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Investigating the effect of measurement errors on the control chart monitoring the ratio of two normal random variables is an important task to facilitate the use of this kind of control chart in practice. Moreover, a deep insight into the problem can help practitioners to find a way to reduce unexpected impacts of measurement errors on the chart performance. This paper provides a study on the performance of the exponentially weighted moving average control chart monitoring the ratio in the presence of measurement errors. We extend the linear covariate error model applied in previous studies to a more general situation, which makes the study more realistic. The numerical results show that although the precision error and the accuracy error have negative influences on the proposed chart performance when these errors are not large these influences are not significant.

Introduction

Statistical Process Control (SPC) refers to a standard methodology of quality control for monitoring and controlling a process based on tatistical methods.

The main purpose of SPC is to ensure the efficient operation of the process. SPC consists of many tools in which control charts are widely used to detect assignable causes that lead to changes in the process output. There are a large number of studies related to developing control charts with high performance that make their applications more efficient in the manufacturing process, see, for example, Bersimis et al. [START_REF] Bersimis | A compound control chart for monitoring and controlling high quality processes[END_REF], Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF], Teoh et al. [START_REF] Teoh | Run-sum control charts for monitoring the coefficient of variation[END_REF] and Marcondes & Valk [START_REF] Marcondes | Dynamic VAR model-based control charts for batch process monitoring[END_REF].

It has been demonstrated in the SPC literature that the ratio of two normal variables is a major concern in several studies. The motivation for these studies comes from the fact that this ratio is an essential characteristic to ensure the quality of products in many processes. For example, in the food industry, keeping the relative weights of two main ingredients could be a requirement to make sure the quality of a food recipe. In the pharmaceutical industry, the safety and the effectiveness of drugs could be guaranteed by stabilizing the proportion of two active ingredients. An overview of typical situations that require monitoring the ratio of two quantities has been discussed in Celano & Castagliola [START_REF] Celano | Design of a phase II control chart for monitoring the ratio of two normal variables[END_REF].

Concerning the methods of monitoring the ratio of two normal variables, several control charts have been suggested, see Celano et al. [START_REF] Celano | Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables[END_REF], Celano & Castagliola [START_REF] Celano | Design of a phase II control chart for monitoring the ratio of two normal variables[END_REF], and Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF] for more details.

In practice, measurement error almost exists in all processes, ignoring the presence of the measurement error in designing control charts may lead to a misunderstanding about the statistical properties of the designed control charts.

Recent studies related to this problem can be seen in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF],Khurshid & Chakraborty [START_REF] Khurshid | Power of control chart for the ratio of two poisson distributions under misclassification error[END_REF], Sabahno et al. [START_REF] Sabahno | A variable parameters multivariate control chart for simultaneous monitoring of the process mean and variability with measurement errors[END_REF], Hassani et al. [START_REF] Hassani | Variable sample size EWMA chart with measurement errors[END_REF], Daryabari et al. [START_REF] Daryabari | Monitoring bernoulli processes considering measurement errors and learning effect[END_REF], Song et al. [START_REF] Song | Optimizing joint location-scale monitoring-an adaptive distribution-free approach with minimal loss of information[END_REF][START_REF] Song | Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment[END_REF] and Sabahno et al. [START_REF] Sabahno | Performance of the variable parameters t control chart in presence of measurement errors[END_REF]. For the case of control charts monitoring the ratio, Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF] used a quite strict assumption that z * 1 = τ * z * 0 where z * 1 and z * 0 are the out-of-control ratios, respectively and the in-control ratio in the presence of measurement error and τ is the shift size. This assumption is not really reasonable in practice. Nguyen & Tran [START_REF] Nguyen | Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables[END_REF] extended this study by easing this assumption to make it more realistic. The authors provided an exact change of the process parameters from an in-control condition to an outof-control status under the presence of measurement errors.

The use of the Exponentially Weighted Moving Average (EWMA) control chart has become increasingly popular in SPC literature. One of the reasons for the wide use of this type of chart is because it has "memory": it monitors a process based on the information from the whole process rather than the information from only the current condition. As a result, it is often more effective than several others in detecting process shifts. Recently, the EWMA control charts for monitoring the ratio of two normal variables (denoted by EWMA-RZ control chart) are proposed by Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF]. The goal of this paper is to investigate the effect of measurement errors on the performance of EWMA-RZ control charts. In this paper, we aim to develop a new measurement error model to fully describe the impact of measurement errors on the EWMA-RZ control chart, an advanced chart that is very effective in detecting small shifts from a process. Instead of assuming an identity matrix in the linear covariate model, we consider a more general situation with a diagonal matrix. The motivation of the paper is [START_REF] Bersimis | A compound control chart for monitoring and controlling high quality processes[END_REF] to ease the strict assumption about the relation between the out-of-control ratio and the in-control ratio in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF] as well as to extend the assumption of identity matrix in the linear covariate model applied in Nguyen & Tran [START_REF] Nguyen | Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables[END_REF], and (2) to investigate the impact of measurement errors on the EWMA-RZ control chart, and then to propose the ways to reduce the impact of measurement errors on the performance of this control chart when applied in practice. These improvements allow this study to overcome the disadvantages in previous studies on the control charts monitoring the ratio in the presence of measurement error and make it more efficient and realistic that could be useful for practitioners.

