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Abstract

Investigating the effect of measurement errors on the control chart monitoring

the ratio of two normal random variables is an important task to facilitate

the use of this kind of control chart in practice. Moreover, a deep insight

into the problem can help practitioners to find a way to reduce unexpected

impacts of measurement errors on the chart performance. This paper provides a

study on the performance of the exponentially weighted moving average control

chart monitoring the ratio in the presence of measurement errors. We extend

the linear covariate error model applied in previous studies to a more general

situation, which makes the study more realistic. The numerical results show that

although the precision error and the accuracy error have negative influences on

the proposed chart performance when these errors are not large these influences

are not significant.

Keywords: Quality control, EWMA, Ratio distribution, Markov Chain,

Measurement error.

1. Introduction

Statistical Process Control (SPC) refers to a standard methodology of qual-

ity control for monitoring and controlling a process based on tatistical methods.

The main purpose of SPC is to ensure the efficient operation of the process.
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SPC consists of many tools in which control charts are widely used to detect

assignable causes that lead to changes in the process output. There are a large

number of studies related to developing control charts with high performance

that make their applications more efficient in the manufacturing process, see,

for example, Bersimis et al. [1], Tran et al. [21], Teoh et al. [20] and Marcondes

& Valk [11].

It has been demonstrated in the SPC literature that the ratio of two normal

variables is a major concern in several studies. The motivation for these studies

comes from the fact that this ratio is an essential characteristic to ensure the

quality of products in many processes. For example, in the food industry, keep-

ing the relative weights of two main ingredients could be a requirement to make

sure the quality of a food recipe. In the pharmaceutical industry, the safety and

the effectiveness of drugs could be guaranteed by stabilizing the proportion of

two active ingredients. An overview of typical situations that require monitor-

ing the ratio of two quantities has been discussed in Celano & Castagliola [4].

Concerning the methods of monitoring the ratio of two normal variables, several

control charts have been suggested, see Celano et al. [5], Celano & Castagliola

[4], and Tran et al. [21] for more details.

In practice, measurement error almost exists in all processes, ignoring the

presence of the measurement error in designing control charts may lead to a

misunderstanding about the statistical properties of the designed control charts.

Recent studies related to this problem can be seen in Tran et al. [22],Khurshid &

Chakraborty [9], Sabahno et al. [17], Hassani et al. [8], Daryabari et al. [7], Song

et al. [18, 19] and Sabahno et al. [16]. For the case of control charts monitoring

the ratio, Tran et al. [22] used a quite strict assumption that z∗1 = τ ∗ z∗0 where

z∗1 and z∗0 are the out-of-control ratios, respectively and the in-control ratio in

the presence of measurement error and τ is the shift size. This assumption

is not really reasonable in practice. Nguyen & Tran [13] extended this study

by easing this assumption to make it more realistic. The authors provided an

exact change of the process parameters from an in-control condition to an out-

of-control status under the presence of measurement errors.
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The use of the Exponentially Weighted Moving Average (EWMA) control

chart has become increasingly popular in SPC literature. One of the reasons

for the wide use of this type of chart is because it has “memory”: it monitors a

process based on the information from the whole process rather than the infor-

mation from only the current condition. As a result, it is often more effective

than several others in detecting process shifts. Recently, the EWMA control

charts for monitoring the ratio of two normal variables (denoted by EWMA-RZ

control chart) are proposed by Tran et al. [21]. The goal of this paper is to

investigate the effect of measurement errors on the performance of EWMA-RZ

control charts. In this paper, we aim to develop a new measurement error model

to fully describe the impact of measurement errors on the EWMA-RZ control

chart, an advanced chart that is very effective in detecting small shifts from a

process. Instead of assuming an identity matrix in the linear covariate model,

we consider a more general situation with a diagonal matrix. The motivation

of the paper is (1) to ease the strict assumption about the relation between

the out-of-control ratio and the in-control ratio in Tran et al. [22] as well as to

extend the assumption of identity matrix in the linear covariate model applied

in Nguyen & Tran [13], and (2) to investigate the impact of measurement errors

on the EWMA-RZ control chart, and then to propose the ways to reduce the

impact of measurement errors on the performance of this control chart when

applied in practice. These improvements allow this study to overcome the dis-

advantages in previous studies on the control charts monitoring the ratio in

the presence of measurement error and make it more efficient and realistic that

could be useful for practitioners.

The paper is organized as follows. Section 2 presents a linear covariate error

model for the ratio and an establishment of the change of the chart parameters

and the model parameters from in-control condition to out-of-control status.

The implementation and the design of the EWMA-RZ control chart with mea-

surement errors are discussed in section 3 and section 4, respectively. The effect

of measurement error on the EWMA-RZ control chart performance is presented

in section 5. Section 6 is for an illustrative example of the implementation
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of the EWMA-RZ control chart in the presence of measurement errors. Some

concluding remarks are given in section 7.

2. Linear covariate error model for the sample of the ratio

In this section, we present a linear covariate error model for the sample ratio.

A brief review of the distribution of the sample of the ratio can be seen in the

Appendix. In Tran et al. [22], the authors supposed that the relation between

the out-of-control ratio and the in-control ratio is independent of measurement

errors (see equation (36) in Tran et al. [22] and the corresponding explanation).

In practice, measurement errors may affect the true observations of the ratio.

As a result, this relation should change with measurement errors. We will model

accurately the change of parameters of a process after being shifted under the

presence of measurement errors to see more clearly this variation.

