches exist to calculate G(k, r) for various models [START_REF] Sheng | Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF]. The easiest method is to assume the presence of a simple pole

K T (p) = k T + i/2
, in which case normal exponential behavior emerges with the decay length equal to (twice) the elastic scattering mean free path . We conclude that the Green's tensor of the effective medium has a true longitudinal component (∂ i G ij (k, r) = 0) that affects wave propagation at small scales r < 1/k. In the far field, the electric field is always transverse to propagation (r i G ij (k, r) = 0). Decay is exponential under broad conditions with a decay length . This implies that radiative transfer should still be compatible with a random walk with step length , though with possibly new mechanisms for energy transport in the near field provided by the presence of longitudinal fields, that can become dominant when k ≈ 1. This idea will be worked out concretely in the next sections for an ensemble of randomly distributed dipolar electric scatterers ("dipoles" for short).

B. Independent electric dipole scattering

In the independent scattering approximation (ISA) applied to point-like electric dipole scatterers with number density n and T -matrix t(k), Σ ISA (k, p) = nt(k). In this work we assume each dipole to be impenetrable for light outside, and to have only longitudinal excitations in its vicinity, at scales much smaller than the wavelength. This conveniently labels material energy as longitudinal states that take part in the scattering process. By definition, the T -operator of a general polarizable scatterer perturbs wave propagation in free space according to

G(k) = G 0 (k) + G 0 (k) • T(k) • G 0 (k). If we set T(k) = |r d t(k) r d |
to describe an a electric dipole at position r d , and impose r|G(k)|r d = 0 for any r = r d for it to be "impenetrable", then it follows that

t(k) = -1 r d |G 0 (k)|r d = - p pp k 2 + ∆ p k 2 -p 2 + i0 -1 (8)
This model can be refined to acknowledge finite penetration of light into the dipoles [START_REF] Th | [END_REF], but the present choice highlights the role of longitudinal waves and is arguably the best description of elastic scattering from an atom without going into the details of atomic physics. Both the longitudinal and the transverse integral diverge, the first essentially due to the Lorentz contact term. We will regularize the first as p pp = 1/3u and the transverse part as p ∆ p /p 2 = 1/6πΓ. It follows that

t(k) = -6πΓk 2 k 2 0 -k 2 -ik 3 Γ (9)
Both Γ (with dimension of length) and u (a volume) are genuine properties of the dipole, independent of frequency or polarization of the light. In particular k 2 0 = 2πΓ/u determines the resonant frequency of the dipole. For k = k 0 longitudinal and transverse singularities, opposite in sign, cancel each other.

For small k, the static polarizability α(0) is related to the t-matrix as t = -α(0)k 2 [6], and we can identify α(0) = 3u. This relation can be understood from classical electrodynamics. We recall the Lorentz relation E(0) = E - 1 3 P for the homogeneous electric field inside the dipole, assumed spherical. Since we have imposed E(0) = 0, the polarization density must equal 3 times the local electric field E. The dipole moment is thus uP ≡ α(0)E = 3uE with u the volume of the dipole, and hence α(0) = 3u. The line width in frequency near the resonance is related to Γ according to γ = k 2 0 c 0 Γ = α(0)k 4 0 c 0 /6π, a known relation for the radiative decay rate of a semi-classical two-level atom in the electric-dipole approximation [START_REF] Allen | Optical Resonance and Two-Level Atoms[END_REF]. We can identify the quality factor Q 0 = ω 0 /γ = 6π/α(0)k 3 0 . Near the resonance, we can thus write

t(k = ω/c 0 ) = - 6π k 0 γ/2 ω 0 -ω -iγ/2 (10) 
The t-matrix satisfies the optical theorem,

-Im t = p |t(k)| 2 • ∆ p πδ(k 2 -p 2 ) = |t(k)| 2 k 6π
This expression is consistent with Eq. ( 1), worked out linearly in the dipole density n on both sides, with U ISA pp = n|t(k)| 2 the ISA collision operator and Σ ISA (p) = nt(k). For its relative simplicity, many exact numerical simulations have been carried out with media filled randomly with electric dipoles [5,[START_REF] Rusek | [END_REF][11][12], and many theoretical treatments exist already [13][14][15], not only because one can go far without making further approximations but also because they constitute a good and complete model for multiple scattering of light from simple atoms. We notice that the t-matrix of a single dipole is independent of both polarization, p and p . As a result, a single dipole can scatter microstates with arbitrary state of polarization, and with arbitrary p towards arbitrarily large p .

C. Extinction involving two electric dipoles

The extinction caused by recurrent scattering from two dipoles was discussed in Ref. [15] for scalar waves, in Ref. [16] for low-energy electrons, and in Refs. [13,17,19] for electromagnetic waves. The last two works mainly focused on diffusion of transverse light, but used the full Green's tensor (2) to describe recurrent scattering. In Ref. [19] correlations between dipoles were included and compared successfully to numerical simulations. Despite the singular Green's tensor G 0 (k, r) in the near field, no new divergencies were encountered provided the whole series of recurrent scattering is summed. In the following section we will explicitly include the longitudinal field in the transport. To that end, we need to understand the behavior of the self-energy tensor Σ(k, p) at large p. The self-energy involving one or two different dipoles is given by [13] 

Σ(k, p) = nt1 + n 2 d 3 r t 3 G 2 0 (r) 1 -t 2 G 2 0 (r) + n 2 d 3 r t 4 G 3 0 (r) 1 -t 2 G 2 0 (r) e ip•r + O n 3 log n (11)
We have dropped the explicit reference to k = ω/c 0 in t(k) and in G 0 (k + i , r). The first term is the ISA, the second term involves recurrent loops between two dipoles. They are both independent of p and necessarily isotropic tensors. We will show in Sec. II D that, in our model, loop diagrams of arbitrary order rigorously Boomerang self-energy (imaginary)

. Real (top, on resonance) and imaginary (bottom, for a detuning δ = (ω -ω0)/γ = 1.5) part of the wave-number dependent "boomerang" self-energy associated with two dipoles. The wave number p ("momentum") is expressed in units of k = ω/c0 in free space, the self-energy is expressed in units of (4πn/k 3 ) 2 × k 2 . The transverse self-energy ΣT (k, p) converges asymptotically to zero (dashed line) for all detunings, meaning that the Lorentz local field term ΣLL(k, p) = -1 3 n 2 t 2 , part of the boomerang diagrams but independent of p, is canceled. The longitudinal selfenergy ΣL(k, p), on the other hand, converges asymptotically to -n 2 t 2 (dashed line), as expressed by Eq. ( 13). The structure visible near p = 3k is caused by the triple round trip of light between two dipoles in the boomerang diagrams described by Eq. (11).

determine the energy stored in longitudinal modes, and exploit this notion numerically. The third term, summing up the so-called boomerang diagrams Σ B (see Fig. 1) provides the first p-dependent contribution and causes Σ T (p) = Σ L (p). Higher orders in number density involve 3 different dipoles or more. The boomerang diagrams generate a subtle contribution via the Lorentz contact term δ(r)/3k 2 in G 0 (r) [14,18], which gives rise to the well-known Lorenz-Lorentz correction -n 2 t 2 /3k 4 to both the longitudinal and transverse dielectric functions, and that is independent of p. Nevertheless, as p → ∞, this term is compensated, again subtly, in the transverse selfenergy and reappears as a purely longitudinal self-energy. This can be seen by subtracting the transverse photon field G 0,T (r) in free space, derived in Eq. ( 6) for the effective medium, which is free from the Lorentz contact term. The boomerangs become,

Σ B (p) = n 2 t 2 d 3 r G 0 (r) 1 -t 2 G 2 0 (r) -G 0,T (r) exp(ip • r) + n 2 t 2 d 3 r [G 0,T (r) -G 0 (r)] exp(ip • r) (12)
In the first term, the Lorentz contact term at r = 0 no longer contributes and the integral vanishes for large p.

The second integral is just equal to (minus) the longitudinal Green's tensor G L,0 (k, p) in Fourier space. Hence we find the somewhat surprising relation for infinite p,

lim p→∞ Σ(p) = Σ ISA + Σ Loop - n 2 t 2 k 2 pp (13) 
Figure 1 illustrates by numerical integration of Eq. ( 11) that for large wave vectors, the Lorentz contact term is canceled in the transverse (boomerang) self-energy.

It converges always to zero, whereas the longitudinal boomerang self-energy converges asymptotically to Σ L (p) = -n 2 t 2 /k 2 . Neither one of them converges to -n 2 t 2 /3k 2 , associated with the Lorentz contact term.

The asymptotic limit established in Eq. ( 13) is important since it demonstrates that K L (∞) = K T (∞), the first introduced earlier in Eq. ( 3) describing the dynamic dipole-dipole coupling in the near field.

It is instructive to calculate the longitudinal Green's function (3) associated with the self-energy in Eq. (11). Only the boomerang diagrams Σ B depend on wave number p. Hence, up to order n 2 ,

G L (k, r) = p pp 1 k 2 -Σ L (p) exp(ip • r) = -∇∇ • p 1 k 2 -Σ 0 + 1 k 4 Σ B (p) exp(ip • r) p 2
with Σ 0 = Σ ISA + Σ Loop . Upon inserting the boomerang diagrams and using -∇∇(1/4πr) = δ(r)/3 + (1 -3rr)/4πr 3 = k 2 G 0,L (r), one obtains,

G L (k, r) = G 0,L ((k 2 -Σ 0 ) 1/2 , r) + n 2 k 2 d 3 r G 0,L (r -r ) • t 4 G 3 0 (r ) 1 -t 2 G 2
0 (r ) This determines the longitudinal Green's tensor at all distances, and also depends on frequency for all distances. The first term stands for ordinary dipole-dipole coupling of the type 1/r 3 with a modified prefactor from the effective medium that arises because we consider the electromagnetic Green's tensor and not the potential energy of the dipoles. The second term really changes the propagator from r = 0 to r , because a dipole can be situated at r = 0, that first couples via a high-order dipole interaction to a dipole at r (a single coupling is already counted in the effective medium) before finally arriving at r. In the following we show 1) that this coupling fully disappears at large distance (contrary to Ref. [START_REF] Th | [END_REF]) and 2) that for small distances we recover the dipole-dipole coupling found earlier in Eq. (3), with the complex wave number K L (∞).

For kr 1, we can take G 0,L (r) out of the integral, and recognize the remainder as the boomerang selfenergy at p = 0. Hence,

G L (k, r → ∞) = G 0,L (K L (0), r) (14) 
This result agrees with Eq. ( 5) and was seen to cancel against a similar term in the transverse part of the Dyson Green's function. For kr 1 we can write,

G L (k, r → 0) = G 0,L ((k 2 -Σ 0 ) 1/2 , r) - n 2 t 2 k 2 d 3 r G 0,L (r -r ) • G 0 (r ) + n 2 k 2 d 3 r G 0,L (r -r ) • t 2 G 0 (r ) 1 -t 2 G 2 0 (r )
The last term is regular and r = 0 can be inserted. The second term is equal to -(n 2 t 2 /k 4 )G 0,L (r) and adds up to the first term. Since by Eq. ( 13) we have

K 2 L (∞) = k 2 -Σ 0 + n 2 t 2 /k 2 , G L (k, r → 0) = G 0,L (K L (∞), r) + D(0)
This agrees with Eq. (3) and attributes a finite complex, frequency-dependent value to D(r = 0),

D(0) = n 2 t 2 k 2 d 3 r G 0,L (r ) • G 0 (r ) 1 -t 2 G 2 0 (r ) (15) 
We note that D(0) is negligible compared to the dipolar coupling G L ∼ 1/r 3 .

D. Density of states

The total electromagnetic spectral density at frequency ω = kc 0 in a polarizable medium is defined by

N tot (k) = |k| c 0 TR δ k 2 -H with H = ε(r) -1/2 (p 2 -pp)ε(r) -1/2
the Helmholtz operator and TR the trace in the Hilbert space spanned by all eigenfunctions, including a strongly degenerate longitudinal eigenspace with eigenvalue 0. Written in this way, the spectral density is defined (and equal) for positive and negative frequencies and normalized to the dimension of the Hilbert space,

∞ -∞ dω N tot (k) = TR
independent of ε(r), and formally infinite. We can work out the trace in real space as

N tot (k) = d 3 r |k| c 0 r|Tr δ k 2 -H |r
with Tr the trace over 3 polarizations only, and identify the integrand as the local density of states,

N (k, r) = - k c 0 1 π ImTr G H (k + i , r, r) with G H = [(k + i ) 2 -H)] -1 .
After ensemble-averaging it becomes independent of r, and we can express it in terms of the Dyson Green's function (2),

N (k, r) = - k c 0 1 π × ImTr r| ε 1/2 (r) • G(k + i ) • ε 1/2 (r)|r = - k c 0 1 π p Im Tr p 2 ∆ p k 2 • G(k + i , p) (16) 
Both lines in this expression count, by construction, all states but, quite surprisingly, the second line projects on the transverse states only with however a large weight on large wave numbers p k. The reason is that the first line counts electrical energy, including the longitudinal modes, whereas the second line counts magnetic energy, that has only transverse modes. Equation (16) states that the density of states can be calculated from either the magnetic or electrical energy, provided the latter includes also the longitudinal states.