The paper is organized as follows. Section 2 presents a linear covariate error model for the ratio and an establishment of the change of the chart parameters and the model parameters from in-control condition to out-of-control status.

The implementation and the design of the EWMA-RZ control chart with measurement errors are discussed in section 3 and section 4, respectively. The effect of measurement error on the EWMA-RZ control chart performance is presented in section 5. Section 6 is for an illustrative example of the implementation of the EWMA-RZ control chart in the presence of measurement errors. Some concluding remarks are given in section 7.

Linear covariate error model for the sample of the ratio

In this section, we present a linear covariate error model for the sample ratio.

A brief review of the distribution of the sample of the ratio can be seen in the Appendix. In Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF], the authors supposed that the relation between the out-of-control ratio and the in-control ratio is independent of measurement errors (see equation (36) in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF] and the corresponding explanation).

In practice, measurement errors may affect the true observations of the ratio.

As a result, this relation should change with measurement errors. We will model accurately the change of parameters of a process after being shifted under the presence of measurement errors to see more clearly this variation.

Let us assume that, at time i = 1, 2, . . ., a set of n consecutive items

{W i,1 , W i,2 , ..., W i,n } of the quality characteristic W is collected, where W i,j = (X i,j , Y i,j ) T ∼ N (µ W , Σ W )
is a bivariate normal vector with mean µ W and variance-covariacne matrix Σ W defined as in (29). Due to measurement errors, the true quality characteristics W i,j is unobservable. Instead, it is assessed from a set of m ≥ 1 measurement operations, {W * i,j,1 , W * i,j,2 , ..., W * i,j,m }. According to the linear covariate error model (Linna et al. [START_REF] Linna | The performance of multivariate control charts in the presence of measurement error[END_REF]), we have

W * i,j,k = A + BW i,j + ε i,j,k , k = 1, . . . , m, (1) 
where A is a (2 × 1) vector of constants,

A =   a X a Y   , (2) 
B is a (2 × 2) matrix, ε ∼ N (0, Σ M ) is a centered bivariate normal random
vector assumed to be independent of W. The variance-covariance matrix in the distribution of ε is denoted by

Σ M =   σ 2 M X ρ M σ M X σ M Y ρ M σ M X σ M Y σ 2 M Y   , (3) 
where σ M X (resp. σ M Y ) is the standard-deviation of measurement errors of X (resp. Y ), and ρ M ∈ (-1, +1) is the corresponding coefficient of correlation.

In Linna et al. [START_REF] Linna | The performance of multivariate control charts in the presence of measurement error[END_REF], the authors recommended an invertible p × p matrix of constants, often diagonal, for the matrix B. Therefore, we assume that B = bI 2×2 , where b is a constant, i.e.

B =   b 0 0 b   . (4) 
In paractice, the mean W * i,j = ( X * i,j , Ȳ * i,j ) of the observable quantities {W * i,j,1 , W * i,j,2 , ..., W * i,j,m } is often considered as a represented value for the true value W i,j . This mean is calculated by

W * i,j = 1 m m k=1 W * i,j,k = 1 m m k=1 (A + BW i,j + ε i,j,k ) = A + BW i,j + 1 m m k=1 ε i,j,k . (5) 
That is, W * i,j is also a bivariate normal random vector with the mean vector and the variance-covariance matrix defined by

µ W * = A + Bµ W , (6) 
Σ W * = BΣ W B T + 1 m Σ M = b 2 Σ W + 1 m Σ M . (7) 
Let µ X * , µ Y * , σ 2 X * , σ 2 Y * and ρ * denote the mean, the variance and the coefficient of correlation of the two components ( X * i,j , Ȳ * i,j ) of the vector

W µ X * = a X + bµ X (8) 
µ Y * = a Y + bµ Y (9) σ 2 X * = b 2 σ 2 X + σ 2 M X m , (10) 
σ 2 Y * = b 2 σ 2 Y + σ 2 M Y m , (11) 
ρ * = b 2 ρσ X σ Y + ρ M σ M X σ M Y m σ X * σ Y * . ( 12 
)
The equations ( 8)- [START_REF] Mitra | An adaptive exponentially weighted moving average-type control chart to monitor the process mean[END_REF] show a general change of µ X , µ Y , σ 2 X , σ 2 Y and ρ under the presence of the measurement errors. In the sequel, we will represent these changes when the process is shifted from an in-control condition to an out-ofcontrol status.