Let us assume that, at time i = 1, 2, . . ., a set of n consecutive items

{Wi,1,Wi,2, ...,Wi,n} of the quality characteristic W is collected, where Wi,j =

(Xi,j , Yi,j)
T ∼ N(µW,ΣW) is a bivariate normal vector with mean µW and

variance-covariacne matrix ΣW defined as in (29). Due to measurement errors,

the true quality characteristics Wi,j is unobservable. Instead, it is assessed from

a set of m ≥ 1 measurement operations, {W∗
i,j,1,W

∗
i,j,2, ...,W

∗
i,j,m}. According

to the linear covariate error model (Linna et al. [10]), we have

W∗
i,j,k = A + BWi,j + εi,j,k, k = 1, . . . ,m, (1)

where A is a (2× 1) vector of constants,

A =

 aX

aY

 , (2)

B is a (2 × 2) matrix, ε ∼ N(0,ΣM ) is a centered bivariate normal random

vector assumed to be independent of W. The variance-covariance matrix in the

distribution of ε is denoted by

ΣM =

 σ2
MX ρMσMXσMY

ρMσMXσMY σ2
MY

 , (3)

where σMX (resp. σMY ) is the standard-deviation of measurement errors of X

(resp. Y ), and ρM ∈ (−1,+1) is the corresponding coefficient of correlation.
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In Linna et al. [10], the authors recommended an invertible p × p matrix of

constants, often diagonal, for the matrix B. Therefore, we assume that B =

bI2×2, where b is a constant, i.e.

B =

 b 0

0 b

 . (4)

In paractice, the mean W
∗
i,j = (X̄∗i,j , Ȳ

∗
i,j) of the observable quantities {W∗

i,j,1,

W∗
i,j,2, ...,W

∗
i,j,m} is often considered as a represented value for the true value

Wi,j . This mean is calculated by

W
∗
i,j =

1

m

m∑
k=1

W∗
i,j,k

=
1

m

m∑
k=1

(A + BWi,j + εi,j,k)

= A + BWi,j +
1

m

m∑
k=1

εi,j,k. (5)

That is, W
∗
i,j is also a bivariate normal random vector with the mean vector

and the variance-covariance matrix defined by

µW∗ = A + BµW , (6)

ΣW∗ = BΣW BT +
1

m
ΣM = b2ΣW +

1

m
ΣM . (7)

Let µX∗ , µY ∗ , σ2
X∗ , σ2

Y ∗ and ρ∗ denote the mean, the variance and the coefficient

of correlation of the two components (X̄∗i,j , Ȳ
∗
i,j) of the vector W

∗
i,j , respectively.

Then, the equations (6) and (7) lead to

µX∗ = aX + bµX (8)

µY ∗ = aY + bµY (9)

σ2
X∗ = b2σ2

X +
σ2
MX

m
, (10)

σ2
Y ∗ = b2σ2

Y +
σ2
MY

m
, (11)

ρ∗ =
b2ρσXσY + ρM

σMXσMY

m

σX∗σY ∗
. (12)

The equations (8)-(12) show a general change of µX , µY , σ
2
X , σ2

Y and ρ under

the presence of the measurement errors. In the sequel, we will represent these

changes when the process is shifted from an in-control condition to an out-of-

control status.
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Let µ0,W = (µ0,X , µ0,Y )
T

and ρ = ρ0 denote the mean vector and the

coefficient of correlation between the two normal variables Xi,j and Yi,j of

when the process is in-control. The mean ratio is now z0 =
µ0,X

µ0,Y
. Sup-

pose that an abnormal condition shifts the in-control ratio z0 to z1 = τz0,

where τ is the shift size, and the in-control coefficient of correlation ρ = ρ0

to ρ = ρ1. In particular, we suppose that the in-control µ0,W is shifted to

µ1,W = (µ0,X + δXσX , µ0,Y + δY σY )
T

where δX and δY represent the mean

shift of Xi,j and Yi,j . Then, the equation z1 = τz0 becomes

µ0,X + δXσX
µ0,Y + δY σY

= τ × µ0,X

µ0,Y
,

and we obtain the following formula:

1 + δXγX = τ(1 + δY γY ). (13)

According to the equations (8)-(11), under the presence of measurement errors,

the coefficients of variation γX∗ = σX∗
µX∗ and γY ∗ = σY ∗

µY ∗ of X̄∗i,j and Ȳ ∗i,j are equal

to

γX∗ =

√
b2σ2

X +
σ2
MX

m

aX + b(µ0,X + δXσX)
, (14)

γY ∗ =

√
b2σ2

Y +
σ2
MY

m

aY + b(µ0,Y + δY σY )
. (15)

Considering the fraction in (14), if we divide its numerator by σX , its denomina-

tor by µ0,X and then use (13), the coefficient of variation γX∗ can be rewritten

by

γX∗ =

√
b2 +

η2X
m

b(1 + δXγX) + θX
× γX =

√
b2 +

η2X
m

bτ(1 + δY γY ) + θX
× γX (16)

where ηX = σMX

σX
, θX = aX

µ0,X
, and γX = σX

µ0,X
.

In a similar way, the coefficients of variation γY ∗ in (15), the coefficient of cor-

relation ρ∗ in (12) and the standard-deviation ratio ω∗ = σX∗
σY ∗ can be expressed
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as

γY ∗ =

√
b2 +

η2Y
m

b(1 + δY γY ) + θY
× γY , (17)

ρ∗ =
b2ρ+ ρM

ηXηY
m√

b2 + η2
X/m

√
b2 + η2

Y /m
, (18)

ω∗ =

√√√√b2 +
η2X
m

b2 +
η2Y
m

× ω, (19)

where ηY = σMY

σY
, θY = aY

µ0,Y
, γY = σY

µ0,Y
and ω = σX

σY
.

It should be considered that the in-control and out-of-control ratio under

the presence of the measurement errors are

z∗0 =
µ0,X∗

µ0,Y ∗
=
bµ0,X + aX
bµ0,Y + aY

=
b+ θX
b+ θY

× z0, (20)

z∗1 =
µ1,X∗

µ1,Y ∗
=
aX + b(µ0,X + δXσX)

aY + b(µ0,Y + δY σY )
=
θX + b(1 + δXγX)

θY + (1 + δY γY )
× z0

=
θX + τ(1 + δY γY )

θY + (1 + δY γY )
× z0. (21)

Thus, in general we have z∗1 6= τz∗0 .