For our model of electric dipoles we expect that the DOS is the sum of transverse traveling waves and stocked longitudinal waves. To show this we go back to the first line of Eq. ( 16). For ε(r) = 1 + δε(r), we identify V = -δε(r)k 2 as the interaction operator in the Born series of light scattering [6]. Before doing the configurational average, we can consider M dipoles in a finite volume V (see also Appendix A). Rigorous scattering theory imposes the operator identity

V•G(k) = T•G 0 (k). Hence N (k, r) = - k c 0 1 π ImTr G(k + i , r, r) + k c 0 1 π ImTr r| T k 2 • G 0 (k + i )|r
This equation is still exact and depends on the position r. Since the polarizability density δε(r) has disappeared explicitly we can consider the special case of scattering from identical, impenetrable electric dipoles, associated with a dielectric susceptibility δε(r) → ∞, and described by Eq. [START_REF] Th | [END_REF]. For M such dipoles,

T(k) = M mm T mm (k)|r m r m | (17) 
with, for m, m fixed, the 3 × 3 matrix T mm (k). To have G(r m , r) = 0 inside all dipoles at r m and for arbitrary r outside imposes that T mm (k) be given by the inverse of the 3M × 3M matrix -G 0 (k, r m , r m ). It easily follows that Figure 2. The contribution of dipole-dipole coupling to the DOS as a function of distance between the dipoles. The volume integral of the functions shown produces the second term of Eq. [START_REF] Labeyrie | [END_REF]. UP (r) is associated with the electric field perpendicular to r, UQ(r) with the electric field directed along r.

r|T • G 0 (k + i )|r = -1 M m=1 δ(r -r m ) = -n(r)
Top: δ = (ω -ω0)/γ = -0.5 (redshift). Bottom: δ = 0.5 (blueshift). UP (r) has a subradiant peak only for positive detuning whereas UQ(r) only for negative detunings.

Since this is purely real-valued, it cancels in the expression above for N (k, r). Upon averaging and letting M, V → ∞ at constant number density, the remaining term yields

N (k) = - k c 0 1 π p ImTr G(k + i , p) (18) 
in terms of the Dyson Green's function (2). This is recognized as |E(r)| 2 , proportional to the energy density E(r) 2 /8π, averaged over disorder and cycles, and having both longitudinal N L (k) and transverse N T (k) parts. We emphasize that Eq. ( 18) only applies for our model that excludes any light inside the scatterer. As a result no stored energy density E(r) • P(r) exists as e.g. in Mie scattering [6]. In this model, the stocked dipoledipole energy is entirely described by longitudinal (electric) waves.

We can insert the Dyson Green's function obtained in Sec. II A into Eq. ( 18),

N (k) = - k πc 0 Im 1 K 2 L (∞) p + p 1 K 2 L (p) - 1 K 2 L (∞) +2 p 1 K 2 T (p) -p 2
Only the first term, stemming from the singular Lorentz cavity and entirely governed by longitudinal excitations, diverges and is regularized using p = 3/α(0) = k 3 0 Q 0 /2π consistent with section II B. The second term, proportional to D(r = 0) in Eq. ( 3), is non-zero but a factor Q 0 smaller and shall be neglected. Finally the last term is just the density of states of transverse waves. We shall assume the existence of a well-defined complex pole

K T = k T + i/2 . This gives N (k) = k 2π 2 c 0 -Q 0 Im k 3 0 K 2 L (∞) + k T (19) 
The ratio of longitudinal and transverse LDOS is thus

N L (k) N T (k) = -Q 0 k 3 0 k T Im 1 K 2 L (∞) (20) 
In view of the factor Q 0 this can be a large number, proportional to the density of the dipoles. For low density is

K L (∞) ≈ K T ≈ k + i/2 so that N L / N T = Q 0 /k .
This ratio will be discussed in the next section A rigorous expression can be derived for DOS without relying on the existence of a complex pole by taking into account the p-dependence of the self-energy Σ T (k, p) associated with the scattering from two electric dipoles. A direct expansion in dipole density yields

N (k) = - k πc 0 ImTr p G 0 (k, p) +G 0 (k, p) • Σ(k, p) • G 0 (k, p) + G 0 (k, p) • Σ(k, p) • G 0 (k, p) • Σ(k, p) • G 0 (k, p) +O(n 3 )
Several singular longitudinal terms, stemming from the Lorentz cavity can be seen to cancel. The first term describes the free electromagnetic field and the longitudinal field drops out trivially. The longitudinal component of the second term contains a singular Lorentz cavity (nt + Σ Loop -n 2 t 2 /k 2 ) p G 2 L (p) stemming from Eq. ( 13). Similarly, the third term generates a singular longitudinal contribution n 2 t 2 p G 3 L (p) that cancels exactly against the local field -n 2 t 2 /k 2 generated by the previous term. We can work out the wave number integral in the expression for N (k) exactly by inserting Eq. ( 11), and use the cyclic property of the trace,

N (k) = k 2 2π 2 c 0 + k πc 0 ImTr nt ∂ ∂k 2 G 0 (k, 0) + n 2 t 3 d 3 r G 2 0 (r) 1 -t 2 G 2 0 (r) • ∂ ∂k 2 G 0 (k, 0) + n 2 t 4 d 3 r G 3 0 (r) 1 -t 2 G 2 0 (r) • ∂ ∂k 2 G 0 (k, r) + n 2 t 2 d 3 r G 0 (k, r) • ∂ ∂k 2 G 0 (k, -r)
We have transformed the integral over wave vectors p of the last term

G 0 • Σ • G 0 • Σ • G 0 in N (k) to real space.
Using again the relation 1/t(k) = -G 0 (k, r = 0) this can be rearranged to

N (k) -N 0 (k) = - 3n 2π d dk Im log t - n 2 4πc 0 d dk ImTr d 3 r log 1 -t 2 G 2 0 (r) (21) 
with N 0 = k 2 /2π 2 c 0 the LDOS of transverse waves in free space. The appearance of a full frequency derivative in the DOS is a manifestation of Friedel's theorem [START_REF] Mahan | Many-Particle Physics[END_REF].

The second term is recognized as the dipole-dipole energy expressed as the "return trip operator", widely used in the theory of Casimir energy in matter [START_REF] Miloni | The Quantum Vacuum[END_REF], and involves loop paths only. The integral is well-defined at both r = 0 and r → ∞. Since the dominating frequency dependence comes from dt/dk ≈ -2Q 0 t 2 /6π,

∆N (k) N 0 (k) = - Q 0 3k 2 ImTr nt1 + n 2 d 3 r t 3 G 2 0 (r) 1 -t 2 G 2 0 (r) = - Q 0 k 2 Im (Σ ISA + Σ Loop ) (22) 
This expression suggests that in general the modification of DOS is dominated by ISA + loop diagrams, describing 19) and ( 23) this quantity determines the longitudinal density of states LDOS. Bottom: Same but with the ISA approximation subtracted and normalized by 4πn/k 3 0 . The dashed line shows the second-order in density term in Eq. ( 22) as also shown in Fig. 3.

longitudinal excitations, even if mediated by transverse, propagating waves. This, in turn, implies that the complex longitudinal wave number K L (∞) is governed by loop diagrams only. In Appendix A we demonstrate that this statement holds rigorously. More precisely, if we recall the T -matrix (17) of M electric dipoles randomly distributed in a volume V , then

1 K 2 L (∞) = 1 k 2 + 1 3k 4 n Tr T mm (k) (23) 
for M → ∞ at constant M/V = n. The first two terms in the density expansion clearly coincide with Eq. ( 22). All higher order terms are rigorously loop diagrams and the ensemble-average of the diagonal element T mm over all other M -1 dipoles must make it proportional to the identity matrix. Near resonance the first ISA term of ∆N /N 0 has a Lorentzian profile with a large peak height inversely proportional to Q 0 , to be associated with the excitation of a single dipole. The second term of Eq. ( 22) becomes important when 4πn/k 3 0 ≈ 1 and constitutes an inhomogeneous contribution to the line-profile. Using G 0 (k, r) = -exp(ikr)/(4πr)[P (kr)∆ r + Q(kr)rr] for r = 0 [6] the integrand can be split up into two interactions U Q (r) and U P (r), that govern the near-field coupling of two dipoles in real space. Both are shown in Fig. 2. The total dipole-dipole coupling, shown in Fig. 3, is negative around the resonance. Because local field singularities cancel in the DOS, the solid curve in Fig. 3 is the same as found in Ref. [17].

In Fig. 4 we have calculated numerically the diagonal elements of the 3M × 3M matrix T mm for M = 10 4 dipoles homogeneously distributed in a sphere at density n = M/V , thereby averaging over all 3M diagonal elements as well as over 10 independent random configurations of the dipoles. This calculation confirms that K L (∞) is a genuine complex quantity and in general different from the complex wave vector K T = k T + i/2 associated with the transverse modes (see also Figs. 11 and 12 in Appendix B). For low dipole densities, the calculation agrees accurately with the analytical calculation of the loops between two dipoles in Eq. ( 22). The line profile of the longitudinal DOS broadens significantly well beyond the single-dipole line profile as the dipole density increases. Nevertheless, the total surface underneath remains constant. This is to be expected since each dipole contributes exactly 3 microstates to the DOS and this number cannot be affected by dependent scattering (see Appendix A).

E. Equipartition between longitudinal and transverse waves

If we acknowledge the finite density of longitudinal states (DOLS) proportional to -Im G L (k, p) ≈ -nIm t(k)/k 4 , the right hand side of Eq. ( 1) allows the scattering towards longitudinal states with arbitrary p , even in independent single scattering. The scattering is independent of initial wave number p, but of course requires the existence of this initial state, governed by the spectral function -Im G L,T (k, p). For transverse waves the rate is proportional to the occupation number n T (p) of the transverse states with wave number p and the total available number of longitudinal states,

ρ T (p)/τ ISA T →L ∼ n T (p)(-)Im G T (p) × p U ISA • p p (-)Im G L (p ) = -Q 0 n 2 |t| 2 Im t 6πk × n T (p)(-)Im G T (p) (24) 
Since the integral diverges at large p , we have used the same regularization as the one employed earlier for the T -matrix of one dipole. The resulting scattering rate is positive, converting the transverse state with wave vector p to available longitudinal state with mostly large wave vector p . The matrix element U

pp involving recurrent scattering from two dipoles [17] can mode-convert any initial state to transverse states, with a rate proportional to n 2 , as is the process in Eq. (24). A close look identifies only one event part of U

(2)

pp that gives rise to a singular scattering rate (see Fig. 5). The irreducible ladder diagrams, as part of U pp without external lines, add up to

U (LAD) pp = n 2 |t| 4 d 3 r G 0 1 -t 2 G 2 0 G 0 1 -t 2 G 2 0 * -G 0 G * 0 (25) Our tensor notation is (AB) ij|kl = A ik B lj , equivalent to (AB)•S = A•S•B.
This event scatters again independent of p and p . The second term must be subtracted since it stands for a reducible event that is not part of the collision operator. However, the substraction creates a diverging contribution at r = 0 in the integral due to the singular longitudinal field. To repair this in a way consistent with previous sections, we extract the transverse photon propagator G 0,T (r), and write

U (LAD) pp = n 2 |t| 4 d 3 r G 0 1 -t 2 G 2 0 G 0 1 -t 2 G 2 0 * -G 0,T G * 0,T + n 2 |t| 4 p G 0,T (p )G * 0,T (p ) -G 0 (p )G * 0 (p )
We have used Parseval's identity to convert the second integral into an integral over wave vectors. The first term of U (L)

pp now converges at small r, the second term can be dealt with as before, giving

U (LAD,s) pp = -Q 0 3n 2 |t| 4 6πk S + Q 0 n 2 |t| 4 6πk 0 1 3 11 -S (26) 
with S ≡ pppp the fully symmetric four-rank tensor.

