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Abstract

We propose a simple and efficient class of direct solvers for Poisson equation in finite or infinite domains
related to spherical geometry. The solver was developed based on truncated spherical harmonics expansion,
where the differential mode equations were solved by second-order finite difference method without handling
coordinate singularities. The solver was further extended to study the dynamics of a diffusiophoretic particle
suspended in Stokes flow. Numerical experiments suggested that the particle can achieve a self-sustained
unidirectional motion at moderate Péclet numbers, whereas the particle motion becomes chaotic in high
Péclet number regimes. The statistical analysis illustrates the run-and-tumble-like nature at short times
and diffusive nature at long times without any source of noise.
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1. Introduction

The design of artificial microswimmers has become an active research area in the past decade. A pro-
totypical example, Janus particle, named after the two-faced Roman god, uses the asymmetry property of
the active surface to generate motions [1]. It was shown by Michelin et al. [2] that, under the framework
of axisymmetric assumption, the anisotropic design is not necessary for locomotion, whereas a spontaneous
autophoretic directed motion can be activated for an isotropic particle when the Péclet number is above a
critical number. In this Note, we numerically examine the dynamics of the diffusiophoretic system in the
full three-dimensional model. Interestingly, we observe a transition to chaotic dynamics by increasing the
Péclet number further. Such results show evidence that the complicated motions may already be hidden in
purely isotropic media due to the intrinsic nonlinearities of the problem.

To investigate the dynamics of diffusiophoretic particles, we first develop a direct numerical solver for
Poisson equation in a unit sphere based on spherical harmonics finite difference method. It is known that,
in spherical coordinates, appropriate conditions need to be imposed at the coordinate singularities to have
the desired accuracy (see, for example, the discussion by Shen [3]). We avoid placing grid points directly
on the coordinate singularities by arranging properly the grid points and thus the numerical scheme does
not require any pole conditions. A similar trick based on the combination of Fourier series expansions and
finite difference approaches was proposed by Lai et al. [4]. We then solve Poisson equation in an infinite
domain by using Kelvin’s inversion which maps the domain into a finite one with the perfect preservation
of the Laplace operator. As a result, the proposed fast solver can be straightforwardly applied.

This Note is organized as follows: The description of the solver is presented in Section 2 and in Section 3
we show our findings on the dynamics of a diffusiophoretic particle. Some concluding remarks and future
works are given in Section 4.
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2. Fast Poisson solver in spherical geometry

Under the spherical coordinate system (radial distance r, polar angle θ, and azimuthal angle φ), the
Poisson equation is written as

∆c(r, θ, φ) =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂c

∂θ

)
+

1

r2 sin2 θ

∂2c

∂φ2
= f(r, θ, φ), (1)

where c is an unknown function and f is a given smooth function in which θ ∈ [0, π], φ ∈ [0, 2π). Two
types of domains are considered in this Note, namely, the finite spherical domain (r ∈ [0, 1]) and the
infinite domain (r ∈ [1,∞)). For both cases, the boundary condition should be imposed on the spherical
surface (r = 1); three different boundary conditions are considered, that is, Dirichlet (c(1, θ, φ) = cD(θ, φ)),
Neumann ( ∂c∂r (1, θ, φ) = cN (θ, φ)), and Robin type ( ∂c∂r (1, θ, φ) + αc(1, θ, φ) = cR(θ, φ)), where cD, cN

and cR are given functions and α is a constant. Notice that for the infinite domain case, we impose a
vanishing condition c(r → ∞) = 0 to ensure the uniqueness of the solution. It is important to mention
that our numerical scheme can treat all types of boundary conditions equally well as we can see from the
implementation later.

2.1. Finite domain r ∈ [0, 1]

Let us first consider the finite domain case. Due to the spherical coordinate representation (1), the
singularities occur not only at the origin (r = 0), but also at the north (θ = 0) and the south poles
(θ = π). Therefore, how to handle those singularities properly becomes an important issue in numerical
discretizations. Since the considered domain is related to spherical geometry, it is convenient to represent
the solution by spherical harmonics expansion

c(r, θ, φ) =

p∑
n=0

n∑
m=0

Pmn (cos θ) (cmn(r) cosmφ+ c̃mn(r) sinmφ) , (2)

where Pmn denotes the associated Legendre polynomial of order m and degree n [5]. Notice that the solution
is truncated up to the spherical harmonics of order p for numerical purpose. The coefficients in the spherical
harmonics expansion (2) are given by

cmn(r) =
(2n+ 1)(n−m)!