3. Implementation of the EWMA-RZ control chart with measure-

ment error

Consider a process with the same assumptions and notations as in the pre-

vious section. Supppose that the process is considered in-control as long as

the ratio Z = X/Y is still in an acceptable range. Similar to Tran et al. [22],

after collecting the samples {W∗
i,j,1,W

∗
i,j,2, ...,W

∗
i,j,m} at each sampling period

i = 1, 2, . . ., we suggest to monitor the statistic

Ẑ∗i =
µ̂X∗

i

µ̂Y ∗
i

=
¯̄X∗i
¯̄Y ∗i

=

∑n
j=1 X̄

∗
i,j∑n

j=1 Ȳ
∗
i,j

, (22)

where ¯̄X∗i = 1
n

∑n
j=1 X̄

∗
i,j ,

¯̄Y ∗i = 1
n

∑n
j=1 Ȳ

∗
i,j , X̄

∗
i,j and Ȳ ∗i,j are two components

of the bivariate normal vector W
∗
i,j in (5).

It can be seen from their definition that ¯̄X∗i ∼ N(µX∗ , σX∗√
n

) and ¯̄Y ∗ ∼
N(µY ∗ , σY ∗√

n
). Therefore, the coefficients of variations γX̄∗ and γȲ ∗ of X̄∗i and

Ȳ ∗i , the standard-deviation ratio ωẐ∗ at each sampling period i = 1, 2, . . . are,
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respectively, equal to

γ ¯̄X∗ =
σX∗

µX∗
√
n

=
γX∗√
n
, (23)

γ ¯̄Y ∗ =
σY ∗

µY ∗
√
n

=
γY ∗√
n
, (24)

ωẐ∗ =
σX∗/

√
n

σY ∗/
√
n

=
σX∗

σY ∗
= ω∗ (25)

The p.d.f and the c.d.f of Ẑ∗i now can be obtained from (30) and (31) where

γX , γY , ω and ρ are replaced by γ ¯̄X∗ , γ ¯̄Y ∗ , ω∗ and ρ∗ as defined in (23), (24),

(25) and (18).

Since the distribution of Ẑ∗i is not symmetric, similar to Tran et al. [21], two

one-sided charts to monitor Ẑ∗i will be considered. In the design of an one-sided

EWMA control chart, the statistic Ẑ∗i is not monitored directly. Instead, the

following statistic will be monitored:

� in an upward EWMA chart (denoted as “EWMA-RZ+” in the remainder

of the paper) that aims at detecting an increase in the ratio,

Y ∗+i = max(z∗0 , (1− λ+)Y ∗+i−1 + λ+Ẑ∗i ) (26)

where Y ∗+0 = z∗0 is an initial value. The corresponding upper control limit

is UCL+ = K+× z∗0 (K+ > 1), and by the construction the lower control

limit is LCL+ = z∗0 .

� in a downward EWMA chart (denoted as “EWMA-RZ−” in the remainder

of the paper) that aims at detecting a decrease in the ratio,

Y ∗−i = min(z∗0 , (1− λ−)Y ∗−i−1 + λ−Ẑ∗i ) (27)

where Y ∗−0 = z∗0 is an initial value. The corresponding lower control limit

is LCL− = K−×z∗0 (K− < 1), and by the construction, the upper control

limit is UCL− = z∗0 .

It should be considered that the control limits are considered in these forms

rather than the general ones involving the mean and the standard deviation

of Zi because the distribution of Ẑ∗i has no moments. The two EWMA-RZ−

and EWMA-RZ+ charts above are defined when the smoothings λ+ ∈ (0, 1],

λ− ∈ (0, 1] and the chart parameters K+, K− are defined.
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4. Design of optimal EWMA-RZ Control Charts with measurement

error

It is customary that the average run length (ARL) is used to measure the

performance of a control chart. This measure counts the average number of

samples before the chart signals an “out-of-control condition” after an occur-

rence of an assignable cause. When the process runs in-control, it is denoted

by ARL0; otherwise, it is denoted by ARL1. In the Appendix, we present a

method to compute this measure based on a discrete Markov chain approach

proposed by Brook & Evans [2].

In practice, when an exact value of the shift size of τ is predicted at the

design stage, the EWMA-RZ charts can be optimally designed in terms of ARL.

However, it is not always the case since this size cannot be anticipated exactly.

This may lead to the poor performance of the designed chart. Therefore, in this

study, we suggest to optimally design the EWMA-RZ charts under the presence

of the measurement errors in terms of expected average run length (EARL),

which is defined as

EARL =

∫
Ω

ARL× fτ (τ)dτ, (28)

where fτ (τ) is a p.d.f of the random shift size τ over a support Ω and ARL

is defined as in (35). In the SPC literature, a uniform distribution has been

proposed to τ over a prespecified interval [a, b] (see, for example, Castagliola

et al. [3], Celano et al. [6] and Tran et al. [21]). That is, fτ (τ) = 1
b−a for

τ ∈ Ω = [a, b].

With respcet to this measure, the optimal design of the proposed charts

consists of finding optimal couples (K∗−, λ∗−) or (K∗+, λ∗+) such that:

� for the EWMA-RZ− chart,

(K∗−, λ∗−) = arg min
(K−,λ−)

EARL(n,K−, λ−, ρ1, γX∗ , γY ∗ , ρ∗, ω∗)

subject to the constraint

ARL(n,K−, λ−, γX∗ , γY ∗ , ρ∗, ω∗, ρ1 = ρ0, τ = 1) = ARL0,

� for the EWMA-RZ+ chart:

(K∗+, λ∗+) = arg min
(K+,λ+)

EARL(n,K+, λ+, ρ1, γX∗ , γY ∗ , ρ∗, ω∗)
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subject to the constraint

ARL(n,K+, λ+, γX∗ , γY ∗ , ρ∗, ω∗, ρ1 = ρ0, τ = 1) = ARL0.

5. The effect of measurement errors on the EWMA-RZ control charts

We investigate in this section the statistical performance of the EWMA-RZ

control chart in the presence of measurement errors. Without loss of generality,

we assume that z0 = 1 and δY = 1. The in-control value ARL0 is set at 200.

We also suppose that the shift size τ follows a uniform distribution over the

interval ΩD = [0.9, 1) (EWMA-RZ− chart) and ΩI = [1, 1.1) (EWMA-RZ+

chart). The numerical results are rounded to 4 decimal places. The program for

the numerical analysis in this paper is written on the ScicosLab 4.4.2 software

which is available upon request from authors.