The first term of this collision operator can convert both transverse and longitudinal waves to available transverse waves with wave number p . The rate is proportional to

ρ T (p)/τ LAD T →L ∼ n T (p)(-)Im G T (p) p U (LAD,s) pp • ∆ p (-)Im G T (p ) = -Q 0 n 2 |t| 4 (6π) 2 × n T (p)(-)Im G T (p) (27) 
Since t satisfies the optical theorem, the two secular scattering rates ( 24) and ( 27) compensate each other on the left hand side of the Ward identity (1), consistent with a total scattering rate for transverse waves that was seen in Eq. ( 11) not to suffer from any singularity. Nevertheless, the two scattering events produce each a different polarization and thus affect the balance of longitudinal and transverse energy. In the Bethe-Salpeter equation-to be introduced in Eq. ( 33) of the next section-the scattering rate for longitudinal states to convert back to a transverse mode with wave number p must have the same matrix element as in Eq. ( 24) but now depends on the total number of occupied longitudinal states n L (p ), and the number of available transverse states,

ρ L (p)/τ ISA L→T ∼ (-)Im G T (p) × p U ISA • p p n L (p )(-)Im G L (p ) (28) 
This conversion, again arbitrarily fast for longitudinal excitations with arbitrarily large p , does not cancel in general the reverse process of Eq. ( 24) unless n T (p) = n L (p) = n for all p. This implies that the occupied phase space is proportional to the number of available states and equipartition of energy has been reached. These singular terms therefore lead to a very fast equipartition between longitudinal and transverse modes in phase space, and once established, stay constant and cancel in the succeeding transport dynamics. In this regime, the ratio of longitudinal and transverse energy densities is

ρ L ρ T = N L (k) N T (k) = Q 0 k (29) 
The rate for LT-mode conversions associated with the singular event can be compared to the rate that governs the equipartition among wave vectors of traveling transverse waves, and is in the same units proportional to

U ISA × k/6π = k/ . Hence τ -1 T L τ -1 S = 1 3 Q 0 k (30) 
If k /Q 0 1 we see that E L E T and 1/τ T L 1/τ S . This means that longitudinal states dominate in energy, and equilibrate in phase space as fast as the transverse waves. In fact, when k /Q 0 < 1, the intermediate scattering to a longitudinal wave becomes more efficient for transverse waves to equilibrate among themselves than accomplished by ISA single scattering. The atomic quality factor Q 0 is large, and experiments [START_REF] Labeyrie | [END_REF] and numerical simulations [5,[START_REF] Rusek | [END_REF]12] exist where Q 0 k .

III. KUBO FORMALISM

In this section we use the rigorous Kubo formalism for the DC conductivity, adapted from electron conduction [START_REF] Mahan | Many-Particle Physics[END_REF] to scalar classical waves [23] and electromagnetic waves [24]. We investigate how photon diffusion is affected by the existence of longitudinal waves.

Before averaging over the disorder, the electric field at frequency ω = kc 0 is given formally by the operator identity E(k) = G(k) ⊗ s(k), with s(k) a source (⊗ stands for the matrix product in full Hilbert space, whereas • stands for matrix product in 3×3 polarization space). Transport theory describes the correlation function φ ij = E i Ēj of the electric field at two different frequencies and for two different positions. We can formally relate it to the source correlation function S according to φ ij = R ij|kl ⊗ S kl , which introduces the reducible four-rank vertex R. It satisfies the Bethe-Salpeter equation,

R = GG † + GG † ⊗ U ⊗ R (31) 
This equation identifies the irreducible vertex U as the scattering operator, and GG † as the transport between scattering events. (We use † for Hermitian conjugate in full Hilbert space as opposed to * for Hermitian conjugate of a 3 × 3 matrix with polarization components; a bar denotes complex conjugation of a scalar.) The Green's function of the effective medium was introduced in Eq. ( 2) and has transverse and longitudinal parts. We recall the tensor convention 

AB • S = A • S • B,
) αβ|κγ = G ακ G † γβ = G ακ Ḡβγ .
After averaging, translational symmetry can be exploited so that the vertex in Fourier space (Fig. 6) can be written as R pp (q), with p and p interpreted as incident and outgoing wave numbers, and q conjugate to distance between source and observer. Thus, the electromagnetic "Wigner function" takes the form [START_REF] Zhang | Scattering and Localization of Classical waves in Random Media[END_REF] with p ± = p±q/2 (see Fig. 6) and δ pp ≡ (2π) 3 δ(p-p ). The two terms describe direct propagation with extinction of the mode p and scattering from p towards p, respectively. One important property is reciprocity [24,[START_REF] Van Tiggelen | Wave Propagation in Complex Media[END_REF]. Since without external magnetic fields, the (unaveraged) Green's function satisfies p, i|G(k + i0)|k, p = -p , k|G(k + i0)|i, -p we easily check that R ij|kl,pp (q) = R kl|ij,-p -p (-q) (34) A second property follows from complex conjugation, equivalent to switching bottom and top lines of the diagram, R ij|kl,pp (q) = Rji|lk,pp (-q) (35)

φ ij (p, q) ≡ E i (p + ) Ēj (p -) = p R pp ;ij|kl (q)S kl (p , q) (32) and R pp (q) = G(p + )G * (p -)δ pp + G(p + )G * (p -) • p U pp (q) • R p p (q)
If Eq. ( 1) is satisfied, R is known to exhibit long-range diffusion (q → 0), as its equivalent in electron-impurity scattering [START_REF] Mahan | Many-Particle Physics[END_REF], that decouples input and output, and takes the form

R ij|kl,pp (q) = d ij (p, q)d kl (p , q) πN (k)D(k)q 2 (36) 
where N (k) is the DOS given in Eq. ( 16) and the eigenfunction associated with long-range diffusion is written as

d(p, q) = -Im G(p) - i 2 J(p, q) + O(q 2 ) ( 37 
)
The first term -Im G(p) ≡ -[G(p) -G * (p)]/2i is proportional to the spectral function and implies perfect equipartition of the electromagnetic energy in phase space. The second term is linear in q and describes a small perturbation due to gradients of Φ ij (r) in real space that trigger diffuse energy flow. For it to be small for all momenta p imposes constraints to be discussed later. Because d(p, q) describes an electric field correlation function, it must satisfy d ij (p, q) = dji (p, -q), consistent with Eqs. ( 35) and [START_REF] Skipetrov | [END_REF]. Thus, J(p, q) = -J * (p, -q) and, being linear in q by construction, we conclude that the tensor J(p, q) is Hermitian. Following common treatments in radiative transfer, many microscopic approaches interpret the expansion (37) as one in the angular anisotropy of scattered radiation with wave numbers in equipartition and imposed near the frequency shell, as described by the first term. If we ignore electromagnetic polarization and without any kind of explicit anisotropy in space, the only possible choice of this expansion is,

d(p, q) = -Im G(p) [1 -iJ 0 (p)p • q + • • • ] (38)
For diffusion of cold atoms, J(p, q) was obtained by solving numerically the Bethe-Salpeter equation [START_REF] Piraud | [END_REF]. Alternatively, the unknown function J 0 (p) can be chosen such that the first angular moment p pd(p, q) matches the divergence -iq • K of the energy current density. This leads to J 0 (p) = 1/p 2 [START_REF] Sheng | Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF] and makes the vector K the only unknown. This choice conveniently circumvents divergencies that occur in rigorous theory for large p. For vector waves, J(p, q) is a tensor containing longitudinal and transverse components, and even their interferences. We will derive it more rigourously from the Bethe-Salpeter equation [START_REF] Zhang | Scattering and Localization of Classical waves in Random Media[END_REF] whose orders linear in q give us

J(p, q) = J D (p, q) + G(p)G * (p) • p U pp • δ q G(p , q) + G(p)G * (p) • p U pp • J(p , q) (39) 
The first term is often referred to as the Drude contribution to diffusion and depends only on the effective medium properties. It reads

J D (p, q) = G(p) • L(p, q) • G * (p) -δ q Re G(p, q) (40)
in terms of the bilinear Hermitian tensor L ij (p, q) = 2(p• q)δ ij -p i q j -q i p j and the notation is δ q Re G(p, q) = (q • ∂ p )Re G(p). The second and third terms in Eq. ( 39) are genuine contributions from scattering. They vanish only for isotropic events in U pp but not in general. It is straightforward to demonstrate that the (cycle-averaged) Poynting vector K = c 0 Re (E × B)/8π is related to the correlation function of the electric field according to

K n (k, q) = c 0 8πk p p n δ ik - 1 2 p k δ in - 1 2 p i δ kn φ ki (p, q) + c 0 8πk p q k 1 2 (φ kn (p, q) -φ nk (p, q)) (41) 
In the absence of external magnetic fields, φ ki (p, 0) = φ ik (p, 0) so that the second term vanishes in linear order of q. Upon inserting Eq. (37), the first term involves only the diffusion current tensor J. Some manipulations lead to

iq n K n = 1 4πN (k) p L ik (p, q)J ki (p, q) × 1 D(k)q 2 c 0 8πk p -Im G lj (p ) • S lj (p ) (42)
The factor that has been split off on the right hand side can be identified as the (cycle-)averaged energy density ρ(r) = |E| 2 + |B| 2 /16π released by the source and diffusing out. This can be established by noting that the tensor J, being odd in p, does not contribute to the energy density. Since the first term in Eq. (37) obeys equipartition, |E(r)| 2 = |B(r)| 2 , the energy density is

ρ(q) = 1 πN (k) k c 0 Tr p p 2 k 2 ∆ p • -Im G(k, p) × 1 D(k)q 2 c 0 8πk Tr p -Im G(p ) • S(p ) (43)
If we recall that the electromagnetic DOS is given by Eq. ( 16), the first factor in Eq. (43) equals one. In real space Eq. (42) thus becomes

∇ • K = -D∇ 2 ρ(r) with πN (k)D(k) = 1 4 Tr p L(p, q) • J(p, q) (44) 
This is the Kubo formula for the electromagnetic diffusion constant. Since D is a scalar in this work, the right hand side does depend on the direction of q. The left hand side can be identified as the electromagnetic DC conductivity σ(k) (here in units of 1/m) expressed as the (Einstein) product of DOS and diffusion constant. With this definition, that we prefer in view of the presence of πN D in Eq. ( 36), the "electromagnetic conductance" of a slab with surface A and length L takes the form of a Landauer formula ab T ab = 4σA/L [START_REF]2 × k 2 e A/4π, with A the lateral surface, ke[END_REF]. In terms of the energy density ρ(q) the electric field correlation function is

φ ij (p, q) = d ij (p, q) πN (k) × 8πk c 0 ρ(q) (45) 
A. Diffusion current tensor

The diffusion current tensor J(p, q) must be a parityeven, Hermitian tensor, linear in the gradient vector q. For our problem, with no explicit anisotropy present, this leaves us with the following general form

J(p, q) = J 0 (p)(p • q)∆ p + J 1 (p)(p • q)pp +J 2 (p)(pq + qp) + J 3 (p)i(pq -qp) (46)
with four real-valued functions J i (p) to be determined. A fifth term i ijk q k is in principle allowed but is excluded for scattering that respects parity symmetry. Alternatively, we could have defined the mode J 2 (p) in terms of the tensor pq + qp -2(p • q)pp in which case all 4 modes would be mutually orthogonal. The four functions can be associated with four different aspects in diffuse transport. By restricting only to the first, the transport problem reduces to the common approximation made in Eq. (38). The modes J 1 , J 2 and J 3 are clearly genuine vector effects, absent in a scalar theory. However, only J 0 and J 2 carry a Poynting vector, with J 0 associated with the transport of transverse waves in the far field, and J 2 associated with a novel process that involves the interference of longitudinal and transverse waves. By restricting to the purely transverse term J 0 (p), transport theory almost reduces to a scalar theory. The term J 1 describes how the longitudinal energy density |E L (p)| 2 achieves an anisotropy in phase space due to the spatial gradient of energy, but without inducing an energy current. The presence of J 3 is more subtle and can be associated with the imaginary part of the complex Poynting vector, discussed for instance in Ref. [START_REF] Jackson | Classical Electrodynamics[END_REF]. Let us call Im K = c 0 Im (E × B)/8π. We readily find, similar to the derivation of its real part in Eq. (41), that in terms of the field correlation function φ ik (p, q),

Im K n (k, q) = -ic 0 8πk p q n δ ik - 1 2 q k δ in - 1 2 q i δ kn φ ki - ic 0 8πk p p k (φ ki -φ ik ) (47) 
The first term is independent of J and can be evaluated without any approximation. The integral over wave numbers is proportional to the total DOS N (k) and cancels this same factor in the denominator of Eq. ( 45). As a result it is completely independent of the presence of the dipoles. The second term requires anti-symmetry in the diffusion tensor J ij , described only by J 3 (p). We obtain

Im K(k, q) = 2 3 c 0 k + 1 πN (k) p p 2 J 3 (p) (-iq)ρ(q)
(48) Like the real part, the "current density" Im K is proportional to minus the gradient in energy density, with however a very small "fictitious" diffusion constant D I = 2 3 c 0 /k associated with Im K, and a correction from J 3 calculated in the next section.

