
HAL Id: hal-03083627
https://hal.science/hal-03083627v1

Submitted on 19 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact recovery analysis of non-negative orthogonal
greedy algorithms

Thi Thanh Nguyen, Charles Soussen, Jérôme Idier, El-Hadi Djermoune

To cite this version:
Thi Thanh Nguyen, Charles Soussen, Jérôme Idier, El-Hadi Djermoune. Exact recovery analysis of
non-negative orthogonal greedy algorithms. International Traveling Workshop on Interactions between
low-complexity data models and Sensing Techniques, iTWIST 2020, Dec 2020, Nantes, France. �hal-
03083627�

https://hal.science/hal-03083627v1
https://hal.archives-ouvertes.fr


Exact Recovery Analysis of Non-Negative Orthogonal Greedy
Algorithms

Thanh T. NGUYEN1, Charles SOUSSEN2, Jérôme IDIER3, El-Hadi DJERMOUNE1
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Abstract— It is well-known that Orthogonal Matching Pur-
suit (OMP) recovers the exact support of K-sparse signals under
the condition µ < 1/(2K − 1) where µ denotes the mutual co-
herence of the dictionary. In this communication, we show that
under the same condition and if the unknown K-sparse signal is
non-negative, the weights of the atoms selected by OMP are non-
negative at any of the firstK iterations. Therefore, the generalized
version of OMP to the non-negative setting (NNOMP) identifies
with OMP, which allows us to establish an exact recovery analy-
sis of NNOMP under the mutual coherence condition. We further
establish a similar analysis of the non-negative extension of Or-
thogonal Least Squares (OLS), and discuss open issues related to
the elaboration of weakened guarantees as compared to mutual
coherence guarantees.

1 Introduction

Greedy algorithms are popular iterative schemes for sparse sig-
nal reconstruction. Their principle is to sequentially select
atoms in a given dictionary and to update the sparse approxima-
tion coefficients by solving a least-square problem whenever a
new atom is selected. Orthogonal Matching Pursuit (OMP) [1]
is a well-known greedy algorithm in which at each iteration, the
atom having the largest inner product with the current residual
is selected. Then, an Unconstrained Least Squares (ULS) prob-
lem is solved to update the sparse approximation coefficients.

In the theoretical viewpoint, OMP is guaranteed to exactly
recover the support of K-sparse representations in K steps (ir-
respective of the magnitude of the non-zero coefficients in the
K-sparse representation) when the mutual coherence of the dic-
tionary is lower than 1/(2K − 1) [2]. Moreover, this condition
was proved to be sharp [3].

2 Sign preservation with OMP

Our first contribution states that under the same condition and
for K-sparse representations with non-negative weights, the
weights of the atoms selected by OMP are non-negative at any
iteration.

Theorem 1. [4, Corollary 3.1] Consider a dictionary H whose
mutual coherence satisfies µ < 1/(2K − 1). Let y = Hx be
a K-sparse representation with non-negative weights x. Then,
OMP recovers the support of x in K iterations, and at each
iteration k = 1, . . . ,K, the weights of selected atoms are non-
negative.

3 K-step analysis of NNOMP

Non-Negative OMP (NNOMP) was first introduced by Bruck-
stein et al. as a generalization of OMP to address sparse recon-
struction under non-negativity constraints [5]. Similar to OMP,
the empty support is used for initialization of NNOMP. At each
iteration, NNOMP selects the atom having the most positive
inner product with the current residual, the atoms yielding neg-
ative inner products being ignored. Then, the non-negative
weights are updated by solving a Non-Negative Least Squares
(NNLS) problem. It is noticeable that unlike ULS problems,
NNLS problems do not have a closed-form solution. There-
fore, a subroutine must be called at each iteration of NNOMP.
Note also that since NNLS are constrained least-square prob-
lems, some non-negativity constraints may be activated, cor-
responding to the cancellation of some weights in the sparse
approximation. Hence, more than K iterations might be nec-
essary to reach a solution that is exactly K-sparse. The reader
is referred to [6] for further developments about fully recursive
implementations of NNOMP.

On the theoretical side, Bruckstein et al. conjectured that
NNOMP is guaranteed to exactly recover the support of non-
negative K-sparse representations in K steps when µ <
1/(2K − 1) [5, Theorem 3], but the rigorous proof was not
provided. In [4], we have proved this result as a corollary of
Theorem 1. In a nutshell, Theorem 1 states that the ULS so-
lution related to the support found at each iteration of OMP is
non-negative, which implies that the NNLS solution related to
the same support coincides with this ULS solution. Since the
NNOMP selection rule is close to that of OMP, we could thus
deduce that the NNOMP and OMP iterates coincide, which
yields the following K-step recovery result.

Theorem 2. [4, Corollary 3.2] Consider a dictionary H whose
mutual coherence satisfies µ < 1/(2K − 1). Let y = Hx be
a K-sparse representation with non-negative weights x. Then,
the NNOMP iterates identify with those of OMP. Thus, NNOMP
recovers the support of x in K iterations.

Details of these results can be found in our technical re-
port [4]. Note that in [4], we also carry out unified analysis
of the non-negative extensions of Orthogonal Least Squares
(OLS) [7] proposed in [8]. Open issues related to the elabora-
tion of weakened theoretical guarantees as compared to mutual
coherence guarantees will be addressed at the iTWIST work-
shop.
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