The optimal couples (K∗−, λ∗−) of the EWMA-RZ− chart and (K∗+, λ∗+)

of the EWMA-RZ+ chart for several situations of parameters, which are γX ∈
{0.01, 0.2}, γY ∈ {0.01, 0.2}, n ∈ {1, 5, 7, 10, 15}, ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8},
m = 1, b = 1, and given θX = θY = 0.01, ηX = ηY = 0.28, ρM = 0.5 are

presented in Table 1. Since the in-control ratio z0 is set at z0 = 1, the value of

K∗−(K∗+) is also the value of the corresponding LCL−(UCL+). The reason

for these specific values of parameters was discussed further in Tran et al. [22].

The other values of these optimal couples for other cases of parameters are not

presented here but are available upon request from authors.

It can be seen from the Table 1 that the optimal value λ∗−(λ∗+) depends

on the parameters γX , γY , n and ρ0. For example, given the value of (γX , γY ),

when n and/or ρ0 increase, λ∗−(λ∗+) increases. Take the case γX = γY = 0.01

as an example, we have λ∗− = 0.1964 for n = 1, ρ0 = −0.8 and λ∗− = 0.9952

for n = 15, ρ0 = 0.4. Similarly, the optimal chart parameter K∗−(K∗+), and

then the control limit, also change with these parameters. Given the value of

n, ρ0, when (γX , γY ) increases, K∗− decreases while K∗+ increases. For ex-

ample, with n = 5, ρ0 = 0.0, we have K∗− = 0.9910, K∗+ = 0.4558 when

(γX , γY ) = (0.01, 0.01) and K∗− = 0.9651, K∗+ = 0.0545 when (γX , γY ) =

(0.2, 0.2). Moreover, in this table, in the first part (γX = 0.01), the optimal

value for λ is very close to 1, especially for γ0 = 0.8. This is the case of She-

whart RZ chart, which is preferable (in terms of simplicity) than the EWMA

10



Table 1: Optimal couples (K∗−, λ∗−) (first row) and (K∗+, λ∗+) (second row) for the EWMA-

RZ control chart in the presence of Measurement Error, for z0 = 1, ARL0 = 200, m = 1, b = 1,

θX = θY = 0.01, ηX = ηY = 0.28, ρM = 0.5, n ∈ {1, 5, 7, 10, 15}, γX ∈ {0.01, 0.2},
γY ∈ {0.01, 0.2} and ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}

γX γY ρ0 n = 1 n = 5 n = 7 n = 10 n = 15

0.01 0.01 −0.8 (0.9847, 0.1946) (0.9897, 0.3664) (0.9905, 0.4151) (0.9912, 0.4858) (0.9920, 0.5671)

(1.0152, 0.1813) (1.0102, 0.3518) (1.0095, 0.4074) (1.0087, 0.4650) (1.0080, 0.5568)

−0.4 (0.9857, 0.2119) (0.9904, 0.3980) (0.9910, 0.4582) (0.9916, 0.5390) (0.9923, 0.6360)

(1.0143, 0.2013) (1.0097, 0.3899) (1.0091, 0.4558) (1.0083, 0.5246) (1.0076, 0.6203)

0.0 (0.9868, 0.2395) (0.9910, 0.4558) (0.9916, 0.5304) (0.9921, 0.6203) (0.9925, 0.7646)

(1.0132, 0.2302) (1.0090, 0.4475) (1.0083, 0.5139) (1.0078, 0.6063) (1.0075, 0.7501)

0.4 (0.9883, 0.2912) (0.9919, 0.5595) (0.9923, 0.6517) (0.9925, 0.8049) (0.9927, 0.9952)

(1.0116, 0.2763) (1.0082, 0.5578) (1.0077, 0.6496) (1.0075, 0.7863) (1.0073, 0.9807)

0.8 (0.9907, 0.4308) (0.9926, 0.9405) (0.9934, 0.9997) (0.9945, 0.9995) (0.9955, 0.9999)

(1.0092, 0.4190) (1.0074, 0.9357) (1.0066, 0.9997) (1.0055, 0.9995) (1.0045, 0.9999)

0.20 0.20 −0.8 (0.9184, 0.0500) (0.9578, 0.0500) (0.9636, 0.0500) (0.9690, 0.0500) (0.9742, 0.0501)

(1.1681, 0.0500) (1.0575, 0.0500) (1.0473, 0.0500) (1.0386, 0.0500) (1.0308, 0.0500)

−0.4 (0.9253, 0.0500) (0.9620, 0.0501) (0.9673, 0.0500) (0.9722, 0.0500) (0.9764, 0.0518)

(1.1422, 0.0500) (1.0499, 0.0500) (1.0412, 0.0500) (1.0337, 0.0501) (1.0282, 0.0534)

0.0 (0.9196, 0.0654) (0.9651, 0.0545) (0.9718, 0.0501) (0.9760, 0.0502) (0.9776, 0.0598)

(1.1147, 0.0500) (1.0416, 0.0501) (1.0343, 0.0500) (1.0287, 0.0515) (1.0252, 0.0587)

0.4 (0.9453, 0.0500) (0.9736, 0.0500) (0.9768, 0.0520) (0.9780, 0.0615) (0.9792, 0.0754)

(1.0844, 0.0500) (1.0344, 0.0565) (1.0274, 0.0529) (1.0247, 0.0607) (1.0220, 0.0706)

0.8 (0.9639, 0.0500) (0.9793, 0.0682) (0.9804, 0.0803) (0.9815, 0.0960) (0.9828, 0.1164)

(1.0472, 0.0500) (1.0228, 0.0674) (1.0208, 0.0768) (1.0189, 0.0891) (1.0174, 0.1082)

0.01 0.20 −0.8 (0.9553, 0.0500) (0.9764, 0.0505) (0.9779, 0.0568) (0.9788, 0.0671) (0.9803, 0.0793)

(1.0974, 0.0500) (1.0331, 0.0510) (1.0287, 0.0556) (1.0255, 0.0637) (1.0219, 0.0712)

−0.4 (0.9560, 0.0501) (0.9768, 0.0506) (0.9777, 0.0589) (0.9788, 0.0687) (0.9800, 0.0832)