Even if J 1 and J 3 do not carry current themselves, they cannot be ignored because the Bethe-Salpeter equation (39) couples in principle all J i through scattering. From Eq. (39) we can identify four different contributions to J(p, q), written as

J(p, q) = J D + J δΣ + J δG + J S (49) 
In this expression, the Drude diffusion current in Eq. ( 40) has been further split up into the first two terms above. The first is given by,

J D (p, q) = G(p) • L(p, q) • G * (p) -G(p) • L(p, q) • G(p) (50) 
The second term is generated by the explicit dependence of the self-energy on wave number,

J δΣ (p, q) = -Re G(p) • (q • ∂ p )Σ(p) • G(p) (51) 
with the convention that Re A = (A + A * )/2. The final two terms J δG and J S are defined as the two last scattering terms involving U pp in Eq. (39). The mode J 2 implies a new mechanism of long-range diffusion mixing near and far fields. One peculiarity is the direction of the Poynting vector associated with the diffuse mode expressed by Eq. (37). The mode J 0 of the pure transverse field generates a Poynting vector whose component along the gradient varies as cos 2 θ in phase space, with θ the angle between wave vector p and gradient vector q, and is thus largest along the gradient vector. For the mode J 2 this component varies as sin 2 θ, which is largest orthogonal to the gradient vector.

In the following subsections III A 1-III A 3 we discuss these 4 contributions to J separately, and show that the scattering from two electric dipoles generates all four channels in Eq. ( 46). The results are summarized in subsection III A 5 and in Table (I).

Drude current tensor

The Drude current tensor J D (p, q) defined Eq. ( 50) is independent of the collision operator U pp and is therefore the easiest to calculate. We will split J D (p, q) further up into a pure transverse part and an interference term and write

J D (p, q) = J D T T (p, q) + J D T L (p, q) (52) 
The first part stems from purely transverse propagation and contributes only to the J 0 -channel in Eq. ( 46). The second term is produced by a mixture of longitudinal and transverse propagation and contributes to the channels J 1 , J 2 and J 3 . Since p • L(p, q) • p = 0, the Drude current tensor features no purely longitudinal mode

J D LL (p, q), proportional to |G L (p)| 2 .
The transverse Green's function G T (p) is given by the second term in Eq. (2). It follows

J D T T (p, q) = 2(p • q)∆ p |G T (p)| 2 -Re G T (p) 2 = 4(p • q)∆ p Im 2 G T (p) ( 53 
)
This function is heavily peaked near the frequency shell of the effective medium. We can ignore any p-dependence in Σ T (p) and approximate it by Σ T (p = k). For G T = (K 2 T -p 2 ) -1 and K T = k e + i/2 a complex wave vector independent of p, we can use,

p 2p 2 Im 2 G T (p) p -Im G T (p) = k e
In terms of the density of transverse states (DOTS) this produces the classical Drude diffusion constant in the J 0channel,

D D 0 (k) = 1 3 × c 0 k e k N T (k) N (k) × (k) ≡ 1 3 v E ( 54 
)
It is customary to write k e /k = c 0 /v p in terms of the phase velocity v p . The ratio N T /N = N T /(N L + N T ) is a factor that can be very small near the resonance ω 0 . We recall that for our electric dipole scatterers all stored energy resides in the longitudinal field. In the Drude approximation for the transverse field we recover the familiar picture of light diffusion, with the extinction length as the mean free path, and v E as energy transport velocity [6]. The perturbation expansion in q is valid for the transverse waves as long as 2pq|Im G T (p)| 2 < |Im G T (p)|. This is most stringent near the frequency shell p = k e where the spectral function |Im G T (p)| is maximal and not stringent at all for large momenta. This gives q < |Im Σ T (k e )|/2k e = 1/2 . This could have been an intuitive estimate.

The diffusion tensor J D T L is given by

J D T L (p, q) = 2Im G T Im G L (2pp(p • q) -pq -qp) + iIm [ ḠL G T ] (pq -qp) (55) 
with contributions to the channels J 1 , J 2 and J 3 in Eq. ( 46). We focus first on the Poynting vector for which only the channel J 2 (p) is relevant. Inserting the first term into Eq. (44) gives

πN (k)D D 2 (k) = p Im G T (p)Im G L (p) [p 2 -(p • q) 2 ]
(56) This diffusion is clearly determined by the overlap of transverse and longitudinal modes in phase space. Because the longitudinal spectral function is essentially independent of p, this overlap is significant and the integral even diverges as p 1/p 2 . We can extract and regularize it as earlier by

Q 0 k 0 /4π, πN (k)D D 2 (k) = Q 0 6π (ImΣ ISA ) 2 k 3 (57) 
This singular term is proportional to the square of the density of the dipoles and will later be seen to cancel. As a result, the leading current tensor is,

J D T L = 2π k δ(k 2 -p 2 ) 1 p 2 (2pp(p • q) -pq -qp) + iIm [ ḠL G T ] (pq -qp) (58)
The use of the Dirac distribution implies here implicitly that a typical Kubo integral of the kind p pJ(p, q) converges for large p, with no need for regularization. This expression will turn out to be leading for J 2 and dominating for J 3 . The Drude diffusion constant associated with the mixture of transverse and longitudinal waves is thus given by

D D 2 = 1 3πN (k) p 2π k δ(k 2 -p 2 ) ≈ 1 3 v E 1 k 2 (59) 
This diffusion constant can be considered as the ISA of electromagnetic diffusion in the J 2 -channel. Its value is positive and, apart from the universal pre-factor v E in diffusion, depends linearly on the density of the dipoles. In Ref. [START_REF] Th | [END_REF] one finds a correction induced by dipole-dipole coupling that can be written as ∆D =

1 3 v E F (δ)/k 3 0 2 ,
with the function F varying over the resonance. Like the diffusion found in Eq. ( 59), it is positive and proportional to v E , but unlike Eq. ( 59) it scales as n 2 . The interference of longitudinal and transverse waves is excluded in Ref. [START_REF] Th | [END_REF] which explains why this leading term (59) is not found.

For the hydrodynamic expansion made in Eq. (37) to hold for the transport channel J 2 , we must have |Im G T (p)| > |J D T L (p)|pq/2, or equivalently, pq < 1/|Im G L | ≈ |k 2 /|Im Σ|. Since transverse waves already impose q < 1/ we conclude that p < k 3 2 . This becomes restrictive once k approaches unity.

It is straightforward to obtain the Drude approximation for the fictitious diffusion constant in Eq. ( 48) associated with Im K, and which was seen to be governed by J 3 . Since J 3 = Im ( ḠL G T ) we can write

1 πN Im p p 2 ( ḠL G T ) = 1 πN Im p p 2 ḠL 1 -p 2 + z 2 z2 G T ≈ - c 0 k N L + 1 2 N T N L + N T
where we used the expression (18) of the DOS split up in its longitudinal part N L and its transverse part N T .

With v E = c 0 N T /(N L + N T ) we find from Eq. (48),

D D I = 1 3 v E k -1 (60) 
The singular longitudinal DOS, proportional to Q 0 , cancels. In the Drude approximation the fictitious diffusion constant D I of the mode J 3 is a factor k larger than the diffusion constant D 2 of the channel J 2 , and a factor k smaller than the transverse diffusion of mode J 0 . This suggests that they all become of the same order near k = 1.

Self-energy dependent on wave number

Any dependence on p of the self-energy contributes to the diffusion current via the term J δΣ derived in Eq. (51). For electric dipoles such dependence on wave number comes in via the boomerang diagrams discussed in Eq. ( 11) with the subtle local field correction at large momenta derived in Eq. ( 13), on which we shall focus. If we insert this term into Eq. ( 51) we find an interference term between longitudinal and transverse propagation,

J δΣ (p, q) = -Re n 2 t 2 k 2 G T (p)G L (p) 1 p × (2pp(p • q) -pq -qp)
Its contribution to the Poynting vector in the J 2 -channel diverges again as p 1/p 2 . Restricting to large wave vectors,

πN (k)D δΣ 2 (k) = Q 0 12π Re n 2 t 2 k 3 (61) 
The remainder of Σ(p) in Eq. ( 11) provides contributions to J 0 , J 1 and J 2 , and is proportional to n 2 once the divergency has been removed. Some formula manipulation gives the following closed expression for the diffusion constant caused by the dependence on wave number of the self-energy of two electric dipoles,

πN (k)D δΣ (k) = 1 4 n 2 Re Tr d 3 r(r • q) 2 t 2 G 2 0 1 -t 2 G 2 0 -t 2 G 0 • G 0,T (62) 
This expression is free from any singularity but is beyond the scope of this work, being a factor 1/k smaller than what was found in Eq. ( 59) for the J 2 -channel, and even a factor 1/(k ) 3 smaller than the leading contribution in the J 0 -channel.

Scattering diffusion current tensor

The scattering diffusion current tensor J δG (p, q) is given by the second term in Eq. (39). It vanishes for any isotropic scattering in U pp , among which (here) single scattering. Among the different scattering events generated by two electric dipoles, only the most-crossed diagrams and the forward-crossed diagrams induce an anisotropy in scattering. They are given by

U MC pp = n 2 |t| 2 d 3 r tG 0 1 -t 2 G 2 0 tG 0 1 -t 2 G 2 0 * e i(p+p )•r
(63) and

U FC pp = n 2 |t| 2 d 3 r 1 1 -t 2 G 2 0 1 1 -t 2 G 2 0 * -11 e i(p-p )•r (64)
The most-crossed diagrams generate a contribution to J δG (p, q) of the type J 2 leading to a diffusion constant free from any singularity at large p, and of the same order as was found in Eq. (62). We will ignore them for the same reason and focus on the forward-crossed diagrams. We can write

p U FC pp • δ q G 0 (p ) = n 2 |t| 2 d 3 r (iq • r) 1 1 -t 2 G 2 0 • Re G 0 • 1 1 -t 2 G 2 0 * -Re G 0 e ip•r
This integral is regular for all p, but does not decay fast enough with p to prevent singularities in the channels J 2 and J 3 . To see this, the factor between brackets is written as F = F 0 (r)1 + F 1 (r)rr. The space integral above can be done to get,

J δG (p, q) = n 2 |t| 2 G(p)G(p) * • (p • q)f 0 (p) + ppf 1 (p) + (pq + qp)f 2 (p)
with 3 known functions related to F i (r). The first term with f 0 (p) is part of J 0 , and constitutes a high-order correction to transverse diffusion, of no interest here. The longitudinal term with f 1 produces no Poynting vector. We concentrate on the term with f 2 , given by

pf 2 (p) = -d 3 r F 1 (r)j 2 (pr)
This integral is finite for all p but does not decay with p since lim

p→∞ pf 2 (p) = lim p→∞ -1 p 3 d 3 y F 2 (y/p)j 2 (y) = - 3 4πk 2 d 3 y j 2 (y) y 3 = - 1 k 2
We have used that for small r, F(r) = -δ(r)/3k 2 -(1 -3rr)/4πk 2 r 3 . The local contact term does not contribute. The diffusion constant in the J 2 -channel is given by,

πN (k)D δG 2 (k) = - 1 3 n 2 |t| 2 p pf 2 (p)Re G 0,L (p) Ḡ0,T (p) 
(65) This equation thus suffers from a divergence. Upon splitting it off and regularizing p 1/p 2 = Q 0 k/4π we find

πN (k)D δG 2 (k) = -Q 0 n 2 |t| 2 12πk 3 + O(n 2 ) (66) 
This is the third diverging term that will cancel against the two already found earlier. The term proportional to f 2 (p) also produces a contribution to the J 3 -channel,

J δG 3 (p) = - n 2 |t| 2 k 2 f 2 (p) p Im G T (p) (67) 
This function decays rapidly as 1/p 6 for large p. It is easily checked that the integral p pJ 3 (p) is not singular at large p and produces a correction of order n 2 in Eq. (47) that will not be further discussed.

