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Abstract

Making appropriate decisions is indeed a key factor to help companies facing

challenges from supply chains nowadays. In this paper, we propose two data-

driven approaches that allow making better decisions in supply chain manage-

ment. In particular, we suggest a Long Short Term Memory (LSTM) network-

based method for forecasting multivariate time series data and an LSTM Au-

toencoder network-based method combined with a one-class support vector ma-

chine algorithm for detecting anomalies in sales. Unlike other approaches, we

recommend combining external and internal company data sources for the pur-

pose of enhancing the performance of forecasting algorithms using multivari-

ate LSTM with the optimal hyperparameters. In addition, we also propose a

method to optimize hyperparameters for hybrid algorithms for detecting anoma-

lies in time series data. The proposed approaches will be applied to both bench-

marking datasets and real data in fashion retail. The obtained results show that

the LSTM Autoencoder based method leads to better performance for anomaly

detection compared to the LSTM based method suggested in a previous study.

The proposed forecasting method for multivariate time series data also performs

better some other methods based on a dataset provided by NASA.
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1. Introduction

In today’s globally competitive economy, making good decisions is a key

factor in the success of any business; a good decision is likely to generate value

for the business (Acharya et al., 2018). As a result, the problem of decision-

making support in supply chain management (SCM) is a major concern in a

large number of studies (Chen et al., 2019; Dolgui et al., 2020; Hosseini et al.,

2019; Ivanov and Dolgui, 2020; Ivanov et al., 2019). Among factors that lead to

proper decision-making approaches, forecasting and anomaly detection in SCM

are two very important tasks. A good forecasting method helps to balance

supply and demand, and then avoid understocking or overstocking in retail

inventory planning. As a result, other operations of the whole supply chain

such as due date management, production planning, pricing, and achieving high

customer service levels can be performed better. Meanwhile, a huge amount

of data generated at every stage of SCM leads to an overload of data and

the difficulty of discerning useful signals, which enable meaningful decisions

from meaningless ones. The approaches of anomaly detection allow determining

quickly anomalies or unexpected patterns for making more effective decisions. In

the literature, many studies have been carried out to provide efficient solutions

dealing with these two important tasks.

Related to the use of machine learning algorithms in the anomaly detection

, most of the current studies do not consider the previous or recent events in

detecting the new incoming outlier, i.e., they are based purely on the learning

of normally and anomaly behaviors (Bontemps et al., 2016). Recently, LSTM

emerges as a powerful technique to learn the long-term dependencies and rep-

resent the relationship between current events and previous events effectively.

Malhotra et al. (2015) suggested using stacked LSTM networks for anomaly

detection in time series. Then, a multi-sensor anomaly detection method based

on an LSTM encoder-decoder scheme is extended in (Malhotra et al., 2016). A

drawback in these two studies is that the authors used an assumption of mul-

tivariate Gaussian distribution for error vectors, which may not true in prac-

tice. To avoid this assumption, Tran et al. (2019) applied a control chart based

method using a kernel quantile estimator. The authors have also pointed out

that their LSTM based method outperforms the machine learning-based method
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in Schölkopf et al. (2001). However, this method may not always effective for

the multivariate time series data as only a single value of the characteristic of

interest is outputted from the network. From these points of view, the goal

of this paper is (1) to provide an LSTM based method for forecasting multi-

variate time series data and (2) to present an effective method for detecting

anomaly from multivariate time series data without using any assumptions for

the distribution of prediction errors. In particular, we suggest using a one-class

support vector machine (OCSVM) algorithm to separate anomalies from the

data outputted based on the LSTM Autoencoder network. In order to assess

the suitability of our proposed method, a real case study based on the fashion

retailing supply chain is considered. Fashion retailing, and more especially the

downstream supply chain, is a very challenging domain that requires advanced

intelligent techniques. The considered scenario is described more specifically in

the next section.

The rest of the paper is organized as follows. In section 3, we describe the

scenarios that motivate the proposed approaches for forecasting and anomaly

detection. Section 4 briefly presents the necessary concepts for the proposed

method, including the LSTM network, the LSTM Autoencoder network, and

the OCSVM algorithm. The approach for forecasting multivariate time series

data and for detecting an anomaly in multivariate time series based on the

LSTM Autoencoder network and the OCSVM algorithm is presented in Section

5. Section 6 shows the experiment and the obtained results from applying

our method for benchmarking and real datasets. In section 7, we discuss the

contributions, practical applicability, limitations, and future research direction

of this research. Some concluding remarks are given in Section 8.

2. Related Works

As mentioned above, forecasting and detecting anomalies from a multivariate

time series data are critical tasks in SCM. A good performance of these problems

enables managers to make better decisions in their work. However, the applica-

tions of forecasting and detecting anomalies from a multivariate time series data

are not limited to SCM. One might see the applications of these two important
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problems in many domains such as finance, banking, insurance, industrial man-

ufacturing, etc. As a result, references devoted to them are abundant in the

literature.

For the anomaly detection problem, Zhao et al. (2013) improved the quick

outlier detection (QOD) algorithm by clustering based on data streams applied

to cold chain logistics. Roesch and Van Deusen (2010) suggested a quality

control approach for detecting anomalies in the analysis of annual inventory

data. Two anomaly detection techniques, including a statistical-based approach

and clustering-based approach, were used to detect outliers in sensor data for

real-time monitoring systems of the perishable supply chain in (Alfian et al.,

2017). A number of studies focus on abnormal event detection in the supply

chain based on radio frequency identification (RFID) technology can be seen

in Sharma and Singh (2013); Huang and Wang (2014). Habeeb et al. (2019)

provided a comprehensive survey on real-time big data processing for anomaly

detection. The authors also proposed a taxonomy to classify existing literature

into a set of categories involved anomaly detection techniques and then analyzed

existing solutions based on the proposed taxonomy. A comprehensive survey on

deep learning approaches for anomaly detection is conducted in Chalapathy and

Chawla (2019). A large number of references have been studied to provide an

expansive overview of the problem. The deep learning-based anomaly detec-

tion models are divided into types, involving unsupervised, seme-supervised,

hybrid, and one-class neural networks. The idea of deep hybrid models is to use

deep neural networks mainly autoencoders as feature extractors. After learn-

ing within the hidden representations of autoencoders, these features are fed

to traditional anomaly detection algorithms such as OCSVM and SVDD (sup-

port vector data description) to detect anomalies. This type of deep learning

model has been applied in several situations with great success. However, the

structure of these deep hybrid models for anomaly detection is just a combina-

tion of some separated deep networks like CNN (convolution neural network)

and LSTM, with OCSVM or SVDD. Also, this type of model has not yet been

applied to multivariate time series.