(1.0956, 0.0500) (1.0322, 0.0502) (1.0284, 0.0563) (1.0246, 0.0617) (1.0219, 0.0729)

0.0 (0.9569, 0.0500) (0.9774, 0.0500) (0.9780, 0.0593) (0.9791, 0.0695) (0.9804, 0.0827)

(1.0939, 0.0500) (1.0347, 0.0579) (1.0278, 0.0559) (1.0246, 0.0634) (1.0218, 0.0748)

0.4 (0.9577, 0.0500) (0.9772, 0.0520) (0.9784, 0.0593) (0.9792, 0.0705) (0.9803, 0.0858)

(1.0921, 0.0500) (1.0319, 0.0523) (1.0273, 0.0559) (1.0244, 0.0646) (1.0213, 0.0744)

0.8 (0.9585, 0.0500) (0.9777, 0.0519) (0.9787, 0.0597) (0.9794, 0.0720) (0.9805, 0.0872)

(1.0904, 0.0500) (1.0324, 0.0554) (1.0275, 0.0583) (1.0240, 0.0649) (1.0213, 0.0764)

0.20 0.01 −0.8 (0.9289, 0.0500) (0.9676, 0.0506) (0.9728, 0.0500) (0.9756, 0.0556) (0.9776, 0.0659)

(1.0735, 0.0500) (1.0355, 0.0569) (1.0275, 0.0500) (1.0248, 0.0559) (1.0222, 0.0644)

−0.4 (0.9295, 0.0500) (0.9684, 0.0500) (0.9732, 0.0500) (0.9758, 0.0559) (0.9780, 0.0656)

(1.0716, 0.0500) (1.0319, 0.0501) (1.0269, 0.0500) (1.0244, 0.0561) (1.0221, 0.0657)

0.0 (0.9303, 0.0500) (0.9688, 0.0501) (0.9736, 0.0500) (0.9761, 0.0564) (0.9782, 0.0665)

(1.0698, 0.0500) (1.0312, 0.0501) (1.0267, 0.0509) (1.0241, 0.0571) (1.0218, 0.0665)

0.4 (0.9310, 0.0500) (0.9690, 0.0508) (0.9737, 0.0509) (0.9761, 0.0577) (0.9782, 0.0681)

(1.0679, 0.0500) (1.0305, 0.0500) (1.0259, 0.0502) (1.0237, 0.0573) (1.0216, 0.0676)

0.8 (0.9318, 0.0500) (0.9698, 0.0500) (0.9740, 0.0515) (0.9761, 0.0593) (0.9783, 0.0695)

(1.0660, 0.0500) (1.0298, 0.0500) (1.0254, 0.0506) (1.0236, 0.0588) (1.0217, 0.0701)
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RZ chart, for these in-control scenarios. After determining the optimal couples

(K∗−, λ∗−) or (K∗+, λ∗+), the EWMA-RZ charts are defined. We then calcu-

late the measure EARL to evaluate the performance of these charts.

Figures 1 shows the effect of precision errors (represented by ηX and ηY )

on the charts’ performance given that no accuracy errors (i.e. θX = θY =

0) exist. The EARL values are computed for ηX ∈ {0, 0.1, 0.2, ..., 1}, ηY ∈
{0, 0.1, 0.2, ..., 1} and for fixed values of n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2},
m = 1, b = 1, ρM = 0, ρ0 = ρ1 = −0.8 The obtained results show that

the precision errors have a negative influence on the efficiency of the proposed

charts: The larger the values of ηX and ηY , the larger the values of EARL.

For example, given n = 1,ΩD = [0.9, 1), ρ0 = ρ1 = −0.8, γX = γY = 0.2,

we obtain EARL = 82.14 when ηX = ηY = 0.1 and EARL = 91.06 when

ηX = ηY = 0.9. In this case, when the precision errors are small, say ηX 6 0.5

and ηY 6 0.5, this influence is not significant. For instance, with n = 1,

ΩI = (1, 1.1], ρ0 = −0.4, ρ1 = −0.8, γX = γY = 0.01, we have EARL = 3.83

when ηX = ηY = 0.5 compared to EARL = 3.57 when ηX = ηY = 0.0, i.e.

without precision error.

The effect of accuracy errors (represented by θX and θY ) on the EARL

values of the EWMA-RZ control chart, given that no precision errors (i.e. ηX =

ηY = 0) exist, is presented in Figure 2. The calculation is made for the values of

θX ∈ {0, 0.005, 0.01, ..., 0.05}, θY ∈ {0, 0.005, 0.01, ..., 0.05} and for fixed values

of n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}, m = 1, b = 1, ρM = 0, ρ0 = ρ1 = −0.8

(Figure 1) and ρ0 = −0.4, ρ1 = −0.8 (Figure 9 in the Appendix). In general,

when θX increases and θY decreases, EARL increases. For example, given

n = 1,ΩI = (1, 1.1], ρ0 = ρ1 = −0.8, γX = γY = 0.2, we obtain EARL = 107.68

when θX = 0.005, θY = 0.05 and EARL = 112.25 when θX = 0.05, θY = 0.05

(Figure 2). However, the change of EARL corresponding to the variation of θX

and θY when these values are not too large, say θX , θY 6 0.025, is trivial and the

value of EARL in these cases is almost equal to the one without accuracy errors.

For example, when n = 1, ΩD = [0.9, 1), ρ0 = −0.4, ρ1 = −0.8, γX = γY = 0.01,

we have EARL = 3.48 for both cases: θX = θY = 0 and θX = θY = 0.025.

We illustrate the values of EARL corresponding to the change of ρM ∈

12



Figure 1: The effect of ηX and ηY on the overall performance of the EWMA-RZ control chart

in the presence of measurement errors for θX = θY = 0, ρM = 0, m = 1, b = 1, n ∈ {1, 15},
γX = γY ∈ {0.01, 0.2}, and ρ0 = ρ1.

ρ1 = ρ0 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 2: The effect of θX and θY on the overall performance of the EWMA-RZ control chart

in the presence of measurement errors for ηX = ηY = 0, ρM = 0, m = 1, b = 1, n ∈ {1, 15},
γX = γY ∈ {0.01, 0.2}, and ρ0 = ρ1.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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{−1,−0.9, . . . , 0.9, 1} in Figure 3 (for ρ0 = ρ1 = −0.8) and Figure 10 in the

Appendix (for ρ0 = −0.4, ρ1 = −0.8), given the other values of n ∈ {1, 15},
m = 1, b = 1, γX = γY ∈ {0.01, 0.2}, and the presence of precision errors and

accuracy errors, i.e. θX = θY = 0.05, ηX = ηY = 0.28. The oblique lines in

Figures 3-10 show that the increase of ρM lead to the decrease of EARL. Take

the case n = 1, ΩD = [0.9, 1), ρ0 = ρ1 = −0.8, γX = γY = 0.2 as an example:

we have EARL = 57.75 when ρM = −0.8 and EARL = 51.34 when ρM = 0.8

(Figure 10).

A traditional method to reduce the effect of measurement errors in practice

is to take multiple measurement per item, which is represented by the value of

m. We demonstrate the performance of the EWMA-RZ control charts when

m increases from 1 to 10 given the values of n ∈ {1, 15}, ρM = 0.4,b = 1,

γX = γY ∈ {0.01, 0.2}, θX = θY = 0.05, and ηX = ηY = 0.28 in Figure 4.

The obtained results show that for the EWMA-RZ control charts, the increase

of m does not improve significantly the chart performance. This is shown by

the almost constant lines in these figures. For example, with n = 1, b = 1,

γX = γY = 0.2, θX = θY = 0.05, ηX = ηY = 0.28 and ρ0 = ρ1 = −0.8

in Figure 4, we obtain an insignificant decrease from EARL = 82.93 when

m = 1 to EARL = 82.30 when m = 10. Thus, we can conclude that taking

multiple measurement is not an effective way to reduce the negative influence

of measurement errors on the EWMA-RZ control charts. This finding is in

accordance with the one in previous studies of the control chart monitoring RZ

considering ME (for example, Nguyen & Tran [13]). From this point of view, we

propose that the quality practitioner should improve the measurement system

(to reduce the values of ηX , ηY , for example) rather than spending time for

taking multiple measurement per item.

We also consider the influence of b on the performance of the proposed

control charts. This influence is shown in Figure 5 for some situations of other

parameters, which are n ∈ {1, 15}, ρM = 0.4,m = 1, γX = γY ∈ {0.01, 0.2},
θX = θY = 0.05, and ηX = ηY = 0.28. As can be seen from these figures that

increasing the values of b can alleviate the negative effects of measurement errors

to some degrees. In particular, when b increases from 0.8 to 1.2, the value of

EARL decreases. For instance, with n = 1, m = 1, γX = γY = 0.2, θX = θY =
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Figure 3: The effect of ρM on the overall performance of the EWMA-RZ control chart in the

presence of measurement errors for n = 1 (-�-) and n = 15 (-�-), m = 1, b = 1, ηX = ηY =

0.28, θX = θY = 0.05, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2} and ρ0 = ρ1 = −0.8.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 4: The effect of m on the overall performance of the EWMA-RZ control chart in

the presence of measurement errors for n = 1 (-�-) and n = 15 (-�-), ηX = ηY = 0.28,

θX = θY = 0.05, n ∈ {1, 15}, ρM = 0.4, b = 1, γX = γY ∈ {0.01, 0.2} and ρ0 = ρ1 = −0.8.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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0.05, ηX = ηY = 0.28 and ρ0 = ρ1 = −0.8 in Figure 5, we have EARL = 114.99

when b = 0.8 and EARL = 114.2 when b = 1.2. Although the increase of b

leads to the decrease of the EARL, one shoud not consider increasing b as a

way to reduce the impact of measurement errors since it will affect the quality

of measurement system. The range of b in this study is motivated based on the

discussion in Nguyen et al. [14].

Finally, we would like to compare the performance (under the presence of

measurement errors) of our proposed charts with the performance of the one-

sided Shewhart-RZ control chart investigated in Nguyen & Tran [13]. The

obtained result shows that the EARL values corresponding to the one-sided

EWMAR-RZ control charts are significantly smaller than the ones correspond-

ing to the one-sided Shewhart-RZ control charts. For example, given n = 1,

m = 1, γX = γY = 0.2, ρ0 = ρ1 = −0.8, ΩD = [0.9, 1), ηX = ηY = 0.28,

θX = θY = 0.05, m = 1, ρM = 0.4 we have EARL = 82.13 for the EWMA-RZ−

chart (Figure 4 in this study), while EARL = 110.57 for the Shewhart-RZ−

chart (Figure 8 in Nguyen & Tran [13]. That is to say, in general, the one-sided

EWMA-RZ control charts outperform substantially the one-sided Shewhart-RZ

control charts in detecting process shifts regardless of the measurement errors.

We also consider the case ρ0 6= ρ1, where the results are presented in the Ap-

pendix.

6. Illustrative example

In this section, we illustrate an example of the implementation of the EWMA-

RZ control charts in the presence of measurement errors. A real context of

managing waste batteries in Italy, which was introduced in Tran et al. [22], is

considered.

According to the discussion in Tran et al. [22], batteries for recycling are re-

ceived by collecting facilities incoming disposed material into designated drums,

sacks or boxes, denoted as “batches”. In practice, these batches usually contain

several disposed materials that are not recyclable batteries like small electronic

devices, metals, and other kinds of waste. These disposed of materials are a

recycling process cost since they should be removed from the batches. In a re-

cycling plant, the process is at the test run stage and the ratio z of recyclable

18



Figure 5: The effect of b on the overall performance of the EWMA-RZ control chart in

the presence of measurement errors for n = 1 (-�-) and n = 15 (-�-), ηX = ηY = 0.28,

θX = θY = 0.05, n ∈ {1, 15}, ρM = 0.4, m = 1, γX = γY ∈ {0.01, 0.2} and ρ0 = ρ1 = −0.8.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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batteries weight (denoted by X) to total batch weight (denoted by Y ) is mon-

itored to quantify the cost because of the presence of not recyclable batteries.

Suppose that a value of 0.95 is the target of interest for the in-control ratio z0

to avoid an economic loss.

In the process of monitoring the ratio z, a sample of n = 5 is collected at

regular intervals i = 1, 2, . . . with batches having nominal weight 100kg. Due

to the variability, the batch weight is considered as a random normal variable

Y ∼ N(100, 1). Similarly, the recyclable batteries’ weight within each batch

is a normal random variable with a target mean of µX = 95kg. The sample

average weights X̄∗i = 1
n

∑n
j=1X

∗
i,j and Ȳ ∗i = 1

n

∑n
j=1 Y

∗
i,j are recorded. Table 2

presents a set of simulated samples of incoming material in the battery recycling

process introduced in Tran et al. [22]. In these samples, a decreasing shift has

been simulated from sample #11 with the size up to 1% of the in-control ratio

z0. In addition, the coefficients of variations of two variables are γX = 0.01 and

γY = 0.01, and the in-control correlation coefficient between them is ρ0 = 0.8.

Similar to Tran et al. [22], we suppose the following parameters of the linear

covariate error model: θX = θY = 0, ηX = ηY = 0.28, ρ1 = 0.8, b = 1, and

ρM = 0. Moreover, we suppose a smoothing λ = 0.2. Then, the control limit of

the EWMA-RZ− control chart with measurement errors is LCL− = 0.9473618.

Figure 6 illustrates the EWMA-RZ− control chart. The chart detects the

out-of-control samples by plotting them below the control limit, which are the

samples #11, #12, #13, and #15. The Shewhart-RZ− control chart could only

detect the abnormality for the sample #11.

7. Concluding remarks

In this paper, we have investigated the effect of measurement errors on the

performance of the EWMA-RZ control chart. The assumption of the identity

matrix in the linear covariate error model has been extended to the diagonal

matrix. This helps to see the impact of this parameter on the proposed charts’

performance. Some important conclusions can be drawn from this study as

follows.

� Both the precision error and the accuracy error have negative impacts on

the one-sided EWMA-RZ control charts. However, when these errors are
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Table 2: The battery recycling industry example data

Sample
X∗i,j [kg] X̄∗i [kg]

Ẑ∗i =
X̄∗

i

Ȳ ∗
i

Y ∗−i
Y ∗i,j [kg] Ȳ ∗i [kg]

1 95.864 94.731 94.643 94.193 94.328 94.752 0.951 0.9502

100.891 100.143 100.340 97.740 99.295 99.682

2 94.969 94.935 94.270 94.663 93.961 94.560 0.956 0.9500

98.903 96.883 97.329 101.021 100.278 98.883

3 93.274 95.927 94.961 96.021 95.429 95.122 0.945 0.9490

101.525 100.461 100.826 98.936 101.398 100.629

4 95.350 96.128 96.610 95.022 95.737 95.769 0.955 0.9500

101.137 101.127 100.052 98.796 100.115 100.245

5 94.697 96.827 94.392 94.197 96.205 95.264 0.955 0.9500

98.996 100.356 99.860 100.082 99.377 99.734

6 94.623 93.930 96.532 94.197 93.573 94.571 0.953 0.9500

99.309 99.727 98.908 98.534 99.745 99.245

7 94.419 95.445 94.328 95.120 95.880 95.038 0.946 0.9492

99.936 99.836 101.138 99.668 101.850 100.486

8 96.144 94.121 96.163 93.803 94.900 95.026 0.953 0.9499

98.212 100.667 99.683 99.044 101.184 99.758

9 94.151 94.786 95.127 94.098 94.307 94.494 0.948 0.9495

99.173 100.873 100.487 100.635 98.675 99.969

10 96.006 96.319 94.026 94.660 93.948 94.992 0.949 0.9494

99.392 98.783 100.008 101.235 101.325 100.149

11 93.436 94.988 93.583 94.831 92.875 93.9426 0.934 0.9463

100.491 100.976 100.815 100.102 100.685 100.614

12 95.832 95.250 94.402 95.221 95.698 95.281 0.947 0.9464

100.007 101.654 100.648 101.531 99.040 100.576

13 95.746 93.764 92.958 94.811 94.250 94.306 0.943 0.9457

99.164 100.864 100.174 99.642 100.309 100.031

14 95.897 95.408 95.121 94.810 96.402 95.528 0.956 0.9478

101.025 98.955 100.267 99.332 100.238 99.963

15 95.481 95.595 94.547 95.299 94.600 95.104 0.944 0.9470

99.933 99.406 102.736 100.533 101.300 100.782
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Figure 6: The EWMA-RZ− control chart in the presence of measurement errors for the battery

recycling industry dataset

not too large, say ηX , ηY 6 0.5 and θX , θY 6 0.025 in this study, these

impacts is insignificant.

� Taking multiple measurement per item is not an effective way to reduce

the effect of measurement errors on the proposed chart performance.

� Regardless of the measurement errors, the one-sided EWMA-RZ control

charts outperform significantly the one-sided Shewhart-RZ control chart

in detecting the process shifts.

Future research could be to investigate the effect of measurement error on the

control charts monitoring the ratio of random normal variables like the adap-

tive exponentially weighted moving average-type control chart (Mitra et al. [12]),

considering the case of short runs as in Nikolaidis & Tagaras [15] or considering

Phase I implementation.
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Appendix

A brief review of the distribution of the sample of the ratio

Let W = (X,Y )T be a bivariate normal random vector with the mean vector

µW and the variance-covariance matrix ΣW where

µW =

 µX

µY

 , ΣW =

 σ2
X ρσXσY

ρσXσY σ2
Y

 , (29)

in which ρ is the correlation coefficient between X and Y . By definition, the co-

efficients of variation of the two random variables X and Y , and their standard-

deviation ratio are γX = σX

µX
γY = σY

µY
, and ω = σX

σY
respectively.

The ratio ofX to Y is defined as Z = X/Y . In the literature, the distribution

of Z is a major concern in several studies. As discussed in Tran et al. [22], when

the coefficient of variation of X and Y takes small values, for example, within the

range [0, 0.2], the distribution of Z can be well approximated by the following

formula, which is proposed by Celano & Castagliola [4]:

FZ(z|γX , γY , ω, ρ) ' Φ

(
A

B

)
, (30)
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Figure 7: The probability density function of Z for the case ρ = 0.5, ω = γX/γY and different

values of γX , γY .

where Φ(.) is the c.d.f (cumulative distribution function) of the standard normal

distribution, and where A and B are functions of z, γX , γY , ω and ρ in which

A =
z

γY
− ω

γX
,

B =
√
ω2 − 2ρωz + z2.

The authors (Celano & Castagliola [4]) also showed that the p.d.f (probability

density function) of Z can be approximated by

fZ(z|γX , γY , ω, ρ) '
(

1

BγY
− (z − ρω)A

B3

)
× φ

(
A

B

)
, (31)

where φ(.) is the p.d.f of the standard normal distribution.

Figure 7 illustrates the p.d.f of Z for the case ρ = 0.5, ω = γX/γY and some

different values of γX and γY .

The Markov chain method to calculate ARL

Suppose that the in-control ratio z0 is shifted to z1 = τ × z0 due to an out-

of-control condition, where τ > 0 is the shift size. In addition, when the process
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is shifted, the coefficient of correlation is also shifted from ρ = ρ0 to ρ = ρ1.

The sizes τ < 1 correspond to a decrease of the in-control ratio z0, while the

sizes τ > 1 correspond to its increase.

In the Markov chain approach, we devide the control interval into several sub-

intervals, corresponding to severl states of the Markow chain. Let p+ 2 be the

states of the chain, where the transient states 0, 1, . . . , p belong to the control

interval and the state p+ 1 is a absorbing state: it represents a signal from the

chart. Then, we can express the transition probability matrix P of the Markov

chain as

P =

 Q r

0T 1

 =



Q0,0 Q0,,1 . . . Q0,p r0

Q
1,0

Q1,1 · · · Q1,p r1

...
...

...

Qp,0 Qp,1 . . . Qp,p rp

0 0 · · · 0 1


.

where Q is a (p + 1, p + 1) matrix of transient probabilities, 0 = (0, 0, . . . , 0)T

and r is a (p + 1) vector satisfying r = (1 −Q1) (i.e., row probabilities must

sum to 1) with 1 = (1, 1, . . . , 1)T .

In particular, the interval control [z0, UCL
+] (resp.[LCL−, z0]) of the EWMA-

RZ+ (resp. EWMA-RZ−) chart is divided into p subintervals of width 2δ,

where δ = K+−1
2p (resp. δ = 1−K−

2p ). Similar to Tran et al. [21], let Hj denote

the midpoint of the jth subinterval, j = 1, . . . , p and let H0 = z0 correspond

to the “restart state” feature of our charts. Then, the generic elements Qi,j ,

i = 0, 1, . . . , p, of the matrix Q are calculated by

� for the EWMA-RZ+ chart,

Qi,0 = FẐ∗
i

(
1− (1− λ+)Hi

λ+

∣∣∣∣ γX∗√
n
,
γY ∗√
n
, ω∗, ρ∗

)
; (32)

� for the EWMA-RZ− chart,

Qi,0 = 1− FẐ∗
i

(
1− (1− λ−)Hi

λ+

∣∣∣∣ γX∗√
n
,
γY ∗√
n
, ω∗, ρ∗

)
; (33)

� for both charts, when j = 1, 2, . . . , p,

Qi,j = FẐ∗
i

(
Hj + δ − (1− λ)Hi

λ

∣∣∣∣ γX∗√
n
,
γY ∗√
n
, ω∗, ρ∗

)
− FẐ∗

i

(
Hj − δ − (1− λ)Hi

λ

∣∣∣∣ γX∗√
n
,
γY ∗√
n
, ω∗, ρ∗

)
, (34)
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where FẐ∗
i
(. . . ) is the c.d.f of Ẑ∗i and λ is either λ+ (EWMA-RZ+ chart) or λ−

(EWMA-RZ− chart).

After determining the transition probability matrix Q, the ARL is calculated

by the following formula (see Tran et al. [21])

ARL = qT (I−Q)−11, (35)

where q is a (p + 1, 1) vector of initial probabilities associated with the p + 1

transient states, i.e., q = (q0, q1, . . . , qp)
T . Concerning the zero-state condition,

the vector q becomes q = (1, 0, . . . , 0). When the number p of subintervals

is sufficiently large (p = 200 in this study), this finite approach provides an

effective method to evaluate accurately the run-length properties of the proposed

control charts.

The effect of parameters on the overall performance of the EWMA-RZ control

chart in presence of measurement errors when ρ0 6= ρ1
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Figure 8: The effect of ηX and ηY on the overall performance of the EWMA-RZ control chart

in the presence of measurement errors for θX = θY = 0, ρM = 0, n ∈ {1, 15}, γX = γY ∈
{0.01, 0.2}, and ρ0 6= ρ1.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)
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Figure 9: The effect of θX and θY on the overall performance of the EWMA-RZ control chart

in the presence of measurement errors for ηX = ηY = 0, ρM = 0, n ∈ {1, 15}, γX = γY ∈
{0.01, 0.2}, and ρ0 6= ρ1.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 10: The effect of ρM on the overall performance of the EWMA-RZ control chart in the

presence of measurement errors for n = 1 (-�-) and n = 15 (-�-), m = 1, b = 1, ηX = ηY =

0.28, θX = θY = 0.05, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2} and ρ0 = −0.4, ρ1 = −0.8.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 11: The effect of m on the overall performance of the EWMA-RZ control chart in the

presence of measurement errors for n = 1 (-�-) and n = 15 (-�-), ηX = ηY = 0.28, θX =

θY = 0.05, n ∈ {1, 15}, ρM = 0.4, b = 1, γX = γY ∈ {0.01, 0.2} and ρ0 = −0.4, ρ1 = −0.8.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 12: The effect of b on the overall performance of the EWMA-RZ control chart in the

presence of measurement errors for n = 1 (-�-) and n = 15 (-�-), ηX = ηY = 0.28, θX =

θY = 0.05, n ∈ {1, 15}, ρM = 0.4, m = 1, γX = γY ∈ {0.01, 0.2} and ρ0 = −0.4, ρ1 = −0.8.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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