Weak localization

The last term in Eq. (39), defined as J S (p, q), mixes in principle all four transport mechanisms J i . For our model of electric dipoles, the ISA makes no contribution since isotropic, but the diagrams (63) and (64) do. The leading order is obtained by inserting on the right hand the Drude expression for the transverse diffusion current tensor J T T found in Eq. (53). Since this current is strongly peaked near p = k we can approximate J T T (p, q) = 2π (p • q)∆ p δ(k 2 -p 2 ) so that,

J S (p, q) = k 2π G(p)G(p) * • d k 4π U pk • ∆ k ( k • q) (68)
Only the angle-dependent scattering U M C and U F C survive this integral. For convenience we can summarize Eqs. ( 63) and (64) by

U pp = d 3 r U M C (r)e i(p+p )•r + U F C (r)e i(p-p )•r
(69) The angular integral over k can be performed to get

J S (p, q) = k 2πi G(p)G(p) * • d 3 r e ip•r • U M C (r) -U F C (r) • j 2 (kr) kr (rq + qr) -(r • q) j 1 (kr) - j 2 (kr) kr + j 3 (kr)rr
The integrand of this equation for J S (p, q) involves the difference U = U M C -U F C between most-crossed and forward-crossed diagrams. They both contain subradiant poles (where t 2 G 2 0 ≈ 1), and quite remarkably, this singularity cancels significantly in this subtraction. The equation generates all 4 transport modes,

J S (p, q) = J S 0 (p)(p • q) + J S 1 (p)pp(p • q) + J S 2 (p)(pq + qp) + J S 3 (p)i(pq -qp)
We will show that the mode J S 0 exhibits the standard weak localization correction, of relative order 1/k and negative in diffusion constant. Also the mode J S 2 is subject to a weak localization correction, of order 1/(k ) 2 and positive, showing that not all modes are affected similarly by interference.

We first focus on J S 0 . Contrary to U F C , U M C associated with two dipoles induces a singular angular dependence of the kind 1/|p + p |, and therefore dominates J S 0 . The space integral is dominated by large r so we insert U M C = (6π/ ) 2 C(r)C(r) * with C ≈ -∆ r (exp(ikr)/4πr). The angular integral over r can be done. The end result is written as

J M C 0 (p) = - 9 2 k |G T (p)| 2 × ∞ 0 dr 4 5 j 1 (kr) - 1 5 j 3 (kr) 4 5 j 1 (pr) - 1 5 j 3 (pr) = - 3π 20 1 |G T (p)| 2 2 k 2 p 2 + 9 7 k 4 p 4
The last equality holds only for p ≥ k; J M C 0 (p) decays rapidly as 1/p 6 and has most of it weight near p = k. The weak localization correction can be obtained from Eq. ( 44),

∆D W L 0 = 1 4πN (k) Tr p L(p, q) • ∆ p (p • q) × -3π 2 20k 23 7 δ(k 2 -p 2 ) = - 1 3 v E k 69π 280 ( 70 
)
or equivalently ∆D W L 0 /D T = -0.774/k . The numerical factor is actually larger than the leading one (π/6 = 0.523) obtained for scalar waves [16]. We can compare this weak localization correction to the positive diffusion constant (59) found for the J 2 channel. If we extrapolate to small values for k , we conclude that the diffusion in the J 2 -channel compensates the first weak localization correction in the J 0 -channel for k < 1.3.

The channel J S 2 is more complicated. It is instructive split the Green's function up into G 0 (r) ∼ P (r)∆ r + Q(r)rr, and to express the tensor U

(r) = U M C -U F C as, U (r) = U T T (r)∆ r ∆ r + U LL rrrr +Re U T L (rr∆ r + ∆ r rr) + iIm U T L (∆ r rr -rr∆ r )
This corresponds to 4 different scattering events involving two dipoles at distance r with the electric field vector either along or perpendicular to r, as well as their interferences. With the angular integral of r performed analytically, they give each the following contribution to

J S 2 , J T T 2 (p) = 2 k Re G T (p) ∞ 0 dr r 2 U T T (r) × j 1 (kr) - j 2 (kr) kr j 2 (pr) pr J LL 2 (p) = - 4 k Re G T (p) dr ∞ 0 r 2 U LL (r) j 2 (kr) kr j 2 (pr) pr J T L1 2 (p) = 2 k Re G T (p) ∞ 0 dr r 2 Re U T L (r)
× j 1 (pr) -2 j 2 (pr) pr j 2 (kr) kr and finally

J T L2 2 (p) = 2 k Im G T (p) ∞ 0 dr r 2 Im U T L (r)j 1 (pr) j 2 (

kr) kr

The weak localization correction is found by

∆D 2 (k) = - 1 3 1 πN (k) p p 2 (J T T 2 + J LL 2 + J T L1 2 + J T L2 2 )
(71) To perform the integral over the wave vector p we use that

p p (k + i ) 2 -p 2 j 1 (pr) = - ik 2 4π h (1)
1 (kr) and

p p (k + i ) 2 -p 2 j 2 (pr) pr = - ik 4πr h (1) 
2 (kr) + 3i (kr) 3 Consequently, only the radial integrals dr remain to be done numerically. The weak-localization correction ∆D 2 (k) is proportional to the density of the electric dipoles.

Figure 7 shows the total diffusion constant D D 2 + ∆D 2 in the J 2 channel around the resonance frequency, as well as the contributions stemming from the 4 individual terms in Eq. ( 71). The weak localization correction ∆D 2 is dominated by the purely transverse and longitudinal channels T T and LL between the two dipoles, who have competing signs. For negative detuning the purely longitudinal mode LL dominates, for positive detunings the T T channel dominates and is more than twice as large as the Drude contribution D D 2 . We note that the weak localization correction to the diffusion constant D 2 of the channel J 2 (p, q) is of the same order as the Drude approximation in Eq. ( 59). The sum of the 4 weak localization terms and the Drude approximation is strictly positive. At fixed density, positive detuning has the largest diffusion constants in the J 2 channel. Note that the ratio D 2 /D 0 is of same order 1/(k ) 2 , but of opposite sign compared to the standard (Cooperon) weak localization correction -1/(k ) 2 . This will be discussed more in detail in the next section, for which it will turn out useful to define a function F (δ) = (k ) 2 D 2 /D 0 .

Summary of previous subsections

We have identified four mechanisms in the transport of electromagnetic waves, expressed by the diffusion current tensor (46). The results have been summarized in Table I. The mechanism described by J 0 (p) is the familiar picture of transverse wave diffusion near the shell p ≈ k and results in the diffusion constant (54). It is inversely proportional to the density of the electric dipoles and contains an energy velocity that can be small since the impenetrable electric dipole scatterers contain temporarily stored, longitudinal energy. The mechanism associated with J 2 is caused by interference of longitudinal and transverse fields, necessary condition to carry a Poynting vector. The leading term (59), linear in the dipole density, comes from the Drude approximation. Upon considering all scattering events involving two dipoles, we have been able to identify three singular terms. After regularization, they are expressed by Eqs. ( 57), ( 61) and ( 66) and proportional to the large quality factor Q 0 and the density squared. They add up to

Drude J D J δΣ J δG WL J S J0 + 1/k 3 2 1/k 3 2 -0.774/k (54) (62) NC (70) J2 +1/k 2 -Q(δ)/2k 3 2 -Q(δ)/2k
πN (k)∆D 2 (k) = Q 0 6πk 3 n 2 (Im t) 2 + 1 2 Re t 2 - 1 2 |t| 2 = 0 (72)
This explicit cancelation in the J 2 -channel is very important and not entirely obvious since the 3 terms stem from entirely different parts in transport theory (Drude diffusion, Lorentz local field and enhanced forward scattering). Without cancelation they would have given an electromagnetic conductivity Q 0 /k 2 , and not small at all with respect to the traditional transverse conductivity, of order k 2 since Q 0 is large for an atomic oscillator. Their cancelation also supports the general renormalizability of electromagnetic transport theory with point-like dipoles.

It is highly plausible that this cancelation happens in all orders of perturbation theory, but this is currently impossible to prove in general. We will use this hypothesis in the next session. The J 2 channel, in the leading order modified by the weak localization from 2 electric dipoles, exhibits a positive diffusion constant, linear in the dipole density. Although usually small compared to standard transverse diffusion, it must be realized that this diffusion stems from a sofar unexplored mechanism for electromagnetic wave diffusion, involving the interference of longitudinal and transverse waves. In this transport channel, the first weak localization correction induced by two electric dipoles is actually of the same order as the Drude value and again positive, showing that in the channel J 2 interferences behave differently in comparison to the traditional transverse channel.

IV. RADIATIVE FORCE DENSITY

A well-known relation exists between diffuse flow and radiative forces. In radiative transfer, the energy flux is driven by the spatial gradient of the total energy density, and automatically carries momentum. In the presence of an induced polarization density P, the electromagnetic force density f is caused by the Lorentz force acting on the induced Coulomb charge density ρ(r) = -∇ • P and on the induced current density j = ∂ t P. Maxwell's equations allow the formulation of a momentum conservation law that is very generally valid. It takes the form (before cycle averaging) [START_REF] Loudon | [END_REF]30],

∂ t G + f = ∇ • T (73) 
with G = (E × B)/4πc 0 the electromagnetic momentum density, and T the momentum stress tensor,

T = 1 4π EE + BB - 1 2 E 2 + B 2 + X (74) 
The tensor X is related to internal angular momentum inside the particle that we shall ignore here.

In the regime of multiple scattering, and after cycle averaging, Eq. (37) expresses that E i (r) Ēj (r) = 1 3 |E(r)| 2 δ ij , and idem for the magnetic field. The stress-tensor T is thus diagonal on average, meaning that the i th component of the electromagnetic momentum only flows in the direction i. For stationary flow, we thus obtain

f (r) = - 1 3 ∇ |E(r)| 2 + |B(r)| 2 16π ( 75 
)
For a medium filled with impenetrable electric dipoles we have shown in Eq. ( 18) that |E| 2 /16π is the total electric energy density having both longitudinal and transverse components, and equal to the magnetic energy density. In the diffusion approximation, we write the averaged Poynting vector as

K = -D∇ |E(r)| 2 + |B(r)| 2 /16π
. This leads to a simple relation

f = 1 3D K (76) 
between Poynting vector and radiative force density. In the ISA, D = 1 3 v E /(1 -cos θ ), and this reduces to the almost intuitive expression f = nσ(1 -cos θ ) K /v E involving the product of particle density and pressure cross-section of one scatterer. The second factor accounts for transfer of momentum from the light to a single scatterer, and of course for independent electric dipoles cos θ = 0.

The factor 1/v E is less intuitive in this model. For one isolated scatterer this would clearly be 1/c 0 , since for a plane wave with arbitrary direction in vacuum, momentum current density and energy current density (the Poynting vector) differ by a factor 1/c 0 . In a medium filled with resonant dipoles, stocked, longitudinal energy contributes to the momentum current density T but not to the energy current density K. Put otherwise, scattering of a transverse state with wave number p ≈ k to a longitudinal mode with large wave number induces a significant recoil, but does not generate an energy current. For the medium filled with dipoles, the ratio f /K thus achieves a factor (N L + N T )/N T c 0 ≈ 1/v E .

V. NO ANDERSON LOCALIZATION OF LIGHT?

In the following we will make a first attempt to include the 4 transport mechanisms, introduced in the previous section, into the self-consistent transport theory for localization of light. This theory is celebrated by some for its surprisingly simple description of the transition from long-range diffusion to localization. Others criticize the theory for its oversimplified nature, neglecting many scattering events in the collision operator U pp (q) introduced in Eq. ( 33). The self-consistent theory predicts the Ioffe-Regel criterion k e ≈ 1 for the mobility edge in 3D, produces the universal finite-size scaling in arbitrary dimension, and can easily be engineered with. However, the theory predicts a wrong critical exponent of the localization transition and fails in the presence of an external magnetic field.

In the standard theory, adapted from electron localization [START_REF] Vollhardt | Electronic Phase Transitions[END_REF], the most-crossed diagrams are included into the diffusion constant of the light. These diagrams involve the interference of time-reversed waves and are part of the scattering vertex U pp (q). By reciprocity, the mostcrossed diagrams also contain a hydrodynamic pole, featuring the same diffusion constant. This immediately turns the calculation of D into a self-consistent problem because the most-crossed diagrams, modify the diffusion current J(p, q) in Eq. (39). We recall that in the case of electromagnetic waves the diffusion current is a tensor with 4 independent parts. No Anderson localization was seen to occur in recent numerical simulations with electric dipoles [5]. The intention of this section is to discover what exactly breaks down in this theory when taking into account longitudinal waves.