For the forecasting problem, the auto-regressive integrated moving average

(ARIMA) model is commonly used as a methodology for linear time series data,
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however, it is not suitable for analyzing non-linear data (Zhang, 2003). The

machine learning models such as support vector regression and random forest

regressor are then developed to deal with non-linear data (Carbonneau et al.,

2008; Maqsood et al., 2020; Yang et al., 2020). By using nonlinear activation

functions, recurrent neural networks (RNNs) are essentially a nonlinear time

series model, where the non-linearity is learned from the data. A comparison

of ARIMA and long short term memory (LSTM) networks in forecasting time

series conducted in Siami-Namini et al. (2018) showed that the LSTM model

outperforms ARIMA model as the average reduction in error rates obtained by

LSTM was about 80% when compared to ARIMA. The time series forecasting

methods with deep learning are reviewed broadly in Lim and Zohren (2020). The

complex structures forming from combinations of deep learning networks like

CNN-FNN, LSTM-FNN, CNN-BLSTM, RBM-LSTM-FNN are also introduced

to deal with multivariate time series for forecasting (Xia et al., 2020; Deng

et al., 2020; Ellefsen et al., 2019), where FNN stands for feed-forward neural

network, BLSTM stands for bi-directional long short-term memory, and RBM

stands for restricted Boltzmann machines. It seems that one has to use more

complex structures for deep learning models to get higher performance, and the

use of simper deep learning networks for solving the forecasting problem is no

longer paying much attention The objective of this study is then to consider the

shortcomings in the literature discussed above.

3. Scenarios

In retailing, and more especially in fashion retailing, supply chain optimiza-

tion is crucial to control costs, increase customer satisfaction, manage inventory,

and finally improve the profit. The three main factors which make the fashion

retailing very specific are (Thomassey, 2014):

- the product variety is very high,

- the consumer demand is very fluctuating and sensitive to fashion trends,

weather, and price,

- the supply chain of fashion products is very complex and particularly long

compared to the short lifespan of products.
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Figure 1: An illustration of a two-part supply chain management

To deal with these specificities, fashion retailers have developed a two-part sup-

ply chain management (Thomassey, 2010) as illustrated in figure 1, including

(1) upstream from suppliers to warehouse, a cost-oriented supply chain with

bulk procurement based on long-term forecasts, and (2) downstream from the

warehouse to local stores, a responsive supply chain with frequent replenishment

of stores mainly based on short-term Point Of Sales (POS) data.

In this study, we focus on the downstream supply chain of fashion retailers.

As mentioned earlier, consumer demand very fluctuates. When the product

variety is high, inventory allocations become very challenging for an extensive

store network. Thus, companies rely on efficient and reactive information sys-

tem to monitor POS data and compute replenishment of each store for the next

day or next two days. Combined with efficient transportation and distribution

logistics, this process enables companies to drive their local inventories in most

of the situations. However, the high sensitivity of the demand to pricing effect

and weather conditions frequently involves sharp and immediate fluctuations

which can not be predicted by the POS data-based replenishment system. Tak-

ing into account the different constraints such as small store surfaces, limited

staff numbers to manage product reception, shelving, and sales force, these high

fluctuations generate significant profit loss. Therefore, a short-term sales fore-
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casting system should be developed to cope with this problem. Different models

have been proposed in the literature for this task ((Sirovich et al., 2018). How-

ever, the product variety and extensive store network generate a huge number

of situations which are as many sources of forecast errors. To deal with these

issues, the proposed approach which combines new advances in forecasting with

the LSTM network, the LSTM Autoencoder network, and the OCSVM algo-

rithm. In this context, the aim of our method is not only to predict the exact

sales by stock-keeping unit (SKU) and store but also to detect and anticipate

exceptional sales in order to enable practitioners to make a suitable decision

and adjust their replenishment for highlighted SKU/stores accordingly.

4. The needed concepts

In this section, we briefly review some artificial intelligence algorithms that

are necessary to build the proposed algorithm for the forecasting and the anomaly

detection, including the LSTM network, the autoencoder network, and the one-

class support vector machine algorithm.

4.1. Long Short Term Memory Networks

LSTM is a type of Recurrent Neural Network (RNN) that allows the net-

work to retain long-term dependencies between data at a given time from many

timesteps before. It has a form of a chain of repeated modules of neural net-

works, where each module includes three control gates, i.e. the forget gate, the

input gate, and the output gate. Each gate is composed out of a sigmoid neural

net layer and a pointwise multiplication operation. The sigmoid layers output

numbers in the interval [0, 1], representing a portion of input information that

should be let through. As the use of a RNN for time series data, the LSTM

reads a sequence of input vectors x = {x1,x2, . . . ,xt, . . .}, where xt ∈ Rm rep-

resents an m-dimensional vector of readings for m variables at time-instance t.

We consider the scenario where multiple such time-series can be obtained by

taking a window over a larger time-series. Even LSTM can work with any time-

series data, one should consider that its performance is not always the same as

it could vary depending on the input.
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Given the new information xt in state t, the LSTM module works as follows.

Firstly, it decides what old information should be forgotten by outputing a

number within [0, 1], say ft with

ft = σ1(Wf .[ht−1,xt] + bf ), (1)

where ht−1 is the output in state t− 1, Wf and bf is the weight matrices and

the bias of the forget gate. Then, xt is processed before storing in cell state.

The value it is determined in the input gate along with a vector of candidate

values C̃t generated by a tanh layer at the same time to updated in the new cell

state Ct, in which

it = σ2(Wi.[ht−1,xt] + bi), (2)

C̃t = tanh(Wc[ht−1,xt] + bc), (3)

and

Ct = ft ∗ Ct−1 + it ∗ C̃t, (4)

where (Wi,bi) and (Wc,bc) are the weight matrices and the biases of input

gate and memory cell state, respectively. Finally, the output gate, which is

defined by

ot = σ3(Wo.[ht−1,xt] + bo), (5)

ht = ot ∗ tanh(Ct). (6)

where Wo and bo are the weight matrix and the bias of output gate, determines

a part of the cell state being outputed. Figure 2, which has been reproduced from

figure 1 in (Tran et al., 2019) with the modifications, presents an illustration

of the structure and the operational principle of a typical LTSM module. In

this figure, the cell state runs straight down the entire chain, maintaining the

sequential information in an inner state and allowing the LSTM to persist the

knowledge accrued from subsequent time steps.

There are also various variants of LSTM suggested by different authors. A

direct comparison of popular variants of LSTM made by Greff et al. (2016)

showed that these variations are almost the same; a few among them are more

efficient than others but only in some specific problems.
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Figure 2: A module of LSTM network

4.2. LSTM Autoencoder

Autoencoder is an unsupervised neural network that aims to learn the best

encoding-decoding scheme from data. In general, it consists of an input layer, an

output layer, an encoder neural network, a decoder neural network, and a latent

space. When the data is fed to the network, the encoder compresses them into

the latent space, whereas the decoder decompresses the encoded representation

into the output layer. The encoded-decoded output is then compared with

the initial data and the error is backpropagated through the architecture to

update the weights of the network. In particular, given the input x ∈ Rm, the

encoder compress x to obtain an encoded representation z = e(x) ∈ Rn. The

decoder reconstruct this representation to give the output x̂ = d(z) ∈ Rm. The

autoencoder is trained by minimizing the reconstruction error

L =
1

2

∑
x

‖x− x̂‖2. (7)

The main purpose of the autoencoder is not simply to copy the input to the

output. By constraining the latent space to have a smaller dimension than the

input, i.e. n < m, the autoencoder is forced to learn the most salient features of

the training data. In other words, an important feature in the design of autoen-

coder is that it reduces data dimensions while keeping the major information of

data structure.

Several types of autoencoders have been proposed in the literature, such as

vanilla autoencoder, convolutional autoencoder, regularized autoencoder, and
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Figure 3: An illustration of a LSTM Autoencoder network

LSTM autoencoder. Among these types, LSTM autoencoder refers to the au-

toencoder that both the encoder and the decoder are the LSTM network. The

ability of LSTM to learn patterns in data over long sequences makes them

suitable for time series forecasting or anomaly detection. That is, the use of

the LSTM cell is to capture temporal dependencies in multivariate data. It is

shown in (Malhotra et al., 2016) that an encoder-decoder model learned using

only the normal sequences can be used for detecting anomalies in multivariate

time-series. The encoder-decoder has only seen normal instances during training

and learned to reconstruct them. When it is fed with an anomalous sequence,

it may not be reconstructed well, leading to higher errors. This has a practical

meaning since anomalous data are not always available or it is impossible to

cover all the types of these data. Many advantages of using the autoencoder

approach have been discussed in (Provotar et al., 2019). The use of LSTM au-

toencoder for anomaly detection on multivariate time series data can be seen

in several studies, for example, Pereira and Silveira (2018) and Principi et al.

(2019).

Figure 4 provides an illustration of a LSTM autoencoder network.

4.3. One-Class Support Vector Machine

One-class support vector machines (OCSVM) is a machine learning algo-

rithm that aims to estimate the support of distribution. Given a data set

{y1,y2, . . . ,yi, . . . ,yN}, yi ∈ Rd, the basic idea behind the OCSVM is to find
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a hyperplane defined in a high-dimensional Hilbert feature space F with max-

imum margin separation from the origin. The data are mapped to space F
through a nonlinear transformation Φ(.). Then, the problem of separating the

data set from the origin is equivalent to solving the following quadratic program

(Schölkopf et al., 2001):

Minimize

w,a, ξ, ρ

1

2
||w||2 +

1

νN

N∑
i=1

ξi − ρ (8)

subject to (w.Φ(yi)) ≥ ρ− ξi, ξi ≥ 0 ∀i = 1 . . . N, (9)

where w is a vector perpendicular to the hyperplane in F , ρ is the distance to

the origin, ξi ≥ 0 are slack variables to deal with outliers that may include in

the training data distribution, and ν ∈ (0, 1] is the parameter to control the

tradeoff between the number of examples of the training set mapped as positive

by the decision function

f(y) = sgn((w.Φ(y))− ρ). (10)

It should be considered that in this algorithm, it is not necessary to work

directly on the scalar product (Φ(yi).Φ(yj)). Instead, one can use a kernel

function k(yi,yj) as an efficient alternative. The most commonly used kernel is

the radial basis functions (RBF, or Gaussian) kernel:

k (yi,yj) = exp

(
−||yi − yj ||2

2σ2

)
(11)

where σ > 0 stands for the kernel width parameter. In the feature space, the

distance between two mapped samples yi and yj is:

||φ (yi)− φ (yj)||2 = k (yi,yi) + k (yj ,yj)− 2k (yi,yj)

= 2

[
1− exp

(
−||yi − yj ||2

2σ2

)]
(12)

Equation (12) shows a positively proportional relation between ||φ (yi)− φ (yj)||
and ||yi − yj ||. That is to say, the ranking order of the distances between

samples in the input and feature spaces is preserved by using the Gaussian

kernel.

11



By using the Lagrangian method and the kernel function, Schölkopf et al.

(2001) showed that the problem of solving the quadratic program (8) can be

transferred to the following dual optimization:

α?i = Argmin

α

N∑
i=1

N∑
j=1

αiαjk(yi,yj) (13)

subject to

N∑
i=1

αi = 1, 0 ≤ αi ≤
1

νN
, ∀i = 1 . . . N (14)

Samples yi that correspond to 0 < α?i <
1
νN are called support vectors. Let

NSV stands for the number of support vectors, then the discriminant function

is reduced to:

f(y) = sgn

(
NSV∑
i=1

α?i k(y,yi)− ρ
)
. (15)

5. Proposed approaches

5.1. Multivariate time series forecasting using LSTM

Multivariate time series refers to a time series that has more than one time-

dependent variable. That means each variable depends not only on its past

values but also has some dependency on other variables. This dependency of

multivariate time series is convenient in modeling interesting interdependencies

and forecasting future values. However, because of its nature, it can be difficult

to build accurate models for multivariate time series forecasting, an important

task in many practical applications. In the literature, several multivariate time

series predictive models have been proposed such as the vector auto-regressive

(VAR) model and the Bayesian VAR model. A summary of advanced multi-

variate time series forecasting approaches based on statistical models can be

seen in (Wang, 2018). Recently, the rapid developments of artificial neuron

networks provide a powerful tool to handle a wide variety of problems that

were either out-of-scope or difficult to do with classical time series predictive

approaches. For example, a multivariate time series forecasting method using

LSTM has been suggested for forecasting air quality in (Freeman et al., 2018).

The method will be explained in detail below to apply in our situation.
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Let xt = {x(1)t , x
(2)
t , ..., x

(k)
t }, t = 1, 2, . . . denote a multivariate time series at

the time t where k is the number of variables. In a supply chain, xt could be the

value of some specific features such as sales, temperature, humidity and product

price. The LSTM network is trained based on a sequence of observed data {x1,

x2, . . . ,xN}, where N is the number of samples, as follows. Firstly, individual

observations are scaled using the MinMaxScaler function by the formula

x
(i)
scaled =

x(i) − x(i)min
x
(i)
max − x(i)min

, i = 1, . . . , k, (16)

where x
(i)
max and x

(i)
min are the maximum and minimum values of x(i) in the data

set, respectively. To make the notations simple, we write x(i) for x
(i)
scaled and

understand that this is scaled data. Then, in the training process, we set up a

sliding window of size m, m < N . That is to say, m consecutive multivariate

variables are fed to the LSTM at the same time. We will use these m ∗ k inputs

to predict the next value of the characteristic of interest, say x
(1)
∗ . For example,

at the first window, the sequence {x1, x2, . . . ,xm} in the training data set is

taken to feed the LSTM and the network can predict the value x̂
(1)
m+1. In the

second one, based on the sequence {x2, x3, . . . ,xm+1}, the LSTM can predict

the value x̂
(1)
m+2. This process continues until the windows slide to the end of

the training data set. The weights of the LSTM network is trained to minimize

the loss function of error prediction:

L =

N∑
i=m+1

ei, (17)

where ei = ‖x̂(1)i − x
(1)
i ‖. The performance of the LSTM network is evaluated

using the loss metric root mean square error (RSME):

RMSE =

√√√√ 1

N −m− 1

N∑
i=m+1

(x̂
(1)
i − x

(1)
i )2. (18)

After training, the network is used for forecasting. In particular, the value

x̂
(1)
N+1 can be predicted from the LSTM based on the input {xN−m+1, xN−m+2,

. . . ,xN}. In practice, some of the parameters of the model need to be optimized

based on the input data to achieve the best performance. In our study, the

learning rate, the number of cells, and the dropout will be optimized. The

choice of the sliding window is also a question in some situations. However, one
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should consider the ability to learn long temporal dependence of the LSTM.

This ability makes LSTM not need to pre-determine a specified time window:

it can find the optimal look-back number on its own. That is to say, we can

try some specific values for the size of the sliding window and let LSTM learn

from data. If one wants to try another value for the sliding window size, other

parameters need to be re-optimized and it can take more time. In this study, we

will assign a particular value for the sliding window size based on our knowledge

of the data. Appendix A provides pseudocode for the proposed method.

5.2. Anomaly detection in using Autoencorder LSTM and OCSVM

The LSTM based method presented in the previous section is for forecast-

ing a specific variable in a multivariate time series. This value can be used to

detect anomaly as proposed in (Tran et al., 2019). However, using only this

value for anomaly detection can be ineffective in several situations as the de-

pendence of these predicted values on the predicted values of other variables is

ignored. In this section, we propose an alternative for anomaly detection using

the autoencoder LSTM and OCSVM. The proposed method is as follows.

Suppose that the autoencoder LSTM has been trained from a normal se-

quence {x1, x2, . . . ,xN}, where N is the number of samples and xt = {x(1)t , x
(2)
t ,

..., x
(k)
t }, t = 1, 2, . . . is the value of the multivariate time series at the time t

with k number of variables (these notations are from previous section). Us-

ing a sliding window of size m, the trained autoencoder LSTM can read the

input sequence Xi = xt, . . . ,xt−m+1, encode it and recreate it in the output

X̂i = (x̂t, . . . , x̂t−m+1), with i = m + 1, . . . , N.. Figure 4 presents an illustra-

tion of the operation of the autoencoder LSTM network for the sliding window

of size 2. Since these values has been observed from the data, one can calculate

the prediction error vector ei = X̂i−Xi, i = m+ 1, . . . , N. The anomaly detec-

tion is then based on these prediction error vectors. In (Malhotra et al., 2016),

the authors supposed that these error vectors follow a Gaussian distribution

and then used the maxi- mum likelihood estimation method to estimate the

parameters of this distribution. This method is similar to the one suggested in

(Malhotra et al., 2015). However, one can argue that the assumption of Gaus-

sian distribution for error vectors may not be true in practice. We overcome

the disadvantage of this method by using machine learning algorithms that do
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not require any specific assumption of data. Among the machine learning al-

gorithms, OCSVM is a very effective algorithm that can be used to detect the

anomaly. Since the dependency in the multivariate time series is eliminated

by using the autoencoder LSTM, the error vectors ei, i = m + 1, . . . , N can

be considered as independent. From these vectors, the OCSVM can define a

hyperplane to separate the abnormal observations from normal samples. An-

other possible method to avoid the Gaussian distribution assumption is to use

the kernel quantile estimation (KQE) method as applied in (Tran et al., 2019).

Compared to the anomaly detection method suggested in (Tran et al., 2019), the

proposed method in this study has more advantages. The autoencoder LSTM

using in this study allows extracting important features from the multivariate

time series more efficiently. Moreover, by outputting a vector rather than a

component of the vector, the dependence between the components of the pre-

dicted vector is held. As a result, it makes the machine learning algorithms

for classification or anomaly detection more efficient. Similar to the previous

section, the learning rate and the number of cells will be optimized based on the

input data rather than being pre-determined for achieving better performance

of the model. Pseudocode for the proposed method can be seen in Appendix B.

6. Experiment and results

6.1. Benchmarking datasets

In this section, we verify the performance of our proposed methods based on

two simulated datasets: the C-MAPSS datasets for forecasting and the gener-

ated datasets for detecting an anomaly. The code used in this section is available

in: https://github.com/huudunguyen/Forecasting_Anomaly_Detection_Auto_

LSTM.

6.1.1. C-MAPSS datasets used for forecasting

C-MAPSS (Commercial Modular AeroPropulsion System Simulation) is sim-

ulated turbofan engine degradation datasets produced and provided by NASA

and it is widely used in the study of remaining useful life prediction (Saxena

and Goebel, 2008). In order to assess the performance of the LSTM based

method for forecasting multivariate time series data, similar to Xia et al. (2020)
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Figure 4: An illustration of the operation of the autoencoder LSTM network for the sliding

window of size 2

we evaluate the method based on the first dataset of C-MAPSS, i.e. the FD001

dataset. The C-MAPSS FD001 is split into the training set and the test set of

multiple multivariate time series. The training set contains the run-to-failure

condition monitoring data stream for 100 engines of the same type, while the

testing set contains the same type data of engines that ends sometime before

failure occurs. The length of condition monitoring data is inconsistent from one

engine to another, and it is contaminated with sensor noise, making it a chal-

lenging task to predict the remaining useful lifetime (RUL). (Xia et al., 2020).

Table 1 presents more details of this dataset.

The objective is to predict the true RUL of each engine in the testing set

by using the data from the training set. That is, the data from the training

set are fed to train the model and the trained model is used to predict the

RUL of testing engines. In the training process, the number of cells, dropouts,

and the learning rate of the model is optimized. The optimized model for this

dataset is presented in Appendix D. Our computation is performed on a platform

with 2.6 GHz Intel(R) Core(TM) i7 and 32GB of RAM. It took about 5 hours
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FD001 Training set Test set

Number of engines 100 100

Number of data 20631 13096

Minimum running cycle 128 31

Maximum running cycle 362 303

Mean running cycle 206.31 130.96

Table 1: The C-MAPSS FD001 dataset

for the training parameters of the model during the training process. After

being optimized, these parameters have been used to re-train the model and to

predict RUL on the testing set, this stage took only a few minutes. It should

be considered that one can obtain a higher performance of the model by finding

optimized parameters with different structures of LSTM. However, it might take

more time for training. Figures 5-6 sketch the difference between the predicted

RUL and the true RUL from the testing set and the corresponding line plots of

train loss and validation loss using our proposed method. The obtained result

shows that the predicted values are very close to the true ones. Also, after a few

epochs, errors on the training sets and the validation sets decrease remarkably.

That is to say, the proposed LSTM based method for forecasting multivariate

time series from the C-MAPSS FD001 dataset is effective.

In the literature, the C-MAPSS FD001 dataset has been extensively studied

for verifying an RUL prognostic model and many related studies have been

published. Table 2 compares the prognostic performance of our proposed model

with some other recent model based on the metric RMSE. It can be seen from

Table 2 that although the structure of our LSTM based model is simpler than

other ensemble or hybrid models, it still leads to the smallest RMSE. That is,

we can say that the proposed method has a superior performance in forecasting

multivariate time series data.

6.1.2. Generated data used for detecting anomaly

For evaluating the performance of the LSTM autoencoder-OCSVM based

method in detecting anomaly from multivariate time series, we simulate a train-

ing data set of 6988 normal samples and a validation data set of 1398 normal
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Figure 5: The true RUL and the predicted RUL using LSTM autoencoder for the FD001

dataset

Figure 6: Line plot of train and validation loss from the proposed model during training on

the FD001 dataset.
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Method & Refs. RMSE

MTW-BLSTM ensemble (Xia et al., 2020) 12.61

LSTM- FW-CatBoost (Deng et al., 2020) 15.8

RBM-LSTM-FNN (Ellefsen et al., 2019) 12.56

Proposed method 9.71

Table 2: RMSE comparison with the literature on the C-MAPSS FD001 dataset

Figure 7: An illustration of the generated data (testing phase)

samples representing the normal sales. A function for generating data has been

shown in Appendix C. The optimized LSTM autoencoder model from the train-

ing process based on this simulated data is displayed in Appendix E.

After training, we compare the performance of the LSTM-KQE based method

applied in (Tran et al., 2019), the LSTM Autoencoder-KQE based method, and

the LSTM Autoencoder-OCSVM based method proposed in this study through

2989 normal and abnormal samples of a simulated testing data set. In this

testing data set, we simulate a small shift from 999th sample to 1499th sample.

Figure 7 displays a graph of generated data for the testing phase.

The comparison is made by using the following measures:
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Method DR(Recall) Precision Accuracy F-score

Method in Tran et al. (2019) 0.9815 0.9465 0.9384 0.8805

LSTM Autoencoder with KQE 0.9807 0.9583 0.9484 0.9029

LSTM Autoencoder with OCSVM 0.9959 0.9845 0.9836 0.9698

Table 3: Compare the performance of our proposed method and the method suggested in

Tran et al. (2019)

• Accuracy = TP+TN
TP+FP+TN+FN • Recall = TP

TP+FN

• Precision = TP
TP+FP • F-score = 2× Precision×Recall

Precision+Recall

where TP (True Positive) stands for the number of anomalies correctly diag-

nosed as anomalies, TN (True Negative) stands for the number of normal events

correctly diagnosed as normal, FP (False Positive) stands for the number of nor-

mal events incorrectly diagnosed as anomalies, and FN (False Negative) stands

for the number of anomalies incorrectly diagnosed as normal events. By their

definition, Precision is used to evaluate how accurate the result is, and Recall

is used to evaluate how complete the result is. Also, F-score is used to seek a

balance between Precision and Recall.

The obtained results are given in Table 3. As can be seen from this Table,

the LSTM Autoencoder based method leads to better performance compared to

the LSTM based method in Tran et al. (2019). In particular, the Accuracy, the

Precision, and the F-score corresponding to the LSTM Autoencoder (in the sec-

ond row and the third row) are significantly larger than the ones corresponding

to the LSTM (in the first row). In addition, the use of the OCSVM algorithm

for classification brings the best results with an Accuracy of 98.36%, a Preci-

sion of 98.45%, and F-score of 96.98%, and a Recall of 99.59%. That is to say,

our proposed method of using the LSTM Autoencoder combining with OCSVM

outperforms other methods, ensuring more accurate detection of anomalies in

sales. Therefore, this method will be applied in the next section for anomaly

detection in a real fashion retail data set.
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6.2. Real fashion retail data

The data are collected from a store in the center of a city in France from

01/01/2015 to 18/11/2019. They are considered as a multivariate time series

with five variables, involving sales quantity (of the T-shirts), price discount,

temperature, rain (precipitation in mm) and initial price (without discount).

Figure 8 presents the distribution of variables from the collected data.

Figure 8 illustrates the historical data which are collected. The daily sales

(figure 8 (a)) demonstrate different seasonal effects:

- an annual seasonality related to the product typology (T-Shirt) with

higher sales during the summer,

- a weekly seasonality related to consumer behavior, common in retailing

activities, with higher sales on Saturdays.

An overall decreasing trend can also be detected since the among of sales seems

to decline every year. These features are typically well dealt with time series

models. However, some peaks and sharp surges often occur in sales. These vari-

ations are produced by different factors. Sales of fashion products are generally

considered as very sensitive to price discounts and weather data (Thomassey,

2014, 2010). Impacts of these explanatory variables on sales are often complex,

nonlinear, period-dependent, and inter-correlated. Consequently, the analysis

of these impacts requires a multivariate time series model. The figure 8b and 8c

show the discount rates and the original price (average) of the T-Shirts. Sales

increasing can be identified during discount periods. However, it appears that

similar discount rates have very different impacts on sales. Thus, the original

price is also considered to complete the information on the discount rate. The

weather data, temperature (figure 8d), and rainfall (figure 8e) give further in-

formation to explain the peaks in the sales. It is difficult to measure visually

the impacts of these variables since they are generally very brief. The purpose

of the proposed forecasting model is to deal with the combinations of all these

factors (sales features, discounts, weather data) to provide a forecast as accu-

rate as possible. Nevertheless, unexpected variations, visible in figure 8a and

identified more specifically in figure 12, can not be taken into account by the

forecasting model. For this reason, the proposed anomaly detection model aims
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to detect these variations to enable decision-makers to modify and adapt the

replenishment strategy accordingly.

The total data of 1441 days are divided into three parts: 56% (807 days of

sales) of data is for the training, 14% of data (202 days of sales) is for validation,

and the rest of 30% of the data (432 days of sales) is for testing. For the choice

of the test base, we took the sales of a fiscal year as a test (01/04 2018 -

31/03/2019) and we took one week for each sales period (8 weeks). Moreover,

we have tried different ratios which are quite popular in the literature and picked

up this ratio since it gave the best performance. However, one should consider

that the obtained result also depends on each dataset and the performance of

the proposed method would vary based on the portions of the training.

6.2.1. Sales forecasting

From the collected data set, we use a sliding window of the size 30, i.e., we

take the data of 30 consecutive days to predict the sales of the next single day.

Moreover, we apply the LSTM network with hyperparameters of 50 LSTM cells,

10 epochs; the dropout is 0.1 and the learning rate is 0.001. The choice of these

hyperparameters is based on the method of Grid search hyperparameters for

LSTM models. A comparison of the loss function (mean square error) of the

model on both training and validation data sets is given in Figure 9. It shows the

differences between the true value and the estimation from the model. Epochs

are defined as the number of complete training pass made by the model on the

training dataset. The figure clearly shows a significant decrease in errors on

both data sets d after some epochs.

After training the model, we use it to predict the sales on the test data

set. Figure 10 shows a comparison between the real sales and predicted sales

using LSTM. From this figure, one can see that the predicted values catch the

changing trend of real sales. Moreover, the mean square error corresponding

to the scaled data is MSE = 0.05. This value is converted to a real MSE of

95.204. We also calculate the mean forecast error by the formula

MFE =
1

1441− 30

∑
i

(xi − x̂i)
xi

(19)

where xi and x̂i represent the real sales and predicted sales at the time i. The

obtained result is 12.47%. These results show that the LSTM based forecasting
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Figure 9: Line plot of train and validation loss from the multivariate LSTM during training

model leads to a good prediction and it can be applied to predict the sales in

practice. For further research, more features/variables that may affect the sales

such as the color of products, the size, and the store could be considered in the

multivariate time series to improve the performance of the model.

6.2.2. Anomaly detection in fashion retail data

The LSTM Autoencoder network and the OCSVM are trained based on

the same training data set as for forecasting in the previous section. Then,

anomaly detection is performed based on the testing set. As discussed above,

the LSTM Autoencoder transforms input data in different ways using a set of

mathematical operations until it learns the essential parameters and the format

rules of the input data to reconstruct closed data. To illustrate the difference

between the learned representation and the original time series, we consider the

prediction error vectors e for the testing phase, we use the principal component

analysis method. In figure 11, we display the output of LSTM Autoencoder

reduced in a two-dimensional coordinate plane. The characteristics extracted

from anomaly data tend to be split into a cluster and they are different from the

ones extracted from normal data. That is to say, LSTM Autoencoder has done

well in its mission to extract attributes from the input. Then, the OCSVM can

classify accurately anomalies from those representations and color them.

Figure 12 shows the anomaly points (red points) which are different from nor-
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Figure 10: A comparison between real sales and predicted sales using LSTM

mal behavior. For example, we can see the unusually high values in September

2018 and there are times when the sales are abnormally low like in September

2019. The company should find out the factors that lead to these anomalies. It

could be new sales policies, new sales staff, and new style products that lead to

higher sales quality; or they could also be the factors that lead to lower sales

quality. Pointing out these anomaly sales may be very useful for companies to

make better decisions for future management.

7. Discussion

The contributions and practical implications of the proposed methods in this

study are discussed in this section.

7.1. Theoretical contribution

The theoretical contribution of this study includes two parts. Firstly, we de-

velop a multivariate time series forecasting model based on LSTM with the ap-

plication in sales forecasting. In order to verify the performance of the proposed
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Figure 11: Illustration of the the learned representation of LSTM Autoencoder from the

original multivariate time series using PCA method

Figure 12: The anomaly detection for real data based on the LSTM Autoencoder network

and the OCSVM algorithm
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forecasting model, we utilized a well-known dataset (i.e. C-MAPSS FD001

dataset provided by NASA) with a large number of samples, including 20631

samples for training and 13096 samples for testing. In the literature, this dataset

has been widely used to evaluate the effectiveness of many complex deep learn-

ing models like CNN-FNN, LSTM-FNN, CNN-BLSTM, and RBM-LSTM-FNN.

Our proposed model, which is simply an LSTM based model, is obviously sim-

pler than these models. However, by considering optimizing the parameters

(i.e. learning rate, number of cells, and dropout) rather than choosing a pre-

determined value, it has brought a significantly higher performance compared

to the performance of others. This finding could be very useful for other authors

in designing their deep learning model for a specific purpose of forecasting deal-

ing with not only multivariate time series but also other kinds of data. That

is, they can consider a simpler structure and optimize its parameters instead

of choosing more complex combinations. In applying our proposed model for

a real situation in SCM, we have suggested using weather variables (i.e. tem-

perature, rain - precipitation in mm) to integrate into the model along with

traditional variables like initial price and price discount to predict the sales.

This could be the first time a forecasting model of sales in SCM considering

these weather attributes has been suggested. The use of these variables will

help to improve the performance of the forecasting model. Secondly, we have

developed a novel deep hybrid model for anomaly detection. The autoencoder

LSTM is used as a feature extractor to extract important representations of

the multivariate time series input and then these features are input to OCSVM

for detecting anomalies. This model results in better performance compared

to the performance from several previous studies. We also consider optimizing

the hyperparameters of autoencoder LSTM. To the best of our knowledge, the

idea of using autoencoder LSTM with optimized hyperparameters and OCSVM

for anomaly detection has not been suggested in the literature. The proposed

model has been applied to detect anomalies in sales from a real dataset of a

fashion company in France.

7.2. Implications for practice

As shown in the experiment section, the proposed models can be applied for

forecasting and detecting anomalies in sales. An accurate prediction for sales in
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the near future can help managers to have a good plan for stocking, enhancing

economic efficiency, and optimizing the business of the company. In this study,

only five variables are considered. However, more factors that may have a sig-

nificant effect on the sales can be involved in the practice. The accuracy of the

proposed method could be improved remarkably once these factors are included

in the input. One should consult experts or experienced staff to find out them.

Meanwhile, detecting accurately anomalies in sales enables the company to have

an insight into its operating and marketing strategies. A negative anomaly in

sales may correspond to not good strategies in marketing, leading to a decrease

in sales. The strategies need to be reviewed and adjusted. By contrast, once

a positive anomaly is detected from the model, it could be useful to investi-

gate and explain the reason, thereby increasing sales and having appropriate

strategies for the future. In addition, one should consider that the application

of our proposed models is not limited to SCM. In fact, they can be applied

to any scenarios related to multivariate time series. For example, the LSTM

based forecasting model can be used for stock forecasting, power consumption

forecasting, air pollution forecasting, RUL forecasting, etc. The anomaly detec-

tion model can be used for fraud detection, cyber-intrusion detection, medical

anomaly detection, industrial damage detection, and so on.

7.3. Limitations and future research direction

One of the limitations of this study is the ability to access real data from

the company due to business security issues. However, the obtained results on

the real data are also impressive and they have been confirmed by the company.

Another limitation is that the anomaly detection model is used to detect the

anomalies that happened in past data. It could be more interesting if it can be

used for predicting anomalies happening in the future. This could be considered

for further research. For example, we are thinking about combining two models,

including forecasting and detecting anomalies models for this task. We think of

taking the past data until today to build the forecasting model, and then use this

model to predict the sales for tomorrow. After that, we use the predicted value

of the sales as the input of the anomaly detecting model, combining with the

sales from previous H-1 days including the today sales (where H is the size of the

sliding window), to find out if this value is an anomaly or not. This study could
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be very useful for companies to have an effective and early strategy. Finally, we

are thinking of improving the performance of the proposed anomaly detection

model by using another version of Autoencoder like the Variational autoencoder

(Kingma and Welling, 2019). An advantage of a variational autoencoder is that

it can avoid overfitting and ensure that the latent space has good properties of

enabling the generative process.

8. Conclusions

In this paper, we have focused on two important problems in supply chain

management, involving forecasting sales and detecting an anomaly in sales. The

LSTM based method for multivariate time series has been suggested for fore-

casting while the LSTM Autoencoder combining with the OCSVM has been

used for anomaly detection. We have applied our proposed approaches to gen-

erated data and real data from fashion retail. The obtained results have shown

that these methods worked well on both kinds of data. On generated data,

the autoencoder LSTM OCSVM based method outperforms the LSTM based

method suggested in (Tran et al., 2019) for anomaly detection. The LSTM

based forecasting model also performs better some other complex models in

RUL forecasting from the C-MAPSS FD001 dataset provided by NASA. On

real data, the trend in real sales can be well predicted with a small MSE. The

theoretical contributions include the proposed use of combined external and in-

ternal company data sources to enhance the predictability of the LSTM model

while optimizing the hyperparameters of the LSTM model based on data to

help us achieve higher performance than previously proposed methods on both

benchmarking and real datasets. Similarly, the performance of the proposed

new irregular algorithm is also improved by optimizing the hyperparameters of

the model. In addition, the algorithms proposed in this study can be applied

to any field with abnormal forecasting and detection needs. In future studies,

we expect to be able to further improve the performance of this forecasting

model by using additional external data sources such as GDP, unemployment

rate, data from social networks, etc. In addition, combining the predictive model

and the anomaly detection model to design an algorithm that can predict future

anomalies in sales can be an interesting research direction .
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Appendix

A. Multivariate time series forecasting using LSTM

Algorithm 1: Multivariate time series forecasting using LSTM

Input: (x1,x2, . . . ,xN ) - a sequence of multivariate variables, number

of epochs B, learning rate λ, sliding window size m, dropout rate, number of cell.

Output: The predited value x
(1)
N+1 which is the first component of xN+1.

Initialize the parameters of the LSTM

for i ∈ {1, . . . , B} do

x̂
(1)
t ← LSTM (xt, . . . ,xt−m+1)

Let the loss L be defined as ‖x̂(1)
t − x

(1)
t ‖

Optimize the parameters LSTM based on the loss function L and the back

propagation method with learning rate λ.

End for

Input data in LSTM to generate the predicted value x
(1)
N+1

return x
(1)
N+1.
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B. Multivariate time series anomaly detection using LSTM autoencoder and

OCSVM

Algorithm 2: Multivariate time series anomaly detection using LSTM

autoencoder and OCSVM

Input: (x1,x2, . . . ,xN ) - a sequence of multivariate variables, number

of epochs B, learning rate λ, sliding window size m, dropout rate,

number of cell

Output: The classified input as normality or anomaly.

Initialize the parameters of the LSTM autoencoder

for i ∈ {1, . . . , B} do

X̂j = (x̂t, . . . , x̂t−m+1)← LSTM autoencoder(Xj = xt, . . . ,xt−m+1), j = m+ 1, . . . , N

Let the loss L be defined as ‖X̂j − X̂j‖

Let the predicted error vector et be defined as ej = X̂j − X̂j , j = m + 1, . . . , N

Optimize the parameters LSTM autoencorder based on the loss function L

and the back propagation method with learning rate λ.

Optimize the parameters OCSVM based on the predicted error vector ej

End for

Input data in LSTM autoencoder - OCSVM for classification

return The classified input as normality or anomaly.
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C. Generating time series data

Algorithm 3: Generating time series data

Generate a synthetic wave by adding up a few sine waves and some noise

Output: the final wave

t← an initial sequence of size n

wave1 = sin(2 ∗ 2 ∗ π ∗ t)
noise ← a random normal sample of size t

wave1 ← wave1 + noise

wave2 ← sin(2 ∗ π ∗ t)
t.rider ← an initial sequence of size m,m� n

wave3 ← −2 ∗ sin(10 ∗ π ∗ t.rider)
insert ← an interger value less than n−m
wave1[insert:insert + m] ← wave1[insert:insert + m] + wave3

return: wave1 - 2*wave2

D. Optimized LSTM model for RUL based on FD001 dataset

#Best parameters:

num cells=50

dropout rate=0.1

lr=0.01

Layer (type) Output Shape Param #

lstm 1 (LSTM) (None, 30, 50) 13600

dropout 1 (Dropout) (None, 30, 50) 0

lstm 2 (LSTM) (None, 50) 20200

dropout 2 (Dropout) (None, 50) 0

dense 1 (Dense) (None, 1) 51

activation 1 (Activation) (None, 1) 0

Total params: 33851

Trainable params: 33851

Non-trainable params: 0
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E. Optimized LSTM autoencoder model for anomaly detection based on the gen-

erated dataset

#Best parameters:

num cells=256/64/64/256

lr=0.01

Layer (type) Output Shape Param #

lstm 1 (LSTM) (None, 10, 256) 264192

lstm 2 (LSTM) (None, 64) 82176

repeat vector 1 (None, 10, 64) 0

lstm 3 (LSTM) (None, 10, 64) 33024

lstm 4 (LSTM) (None, 10, 256) 328704

time distributed 1 (None, 10, 1) 257

Total params: 708353

Trainable params: 708353

Non-trainable params: 0

37


	Introduction
	Related Works
	Scenarios
	The needed concepts
	Long Short Term Memory Networks
	LSTM Autoencoder
	One-Class Support Vector Machine

	Proposed approaches
	Multivariate time series forecasting using LSTM
	Anomaly detection in using Autoencorder LSTM and OCSVM

	Experiment and results
	Benchmarking datasets
	C-MAPSS datasets used for forecasting
	Generated data used for detecting anomaly

	Real fashion retail data
	Sales forecasting
	Anomaly detection in fashion retail data


	Discussion
	Theoretical contribution
	Implications for practice
	Limitations and future research direction

	Conclusions