Let µ 0,W = (µ 0,X , µ 0,Y )

T and ρ = ρ 0 denote the mean vector and the coefficient of correlation between the two normal variables X i,j and Y i,j of when the process is in-control. The mean ratio is now z 0 = µ 0,X µ 0,Y . Suppose that an abnormal condition shifts the in-control ratio z 0 to z 1 = τ z 0 , where τ is the shift size, and the in-control coefficient of correlation ρ = ρ 0 to ρ = ρ 1 . In particular, we suppose that the in-control µ 0,W is shifted to

µ 1,W = (µ 0,X + δ X σ X , µ 0,Y + δ Y σ Y )
T where δ X and δ Y represent the mean shift of X i,j and Y i,j . Then, the equation

z 1 = τ z 0 becomes µ 0,X + δ X σ X µ 0,Y + δ Y σ Y = τ × µ 0,X µ 0,Y ,
and we obtain the following formula:

1 + δ X γ X = τ (1 + δ Y γ Y ). ( 13 
)
According to the equations ( 8)- [START_REF] Marcondes | Dynamic VAR model-based control charts for batch process monitoring[END_REF], under the presence of measurement errors, the coefficients of variation γ

X * = σ X * µ X * and γ Y * = σ Y * µ Y * of X * i,j and Ȳ * i,j are equal to γ X * = b 2 σ 2 X + σ 2 M X m a X + b(µ 0,X + δ X σ X ) , (14) 
γ Y * = b 2 σ 2 Y + σ 2 M Y m a Y + b(µ 0,Y + δ Y σ Y ) . ( 15 
)
Considering the fraction in ( 14), if we divide its numerator by σ X , its denominator by µ 0,X and then use [START_REF] Nguyen | Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables[END_REF], the coefficient of variation γ X * can be rewritten by

γ X * = b 2 + η 2 X m b(1 + δ X γ X ) + θ X × γ X = b 2 + η 2 X m bτ (1 + δ Y γ Y ) + θ X × γ X ( 16 
)
where η X = σ M X σ X , θ X = a X µ 0,X , and γ X = σ X µ 0,X . In a similar way, the coefficients of variation γ Y * in [START_REF] Nikolaidis | New indices for the evaluation of the statistical properties of bayesian X control charts for short runs[END_REF], the coefficient of correlation ρ * in [START_REF] Mitra | An adaptive exponentially weighted moving average-type control chart to monitor the process mean[END_REF] and the standard-deviation ratio ω * = σ X * σ Y * can be expressed as

γ Y * = b 2 + η 2 Y m b(1 + δ Y γ Y ) + θ Y × γ Y , (17) 
ρ * = b 2 ρ + ρ M η X η Y m b 2 + η 2 X /m b 2 + η 2 Y /m , (18) 
ω * = b 2 + η 2 X m b 2 + η 2 Y m × ω, (19) 
where

η Y = σ M Y σ Y , θ Y = a Y µ 0,Y , γ Y = σ Y µ 0,Y and ω = σ X σ Y .
It should be considered that the in-control and out-of-control ratio under the presence of the measurement errors are

z * 0 = µ 0,X * µ 0,Y * = bµ 0,X + a X bµ 0,Y + a Y = b + θ X b + θ Y × z 0 , (20) 
z * 1 = µ 1,X * µ 1,Y * = a X + b(µ 0,X + δ X σ X ) a Y + b(µ 0,Y + δ Y σ Y ) = θ X + b(1 + δ X γ X ) θ Y + (1 + δ Y γ Y ) × z 0 = θ X + τ (1 + δ Y γ Y ) θ Y + (1 + δ Y γ Y ) × z 0 . (21) 
Thus, in general we have z * 1 = τ z * 0 .

Implementation of the EWMA-RZ control chart with measurement error

Consider a process with the same assumptions and notations as in the previous section. Supppose that the process is considered in-control as long as the ratio Z = X/Y is still in an acceptable range. Similar to Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF],

after collecting the samples {W * i,j,1 , W * i,j,2 , ..., W * i,j,m } at each sampling period i = 1, 2, . . ., we suggest to monitor the statistic

Ẑ * i = μX * i μY * i = X * i Ȳ * i = n j=1 X * i,j n j=1 Ȳ * i,j , (22) 
where

X * i = 1 n n j=1 X * i,j , Ȳ * i = 1 n n j=1
Ȳ * i,j , X * i,j and Ȳ * i,j are two components of the bivariate normal vector W * i,j in [START_REF] Celano | Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables[END_REF]. It can be seen from their definition that X *

i ∼ N (µ X * , σ X * √ n ) and Ȳ * ∼ N (µ Y * , σ Y * √ n ).
Therefore, the coefficients of variations γ X * and γ Ȳ * of X * i and Ȳ * i , the standard-deviation ratio ω Ẑ * at each sampling period i = 1, 2, . . . are, respectively, equal to

γ X * = σ X * µ X * √ n = γ X * √ n , (23) 
γ Ȳ * = σ Y * µ Y * √ n = γ Y * √ n , ( 24 
) ω Ẑ * = σ X * / √ n σ Y * / √ n = σ X * σ Y * = ω * (25) 
The p.d.f and the c.d.f of Ẑ * i now can be obtained from ( 30) and (31) where γ X , γ Y , ω and ρ are replaced by γ X * , γ Ȳ * , ω * and ρ * as defined in ( 23), ( 24), ( 25) and [START_REF] Song | Optimizing joint location-scale monitoring-an adaptive distribution-free approach with minimal loss of information[END_REF].