We here summarize the various approximations made, which are basically equivalent to the ones made in previous works, even if often adopted implicitly [START_REF] Sheng | Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF][START_REF] Vollhardt | Electronic Phase Transitions[END_REF][START_REF] Akkermans | Mesoscopic Physics of Electrons and Photons[END_REF].

• The most-crossed diagrams, involving scattering events associated with many dipoles, are the only angle-dependent scattering events that influence the diffusion current tensor J(p, q) when going beyond the Drude approach. The existence of other diagrams is only acknowledged implicitly to guarantee flux conservation. Weak localization effects caused by low-order scattering events, such as those described by Eqs. ( 70) and (71) are not included either, although this could be done without dramatic changes in the theory. The implicit existence of other diagrams is also necessary to justify the cancelation of UV-singularities in transport theory. For scattering events involving only two electric dipoles, UV-divergencies were seen to cancel explicitly earlier in this work, but no general demonstration is known.

• The diffuse regime of the most-crossed diagrams, only valid on spatial scales well beyond the mean free path, is assumed to hold on scales up to the mean free path. On this scale we may expect the diffusion kernel to be of the type D(q)q 2 which is disregarded in the standard version of the selfconsistent theory.

• The electromagnetic self-energies Σ T /L (k, p) are assumed not to depend on p. In particular this means that Σ T (k) = Σ L (k). This is definitely an approximation, even for point-like dipoles, that needs more study, but in general, such wave number dependence is not believed to be essential for Anderson localization.

The contribution of the most-crossed diagrams to the scattering vertex U pp (q) can be obtained from the reducible vertex R pp (q) introduced in Eq. ( 31) by removing the four external Dyson propagators, and timereversing the bottom line. This gives

U M C pp ;ij|kl (q) = dil (f + q, Q) dkj (-f + q, Q) + O(Q 2 )
πN DQ 2 (77) with the notation Q = p + p and f = (p -p )/2. In this expression the tensor d(p, Q) is the diffuse eigenfunction defined in Eq. (37) stripped from the 4 external lines in Fig. 6 (transforming -Im G + iJ/2 into -Im Σ + ij/2 with j again a Hermitian bilinear form). This leads to d(±f + q, Q) = -Im Σ(±f + q) + j(±f + q, Q).

A generalized Ward identity,

(q • ∂ p )Re Σ(p) = p U pp (0) • (q • ∂ p )Re G(p ) + p δ q U pp (q) • Im G(p ) (78)
can be used to eliminate the second term in Eq. (39), which then transforms into

J(p, q) = J D (p, q) + G(p) • (q • ∂ p )Re Σ(p) • G * (p) -G(p)G * (p) • p δ q U pp (q) • Im G(p ) + G(p)G * (p) • p U pp • J(p , q) (79) 
The first and second terms cannot depend on diffusion constant. Because U M C depends on both diffusion constant D and the entire diffusion tensor J(p, q), the selfconsistent theory would, in its most advanced version, be a non-linear integral equation for the second-rank tensor J.

In the following we apply the approximations specified above. The above hydrodynamic limit of U M C is assumed valid when |p + p | 1/ . In the standard approach of the self-consistent theory one focusses on its diffuse pole near p ≈ -p , and neglects all other dependence on p . Secondly, wave number dependence of the self-energy is ignored. In that case the self-consistent problem simplifies to the following equation,

J(p, q) ≈ J D (p, q) + G(p)G(p) * • |Q|<qm U M C Q=p+p (0) • J(-p, q) (80) 
with the Drude current tensor J D given in Eq. (50). In particular, the third term in Eq. ( 79) becomes proportional to Q Q/DQ 2 and drops out. The sum over Q that remains in Eq. ( 80) is recognized as the return Green's function of the diffusion equation in real space [START_REF] Akkermans | Mesoscopic Physics of Electrons and Photons[END_REF], though with short, non-diffusive paths eliminated by the condition Q < q m . Diffusion constant and diffusion current tensor are related by the Kubo formula

σ ≡ πN D = 1 4 Tr p L(p, q) • J(p, q) = 1 6π 2 ∞ 0 dp p 4 (J 0 (p) -J 2 (p)) (81) 
It can readily be seen that Eq. (80), despite its simplicity, couples the four diffusion current tensors identified in Eq. ( 46), among which J 0 (p) and J 2 (p) are relevant in Eq. (81). A mobility edge is characterized by D = 0. The large weight of large wave numbers (p k) in the Kubo formula is evident and UV-divergences will occur that will be regularized with the argument that other diagrams exist that compensate.

A. Transverse approximation

In most applications of the self-consistent theory for localization of light one ignores polarization and focusses on the transverse channel J 0 (p) and, not unrelated, assumes this channel to be governed by excitations near the frequency shell p ≈ k e of the effective medium where their DOS is largest. In this approximation weak localization of light becomes essentially equivalent to the one of scalar waves. As a matter of fact, this approximation applies to localization of elastic waves with all polarizations modes propagating with the same velocity everywhere. We refer to the work of Zhang and Sheng [START_REF] Zhang | Scattering and Localization of Classical waves in Random Media[END_REF] where the self-consistent theory for localization of scalar waves is derived and discussed in great detail.

We will first neglect the weak localization found in Eq. ( 70) associated with two dipoles and incorporate it in the next section when dealing with the mode T L. Upon putting J(p, q) = J 0 (p)(p • q)∆ p into Eq. ( 80), and by assuming that Im Σ(p) is independent of p, the explicit solution is just

J 0 (k, p) = J D 0 (k, p) 1 + σ c σ A(k, p) -1 (82) 
with the dimensionless function A(k, p) = |G T (k, p)| 2 × Im 2 Σ T (k, p), and a critical conductivity defined as σ c ≡ Q 1/Q 2 = q m /2π 2 . Note that A(k, p) ≤ 1 is a bounded function of p. Equation (82) says that the amount of weak localization varies in phase space, and is maximal at the frequency shell p = k e of the transverse waves, and small when p k. From Eq. ( 81) we obtain a closed equation for σ,

σ(k) = 1 3 p p 2 J D 0 (k, p) 1 + (σ c /σ)A(k, p) (83) 
The Kubo formula attributes a large weight to large p, nevertheless the integral converges for all σ > 0. If σ > σ c large wave vectors p are not relevant in the denominator since J D 0 (k, p) = 4(Im G T (k, p)) 2 decays rapidly with p. The integral is dominated by p near the frequency shell p ≈ k e so that

σ(k) ≈ σ D (k) 1 + (σ c /σ) ⇒ σ(k) = σ D (k) 1 - σ c σ D = σ D (k) 1 - 3 π 1 (k e ) 2 (84) 
where q m = 1/ has been chosen. This result, when extrapolated, locates the mobility edge at k e = 0.977. For σ < σ c however, the p-dependence of the denominator shifts the integral over p to larger values for p. At the mobility edge σ = 0 and

σ c = 4 3 p p 2 |G T (k, p)| 2 (85) 
This involves an integral that diverges as p 1/p 2 . It can be verified that this divergence is not an artifact of the approximation made in Eq. ( 80). This kind of divergence is absent in standard approaches of the self-consistent theory [START_REF] Sheng | Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF][START_REF] Vollhardt | Electronic Phase Transitions[END_REF] because of the a priori assumptions for J(p, q) to be "strongly peaked near the frequency shell" p ≈ k e . This is clearly the case for J D (p, q), but not necessarily true after solving Eq. (80). Since the mobility edge in scalar wave scattering by point dipoles is observed in numerical simulations [START_REF] Skipetrov | [END_REF] near k e ≈ 1, this divergence must be an artifact and should be eliminated. We could subtract the singularity p 1/p 2 by hand, assuming it cancels against other terms that have been ig-nored, to get

σ c = 4 3 p p 2 |G T (p| 2 - 1 p 2 = k 2 e 3π 1 - 3 4(k e ) 2 (86) 
This would locate the mobility edge at k e = 0.866 with the choice q m = 1/ . This is close to the extrapolated value above, and we could argue that the extrapolation in Eq. ( 84) is satisfactory up to the mobility edge and consistent with both previous theory [START_REF] Sheng | Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF][START_REF] Zhang | Scattering and Localization of Classical waves in Random Media[END_REF] and numerical simulations [START_REF] Skipetrov | [END_REF]. It is nevertheless tempting to speculate that this divergence highlights a true breakdown of the self-consistent theory and that a more rigorous regular solution may actually exhibit a critical exponent different from one, the value predicted by the extrapolation (84).

B. Inclusion of longitudinal modes

In this section we give a simplified description of how the self-consistent theory is extended when the other 3 diffusion modes are included. Let us start with Eq. ( 46) and write the diffusion current tensor as

J ij (p, q) = 3 n=0 J n (p)χ n ij (p, q) (87) 
Let us set U M C ij;kl = (U/σ)δ kj δ il with U = (Im Σ) 2 σ c (with dimension 1/m 5 ) and σ = πN D the conductivity (with dimension 1/m). We can check that,

G ni G * jm δ kj δ il χ 0 kl = |G T | 2 χ 0 nm G ni G * jm δ kj δ il χ 1 kl = |G L | 2 χ 1 nm G ni G * jm δ kj δ il χ 2 kl = R(χ 2 nm -2χ 1 nm ) + Iχ 3 nm G ni G * jm δ kj δ il χ 3 kl = -Rχ 3 nm + I(χ 2 nm -2χ 1 nm )
where we abbreviated R(p) = Re G L ḠT and I(p) = Im G L ḠT . This gives the following self-consistent set of equations

J 0 (p) = J D 0 (p) - U σ |G T (p)| 2 + 0.774 k e J 0 (p) 1 + |G L | 2 U σ J 1 (p) = J D 1 (p) + 2R(p) U σ J 2 (p) +2I(p) U σ J 3 (p) 1 + R(p) U σ J 2 (p) + I(p) U σ J 3 (p) = J D 2 (p) I(p) U σ J 2 (p) + 1 -R(p) U σ J 3 (p) = J D 3 (p) (88) 
The equation for the transverse mode J 0 discussed in the previous section is not altered and decouples from the others. We have added the weak-localization contribution caused by 2 dipoles found in Eq. ( 70), since it is not covered by the diffusion approximation, and assumed it enters just as a number in the equation for J 0 (p). This is a clear oversimplification but has no huge consequences for what follows. The purely longitudinal diffusion current J 1 is known once the others are known, but is not relevant for Poynting vector and can likewise be ignored. The modes J 2 and J 3 however, couple and the solution for J 2 is

J 2 (p) = J D 2 (p) + (U/σ)C 2 (p) 1 -U 2 |G L (p)G T (p)| 2 /σ 2 (89) 
We recall from Eq. (55) that J D 2 (p) = -2Im G L Im G T < 0 and J D 3 (p) = -I(p). Thus, with K = k e + i/2 the complex pole of G T (p), the function C 2 (p) is given by

C 2 (p) = I(p) 2 -J D 2 (p)R(p) = k e 2 |G(p)| 2 + |K| 4 |G(p)| 4 |K| 8 (90) 
which is strictly positive.

Before calculating diffusion constant we first discuss these results. Since the wave number integral of J 2 (p) contributes to the diffusion constant via Eq. ( 81), its denominator cannot possess any non-integrable singularity. This implies that

σ(k) > U |G L (p)G T (p)| (91) 
to be valid for all p. This inequality excludes de facto a mobility edge. It is most stringent near the transverse frequency shell p ≈ k e (more precisely p 2 = Re K 2 = k 2 e -1/4 2 , positive as long as k e > 1/2) where G T = 1/(-iIm Σ). Furthermore, since we neglect p-dependence in self-energies we set |G L | = 1/|K| 2 and neglect the fact that near the transverse shell the complex wave numbers of longitudinal and transverse modes are not necessarily equal. Recalling that U = (Im Σ) 2 σ c and setting q m = q/ , with q of order unity, the minimal possible electromagnetic conductivity is given by

σ(k) > c 2 (k e )σ D (k) (92) 
with c 2 (x) = (3q/πx)(x 2 + 1 4 ) -1 for k e > 1/2. Equivalently, if the transport mean free path * is defined as usual via σ = k 2 e * /6π [START_REF]2 × k 2 e A/4π, with A the lateral surface, ke[END_REF], then

k e * > 3q π 1 (k e ) 2 + 1 4 (93)
for k e > 1/2. For k e < 1/2 the maximum occurs at p = 0 and we find

k e * > 3q π (k e ) 2 [(k e ) 2 + 1 4 ] 3 (94) 
The very existence of this minimum conductivity for vector waves is determined by scattering properties of e * /6π. Shown are the values for ke * for the full solution in this section, the conventional picture described by Eq. ( 81) with only the transverse mode J0 considered, with a mobility edge predicted around ke ≈ 1, the lower threshold imposed by the existence of the diffusion modes J2 and J3, as well as ke * associated with the fictitious conductivity and J3. We used a cut-off qm = 1/ .

longitudinal and transverse waves near the frequency shell and not by large wave numbers p that are subject to uncertain regularization procedures. It nevertheless relies on our choice for q, and the approximation that K L (p) = K T (p) = K. The above lower bound becomes stringent for k e ≈ 1 where one would have expected a mobility edge. In this regime the maximum occurs at p < k, so that setting K L (p) = K T (p) = K may not be a bad approximation, knowing that for p k it is valid (see for instance the p-dependent self-energies in Fig. 1). If q = 1, we find for k e = 1, k e * > 0.76, and upon entering the evanescent regime k e = 1/2, k e * > 2.19. For k e = 0.35 the maximum value is 2.26.