2(n+m)!N(m)

∫ 2π

0

∫ π

0

c(r, θ, φ)Pmn (cos θ) cosmφ sin θ dθdφ,

c̃mn(r) =
(2n+ 1)(n−m)!

2(n+m)!N(m)

∫ 2π

0

∫ π

0

c(r, θ, φ)Pmn (cos θ) sinmφ sin θ dθdφ,

(3)

where N(0) = 2π, and N(m) = π for m 6= 0. One can verify that the spherical harmonic functions
Y mn (θ, φ) ≡ Pmn (cos θ)eimφ are the eigenfunctions of the Laplace-Beltrami operator with

∆sY
m
n = −n(n+ 1)Y mn , where ∆s =

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (4)

Substituting the spherical harmonics expansion (2) into the Poisson equation (1) and using Eq. (4), conse-
quently, one can derive a set of one-dimensional ordinary differential equations

1

r2

d

dr

(
r2 dcmn

dr

)
− n(n+ 1)

r2
cmn = fmn and

1

r2

d

dr

(
r2 dc̃mn

dr

)
− n(n+ 1)

r2
c̃mn = f̃mn, (5)

where fmn(r) and f̃mn(r) are obtained in a similar fashion to Eq. (3). Accordingly, the associated boundary
conditions take the form: Dirichlet cmn(1) = cDmn and c̃mn(1) = c̃Dmn; Neumann c′mn(1) = cNmn and c̃′mn(1) =
c̃Nmn; or Robin type c′mn(1) +αcmn(1) = cRmn and c̃′mn(1) +αc̃mn(1) = c̃Rmn. The above boundary values can
also be found by using Eq. (3).
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The discretized variables are defined on (p + 1) nodes along the θ-direction and 2(p + 1) uniformly
distributed nodes φk = k 2π

2(p+1) in the φ-direction, so that θj = cos−1(sj), where sj ’s are (p + 1)-point

Gauss-Legendre quadrature nodes. Under such a θ-φ grid layout, the numerical quadrature for the integra-
tions in Eq. (3) converges superalgebraically via the combination of Gaussian quadrature (in θ-direction)
and trapezoidal rule (in φ-direction). This step can be performed efficiently using the public software
SPHEREPACK [6]. There are several advantages of using spherical harmonics expansion: (i) The number
of Gauss-Legendre nodes can be taken small since the truncated series (2) is spectrally convergent [7]. (ii)
The usage of Gauss-Legendre nodes naturally avoids placing the points directly at the poles (θ = 0, π)
where the singularities of the Poisson equation (1) taken place. (iii) The three-dimensional Poisson equa-
tion is converted to one-dimensional differential mode equations (5) that significantly reduces the numerical
complexity of the problem. Furthermore, parallel computations on solving those mode equations can be
implemented naturally. Now, the remaining issue is how to handle the coordinate singularity at r = 0 for
the mode equations (5).

To proceed, we choose a grid in the radial direction by setting the uniform grid half mesh away from the
origin

ri = (i− 1/2)∆r, i = 1, 2, · · · ,M, (6)

with the mesh width ∆r = 1/M . We deliberately avoid putting grid point at the origin directly. For
succinctness, we will denote the discretized variables by Ci ≈ cmn(ri) and Fi ≈ fmn(ri). By multiplying
the term r2 on both sides of the differential mode equations in Eq. (5), and then apply second-order finite
difference discretization, we obtain(

r2
i−1/2

∆r2

)
Ci−1 +

(
−
r2
i−1/2 + r2

i+1/2

∆r2
− n(n+ 1)

)
Ci +

(
r2
i+1/2

∆r2

)
Ci+1 = r2

i Fi, i = 1, 2, · · ·M. (7)

The resulting matrix formed by the above discretizations has two advantages. One is being symmetric,
which is consistent with the self-adjointness of the original differential operator. The other one is being
tridiagonal so that the linear system can be solved easily via the Thomas algorithm.

When solving the linear system (7), the ghost values C0 and CM+1 remain to be specified. For i = 1,
one can immediately find that the coefficient for C0 vanishes thanks to the setup of the radial grid (6),
hence no extra condition at r = 0 is required. The other ghost value CM+1 can be found by the second-

order approximation for Dirichlet CM+1+CM

2 = cDmn, Neumann CM+1−CM

∆r = cNmn, or Robin type boundary

condition CM+1−CM

∆r + αCM+1+CM

2 = cRmn. A similar procedure can be straightforwardly applied for solving
the coefficients c̃mn(r) and thus the repeated scheme is omitted here. We emphasize that since the finite
difference discretization is adopted here, in the case where the solution has sharp transitions such as boundary
layers or interior layers, to achieve the desired accuracy one can easily extend the present scheme to adaptive
mesh with the same computational cost.

2.2. Infinite domain r ∈ [1,∞)

Now we turn our attention to tackle the infinite domain problem. Here, we employ Kelvin’s inversion [8]
by introducing the radial coordinate transformation r̄ = 1/r and further define the associated variables by
c̄(r̄, θ, φ) = 1

r̄ c(
1
r̄ , θ, φ) and f̄(r̄, θ, φ) = 1

r̄f( 1
r̄ , θ, φ) so that the considered domain will be finite r̄ ∈ (0, 1].

After some careful calculations, the Poisson equation (1) becomes

∆̄c̄(r̄, θ, φ) =
1

r̄2

∂

∂r̄

(
r̄2 ∂c̄

∂r̄

)
+

1

r̄2 sin θ

∂

∂θ

(
sin θ

∂c̄

∂θ

)
+

1

r̄2 sin2 θ

∂2c̄

∂φ2
=

1

r̄4
f̄(r̄, θ, φ). (8)

Remarkably, we see that the Laplace operator is perfectly preserved through this coordinate transformation.
Moreover, we should point out that the transformed solution c̄ exists only when the solution admits the
behavior c(r → ∞) ≈ r−β with β ≥ 1. As a consequence c̄ is bounded at r̄ = 0 and it is not necessary to
impose any additional condition here. Hence, to solve (8) we can just follow exactly the same procedure as
presented in the previous subsection.
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2.3. Numerical verification

In this subsection we perform the convergence study of the proposed scheme. For the finite domain case
(r ∈ [0, 1]) we solve Poisson equation with exact solution ce(r, θ, φ) = sin(10r sin θ cosφ+π/4) sin(5r sin θ sinφ+
π/3) sin(5r cos θ + π/2) and set the parameter α = 1 in the cases of Robin boundary condition (notice
that the chosen solution is significantly oscillatory). For the infinite domain case (r ∈ [1,∞)) we set
ce(r, θ, φ) = r3 cos θ sin2 θ cosφ sinφ/ exp(r2) and α = −1. We denote the numerical solutions by ch and
show the results in Table 1, where the upper panel gives the mesh refinement results for the finite domain
and the lower panel for the infinite domain. In each run we fix 32 Gauss-Legendre nodes for polar angle and
64 nodes for azimuthal angle. Notice that the discretization (7), with truncation error O(∆r2), introduces
an error ‖ch−ce‖∞ with order O(crr(r = 0)∆r2 log ∆r)+O(∆r2). As expected, we obtain a roughly second-
order convergence for the finite domain case while a clean second-order of accuracy for the infinite domain
case. In addition, these tests show the robustness of our proposed Poisson solver for dealing with oscillatory
solutions. On the other hand, the computational cost for the present method is only O(Mp2(log p)2); the
CPU time for the finest mesh case M = 1024 is just within one second on a MacBook Pro (2016), showing
the efficiency of the present scheme.

M
Dirichlet Neumann Robin

‖ch − ce‖∞ Rate ‖ch − ce‖∞ Rate ‖ch − ce‖∞ Rate

128 1.413E−03 - 1.624E−03 - 1.628E−03 -
256 4.271E−04 1.73 4.862E−04 1.74 4.810E−04 1.76
512 1.259E−04 1.76 1.416E−04 1.78 1.394E−04 1.79
1024 3.637E−05 1.79 4.046E−05 1.81 3.974E−05 1.81

128 1.465E−05 - 1.463E−05 - 1.464E−05 -
256 3.664E−06 2.00 3.660E−06 2.00 3.661E−06 2.00
512 9.158E−07 2.00 9.148E−07 2.00 9.150E−07 2.00
1024 2.290E−07 2.00 2.287E−07 2.00 2.288E−07 2.00

Table 1: Mesh refinement results with different types of boundary conditions for the finite domain (upper panel) and infinite
domain cases (lower panel).

3. Dynamics of a diffusiophoretic particle

We consider the dynamics of a spherical shaped colloidal particle immersed in a Newtonian fluid. The
fluid is assumed to be incompressible and obeys the Stokes equations. Surrounding solute is isotropically
emitted from the particle surface. The solute interacts with the particle through a short-range potential
with a characteristic length that is much less than the particle radius, leading to the so-called sharp interface
limit amounting to a slip tangential velocity on the particle surface [9] (see below). The solute concentration
is assumed to diffuse and be advected by the surrounding fluid flow.

We use the same scalings to non-dimensionalize the governing equations as in [2]. The dimensionless
governing equations are described in the following: In the co-moving frame attached to the particle center,
the fluid flow and solute concentration coupled system is modeled by

−∇p+ ∆u = 0, ∇ · u = 0,

∂c

∂t
+ u · ∇c =

1

Pe
∆c,

(9)

where c stands for the solute concentration, the velocity field u = urer + uθeθ + uφeφ (er, eθ and eφ stand
for the basis vectors in spherical coordinates, ur, uθ and uφ are scalar functions), p is the pressure and
Pe is the Péclet number. The particle is suspended in an unbounded fluid domain Ω = {(r, θ, φ)| r ∈
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[1,∞), θ ∈ [0, π], φ ∈ [0, 2π)}. The tangential slip velocity on the particle surface (r = 1) is given by
u(1, θ, φ) = ∇sc(1, θ, φ), where ∇s denotes the surface gradient operator. The fixed-flux boundary condition
of surface activity reads ∂c

∂r (1, θ, φ) = −1, where the negative sign denotes the emission mechanism. In the
far-field limit, the velocity field converges to the phoretic velocity u(r → ∞) = −(U + Ω × r) and the
concentration is assumed to attenuate by c(r → ∞) = 0. The phoretic kinematics of the particle can be
arrived by using the reciprocal theorem [10], which allows the relation for the translational velocity U and
rotational velocity Ω to the surface slip velocity via the surface integral on the unit sphere S (in Cartesian
components):

U = − 1

4π

∫
u(r = 1) dS, Ω = − 3

8π

∫
er × u(r = 1) dS. (10)

It can be deduced that the particle motion is always irrotational (Ω = 0) due to the imposed surface slip
flow.

It is interesting to see that, a stationary solution where there is no net flow and zero phoretic velocity
U = 0 exists at all Péclet numbers with the solute concentration c0(r) = 1/r. Whereas at high Péclet
numbers, the coupled nonlinear advective term u·∇c would lead to a polarization of the concentration around
the particle surface, thus any infinitesimal perturbation to the immobile state will trigger a spontaneous
autophoretic swimming motion. Although this symmetry-breaking behavior was reported in [2] where an
axisymmetric constraint is imposed, we need to emphasize that, we have released such a constraint and
attempt to explore all possible equilibriums of the entire system in the full three-dimensional simulations.

Since the considered problem is relevant to spherical geometry, it is ideal to use the Lamb’s general
solution in Stokes flow [11]. By applying the present setup, the velocity field can be analytically expressed
through spherical harmonics expansion:

ur =

∞∑
n=1

n∑
m=0

ψn(r)(n+ 1)Pmn (cos θ)(Bmn cosmφ+ B̃mn sinmφ),

uθ =

∞∑
n=1

n∑
m=0

χn(r) sin θPm
′

n (cos θ)(Bmn cosmφ+ B̃mn sinmφ),

uφ =

∞∑
n=1

n∑
m=0

χn(r)

(
−mPmn (cos θ)

sin θ

)
(B̃mn cosmφ−Bmn sinmφ),

(11)

where ψ1(r) = 2
3 (1 − 1

r3 ), ψn(r) = 1
rn (1 − 1

r2 ) for n ≥ 2, χ1(r) = 2
3 (−2 − 1

r3 ), and χn(r) = 1
rn (n−2

n −
1
r2 )

for n ≥ 2, and the prime in Pmn represents the differentiation. Representing the solute concentration on the
surface in Fourier modes along the azimuthal direction by

c(1, θ, φ, t) =

∞∑
m=0

(Dm(θ, t) cosmφ+ D̃m(θ, t) sinmφ) (12)

and using the prescribed slip boundary condition, we can obtain the coefficients in Eq. (11) through Eqs. (82,
90-93) in Ref. [11] as

Bmn =
1

4

(2n+ 1)(n−m)!

(n+ 1)(n+m)!

∫ 1

−1

n(n+ 1)Dm(µ, t)Pmn (µ) dµ,

B̃mn =
1

4

(2n+ 1)(n−m)!

(n+ 1)(n+m)!

∫ 1

−1

n(n+ 1)D̃m(µ, t)Pmn (µ) dµ,

(13)

where we have used the notation µ = cos θ. From the above equations (10)-(13), we can see that the
velocities u and U are given in terms of the concentration field. Substituting Eq. (11) into the concentration
equation (9) yields a closed nonlinear equation for c.
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By plugging-in the analytic velocity solution (11) at r = 1 to Eq. (10) gives the phoretic translational
speed U = 4

3 (B11ex + B̃11ey − B01ez). One can see that only the first harmonic modes B11, B̃11, and B01

are responsible for the swimming velocity in the x-,y-, and z-directions, respectively, and this allows the
phoretic particle to swim freely in the three-dimensional domain.

3.1. Numerical algorithm

As aforementioned, by using the Lamb’s solution for the velocity field, we only need to solve the nonlinear
transportation equation for the concentration field. Since the considered domain is unbounded (r ∈ [1,∞)),
we can map the domain into a finite one (r̄ ∈ (0, 1]) by applying Kelvin’s inversion with r̄ = 1/r. The new
concentration c̄(r̄, θ, φ) = 1

r̄ c(
1
r̄ , θ, φ) fulfills

1

r̄5

(
r̄
∂c̄

∂t
+ u(c̄) · ∇̄c̄

)
=

1

Pe
∆̄c̄, (14)

where ∇̄ =
(
−r̄2 − r̄3 ∂

∂r̄ , r̄
2 ∂
∂θ ,

r̄2

sin θ
∂
∂φ

)
and the Laplace operator ∆̄ is preserved (see Eq. (8)). We employ

a first-order implicit-explicit time advancing scheme to discretize Eq. (14), that is, we treat the nonlinear
advective term explicitly while the diffusive component is handled implicitly:

1

r̄5

(
r̄
c̄n+1 − c̄n

∆t
+ u(c̄n) · ∇̄c̄n

)
=

1

Pe
∆̄c̄n+1, (15)

where the superscript on a variable represents the time level index and ∆t is the time step size. The
spatial discretization for all numerical variables is defined as stated in Section 2. For the computation of
the velocity u(c̄n), firstly we need to calculate Dm and D̃m in Eq. (12) by applying Fast Fourier Transform
(in a truncated sense with the highest frequency mode (p+ 1)), and then use them to find Bmn and B̃mn in
Eq. (13) in which the integrations can be accurately approximated by Gaussian quadrature. Finally, those
coefficients Bmn and B̃mn are substituted into Eq. (11) to obtain the velocity (truncated at the highest
harmonic mode of order p) with a change of variable from r to r̄. The spatial derivatives in the gradient
term ∇̄c̄n is approximated by central difference in the radial direction while a spectral method is used in
the polar and azimuthal directions (see [6] for detail). Equation (15) forms a Helmholtz equation for c̄n+1

which can be efficiently solved by the method proposed in Section. 2.

3.2. Numerical simulations

To investigate the spontaneous locomotion of the phoretic particle, we perform the simulations at various
Péclet numbers where the concentrations being initially set as c0(r) = 1/r (immobile solution) with a small
perturbation on the particle surface. For all the present simulations, we set 32 grid points in the radial
direction, 32 and 64 points in the polar and azimuthal directions, respectively; the time step size ∆t is set
to be of the same order as ∆r̄ to maintain the numerical stability.

Our numerical results reveal that, for small Pe numbers, the system recovers to the immobile solution
regardless of the imposed perturbation, whereas when Pe is sufficiently large, the interplay between the
advection and diffusion terms triggers a spontaneous symmetry-breaking swimming motion along a given
direction (fixed by the initial perturbation) with a constant speed. As an example, the snapshots of the
concentration distribution at different times for Pe = 10 are demonstrated in Fig. 1. After a long time, a
comet-like pattern is formed (see T = 2000) and the concentration field is axisymmetric about the direction
of the phoretic velocity U. In addition, it is found that the symmetry-breaking solution occurs in the
form of a supercritical bifurcation when Pe > Pec = 4; the particle sets into a directed motion with the
long-time swimming velocity ‖U‖. We show the velocity as a function of the Péclet number in Fig. 2. The
nonlinear variation of the phoretic velocity agrees quantitatively with the ones obtained under axisymmetric
assumption in [2].

Interestingly, by increasing further the Péclet number reveals a new instability: the particle quits the
unidirectional swimming motion and enters into an apparently chaotic regime. As an example, see Fig. 3
for the numerical results at Pe = 24.5. It can be seen that the particle exhibits an apparently random
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Figure 1: The snapshots of the concentration distribution on the surface of the particle and on the planes of symmetry at
different times for Pe = 10. At T = 2000, the particle attains a symmetry-breaking self-propelled motion along a straight
direction (indicated by the yellow arrow) with the constant phoretic speed ‖U‖ = 8.634× 10−2.

Pe

0 5 10 15 20 25

‖U‖

0

0.02

0.04

0.06

0.08

0.1

3D simulation
Michelin et al. [2]

Figure 2: The bifurcation diagram for the phoretic velocity ‖U‖ as a function of Pe. Our results (solid line) are in quantitative
agreement with the ones obtained under axisymmetric assumption [2] (red dots).

motion (see the trajectory in Fig. 3(a)) and we quantify this random walk by measuring the mean square
displacement MSD(τ) =< ‖r(t+ τ)− r(t)‖2 >, where r(t) means the location of the particle at time t and
the notation < · > computes the average along the entire trajectory. The MSD result is given in Fig. 3(b)
as the solid blue line. For short times the particle attains a persistent run-and-tumble-like motion where
the MSD is quadratic in time, while at longer times, due to the random turns of swimming directions a
de-correlation process takes place, the MSD shows a linear behavior. This demonstration gives evidence that
the complicated swimming motion can arise under the minimal version of dynamics such as in this system, a
strong nonlinearity induced by the advective component. There are still interesting questions which require
further investigation and we leave them as future works.

4. Conclusions

In this note, a fast direct solver for Poisson equation was developed in spherical geometry with finite
and infinite domains. Representing a solution by spherical harmonics expansion, we only need to solve a
set of one-dimensional mode differential equations. From the numerical point of view, this step reduces
significantly the numerical complexity of the problem. We use finite difference method to discretize those
mode differential equations with a proper choice of the radial grid layout that is shifted half mesh away
from the origin. In this way, the pole singularity can be naturally avoided. We deal with Poisson equation
in an infinite domain by using Kelvin’s inversion which maps the domain into a finite one with the perfect
preservation of the Laplace operator. As a result, fast solvers can be easily applied. A numerical verification

7



2000

1000

0

-8000

-7000

-10002000

-6000

1000 -2000

-5000

0
-3000

-4000

-3000

-2000

-1000

0

1000

10
-1

10
1

10
3

10
5

10
-3

10
-1

10
1

10
3

10
5

10
7

Figure 3: (a) The erratic particle trajectory at Pe = 24.5 (the red dot marks the origin). (b) The corresponding MSD (solid
line) shows a classical random walk as normal diffusion.

is conducted to illustrate the accuracy and efficiency of the method. The proposed fast Poisson solver is
then applied to study the diffusiophoretic system. The emergence of complex dynamics going from straight
swimming to chaotic motion for a rigid isotropic particle in a purely phoretic fluid medium has been identified.
The present results may serve as a guide for future systematic analyses for diffusiophoretic problems.
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