Since the distribution of Ẑ *

i is not symmetric, similar to Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF], two one-sided charts to monitor Ẑ * i will be considered. In the design of an one-sided EWMA control chart, the statistic Ẑ * i is not monitored directly. Instead, the following statistic will be monitored: in an upward EWMA chart (denoted as "EWMA-RZ + " in the remainder of the paper) that aims at detecting an increase in the ratio,

Y * + i = max(z * 0 , (1 -λ + )Y * + i-1 + λ + Ẑ * i ) (26) 
where

Y * + 0 = z * 0 is an initial value. The corresponding upper control limit is U CL + = K + × z * 0 (K + > 1)
, and by the construction the lower control limit is

LCL + = z * 0 .
in a downward EWMA chart (denoted as "EWMA-RZ -" in the remainder of the paper) that aims at detecting a decrease in the ratio,

Y * - i = min(z * 0 , (1 -λ -)Y * - i-1 + λ -Ẑ * i ) (27) 
where

Y * - 0 = z * 0 is an initial value. The corresponding lower control limit is LCL -= K -×z * 0 (K -< 1)
, and by the construction, the upper control limit is U CL -= z * 0 .

It should be considered that the control limits are considered in these forms rather than the general ones involving the mean and the standard deviation of Z i because the distribution of Ẑ * i has no moments. The two EWMA-RZ - and EWMA-RZ + charts above are defined when the smoothings λ + ∈ (0, 1], λ -∈ (0, 1] and the chart parameters K + , K -are defined.

Design of optimal EWMA-RZ Control Charts with measurement error

It is customary that the average run length (ARL) is used to measure the performance of a control chart. This measure counts the average number of samples before the chart signals an "out-of-control condition" after an occurrence of an assignable cause. When the process runs in-control, it is denoted by ARL 0 ; otherwise, it is denoted by ARL 1 . In the Appendix, we present a method to compute this measure based on a discrete Markov chain approach proposed by Brook & Evans [START_REF] Brook | An approach to the probability distribution of CUSUM run length[END_REF].

In practice, when an exact value of the shift size of τ is predicted at the design stage, the EWMA-RZ charts can be optimally designed in terms of ARL. However, it is not always the case since this size cannot be anticipated exactly.

This may lead to the poor performance of the designed chart. Therefore, in this study, we suggest to optimally design the EWMA-RZ charts under the presence of the measurement errors in terms of expected average run length (EARL), which is defined as

EARL = Ω ARL × f τ (τ )dτ, ( 28 
)
where f τ (τ ) is a p.d.f of the random shift size τ over a support Ω and ARL is defined as in (35). In the SPC literature, a uniform distribution has been proposed to τ over a prespecified interval [a, b] (see, for example, Castagliola et al. [START_REF] Castagliola | Monitoring the coefficient of variation using EWMA charts[END_REF], Celano et al. [START_REF] Celano | Performance of t control charts in short runs with unknown shift sizes[END_REF] and Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF]). That is,

f τ (τ ) = 1 b-a for τ ∈ Ω = [a, b].
With respcet to this measure, the optimal design of the proposed charts consists of finding optimal couples (K * -, λ * -) or (K * + , λ * + ) such that:

for the EWMA-RZ -chart, (K * -, λ * -) = arg min (K -,λ -) EARL(n, K -, λ -, ρ 1 , γ X * , γ Y * , ρ * , ω * ) subject to the constraint ARL(n, K -, λ -, γ X * , γ Y * , ρ * , ω * , ρ 1 = ρ 0 , τ = 1) = ARL 0 ,
for the EWMA-RZ + chart:

(K * + , λ * + ) = arg min (K + ,λ + ) EARL(n, K + , λ + , ρ 1 , γ X * , γ Y * , ρ * , ω * ) subject to the constraint ARL(n, K + , λ + , γ X * , γ Y * , ρ * , ω * , ρ 1 = ρ 0 , τ = 1) = ARL 0 .

The effect of measurement errors on the EWMA-RZ control charts

We investigate in this section the statistical performance of the EWMA-RZ control chart in the presence of measurement errors. Without loss of generality, we assume that z 0 = 1 and δ Y = 1. The in-control value ARL 0 is set at 200. We also suppose that the shift size τ follows a uniform distribution over the interval Ω D = [0.9, 1) (EWMA-RZ -chart) and Ω I = [1, 1.1) (EWMA-RZ + chart). The numerical results are rounded to 4 decimal places. The program for the numerical analysis in this paper is written on the ScicosLab 4.4.2 software which is available upon request from authors.

The optimal couples (K * -, λ * -) of the EWMA-RZ -chart and (K * + , λ * + ) of the EWMA-RZ + chart for several situations of parameters, which are γ X ∈ {0.01, 0.2}, γ Y ∈ {0.01, 0.2}, n ∈ {1, 5, 7, 10, 15}, ρ 0 ∈ {-0.8, -0.4, 0, 0.4, 0.8}, m = 1, b = 1, and given θ X = θ Y = 0.01, η X = η Y = 0.28, ρ M = 0.5 are presented in Table 1. Since the in-control ratio z 0 is set at z 0 = 1, the value of K * -(K * + ) is also the value of the corresponding LCL -(U CL + ). The reason for these specific values of parameters was discussed further in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF].

The other values of these optimal couples for other cases of parameters are not presented here but are available upon request from authors.

It can be seen from the Table 1 that the optimal value λ * -(λ * + ) depends on the parameters γ X , γ Y , n and ρ 0 . For example, given the value of (γ X , γ Y ), when n and/or ρ 0 increase, λ * -(λ * + ) increases. Take the case γ X = γ Y = 0.01 as an example, we have λ * -= 0.1964 for n = 1, ρ 0 = -0.8 and λ * -= 0.9952 for n = 15, ρ 0 = 0.4. Similarly, the optimal chart parameter K * -(K * + ), and then the control limit, also change with these parameters. Given the value of n, ρ 0 , when (γ X , γ Y ) increases, K * -decreases while K * + increases. For example, with n = 5, ρ 0 = 0.0, we have K * -= 0.9910, K * + = 0.4558 when (γ X , γ Y ) = (0.01, 0.01) and K * -= 0.9651, K * + = 0.0545 when (γ X , γ Y ) = (0.2, 0.2). Moreover, in this table, in the first part (γ X = 0.01), the optimal value for λ is very close to 1, especially for γ 0 = 0.8. This is the case of Shewhart RZ chart, which is preferable (in terms of simplicity) than the EWMA RZ chart, for these in-control scenarios. After determining the optimal couples (K * -, λ * -) or (K * + , λ * + ), the EWMA-RZ charts are defined. We then calculate the measure EARL to evaluate the performance of these charts. For example, given n = 1, Ω D = [0.9, 1),

z 0 = 1, ARL 0 = 200, m = 1, b = 1, θ X = θ Y = 0.01, η X = η Y = 0.28, ρ M = 0.5, n ∈ {1, 5, 7, 10, 15}, γ X ∈ {0.01, 0.2}, γ Y ∈ {0.01, 0.2} and ρ 0 ∈ {-0.8, -0.4, 0, 0.4, 0.8} γ X γ Y ρ 0 n = 1 n = 5 n = 7 n = 10 n =
ρ 0 = ρ 1 = -0.8, γ X = γ Y = 0.2,
we obtain EARL = 82.14 when η X = η Y = 0.1 and EARL = 91.06 when η X = η Y = 0.9. In this case, when the precision errors are small, say η X 0.5 and η Y 0.5, this influence is not significant. For instance, with n = 1, 

Ω I = (1, 1.1], ρ 0 = -0.4, ρ 1 = -0.8, γ X = γ Y = 0.
of n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2}, m = 1, b = 1, ρ M = 0, ρ 0 = ρ 1 = -0.8
(Figure 1) and ρ 0 = -0.4, ρ 1 = -0.8 (Figure 9 in the Appendix). In general, when θ X increases and θ Y decreases, EARL increases. For example, given {-1, -0.9, . . . , 0.9, 1} in Figure 3 (for ρ 0 = ρ 1 = -0.8) and Figure 10 

n = 1, Ω I = (1, 1.1], ρ 0 = ρ 1 = -0.8, γ X = γ Y = 0.
γ X = γ Y = 0.2, θ X = θ Y = 0.05, η X = η Y = 0.28 and ρ 0 = ρ 1 = -0.8
in Figure 4, we obtain an insignificant decrease from EARL = 82.93 when m = 1 to EARL = 82.30 when m = 10. Thus, we can conclude that taking multiple measurement is not an effective way to reduce the negative influence of measurement errors on the EWMA-RZ control charts. This finding is in accordance with the one in previous studies of the control chart monitoring RZ considering ME (for example, Nguyen & Tran [START_REF] Nguyen | Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables[END_REF]). From this point of view, we

propose that the quality practitioner should improve the measurement system (to reduce the values of η X , η Y , for example) rather than spending time for taking multiple measurement per item.

We also consider the influence of b on the performance of the proposed control charts. This influence is shown in Figure 5 Finally, we would like to compare the performance (under the presence of measurement errors) of our proposed charts with the performance of the onesided Shewhart-RZ control chart investigated in Nguyen & Tran [START_REF] Nguyen | Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables[END_REF]. The obtained result shows that the EARL values corresponding to the one-sided EWMAR-RZ control charts are significantly smaller than the ones corresponding to the one-sided Shewhart-RZ control charts. For example, given n = 1, [START_REF] Nguyen | Effect of the measurement errors on two one-sided shewhart control charts for monitoring the ratio of two normal variables[END_REF]. That is to say, in general, the one-sided EWMA-RZ control charts outperform substantially the one-sided Shewhart-RZ control charts in detecting process shifts regardless of the measurement errors.

= 1, η X = η Y = 0.28, θ X = θ Y = 0.05, n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2} and ρ 0 = ρ 1 = -0.8. ρ 0 = ρ 1 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2)
θ X = θ Y = 0.05, n ∈ {1, 15}, ρ M = 0.4, b = 1, γ X = γ Y ∈ {0.01, 0.2} and ρ 0 = ρ 1 = -0.8. ρ 0 = ρ 1 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2)
m = 1, γ X = γ Y = 0.2, ρ 0 = ρ 1 = -0.8, Ω D = [0.9, 1), η X = η Y = 0.28, θ X = θ Y = 0.05, m = 1, ρ M = 0.
We also consider the case ρ 0 = ρ 1 , where the results are presented in the Appendix.

Illustrative example

In this section, we illustrate an example of the implementation of the EWMA-RZ control charts in the presence of measurement errors. A real context of managing waste batteries in Italy, which was introduced in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF], is considered.

According to the discussion in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF], batteries for recycling are received by collecting facilities incoming disposed material into designated drums, sacks or boxes, denoted as "batches". In practice, these batches usually contain several disposed materials that are not recyclable batteries like small electronic devices, metals, and other kinds of waste. These disposed of materials are a recycling process cost since they should be removed from the batches. In a recycling plant, the process is at the test run stage and the ratio z of recyclable Suppose that a value of 0.95 is the target of interest for the in-control ratio z 0 to avoid an economic loss.

θ X = θ Y = 0.05, n ∈ {1, 15}, ρ M = 0.4, m = 1, γ X = γ Y ∈ {0.01, 0.2} and ρ 0 = ρ 1 = -0.8. ρ 0 = ρ 1 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y 0.2) 1 1.5 2 2.5 3 3.5 
In the process of monitoring the ratio z, a sample of n = 5 is collected at regular intervals i = 1, 2, . . . with batches having nominal weight 100kg. Due to the variability, the batch weight is considered as a random normal variable Y ∼ N (100, 1). Similarly, the recyclable batteries' weight within each batch is a normal random variable with a target mean of µ X = 95kg. The sample average weights X * 2 presents a set of simulated samples of incoming material in the battery recycling process introduced in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF]. In these samples, a decreasing shift has been simulated from sample #11 with the size up to 1% of the in-control ratio z 0 . In addition, the coefficients of variations of two variables are γ X = 0.01 and γ Y = 0.01, and the in-control correlation coefficient between them is ρ 0 = 0.8. Similar to Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF], we suppose the following parameters of the linear covariate error model: θ X = θ Y = 0, η X = η Y = 0.28, ρ 1 = 0.8, b = 1, and ρ M = 0. Moreover, we suppose a smoothing λ = 0.2. Then, the control limit of the EWMA-RZ -control chart with measurement errors is LCL -= 0.9473618. 

i = 1 n n j=1 X * i,j and Ȳ * i = 1 n n j=1 Y * i,j are recorded. Table

Concluding remarks

In this paper, we have investigated the effect of measurement errors on the performance of the EWMA-RZ control chart. The assumption of the identity matrix in the linear covariate error model has been extended to the diagonal matrix. This helps to see the impact of this parameter on the proposed charts' performance. Some important conclusions can be drawn from this study as follows.

Both the precision error and the accuracy error have negative impacts on the one-sided EWMA-RZ control charts. However, when these errors are Taking multiple measurement per item is not an effective way to reduce the effect of measurement errors on the proposed chart performance.

Regardless of the measurement errors, the one-sided EWMA-RZ control charts outperform significantly the one-sided Shewhart-RZ control chart in detecting the process shifts.

Future research could be to investigate the effect of measurement error on the control charts monitoring the ratio of random normal variables like the adaptive exponentially weighted moving average-type control chart (Mitra et al. [START_REF] Mitra | An adaptive exponentially weighted moving average-type control chart to monitor the process mean[END_REF]), considering the case of short runs as in Nikolaidis & Tagaras [START_REF] Nikolaidis | New indices for the evaluation of the statistical properties of bayesian X control charts for short runs[END_REF] or considering Phase I implementation.
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The sizes τ < 1 correspond to a decrease of the in-control ratio z 0 , while the sizes τ > 1 correspond to its increase.

In the Markov chain approach, we devide the control interval into several subintervals, corresponding to severl states of the Markow chain. Let p + 2 be the states of the chain, where the transient states 0, 1, . . . , p belong to the control interval and the state p + 1 is a absorbing state: it represents a signal from the chart. Then, we can express the transition probability matrix P of the Markov chain as

P =   Q r 0 T 1   =            Q 0,0 Q 0,,1 . . . Q 0,p r 0 Q 1,0 Q 1,1 • • • Q 1,p r 1 . . . . . . . . . Q p,0 Q p,1 . . . Q p,p r p 0 0 • • • 0 1            .
where Q is a (p + 1, p + 1) matrix of transient probabilities, 0 = (0, 0, . . . , 0) T and r is a (p + 1) vector satisfying r = (1 -Q1) (i.e., row probabilities must sum to 1) with 1 = (1, 1, . . . , 1) T .

In particular, the interval control [z 0 , U CL + ] (resp.[LCL -, z 0 ]) of the EWMA-RZ + (resp. EWMA-RZ -) chart is divided into p subintervals of width 2δ, where δ = K + -1 2p (resp. δ = 1-K - 2p ). Similar to Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF], let H j denote the midpoint of the jth subinterval, j = 1, . . . , p and let H 0 = z 0 correspond to the "restart state" feature of our charts. Then, the generic elements Q i,j , i = 0, 1, . . . , p, of the matrix Q are calculated by for the EWMA-RZ + chart,

Q i,0 = F Ẑ * i 1 -(1 -λ + )H i λ + γ X * √ n , γ Y * √ n , ω * , ρ * ; ( 32 
)
for the EWMA-RZ -chart,

Q i,0 = 1 -F Ẑ * i 1 -(1 -λ -)H i λ + γ X * √ n , γ Y * √ n , ω * , ρ * ; ( 33 
)
for both charts, when j = 1, 2, . . . , p,

Q i,j = F Ẑ * i H j + δ -(1 -λ)H i λ γ X * √ n , γ Y * √ n , ω * , ρ * -F Ẑ * i H j -δ -(1 -λ)H i λ γ X * √ n , γ Y * √ n , ω * , ρ * , (34) 
where

F Ẑ * i (. . . ) is the c.d.f of Ẑ * i and λ is either λ + (EWMA-RZ + chart) or λ - (EWMA-RZ -chart).
After determining the transition probability matrix Q, the ARL is calculated by the following formula (see Tran et al. [START_REF] Tran | Monitoring the ratio of two normal variables using EWMA type control charts[END_REF])

ARL = q T (I -Q) -1 1, ( 35 
)
where q is a (p + 1, 1) vector of initial probabilities associated with the p + 1 transient states, i.e., q = (q 0 , q 1 , . . . , q p ) T . Concerning the zero-state condition, the vector q becomes q = (1, 0, . . . , 0). When the number p of subintervals is sufficiently large (p = 200 in this study), this finite approach provides an effective method to evaluate accurately the run-length properties of the proposed control charts.

The effect of parameters on the overall performance of the EWMA-RZ control chart in presence of measurement errors when ρ 0 = ρ 1 

Figures 1

 1 Figures 1 shows the effect of precision errors (represented by η X and η Y ) on the charts' performance given that no accuracy errors (i.e. θ X = θ Y = 0) exist. The EARL values are computed for η X ∈ {0, 0.1, 0.2, ..., 1}, η Y ∈ {0, 0.1, 0.2, ..., 1} and for fixed values of n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2}, m = 1, b = 1, ρ M = 0, ρ 0 = ρ 1 = -0.8 The obtained results show that the precision errors have a negative influence on the efficiency of the proposed charts: The larger the values of η X and η Y , the larger the values of EARL.

  01, we have EARL = 3.83 when η X = η Y = 0.5 compared to EARL = 3.57 when η X = η Y = 0.0, i.e. without precision error. The effect of accuracy errors (represented by θ X and θ Y ) on the EARL values of the EWMA-RZ control chart, given that no precision errors (i.e. η X = η Y = 0) exist, is presented in Figure 2. The calculation is made for the values of θ X ∈ {0, 0.005, 0.01, ..., 0.05}, θ Y ∈ {0, 0.005, 0.01, ..., 0.05} and for fixed values

2 ,Figure 1 : 15 ρ 1 =

 21151 Figure 1: The effect of η X and η Y on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for θ X= θ Y = 0, ρ M = 0, m = 1, b = 1, n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2}, and ρ 0 = ρ 1 . ρ 1 = ρ 0 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2)

Figure 2 : 15 ρ 0 = ρ 1 =

 21501 Figure 2: The effect of θ X and θ Y on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for η X = η Y = 0, ρ M = 0, m = 1, b = 1, n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2}, and ρ 0 = ρ 1 . ρ 0 = ρ 1 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2)

8 (

 8  show that the increase of ρ M lead to the decrease of EARL. Take the case n = 1, Ω D = [0.9, 1), ρ 0 = ρ 1 = -0.8, γ X = γ Y = 0.2 as an example:we have EARL = 57.75 when ρ M = -0.8 and EARL = 51.34 when ρ M = 0.8 (Figure10).A traditional method to reduce the effect of measurement errors in practice is to take multiple measurement per item, which is represented by the value of m. We demonstrate the performance of the EWMA-RZ control charts when m increases from 1 to 10 given the values of n ∈ {1, 15}, ρ M = 0.4,b = 1, γ X = γ Y ∈ {0.01, 0.2}, θ X = θ Y = 0.05, and η X = η Y = 0.28 in Figure 4. The obtained results show that for the EWMA-RZ control charts, the increase of m does not improve significantly the chart performance. This is shown by the almost constant lines in these figures. For example, with n = 1, b = 1,

Figure 3 :

 3 Figure 3: The effect of ρ M on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for n = 1 (--) and n = 15 (--), m = 1, b = 1, η X = η Y =

= ρ 1 =Figure 4 :

 14 Figure 4: The effect of m on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for n = 1 (--) and n = 15 (--), η X = η Y = 0.28,

= ρ 1 =

 1 -0.8; Ω I = (1; 1.1] (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2) , η X = η Y = 0.28 and ρ 0 = ρ 1 = -0.8 in Figure 5, we have EARL = 114.99 when b = 0.8 and EARL = 114.2 when b = 1.2. Although the increase of b leads to the decrease of the EARL, one shoud not consider increasing b as a way to reduce the impact of measurement errors since it will affect the quality of measurement system. The range of b in this study is motivated based on the discussion in Nguyen et al. [14].

  4 we have EARL = 82.13 for the EWMA-RZ - chart (Figure 4 in this study), while EARL = 110.57 for the Shewhart-RZ - chart (Figure 8 in Nguyen & Tran

Figure 5 :

 5 Figure 5: The effect of b on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for n = 1 (--) and n = 15 (--), η X = η Y = 0.28,

= ρ 1 =

 1 -0.8; Ω I = (1; 1.1] (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2) denoted by X) to total batch weight (denoted by Y ) is monitored to quantify the cost because of the presence of not recyclable batteries.

Figure 6

 6 Figure 6 illustrates the EWMA-RZ -control chart. The chart detects the out-of-control samples by plotting them below the control limit, which are the samples #11, #12, #13, and #15. The Shewhart-RZ -control chart could only detect the abnormality for the sample #11.
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 8150 Figure 8: The effect of η X and η Y on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for θ X = θ Y = 0, ρ M = 0, n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2}, and ρ 0 = ρ 1 . ρ 0 = -0.4; ρ 1 = -0.8; Ω D = [0.9; 1)
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 9150 Figure 9: The effect of θ X and θ Y on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for η X = η Y = 0, ρ M = 0, n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2}, and ρ 0 = ρ 1 . ρ 0 = -0.4; ρ 1 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2)

Figure 10 :Figure 11 :Figure 12 :

 101112 Figure 10: The effect of ρ M on the overall performance of the EWMA-RZ control chart in the presence of measurement errors for n = 1 (--) and n = 15 (--), m = 1, b = 1, η X = η Y = 0.28, θ X = θ Y = 0.05, n ∈ {1, 15}, γ X = γ Y ∈ {0.01, 0.2} and ρ 0 = -0.4, ρ 1 = -0.8. ρ 0 = -0.4; ρ 1 = -0.8; Ω D = [0.9; 1) (γ X = 0.01, γ Y = 0.01) (γ X = 0.2, γ Y = 0.2)

Table 1 :

 1 Optimal couples (K * -, λ * -) (first row) and (K * + , λ * + ) (second row) for the EWMA-RZ control chart in the presence of Measurement Error, for

Table 2 :

 2 The battery recycling industry example data

	Sample			X * i,j [kg] Y * i,j [kg]			X * i [kg] Ẑ * i = Ȳ * i [kg]	X * i Ȳ * i	Y * -i
	1	95.864	94.731	94.643	94.193	94.328	94.752	0.951	0.9502
		100.891 100.143 100.340 97.740	99.295	99.682		
	2	94.969	94.935	94.270	94.663	93.961	94.560	0.956	0.9500
		98.903	96.883	97.329 101.021 100.278 98.883		
	3	93.274	95.927	94.961	96.021	95.429	95.122	0.945	0.9490
		101.525 100.461 100.826 98.936 101.398 100.629		
	4	95.350	96.128	96.610	95.022	95.737	95.769	0.955	0.9500
		101.137 101.127 100.052 98.796 100.115 100.245		
	5	94.697	96.827	94.392	94.197	96.205	95.264	0.955	0.9500
		98.996 100.356 99.860 100.082 99.377	99.734		
	6	94.623	93.930	96.532	94.197	93.573	94.571	0.953	0.9500
		99.309	99.727	98.908	98.534	99.745	99.245		
	7	94.419	95.445	94.328	95.120	95.880	95.038	0.946	0.9492
		99.936	99.836 101.138 99.668 101.850 100.486		
	8	96.144	94.121	96.163	93.803	94.900	95.026	0.953	0.9499
		98.212 100.667 99.683	99.044 101.184 99.758		
	9	94.151	94.786	95.127	94.098	94.307	94.494	0.948	0.9495
		99.173 100.873 100.487 100.635 98.675	99.969		
	10	96.006	96.319	94.026	94.660	93.948	94.992	0.949	0.9494
		99.392	98.783 100.008 101.235 101.325 100.149		
	11	93.436	94.988	93.583	94.831	92.875 93.9426	0.934	0.9463
		100.491 100.976 100.815 100.102 100.685 100.614		
	12	95.832	95.250	94.402	95.221	95.698	95.281	0.947	0.9464
		100.007 101.654 100.648 101.531 99.040 100.576		
	13	95.746	93.764	92.958	94.811	94.250	94.306	0.943	0.9457
		99.164 100.864 100.174 99.642 100.309 100.031		
	14	95.897	95.408	95.121	94.810	96.402	95.528	0.956	0.9478
		101.025 98.955 100.267 99.332 100.238 99.963		
	15	95.481	95.595	94.547	95.299	94.600	95.104	0.944	0.9470
		99.933	99.406 102.736 100.533 101.300 100.782		
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Appendix

A brief review of the distribution of the sample of the ratio Let W = (X, Y ) T be a bivariate normal random vector with the mean vector µ W and the variance-covariance matrix Σ W where

in which ρ is the correlation coefficient between X and Y . By definition, the coefficients of variation of the two random variables X and Y , and their standard-

The ratio of X to Y is defined as Z = X/Y . In the literature, the distribution of Z is a major concern in several studies. As discussed in Tran et al. [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF], when the coefficient of variation of X and Y takes small values, for example, within the range [0, 0.2], the distribution of Z can be well approximated by the following formula, which is proposed by Celano & Castagliola [START_REF] Celano | Design of a phase II control chart for monitoring the ratio of two normal variables[END_REF]:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 z Density 

The authors (Celano & Castagliola [4]) also showed that the p.d.f (probability density function) of Z can be approximated by

where φ(.) is the p.d.f of the standard normal distribution. The Markov chain method to calculate ARL Suppose that the in-control ratio z 0 is shifted to z 1 = τ × z 0 due to an outof-control condition, where τ > 0 is the shift size. In addition, when the process