We next calculate the electromagnetic conductivity, which is the sum of the conductivities of the two channels, σ ≡ σ/σ D = σ0 + σ2 . Since the mobility no longer vanishes, the transverse diffusion mode J 0 , which decouples from the others, can be given the same treatment as done in Eq. ( 84), with the denominator removed and taken outside at its maximum value. This gives the first equation for the conductivity of the transverse channel,

σ0 = 1 1 + c 1 (k e )/σ + 0.774/k e ( 95 
)
with c 1 (x) = 3q/πx 2 . We can apply the same procedure for the diffusion current J 2 . However, as was seen in Eq. ( 59) to be the case for the Drude component, the remaining integral suffers from a divergence at large p, again of the kind (85). The regularization proposed in Eq. ( 86) is not satisfactory here since it changes sign at k e = 0.86 and would produce a negative Drude conductivity in the T L-channel, arguably not physical. In section III A 1 we found that for p > k 2 e the diffusion theory in the J 2 channel breaks down so that the present theory is not valid for too large p. We therefore propose a regularization

p p 2 |G T (p)| 2 → |K| 2 p |G T (p)| 2 = |K| 2 4π
with K = k e + i/2 the transverse complex wave number. In real space is G T (r) = -exp(iKr)/4πr and this regularization comes down to

d 3 r ∇ exp(iKr) -4πr 2 → |K| 2 d 3 r exp(iKr) -4πr 2 
meaning that the regularization only considers the far field when taking the spatial derivative. In particular this leads to the Drude diffusion constant of channel J 2 ,

D D 2 = - 1 3πN (k) p p 2 J D 2 (p) = 4π 3 v E |K| 4 2 p p 2 |G T (p)| 2 → 1 3 v E 1 |K| 2
This is a satisfactory, positive extrapolation of the result 1 3 v E /k 2 obtained in Eq. ( 81) for low density, and where the divergence was seen to cancel explicitly. If we adopt this regularization, we find in the J

2 -channel, σ2 = F (δ)c 3 (k e ) 1 -(c 2 (k e )/σ) 2 1 - c 4 (k e ) σ (96) 
with c 2 (x) defined earlier, c 3 (x) = (x 2 + 1/4) -1 and c 4 (x) = (3q/2π)(9/8 + x 2 /2)(x 2 + 1/4) -2 . We recall that F (δ) is the function that describes the explicit dependence on detuning of the diffusion constant in the channel J 2 , shown in Fig. 7. Equations ( 95) and (96) lead to a cubic equation for σ that can be solved analytically. The resulting formula is quite lengthy and we do not present it here. The solution for k * = σ × k is shown in Fig. 8. We have put F (δ) = 1, its role will be discussed later, in which case the self-consistent theory has only one parameter, the product k e , as in the scalar case. According to Eqs. (95) and (96) the traditional weak localization correction δσ 0 = -c 1 in the transverse channel is partially compensated by the positive conductivity δσ 2 = c 3 of the J 2 channel, and even exactly when q ≈ 1. This explains why k e * is well in excess of the traditional prediction (84), for values as small as k e = 1.8, and close to the Drude value k e of the transverse channel. The term containing c 4 > 0 tends to suppress diffusion in the J 2 mode as 1/(k e ) 4 but the coupling to J 3 described by c 2 reverses this trend. Around the region k e ≈ 1 where the conventional picture would locate the mobility edge, the minimum conductivity starts to impose itself, and the total conductivity rises.

We recall that the fictitious diffusion is determined by J 3 , as described by Eq. ( 48). The self-consistent solution 93) and (94), again with q = 0.5.

is given by

J 3 (p) = -Im G L (p)G T (p) 1 -U 2 |G L (p)G T (p| 2 /σ 2 × 1 + U σ Re G L (p)G T (p) (97) 
and upon inserting this into Eq. ( 48), the same procedure as above provides an expression for the "fictitious" conductivity

σI = 1 k e + 1 1 -(c 2 (k e )/σ) 2 d 3 (k e ) σ - d 2 (k e ) σ2 (98) 
with the functions d 2 (x) = 1 2 (3q/π) 2 x -1 (x 2 +1/4) -3 and d 3 (x) = (3q/4π)x -1 (x 2 + 1/4) -2 . The transport mean free path associated with the fictitious diffusion is also shown in Fig. 8. For k e ∼ 1 fictitious diffusion is of same order as the real conductivity and has the same sign.

For q = 0, Eqs. ( 95) and (96) simplify to the sum of the diffusion constants associated with one or two dipoles in the channels J 0 and J 2 , without any cross-talk,

σ = * = 1 1 + 0.774/k e + F (δ) (k e ) 2 + 1 4 (99)
For k e < 1 the second term from the J 2 channel starts dominating. If we ignore the explicit dependence on δ by putting F (δ) = 1, this equation yields σ < 1 for k e > 1.73 and below this value starts increasing monotonically. In the same limit of q = 0, we have σI = 1/k e .

have G(r n , r ) = 0 for all r outside the dipoles. Thus,

0 = m δ nm + m G 0 (r n -r m ) • T mm • G 0 (r m -r )
For this to be true for all r , the 3M ×3M matrix between square brackets must vanish,

{T mm } = -({G 0 (r m -r m )}) -1 (A2)
We can split off the singular diagonal elements and use the fact that the t-matrix of one single dipole is t = -G -1 0 (0) and here proportional to the 3 × 3 identity matrix,

{T mm } = t (1δ mm -t {G 0 (r m -r m = 0)}) -1 (A3)
This matrix is regular as long as the dipoles do not overlap. For any point source s(r ) located at r the electric field anywhere in the medium is given by E(r) = G(r, r )• s(r ), and the incident field is E 0 (r) = G(r, r ) • s(r ). If the source is located in the far field of the M dipoles, and the origin r = 0 is chosen inside the scattering medium, we have |r m | |r |, and we can approximate the incident field inside the medium as E 0 (r) = [-exp(ikr)/4πr]∆ r • s(r ) exp(-ik r • r) and equal to a transverse plane wave with wave vector k = -k r . It follows that

E(r) = E 0 (k, r) + mm G 0 (r -r m ) • T mm • E 0 (k, r m ) (A4)
The fields {E(r n )} vanish because the T -matrix has earlier been designed to do so. For r = r n we can extract the singular term G 0 (r n , r n ) = -1/t and define the "macroscopic field" Ẽ(r n ) in the vicinity of the dipole n as the one scattered from all others,

Ẽ(r n ) = E 0 (k, r n ) + m =n;m G 0 (r n , r m ) • T mm • E 0 (k, r m ) = E 0 (k, r n ) + m =n tG 0 (r n , r m ) • Ẽ(r m ) = 1 t m T nm • E 0 (r m ) (A5)
The omission of the diagonal term m = n gives a good impression of the electric field inside the medium and the solution of Eq. (A5) is equivalent to the calculation of the matrix T mm as is apparent from the last identity. However, it misses completely the singular field scattered by the dipole at r n . At a small distance x from dipole n the relation between the fields E(r n ) and Ẽ(r n ) is

E(r n + x) = Ẽ(r n + x) + tG 0 (x) • Ẽ(r n ) (A6)
Especially the longitudinal part is strongly singular as x → 0 but carries no energy flux. The transverse part also diverges as 1/x but carries a finite energy flux and poses less a problem.

To illustrate this consider first one electric dipole located at r = 0, and for which only one diagonal term exists. Equation (A1) reduces to G(k, r, r) = G 0 (k, 0) + tG 0 (k, r) 2 . According to the analysis that has led to Eq. ( 18), the local density of states (per unit volume, here per interval dk = dω/c 0 ) at position r is given by N (k, r) = -(k/π)Im Tr G(k, r, r). Formally, N (k, 0) = 0, but for r = 0 we can identify longitudinal states close to the dipole, and transverse states far away. The total extra number of states due to the presence of the dipole is

dΠ(k) = dk d 3 r [N (k, r) -N 0 (k, r)] = - kdk π Im t(k) Tr p G 2 0 (k, p) = - kdk π Im t(k) p 1 k 4 + 2 [(k + i0 + ) 2 -p 2 ] 2
This clearly separates into a strongly diverging longitudinal and a regular transverse component. Regularizing the first to Q 0 k 3 0 /2π, with Q 0 = k 0 c 0 /γ the quality factor, as proposed in section II B, we find that for k within a line width of k 0

dΠ(k) = dk 2π 2 -Q 0 Im t(k) + 1 2 Re t(k) (A7)
The first term is missed by ignoring divergencies, and thus difficult to capture by a numerical simulation. It largely dominates near resonance and is Lorentzian as is the cross-section. The second term describes the modification of transverse energy density and can be interpreted as the change in local refractive index due to the presence of the dipole. Upon integrating over the entire resonance, using that

∞ -∞ dk t(k) = - 6π 2 i Q 0
we find that only the first term survives and giving a total number of extra states per dipole is dΠ(k) = 3, equal to the number of degrees of freedom associated with the optical polarization. The analysis above can be straightforwardly generalized to M dipoles. This yields expressions such as Eq. ( 23) for the longitudinal complex wave number K L (∞) and associated with the DOS of longitudinal states, and a similar one for transverse waves. From the ensemble-averaged Dyson Green's function G(r, r) in the unbounded medium, given in Eq. (3), upon splitting off terms, singular as x → 0, we obtain

Tr G(0) = δ(0) K 2 L (∞) + Tr D(0) + p 2 p 2 K 2 T (p) K 2 T (p) -p 2 - p 2 p 2 (A8)
The Lorentz contact term of the effective medium emerges as Tr G L (0) = δ(0)/K 2 L (∞) that can be regularized as before. Since D(0) is a finite longitudinal contribution, it will be neglected. The transverse divergence described by the last term is real-valued and plays no role for DOS and is also independent of dipole density. The integral over transverse wave numbers can be defined as -iK T /2π, which would be the value if K T (p) were independent on p. Before ensemble averaging, the Green's function satisfies Eq. (A1). Let us first focus on the trace of the diagonal terms that average to The contact term that occurs in this expression must be identified with the one in Eq. (A8), so that and we recover the ISA approximation. In particular, the off-diagonal elements in Eq. (A10) are not negligible. We emphasize that the complex wave numbers K T and K L relate to transverse and longitudinal DOS and should not be interpreted as effective medium parameters of electromagnetic excitations. 0 (k 0 , r) only diverges as 1/r 2 for small r, whereas G 0 (k 0 , r) diverges as δ(r) + 1/r 3 . In addition, the angular integral of G (B) 0 (k 0 , r) vanishes. For these reasons, B(k, r) suffers from less fluctuations and is better suitable for numerical studies.

Equations (B1) and (B3) can be written for the fields Ẽ(k, r m ) and B(k, r m ) at each scatterer, excluding the fields scattered by themselves: We solve the system of equations (B6) for Ẽ(k, r m ) (m = 1, . . . M ) assuming that the sample is illuminated by an incident linearly polarized plane wave: E 0 (k, r) = x exp(ik 0 z). Magnetic fields on the scatterers and electric and magnetic fields everywhere in space can be then found from Eq. (B7) and Eqs. (B1), (B3), respectively.

Ẽ(k, r m ) = E 0 (k, r m ) + t(k)

Scattering mean free path and effective wave number of coherent wave

To determine the scattering mean free path , the solution of Eqs. (B6) is averaged over many (up to 10 3 ) independent configurations of scatterers inside the sample, over slices of width ∆z = L/100 along the z axis, and over the central part of the cylinder with radius R 1 = R -L (see the inset of Fig. 10). The average field E(k, z) obtained in this way should mimic the average field in a slab of infinite lateral extent (R → ∞). A typical result obtained from these calculations is illustrated in Fig. 10.

To determine the scattering mean free path and the effective wave number k e of the transverse waves, we fit the results for the real part of E x (k, z) to the expression Re E x (k, z) = A cos(k e z + φ) exp -z 2 (B8)

where , k e , φ and A are free fit parameters (see Fig. 10). In order to reduce the influence of boundary effects, we ignore the data corresponding to z < L/10 and z > (9/10)L in the fits. The resulting effective wave number and scattering mean free path are shown in Figs. 11 and 12 (red line) as functions of detuning δ = (ω -ω 0 )/γ for n/k 3 0 = 0.5.

Diffuse field

We compute the average energy density of light inside the sample ρ(k, z) by averaging the square of the macro- where, as previously, the averaging . . . is done over scatterer configurations as well as over the central part of the cylindrical sample. Because of equipartition, electric and magnetic energies should be equal on average. Nevertheless, because we calculate B, and not B, the magnetic energy density still misses the singular stored energy inside the dipole.

A typical profile of energy density inside the sample is shown in Fig. 13. We fit ρdif (k, z) by a linear function for k 0 z between 4 and 9 to determine its gradient dρ dif (k, z)/dz.

The average energy flux is given by the average Poynt- 13).

The transport mean free path * is obtained by using the Fick's law

K z = -D d dz ρdif (k, z) (B12)
where D = (c 2 0 /v p ) * /3 is the diffusion coefficient and v p = c 0 k 0 /k e is the phase velocity. No energy velocity appears here since ρdif (k, z) does not count the stored energy. Expressing * from this equation yields * = -3

k 0 k e × K z dρ dif (k, z)/dz (B13)
The results following from this equation are shown in Figs. 12 (blue line) and 14. The comparison of these results with the analytic theory is presented in Fig. 9 and is discussed in the main text.

Figure 12 shows that the transport mean free path differs significantly from any of the scattering mean free paths, including the scattering length 1/2 ImK L (∞) associated with longitudinal waves. The transport mean free path is an asymmetric function of the detuning from the resonance, and it is larger for positive than for negative detunings.

Figure 3 .

 3 Figure 3. The contribution of dipole-dipole coupling to the DOS (in units of N0 × Q0 × (4πn/k 3 0 ) 2 ) as a function of detuning δ = (ω -ω0)/γ. The dashed lines show the separate contributions of the modes with electric field perpendicular (P ) and parallel (Q) to the separation vector r.

Figure 4 .

 4 Figure 4. Top: Numerical simulation of the averaged imaginary part of the diagonal elements of the T -matrix as a function of detuning, for several densities n of the dipoles. Via Eqs. (19) and (23) this quantity determines the longitudinal density of states LDOS. Bottom: Same but with the ISA approximation subtracted and normalized by 4πn/k 3 0 . The dashed line shows the second-order in density term in Eq. (22) as also shown in Fig.3.

Figure 5 .

 5 Figure 5. Diagrammatic presentation of the ladder series (without external lines) involving two different electric dipoles. Dashed lines connect identical dipoles, solid lines denote the Green's tensor G0(r), crosses denotes transition matrix t(k), bottom line denotes Hermitian conjugation. The first diagram on the left is reducible (a simple product) and is not part of the collision operator U pp .

Figure 6 .

 6 Figure 6. The diagrammatic convention associated with the reducible vertex R ij|kl,pp (q), with external lines. Top line denotes retarded Green's function G(k + i0), bottom line G † (k + i0) = G(k -i0) is the advanced Green's function and travel in the opposite direction. The polarization labels are ij on the left hand side ("observer") and kl on the right hand side ("source").The sum of incoming and outgoing wave numbers is conserved.

Figure 7 .

 7 Figure 7. The diffusion constant in the J2 channel (solid line), being the sum of the Drude approximation D D 2 plus the weak-localization correction ∆D2(k) in Eq. (71) from two dipoles, as a function of the detuning δ = (ω -ω0)/γ. It is normalized by the diffusion constant in the J0 channel. The 4 weak localization corrections discussed in this section are shown separately as dashed lines.

Figure 8 .

 8 Figure 8. The self-consistent solution for the electromagnetic transport mean free path * defined by σ = k 2

Figure 9 .

 9 Figure 9. The ratio of transport and scattering mean free paths * / as a function of ke compared to the self-consistent theory for 4πn/k 3 0 = 3.77 and q = 0.5 (black solid line, for the two branches, see text for explanation). Points of different colors correspond to different scatterer number densities n for detunings δ = (ω -ω0)/γ ∈ [-3, 6.5] from the resonance. The dashed line is the lower bound for * / described by Eqs. (93) and (94), again with q = 0.5.
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Figure 10 .

 10 Figure 10. Average, on-resonance, electric field in the most dense sample. Red and blue lines show the real and imaginary parts of the field, respectively. The black solid line is the fit of Eq. (B8) to the numerical data; the dashed line is the result for the imaginary part obtained from the fit to the real part.

  the free-space Green's tensor for r = 0. Here P(x) = 1 -1/ix -1/x 2 and Q(x) = 2/ix + 2/x 2 .The magnetic field B(k, r) can be found by applying B(k, r) = ∇ × E(k, r)/(ik 0 ) to Eq. (B1):B(k, r) = B 0 (k, r) -it(k) 0 , rr j ) • Ẽ(k, r j ) 0 , r) = -k 0 4π ( • r)e ik0r [1 -P (k 0 r)] r = xx + yŷ + zẑ. Note that G (B)

  k 0 , r m -r j ) • Ẽ(k, r j ) (B6) B(k, r m ) = B 0 (k, r m ) -it(k) 0 , r m -r j ) • Ẽ(k, r j ) (B7)

Figure 11 .

 11 Figure 11. The effective wave number obtained from the fit to the coherent field (see Fig.10), the real part of KL(∞) calculated using Eq. (A9), and the ISA result.

Figure 12 .

 12 Figure 12. Scattering and transport mean free paths for the most dense sample. We also show the scattering length 1/2 ImKL(∞) associated with longitudinal waves.

Figure 13 .

 13 Figure 13. The average energy density, consisting of a coherent and a diffuse part. The solid straight line is a linear fit to the diffuse energy density for k0z = 4-9.

  scopic magnetic field B(k, r m ) on the scatterers. The diffuse energy density is obtained by subtracting the coherent intensity:ρ(k, z) = c 0 8π | B(k, r m )| 2 (B9) ρdif (k, z) = ρ(k, z) -c 0 8π | B(k, r m ) | 2 (B10)

Figure 14 .

 14 Figure 14. Transport mean free paths for different densities n. The dashed line shows the ISA results for the lowest density 4πn/k 3 0 = 0.25.

Table I .

 I Contributions to the transport mean free path for various transport channels Ji and the 3 different diagrammatic classes identified in the Bethe-Salpeter equation (49). When an explicit sign is found, it is indicated. Most values depend also explicitly on detuning, not indicated if not calculated. Numbers refer to the corresponding equations. The channel J1 does not contribute to transport mean free path, J3 only contributes to the transport mean free path associated with the imaginary part of the Poynting vector. NC stands for "not calculated", WL for "weak localization". The terms proportional to Q(δ) are regularized singularities depending on detuning δ that cancel in the transport mean free path.
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C. Comparison with numerical simulations

In Fig. 9 we compare the predictions of the selfconsistent theory for electromagnetic waves developed above to numerical simulations in which we simulate the multiple scattering of light by an ensemble of dipolar resonant point scatterers. The results of the simulations allow us to estimate k e , and * . Both the details of the simulations and the way in which we interpret their results are detailed in Appendix B. We repeat calculations for several atomic number densities n and detunings δ = (ω -ω 0 )/γ; the resulting ratios * / are presented in Fig. 9 by circles of different colors as functions of the Ioffe-Regel parameter k e . The numerical results are bounded from below by Eqs. ( 93) and (94) for the minimum conductivity (dashed line). Equations ( 93) and (94) impose a sharp rise of the ratio * / at small values of k e where one would normally have expected a mobility edge. This rise is well reproduced by the numerical results.

A striking feature of the numerical results is the clear tendency of data to group together along two different "branches". A careful inspection of Fig. 9 shows that the lower branch is composed of data corresponding to δ < 0 whereas the upper branch corresponds to simulations with positive detunings δ > 0. This means thatapart from the absence of a localization transition -there is no one-parameter dependence with k e either. The double-branch structure actually follows from the explicit dependence of the J 2 channel on detuning δ, described by the factor F (δ), which is larger for positive detunings (see Fig. 7). Figure 9 shows the prediction of the selfconsistent theory for the ratio * / with the inclusion of the function F (δ) and with the dimensionless parameter k e calculated from the averaged incident field (see Appendix B) for one fixed dipole density 4πn/k 3 0 = 3.77 and for various detunings. Predictions for k e corresponding to other densities are not shown since they all exhibit the same overall appearance. Despite the fact that, strictly speaking, * / is a function of two independent parameters (k e and δ or equivalently k e and 4πn/k 3 0 , we see that all results for the quite wide explored density range 4πn/k 3 0 = 0.25-6.28 roughly follow the same double-branch master curve that is close to the analytical result for the intermediate density 4πn/k 3 0 = 3.77. The agreement between numerical and analytical results is not perfect but we believe that it can be further improved by distinguishing explicitly between transverse and longitudinal complex wave numbers (see Sec. II D), which are known to be different (see Appendix A, and Figs. 11 and12). This can be done in future work.

VI. CONCLUSIONS AND OUTLOOK

In this work we have included longitudinal excitations into a transport theory for electromagnetic waves propagating in a medium with randomly distributed dipo-lar electric scatterers (dipoles). We identify four diffuse modes, triggered by the gradient in electromagnetic energy, among which two carry a Poynting vector and contribute to the diffusion constant. We have developed this theory by extending the independent scattering approximation (the elementary scattering unit is a single dipole) to include rigourously recurrent scattering from two dipoles. This has led to the following results. 1) Longitudinal and transverse waves of the effective medium are characterized by different complex wave numbers K L and K T , respectively, and dominate near and far field in scattering.

2) The interference between longitudinal and transverse waves creates a new diffuse transport channel with a diffusion constant proportional to the number density of dipoles, to be compared to the usual diffusion constant that is inversely proportional to this density.

3) Divergent terms appear at large wave numbers in the diffusion constant, in the longitudinal density of states and in the collision operator. Many of them cancel, in particular for the electromagnetic Kubo diffusion constant all divergent terms cancel. We postulate that this cancelation holds in all orders of perturbation theory. 4) When extending the self-consistent theory of localization, with all its usual assumptions, to include the four diffuse modes, we find a minimum conductivity that prevents the onset of Anderson localization of light, as also observed in numerical simulations [5]. 5) The predictions of the developed self-consistent theory are surprisingly close to the results of independent numerical simulations, including the explicit dependence of new transport channel on frequency detuning from the dipolar resonance. These findings demonstrate that, due to the presence of longitudinal, non-propagating waves, (weak) localization of light is fundamentally different from what was believed so far.

Early stages of this work were supported by collaborations with Yvan Castin, Ad Lagendijk, Nicolas Cherroret and Dominique Delande. We thank Denis Basko for useful discussions. In this Appendix we pose the problem of light scattering from M point electric dipolar scatterers ("dipoles" for short) in a volume V and derive the DOS for both longitudinal and transverse excitations in the thermodynamic limit M, V → ∞ at constant density M/V = n.

The real-space Green's function G(r, r ) of M pointlike dipoles at positions {r m }, m = 1, . . . , M , is defined in terms of their collective T -matrix as

If we impose that all dipoles be impenetrable, we must We consider a sample having the shape of a cylinder of radius R and thickness L parallel to the z axis of the reference frame and confined between the planes z = 0 and z = L (see the inset of Fig. 10). The sample is made of M point-like resonant scatterers described by Eq. ( 10) with a resonant frequency ω 0 = k 0 c 0 and a decay rate γ ω 0 of the excited state. The scatterers are located at random positions r j , j = 1, . . . , M , inside the sample. The scatterer number density is n = M/V with V = πR 2 L being the volume of the sample. In the following, we set k 0 L = 10 and k 0 R = 30, which implies M = 2827-14137 for n/k 3 0 = 0.1-0.5. We have also performed calculations for a relatively low density n/k 3 0 = 0.02 at which we set k 0 L = 30, k 0 R = 60 and M = 6786.

It is convenient to introduce dimensionless quantities and to neglect the frequency dependence of the Green's tensor over the bandwidth of interest that is assumed to be much less than ω 0 though can exceed γ considerably. Thus we put G 0 (k) = G 0 (k 0 ). Given an incident wave E 0 (k, r) and using Eqs. (A4) and (A5), we obtain equations for the electric field E(k, r) at any point in space: