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ABSTRACT

Tridimensional microscopy and algorithms for automated segmentation and tracing are revolutionizing2

neuroscience through the generation of growing libraries of neuron reconstructions. Innovative3

computational methods are needed to analyze these neural traces. In particular, means to analyse the4

geometric properties of traced neurites along their trajectory have been lacking. Here, we propose5

a local tridimensional (3D) scale metric derived from differential geometry, which is the distance6

in micrometers along which a curve is fully 3D as opposed to being embedded in a 2D plane or 1D7

line. We apply this metric to various neuronal traces ranging from single neurons to whole brain data.8

By providing a local readout of the geometric complexity, it offers a new mean of describing and9

comparing axonal and dendritic arbors from individual neurons or the behavior of axonal projections10

in different brain regions. This broadly applicable approach termed nAdder is available through the11

GeNePy3D open-source Python quantitative geometry library.12

Keywords Computational neuroanatomy · connectomics · 3D neuronal reconstructions · axonal and dendritic arbors ·13

scale space · quantitative geometry · Python14

1 Introduction15

Throughout the history of the field of neuroscience, the analysis of single neuronal morphologies has played a major16

role in the classification of neuron types and the study of their function and development. The NeuroMorpho.Org17

database (Ascoli, 2006; Ascoli et al., 2007), which collects and indexes neuronal tracing data, currently hosts more than18

one hundred thousand arbors of diverse neurons from various animal species. Technological advances in large-scale19

electron (Helmstaedter et al., 2013; Kasthuri et al., 2015; Motta et al., 2019) and fluorescence microscopy (Gong et20

al., 2013; Winnubst et al., 2019; Abdeladim et al., 2019; Wang et al., 2019; Muñoz-Castañeda et al., 2020) facilitate21

the exploration of increasingly large volumes of brain tissue with ever improving resolution and contrast. These22

tridimensional (3D) imaging approaches are giving rise to a variety of model-centered trace sharing efforts such as the23

MouseLight (http://mouselight.janelia.org/, Winnubst et al., 2019), Zebrafish brain atlas (https://fishatlas.neuro.mpg.de/,24

Kunst et al., 2019) and drosophila connectome projects (https://neuprint.janelia.org/, Xu et al., 2020), among others.25
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Crucially, the coming of age of computer vision through advances in deep learning is offering ways to automate the26

extraction of neurite traces (Magliaro et al., 2019; Januszewski et al., 2018; Radojević & Meijering, 2019), a process27

both extremely tedious and time consuming when performed manually. This is currently resulting in a considerable28

increase in the amount of 3D neuron reconstructions from diverse species, brain regions, developmental stages and29

experimental conditions, holding the key to address multiple neuroscience questions (Meinertzhagen, 2018). Methods30

from quantitative and computational geometry will play a major role in handling and analyzing this growing body31

of neuronal reconstruction data in its full 3D complexity, a requisite to efficiently and accurately link the anatomy32

of neurons with varied aspects such as their function, development, and pathological or experimental alteration.33

Furthermore, morphological information is of crucial importance to address the issue of neuronal cell type classification,34

in complement to molecular data (Bates et al., 2019; Adkins et al., 2020).35

An array of geometric algorithmic methods and associated software has already been developed to process neuronal36

reconstructions (Bates et al., 2020; Cuntz et al., 2010; Arshadi et al., 2020). Morphological features enabling the37

construction of neuron ontologies, described for instance by the Petilla convention (Petilla Interneuron Nomenclature38

Group et al., 2008), have been used for machine learning-based automated neuronal classification (Mihaljević et al.,39

2018). These features have also been exploited to address more targeted questions, such as comparing neuronal arbors40

across different experimental conditions in order to study the mechanisms controlling their geometry (Santos et al.,41

2018). In the context of large-scale traces across entire brain structures or the whole brain, morphological measurements42

are employed for an expanding range of purposes, e.g. to proofread reconstructions (Schneider-Mizell et al., 2016),43

probe changes in neuronal structure and connectivity during development (Gerhard et al., 2017) or identify new neuron44

subtypes (Wang et al., 2019).45

So far however, metrics classically used to study neuronal traces tend to rely on elementary parameters such as length,46

direction and branching; as such, they do not enable to finely characterize and analyze neurite trajectories. One47

particularly interesting parameter that characterizes neurite traces is their local geometrical complexity, i.e. whether they48

adopt a straight or convoluted path at a given point along their trajectory. This parameter is of particular relevance for49

circuit studies, as it is tightly linked to axons’ and dendrites’ assembly and their role in information processing: indeed,50

axons typically follow simple paths within tracts while adopting a more complex structure at the level of terminal arbor51

branches that form synapses. Moreover, the sculpting of axonal arbors by branch elimination during circuit maturation52

can result in convoluted paths (Keller-Peck et al., 2001; Lu et al., 2009). The complexity of a neurite segment thus53

informs both on its function and developmental history. Available metrics such as tortuosity (the ratio of curvilinear to54

Euclidean distance along the path of a neurite) are generally global and average out local characteristics; moreover,55

traces from different neuronal types, brain regions or species can span vastly different volumes and exhibit curvature56

motifs over a variety of scales, making it difficult to choose which scale is most relevant for the analysis. One would57

therefore benefit from a generic method enabling to analyze the geometrical complexity of neuronal trajectories 1)58

locally, i.e. at each point of a trace, and 2) across a range of scales rather than at a single, arbitrary scale.59

Methods based on differential geometry have been very successfully applied in pattern recognition and classic computer60

vision (Sapiro, 2006; Cao, 2003). In particular, the concept of scale-space has led to thorough theoretical developments61

and practical applications. The key idea is that starting from an original signal (an image, a curve, a time series, etc.),62

one can derive a family of signals that estimate that original signal as viewed at various spatial or temporal scales. This63

enables to select and focus the analysis on a specific scale of interest, or to remove noise or a low frequency background64

signal; in addition, scale-space analysis also provides multi-scale descriptions (Lindeberg, 1990). On 2D curves, the65

mean curvature motion is a well-defined and broadly applied scale-space computation algorithm (Cao, 2003). So far,66

however, comparatively little has been proposed concerning 3D curves, such data being less common (Digne et al.,67

2011). Applications of curvature and torsion scale-space analyses for 3D curves have been reported (Mokhtarian, 1988)68

but remain few and preliminary; the inherent mathematical difficulty represents another reason for this gap. Neuronal69

trace analysis clearly provides an incentive for further investigation of the issue.70
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Here, we present a complete framework for scale-space analysis of 3D curves and applied it to neuronal arbors. This71

method, which we name nAdder for Neurite Analysis through Dimensional Decomposition in Elementary Regions,72

allows us to compute the local 3D scale along a curve, which is the size in micrometers of its 3D structure, i.e. the size73

at which the curve locally requires the three dimensions of space to be described. This scale is quite small for a very74

straight trace, and larger when the trace displays a complex and convoluted pattern over longer distances. We propose75

examples and applications on several published neuronal trace datasets that demonstrate the interest of this metric to76

compare the arbors of individual neurons, extract morphological features reflecting local changes in neurite behavior,77

and provide a novel region-level descriptor to enrich whole brain analyses. Implementation of the nAdder algorithms78

along with an array of geometry routines and functions are made available in the recently published GeNePy3D Python79

library (Phan & Chessel, 2020), available at https://genepy3d.gitlab.io. Code to reproduce all figures in this study,80

exemplifying its use, is available at https://gitlab.com/msphan/multiscale-intrinsic-dim.81

2 Results82

We introduce a new form of analysis to investigate the spatial complexity of neuronal arbors. Our approach consists of83

decomposing each branch of a neuronal arbor into a sequence of curve fragments which are each assigned an intrinsic84

dimensionality, i.e. the smallest number of dimensions that accurately describes them, from which we compute a local85

3D scale, defined as the highest scale at which the curve locally has a 3D intrinsic dimensionality. The first sub-section86

of the Results details the principle underlying this approach. We next demonstrate its purpose, accuracy and relevance87

through several applications.88

2.1 Computation of the local 3D scale of neuronal traces from their multiscale intrinsic dimensionality89

Given a neuronal arbor, we decompose each of its branches into a sequence of local curved fragments, which are90

classified according to their intrinsic dimensionality, defined by combining computations of both curvature and torsion91

of the curves. Briefly, a portion of curve with low torsion and curvature would be considered a 1D line, one with high92

curvature but low torsion would be approximately embedded within a 2D plane, and a curve with high torsion could only93

be described by taking into account the three spatial dimensions. This results in a hierarchical decomposition, capturing94

the fact that a 1D line is basically embedded in a 2D plane (Figure 1A, S1). To validate the proposed decomposition,95

we applied it on simulated traces presenting different noise levels. Our algorithm reached accuracies above 90% with96

respect to the known dimensionality of the simulations at low noise level and still above 80% at high noise level, while97

an approach not based on space-scale which we took as baseline (Yang et al., 2016; Ma et al., 2017) was strongly98

affected by noise (Figure 1A, S2 and S3; details on the simulation of traces, noise levels and algorithm are available in99

the Methods section).100

Our proposed decomposition of traces according to their local intrinsic dimensionality depends on the scale at which the101

analysis is performed. To develop a metric based on this decomposition that would be robust to scale, we implemented102

a space-scale approach. The notion of scale can be abstractly interpreted as the level of detail that an observer takes103

into account when considering an object, varying from a high level (when observing a trace up close i.e. at smaller104

scales), to low level (when observing it from afar i.e. at larger scales). A scale-space is the computation of all versions105

of a given curve across spatial scales. Several mathematical and computational frameworks have been proposed to106

compute such ensemble of curves; the simplest one used here consists of smoothing the initial portion of trace analyzed107

by convolutions of its coordinates with Gaussian kernels. The dimensionality of such a curve element, as we analyze it108

at increasing scales, is typically best described as 3D at the smallest scales (i.e. taking in account a high level of detail),109

and becomes 2D or 1D at larger scales (i.e. low level of detail) as more and more details are smoothed out (Figure 1B,110

middle panel and S4). Here, in the context of neuronal arbors, scales are measured in micrometers, by computing the111

radius of curvature of the smallest detail kept at that scale (see methods for details).112
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To make use of the local dimensionality decomposition across multiple scales and compute a simpler and more intuitive113

metric, we define the local 3D scale as the highest scale at which the trace still remains 3D. The trace will then locally114

transform to 2D or 1D for scales higher than that local 3D scale. An example of local 3D scale calculation is shown115

in Figure 1B. This computation is done at the level of curves; to apply it to whole neuronal arbors, we decompose116

the arbor into curves by considering, for each ‘leaf’ (terminals), the curves that link it to the root (i.e. the cell body),117

averaging values when needed (Figure S5). The result is an algorithm that computes a local 3D scale metric for full118

neuronal arbors, which we term nAdder (see Methods for more details on the algorithm).119

To test our approach, we examined the local 3D scales of different types of neurons presenting dissimilar arbor shapes,120

using traces from the NeuroMorpho.Org database (Figure 1C). We first studied a mouse striatal D2-type medium spiny121

neuron reconstructed by Li et al. (2019) presenting a relatively simple structure with only a few dendrites (Figure122

1C1, Movie S1). Computation of the local 3D scale for this neuron revealed variations in spatial structure across local123

regions. For instance, regions (i) and (ii) in Figure 1C1 correspond to two branch segments located at different distances124

from the soma, and the straightest segment (i) transforms from 3D to 2D and then 1D at a scale smaller than the more125

tortuous portion (ii). This results in a lower local 3D scale in region (i) (∼40 µm) compared to region (ii) (∼100 µm).126

We then focused on a mouse cerebellar Purkinje neuron from Chen et al. (2013), presenting a more complex dendritic127

arbor (Figure 1C2, Movie S2). Most of this arbor was characterized by low local 3D scales (∼45 µm on average), in128

accordance with the fact that Purkinje cells dendritic arbors have a nearly flat appearance, and hence transform quickly129

to a 2D plane when scanning the scale space. Nevertheless, the analysis revealed one region (iii) presenting local 3D130

scales higher than the mean value, which was linked to the fact that dendrites in this region protruded in an unusual131

manner out of the main plane of the arbor (see Movie S2).132

Finally, we examined the reconstruction of a mouse retinal ganglion cell (Badea & Nathans, 2011) comprising its entire133

dendritic arbor and the portion of its axon enclosed in the retina (Figure 1C3, Movie S3). We observed small local134

3D scales (∼35 µm) along most of the axonal trajectory (see region (iv) in 1C3) except in its most proximal portion135

characterized by high local 3D scales (∼150 µm, region (v)). This reflects the structure of the axon as it first courses136

in a tortuous manner towards the inner side of the retina before running more directly towards the optic nerve head,137

the exit point for ganglion cell axons leaving the retina. The proximal region of the axon thus converts from 3D to 2D138

and 1D much faster than the more distal portion. The dendritic arbor presented an intermediate local 3D scale on the139

whole (∼80 µm) but with strong local variations. This corresponded to the fact that some dendritic branches exhibited140

complex shapes whereas others were more direct, as can be seen in Movies S2 and S3.141

We also compared our local 3D scale metric with two classic local descriptors of 3D traces, curvature and torsion142

(Figure S6). Mapping of the three parameters in the Purkinje neuron presented in Figure 1C2 showed that the local143

3D scale provided the most informative measure of the geometric complexity of neuronal arbors, whereas curvature144

and torsion yielded representations that were difficult to interpret as they were highly discontinuous because of local145

variations of the curves.146

Overall, the local 3D scale metric computed with nAdder offers a new local measure of the geometric complexity of147

neuronal traces, and provides information robust across neuron types, shapes and sizes. We subsequently used our148

algorithm to reanalyze published datasets in order to explore its capacity to extract biologically meaningful anatomical149

insights.150

2.2 Application of nAdder to characterize neuronal arbors during growth and in experimentally altered151

condition152

To evaluate the relevance and usefulness of the local 3D scale measure, we first applied nAdder to compare neuronal153

arbors at different stages of their development and in normal vs. experimentally altered contexts. We selected data from154

Santos et al. (2018) hosted in the NeuroMorpho.Org database which describe the expansion of the dendritic arbors155
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nAdder: A scale-space approach for the 3D analysis of neuronal traces

Figure 1: Computation of the 3D local scale of neuronal traces from their multiscale dimensionality decom-
position. (A) (left) Variation of the intrinsic dimensionality along a portion of 3D curve; (right) evaluation of the
decomposition on simulated trajectories and comparison to a baseline method not based on scale-space (Yang et al.,
2016; Ma et al., 2017). (B) Schematic presentation of the processing of 3D curves by the nAdder algorithm. (C)
Application of nAdder to three types of mouse neurons with different arbor shape and size: (C1) striatal D2 medium
spiny neuron (Li et al., 2019), (C2) cerebellar Purkinje neuron (Chen et al., 2013), (C3) retinal ganglion cell (Badea
& Nathans, 2011). The first three columns show the intrinsic dimensionality decompositions of the neurons at small,
medium and large scales. The local 3D scale, computed from suites of such decomposition across multiple scales, is
shown in the last column. The maximum scale is set at 160 µm based on the longest branch analyzed. Dotted line boxes
(i-v) frame areas of interest discussed in the text.
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of the Xenopus laevis tectal neuron during development and the effect of altering the expression of Down syndrome156

cell adhesion molecule (DSCAM). In this study, the authors showed that downregulation of DSCAM in tectal neuron157

dendritic arbors increases the total dendritic length and number branches, while overexpression of DSCAM lowers158

them. We reanalyzed neuronal traces generated from the dendritic arbors in this study by computing their local 3D159

scale using nAdder.160

Our analysis showed that the mean local 3D scale of developing X. laevis tectal neurons overexpressing DSCAM is161

smaller than that of control neurons, with a significant difference between the two conditions, 24 and 48 hr after the162

start of the observations at Stage 45 (Figure 2A and B); this result is consistent with the original analysis by Santos et al.163

(2018), indicating that DSCAM overexpression leads to more simple arbor morphologies, as measured by the number of164

branches and length of reconstructed arbors. In their paper, the authors also studied tortuosity, the ratio of curvilinear to165

Euclidean length of a trace, a global morphological metric classically used to measure geometric complexity. While the166

authors show that DSCAM downregulation increases the tortuosity of the neuron’s longest dendritic branch (see Figure167

4 of Santos et al. (2018)), they did not report this parameter for DSCAM overexpression. We computed the tortuosity of168

the longest branch and indeed observed no significant difference between control and DSCAM overexpressing neurons169

at any stage of the analysis (Figure 2C, middle). Interestingly, however, we found that the mean local 3D scale of the170

arbors’ longest branch (Figure 2C, top) was significant reduced in DSCAM-overexpressing vs. control neurons 24171

and 48 hr after the start of the image series. We also observed that the length and mean local 3D scale of the neuron’s172

longest arbor branch were correlated in control neurons (Figure 2D, left) (r = 0.30, p value = 0.020), but disappeared in173

DSCAM-overexpressing neurons (Figure 2D, right). This suggests a subtle effect of DSCAM in uncoupling the length174

of neurites and their geometric complexity. Our analysis shows that measuring the neurites’ local 3D scale provides175

biologically relevant information and can measure subtle differences in the complexity of their trajectory that are not176

apparent with classic metrics.177

2.3 Local 3D scale mapping across the whole larval zebrafish brain178

We next sought to test nAdder over a large-scale 3D dataset encompassing entire long-range axonal projections. A179

database including 1939 individual neurons traced across larval zebrafish brains and co-registered within a shared180

framework has been published by Kunst et al. (2019). The authors clustered neuronal traces into distinct morphological181

classes using the NBLAST algorithm (Costa et al., 2016), thus identifying both known neuronal types and putative182

new ones. These neuronal traces were also used to build a connectivity diagram between 36×2 bilateral symmetric183

regions identified in the fish brain, revealing different connectivity patterns in the fore-, mid- and hindbrain. Here, we184

reanalyzed this dataset by computing the local 3D scales of all available neuronal traces, focusing on projections linking185

distinct brain regions (i.e. that terminated in a region distinct from that of the cell body), interpreted as axons. We then186

explored the resulting whole-brain map of the geometric complexity of projection neurons.187

Local 3D scale variations across brain regions. Processing of the 1939 traces of the larval zebrafish atlas with nAdder188

resulted in a dataset where the local 3D scale of each inter-region projection (i.e. projecting across at least two distinct189

regions), when superimposed in the same referential, could be visualized (Figure 3A and S7A). Coordinated variations190

in local 3D scale values among neighboring traces were readily apparent on this map, such as in the retina (see region191

(i) in Figure 3A) and torus semicircularis (ii) which presented high local 3D scale values, or the octaval ganglion (iii)192

characterized by low values.193

To quantify these local differences, we computed the mean local 3D scale of inter region projections for each of the 36194

brain regions defined by Kunst et al. This enabled us to establish an atlas of the local 3D scale of fish axons highlighting195

variations of their geometric complexity in different brain regions (Figure 3B and S7B). Similar atlases could be derived196

for all projection subsets originating from (Figure S8A), passing through (Figure S9A) or terminating in a region (Figure197

S10A), again showing inter-regional variations. The distributions of local 3D scale within each region nevertheless198

showed a high variance (Figure 3C, S8B, S9B and S10B), reflecting the diversity of neuronal types and variations in the199
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Figure 2: Local 3D scale analysis in tectal neurons from developing Xenopus laevis tadpoles and effect of
DSCAM overexpression. Dendritic arbor traces from X. laevis tectal neurons were obtained from Santos et al.
(2018). (A) Examples of local 3D scale maps from control (left) and DSCAM-overexpressing (DSCAM overexpr)
neurons at Stage 45, and 24 and 48 hr after initial imaging. The maximum scale is set to 60 µm based on the mean
length of the arbor’s longest branch (highlighted in gray). The cell body’s position is indicated by a black square. (B)
Evolution of the mean local 3D scale of the whole dendritic arbor from Stage 45, to +24 and +48 hr. (C) Mean local 3D
scale (top), tortuosity (middle) and length (bottom) of the longest branch only. Two-way ANOVA, Student’s t-test with
Holm-Sidak for multiple comparisons were used, * p≤0.05, ** p≤0.01, *** p≤0.005, **** p≤0.001. (D) Correlation
between the mean 3D scale and the longest branch length in control vs. DSCAM-overexpression conditions. Spearman
correlation was used.
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local structure of their axons as they exit or enter a brain region. This variability is illustrated in Figure 3D showing200

three regions, the Medulla Oblongata Strip 3 (MOS3), Subpallium (SP) and Torus semicircularis (TS), respectively201

presenting low (∼43 µm), medium (∼51 µm) and high (∼58 µm) average local 3D scales. Different patterns exhibited202

by axons originating from, passing through and arriving in these regions might contribute to this variability (Figure203

S11).204

Different distributions of local 3D scale could be observed in the fore-, mid- and hindbrain regions, with higher average205

value in mid- compared to fore- and hindbrain regions (Figure S7C). The difference is clearer for axons terminating in a206

region (Figure S10C), but not for axons with soma in these regions and en passant axons (Figures S8C, S9C). This207

could relate to the observation that the connectivity strength in the mid- and hindbrain are stronger than that in forebrain208

(Kunst et al., 2019).209

Comparing the mean local 3D scale with the average number of branching points and average length of the traces within210

individual regions showed that these parameters were correlated, yet with a high variance (Figure 3E and 3F). However,211

when separately analyzing axons connecting to, through or from a region, only those originating from the region212

analyzed showed such correlations (Figures S8D-E), which were not apparent when observing passing or arriving axons213

(Figures S9D-E and S10D-E). Yet, comparing the local 3D scale of the three types of axons showed that inter-regional214

axons terminating in a region had on average higher local 3D scales than those originating from or passing through a215

region (Figure 3G). This observation is consistent with the idea that the proximal axonal path and terminal arbor differ216

in their complexity, as related to their developmental assembly and function.217

Together, these results show that the local 3D scale computed with nAdder is informative at the whole brain level,218

adding a new level of description for analyzing connectomic datasets.219

Characterization of axon behavior at defined anatomical locations and along specific tracts. A key feature of our220

metric is its local nature, i.e. its ability to inform on the geometry of single neurites not only globally, but at each221

point of their trajectory. This aspect is of interest to investigate the complexity of axonal trajectories not simply as222

function of their origin, but also at specific positions or spatial landmarks. For instance, commissural axons that cross223

the midline play a major role by interconnecting the two hemispheres and have been well studied, in particular for the224

specific way by which they are guided across the midline (Chédotal, 2014). Examining axonal arbors intersecting the225

midline in the whole larval fish dataset, we found that a majority (71%) crossed only once, making a one-way link226

between hemispheres, while a significant proportion crossed multiple times, with 10% traversing the midline more227

than 5 and up to 24 times (Figure 4A and S12A). Most individual branches (i.e. neuronal arbor segments between two228

branching points, or between a branching point and the cell body/terminal) crossed the midline just once, meaning that229

neurons crossing multiple times did not do so with one long meandering axons but with many distinct branches of their230

arbor (Figure S12B). Examples of such axonal arbors crossing the midline more than 10 times are shown in Figure 4A.231

Measuring the local 3D scale of crossing axon branches in a 20 µm range centered on the midline (Figure 4B), we232

observed higher values for the ones traversing the midline several times compared to those only crossing once (Figure233

4C, top). Axon branches crossing the midline multiple times were also much shorter than those crossing only once234

(Figure 4C, bottom). They localized mostly in the hindbrain in a ventral position (Figure 4D), while single crossings235

were frequent in the forebrain commissures. Finally, we found no link between the length and local 3D scale of crossing236

branches (Figure S12C). This is consistent with the existence of two populations of commissural axons in the vertebrate237

brain, the hindbrain being home to neurons following complex trajectories across the midline with many short and238

convoluted branches, and forebrain commissural neurons forming longer and straighter axons.239

The local 3D scale metric can also serve to compare axon trajectories along entire tracts and characterize their average240

behavior. To illustrate this, we analyzed two distinct, well known cell types forming long-range axonal projections241

involved in sensory perception. We used nAdder, first studying the axon trajectories of retinal ganglion cells (RGCs)242

from the fish atlas, each originating in the retina and terminating in the tectum (Figure 4E). We observed that the243
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nAdder: A scale-space approach for the 3D analysis of neuronal traces

Figure 3: Local 3D scale mapping across the whole larval zebrafish brain. Traces analyzed correspond to those
presented in Kunst et al. (2019). (A) Local 3D scale analysis of all axonal traces originating from neurons in the left
hemisphere; the maximum scale is set to 100 µm based on the width of the largest brain region. (B) Mean local 3D
scales by brain regions. Regions with fewer than 15 traces are excluded (in gray). Values were clipped from the 5th
to 95th percentiles for clearer display. (C) Distribution of the local 3D scale values in each brain region (see Table
S1 for abbreviation definitions). (D) Examples of local 3D scale mapping for axonal traces in three brain regions
respectively presenting low, medium and high mean 3D scale: the Medulla Oblongata Strip 3 (left), the Subpallium
(middle), and Torus Semicircularis (right). (E, F) Correlation between the mean local 3D scales and average number of
branching points (E) and trace length (F) in different brain regions. Spearman correlation was used. (G) Mean local 3D
scale of axons originating from, passing through, and arriving to each brain region. Wilcoxon tests with Holm-Sidak
correction for multiple comparison was used, * p≤0.05, ** p≤0.01, *** p≤0.005, **** p≤0.001. Color scale in C, E,
F corresponds to that used in B.
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local 3D scale of these axons presented clear heterogeneity across regions. To quantify this, we examined RGC axon244

trajectories in 5 portions of the retinotectal path: within the retina, at the retinal exit, at the midline, just prior to entering245

the tectum and within the tectum. We observed significant differences between these regions, with the mean local246

3D scales at the midline presenting low values (∼50 µm) compared to the retina, the tectum, and their exit/entrance247

regions (∼63 µm). We then used nAdder to analyze a second population, the trajectories of Mitral cell axons originating248

in the olfactory bulb (OB) and projecting to multiple destinations in the pallium (P), subpallium (SP) or habenula249

(Hb) (Miyasaka et al., 2014). Here again we found variations in axonal complexity across regions (Figures 4F), with250

relatively low local 3D scales in the OB (∼40 µm) and Hb formation (∼37 µm) compared to higher values in the P251

(∼50 µm) and SP (∼47 µm). Overall, this indicates that local 3D scale is a relevant measure of geometric complexity at252

the single axon level, both to inform on specific points of their trajectory and to compare them within a neuronal class.253

Local 3D scale analysis of a brain region, the Torus Semicircularis. Finally, we investigated local 3D scale across254

different axonal populations innervating a given brain region. We performed this analysis in the Torus Semicircularis255

(TS) which presents a high average local 3D scale, with many complex axonal traces (Figure 3D right panel and S11256

last row). Most of these traces corresponded to axons with terminations in the TS (70% vs. 5% axons emanating from257

TS and 25% axons passing through TS). Focusing on this population, we selected three groups of axons originating258

from the Tectum (TeO), Medial Octavolateral Nucleus (MON) and Medulla Oblongata Stripe 5 (MOS5), respectively,259

excluding other regions from which only a small number (< 10) of incoming axons had been traced (a detailed list of all260

regions with traces terminating in the TS is in Table S2). Axons coming from the TeO terminated in the ipsilateral TS261

(Figures 5A and 5B), in contrast to MON/MOS5 axons which connected the contralateral TS after crossing the midline262

(Figures 5D and 5E). Examining the distribution of local 3D scale inside the TS, we observed that tectal axons overall263

had a simpler structure, characterized by lower local 3D scale values than those coming from the MON/MOS5 (Figures264

5C and 5F). In particular, complex axons with a local 3D scale above 150 µm mostly originated from the MON/MOS5.265

This difference, revealed by nAdder, points to the existence of divergent developmental mechanisms of pathfinding266

and/or synaptogenesis for these two populations of axons within a shared target area.267

We then focused on axons projecting from the MON/MOS5 to the TS. We computed the local 3D scale of these axons268

at all coordinates of their trajectory from the MON/MOS5 to the TS, normalized with respect to total length (Figure269

5G). We found that these axons’ local 3D scale was highly correlated and that its average value varied widely along270

their course from the MON/MOS5 to the TS: low at the start, it increased inside the MON/MOS5 before dropping when271

the axons crossed the midline. It then increased again as they made a sharp anterior turn, dropped again within the272

straight tract heading to the TS, before rising to maximum values inside the TS. This result provides a striking example273

of stereotyped geometrical behavior among individual axons linking distant brain areas, likely originating from a same274

type of neurons, that our metric is able to pick up and report.275

Overall, our analysis of the larval zebrafish brain atlas demonstrates that nAdder can be efficiently applied to connectomic276

datasets to probe structural heterogeneity and identify patterns among individual axons and population of neurons.277

3 Materials and Methods278

3.1 Intrinsic dimension decomposition of neurite branches based on scale-space theory279

Intrinsic dimension decomposition Let’s consider a 3D parametric curve γ(u) = (x(u), y(u), z(u)) for u ∈ [0, 1];280

the intrinsic dimensionality of that curve can be defined as the smallest dimension in which it can be expressed without281

significant loss of information. An intrinsic dimension decomposition is a decomposition of a 3D curve into consecutive282

fragments of different intrinsic dimensionality, i.e. lying intrinsically on a 1D line, 2D plane or in 3D. Note that such283

decomposition needs not be unique. For example, not taking scales into account, two consecutive lines followed by one284

plane can in theory be decomposed into one 3D fragment, one 1D and one 3D fragments, two consecutive 1D and one285

2D fragments, or two consecutive 2D fragments (Figure S1). The last two decomposition schemes are both meaningful286

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.06.01.127035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127035
http://creativecommons.org/licenses/by-nc/4.0/


nAdder: A scale-space approach for the 3D analysis of neuronal traces

Figure 4: Local 3D scale analysis of specific locations and axonal tracts of the zebrafish brain. (A) Example of
axonal arbors with many branches crossing the midline. (B) Diagram summarizing computation of the local 3D scale at
the midline. (C) Local 3D scale (top) and length (bottom) of all axons crossing the midline vs. those crossing only once
and more than five times. (D) View of the midline sagittal plane showing the local 3D scale of axons crossing only
once and more than five times. The maximum scale is set to 100 µm based on the width of the largest brain region
analyzed. (E, F) Local 3D scale variation along axons of retina ganglion cells (E) and mitral cells (F). Wilcoxon tests
with Holm-Sidak corrections for multiple comparison were used, * p≤0.05, ** p≤0.01, *** p≤0.005, **** p≤0.001.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.06.01.127035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127035
http://creativecommons.org/licenses/by-nc/4.0/


nAdder: A scale-space approach for the 3D analysis of neuronal traces

Figure 5: Local 3D scale of different axonal populations terminating in the zebrafish Torus Semicircularis (TS).
(A, D) nAdder analysis of TS-terminating axons originating from the Tectum (TeO) (A) and Medial Octavolateral
Nucleus (MON) or Medulla Oblongata Strip 5 (MOS5) (D). (B, E) Views restricted to axons originating from the left
hemisphere. (C, F) Distribution of local 3D scale for the set of axons arriving from the TeO (C) and MON/MOS5 (F)
compared to all axons arriving in the TS. Student’s t-test was used. (G) Local 3D scale variations along axons coming
from MON/MOS5. Left, example view of one neuron indicating different segments of interest. Right, quantification (n
= 32 axons). The maximum scale is set to 175 µm based on the mean length of the longest branches. Only the longest
branches are included in the computation.
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nAdder: A scale-space approach for the 3D analysis of neuronal traces

and their combination represents a hierarchical decomposition of γ where linear fragments are usually parts of a larger287

planar fragment.288

Here, we compute the decomposition of a curve intrinsically by looking at the curvature and torsion. Let us define the
curvature κ of γ by κ = ‖γ′ × γ′′‖/‖γ′‖3, corresponding to the inverse of the radius of the best approximation of the
curve by a circle locally, the osculating circle. The torsion τ of γ is τ = ((γ′ × γ′′) · γ′′′)/‖γ′ × γ′′‖2 and corresponds
to the rate of change of the plane that includes the osculating circle. We then determine that if κ is identically equal to
zero on a fragment then that fragment is a 1D line; similarly τ being identically equal to zero defines a 2D arc curve.
Thus we define a linear indicator L of γ:

L(u) =

1, if κ(u) ≤ εκ
0, otherwise,

and a planar indicator H of γ:

H(u) =

1, if |τ(u)| ≤ ετ
0, otherwise,

where εκ and ετ are the tolerances for computed numerical errors. We note that only using the H indicator is not289

sufficient to estimate the 2D plane. For example, a 2D plane fragment composed of a 1D line followed by a 2D arc290

cannot be entirely identified as 2D since the torsion is not defined as the curvature tends to 0. We therefore consider the291

planar-linear indicator T = L ∪H instead of H for characterizing the curve according to such hierarchical order.292

Scale space In practice, the resulting dimension decomposition is closely tied to a ‘scale’ at which the curve is studied,293

i.e. up-close all diferentiable curves are well approximated by their tangent and thus would be linear. That property294

have been formalised through Scale-spaces, which have been described for curves in 2D (Mackworth & Mokhtarian,295

1988) or 3D (Mokhtarian, 1988) in particular, to give a robust meaning to that intuition. A scale-space is typically296

defines as a set of curves γs such that γ0 = γ and increasing s leads to increasingly simplified curves. The scaled297

curve can be calculated by convolving γ with a Gaussian kernel of standard deviation s (Witkin, 1983), or by using298

mean curvature flow (Gage & Hamilton, 1986). In 2D, it has been shown for example that a closed curve under a mean299

curvature motion scale space will roundup with increasing s and eventually disappear into a point (Grayson, 1987).300

However, the selection of a scale of interest representing a meaningful description of a curve is not straightforward. A301

scale defined as the standard deviation of the Gaussian kernel as above for example will be influenced by the kernel302

length and the curve sampling rate, and would be unintuitive to set. To make the scales become a more relevant303

physical/biological measurement, we employ as scale parameter the radius of curvature rκ, the inverse of the curvature304

κ, in µm. For a given curve, the level of detail can be characterized by the maximal rκ along that curve, with scales305

keeping small rκ represents high level of detail looking at small objects such as small bumps and tortuosity and scales306

smoothing the curve out and keeing only larger rκ represents lower level of detail, and larger object and features such307

as plateaus or turns. Thus, to ease the interpretation and usage of scale spaces, we associate to a scale in micron r̂κ a set308

of standard deviation s, by determining, for a curve, for each point u whose rκ(u) < r̂κ the standard deviation s such309

that rκs(u) = r̂κ. This therefore associates, for each curve, an anatomically relevant scale of interest in micron r̂κ and310

the list S of standard deviations that lead to that curve having no points with curvature radius smaller than r̂κ. We will311

then use S to estimate the dimension decomposition of γ at scale r̂κ in two steps, first by computing our indicators for312

all s ∈ S, then by selecting, across S, the best decomposition.313

First we compute Ls and Ts by calculating the curvatures κs and the torsions τs. We then exclude fragments smaller314

than a length threshold εω at every s to eliminate small irrelevant fragments. From Ls and Ts, the linear fragments315

denoted as DLs
and planar-linear fragments denoted as DTs

are deduced across all s ∈ S. An example of this sequence316

of dimension decompositions is illustrated in Figure S4 where DLs
and DTs

are superimposed. The curve is completely317
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nAdder: A scale-space approach for the 3D analysis of neuronal traces

3D at low s value, several linear and planar fragments then appear at higher s, progressively fuse to form larger linear318

and planar fragments and eventually converge to one unique line at very high value of s.319

In the second step, we estimate the most durable combination of fragments from the linear segments DLs
and linear-320

planar segments DTs
calculated in the first step. We compute the number of fragments at every s ∈ S, to measure how321

long each combination of fragments exists. We then select the combination of fragments remaining for the longest322

subinterval of S. Knowing that each fragment in the combination can have different lengths among that subinterval, we323

thus select the longest candidate. In cases where fragments overlap, we split the overlap in half. Of note, we repeat this324

step twice, first to estimate the best combination of linear-planar segments from DTs
input and mark the corresponding325

subinterval, then to estimate the best combination of linear fragments from DLs input within that subinterval. As seen326

in Figure S4, the curve is decomposed at every s in consecutive planar/nonplanar fragments, then the linear fragments327

are identified within each planar fragment. The final result is the hierarchical dimension decomposition of the curve γ328

at a given scale of interest r̂κ.329

3.2 Evaluation of dimension decomposition on simulated curve330

The simulated curve consists of consecutive 1D lines, 2D planes and 3D regions. The simulation of 1D lines is done by
simply sampling a sequence of points on an arbitrary axis (e.g. x axis), then rotating it in a random orientation in 3D.
The simulation of random yet regular 3D fragments embedded in a 2D plane is more challenging. We tackle this issue
by using the active Brownian motion model (Volpe et al., 2014). Active Brownian motion of particles is an extended
version of the standard Brownian motion (Uhlenbeck & Ornstein, 1930) by adding two coefficients the translational
speed to control directed motion and the rotational speed to control the orientation of the particles. At each time point,
we generate the new coordinates (x, y, 1) by the following formulas:

DT =
kB T

6π η R

DR =
kB T

8π η R3

d

dt
ϕ(t) = Ω +

√
2DRWϕ

d

dt
x(t) = v cosϕ(t) +

√
2DT Wx

d

dt
y(t) = v sinϕ(t) +

√
2DT Wy,

where DT and DR are the translational and rotational coefficients, kB the Boltzmann constant, T the temperature, η
the fluid viscosity, R particle radius, ϕ rotation angle, Ω angular velocity and Wϕ,Wx,Wy independent white noise.
After generating the simulated intrinsic 2D fragment, a random rotation is applied. For simulating a 3D fragment, we
extended the Active Brownian motion model in 2D (Volpe et al., 2014) to 3D as follows:

d

dt
ϕ(t) = cos Ω +

√
2DRWϕ

d

dt
θ(t) = sin Ω +

√
2DRWθ

d

dt
x(t) = v cos θ(t) sinϕ(t) +

√
2DT Wx

d

dt
y(t) = v sin θ(t) sinϕ(t) +

√
2DT Wy

d

dt
z(t) = v cosϕ(t) +

√
2DT Wz,

where (ϕ, θ) are spherical angles. We simulate the curve γ with a sequence of nω consecutive fragments of varying331

random intrinsic dimensions. The curve γ is then resampled equally with nγ points and white noise N (0, σ2) is added.332
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We set nω ≤ 5, nγ = 1000 points and vary σ between 1 and 30 µm. The upper value of σ = 30µm is high enough to333

corrupt local details of a simulated fragment with about 100 µm of length in our experiment.334

The metric used to measure the accuracy of the intrinsic dimension decomposition, defined to be between 0.0 and 1.0

and measures an average accuracy across fragments, is given by (1/nω)
∑
i maxj ξ(ωi, ω̂j), where {ω1, ω2, . . . , ωnω

}
are the simulated intrinsic fragments, {ω̂1, ω̂2, . . . , ω̂nω̂

} the estimated intrinsic fragments and ξ(., .) the F1 score
(Rijsbergen, 1979) calculated by:

2× Precision×Recall
Precision+Recall

,

where

Precision =
|ω ∪ ω̂|
|ω|

and Recall =
|ω ∪ ω̂|
|ω̂|

.

In order to evaluate our intrinsic dimensions decomposition algorithm, we look at the curve γ at various scales335

rκ = 1, 2, . . . , 100µm, then perform the dimension decomposition for every rκ. Setting rκ = 100µm is large enough336

to get a smoothed curve whose simulated intrinsic fragments are no longer preserved. In addition, we also removed337

estimated fragments whose lengths were smaller than εω. Here we set εω = 5% of the curve length since it does338

not surpass the minimal length of simulated intrinsic fragments. While automatic determination of an optimal scale339

is not studied in this paper, with the nAdder algorithm being in part meant to sidestep this complex issue altogether340

by computing a single metric across scales, we have to chose a scale for the evaluation. We either take the one341

corresponding to the largest accuracy (optimal scale, Figure S2) or one at a fixed scale (Figure S3), rk = 20µm, small342

enough to avoid deforming the simulated curve. Our method is then compared with a baseline method (Yang et al.,343

2016; Ma et al., 2017) that first iteratively assigns each point on the curve as linear/nonlinear by a collinearity criterion,344

then characterize nonlinear points as planar/nonplanar by a coplanarity criterion. For both methods, the curve was first345

denoised based on Czesla et al. (2018).346

3.3 Local 3D scale computation347

Assuming a scale interval of interest, the local 3D scale of a point on a curve is computed by iteratively checking at348

each scale the intrinsic dimension of that point and taking the scale at which the local scale is not 3D anymore. In some349

cases, the dimension transformation of a point is not smooth, since the point at a 2D/1D scale can convert back to 3D.350

We therefore select the first scale of the longest 2D/1D subinterval as local 3D scale. In case no subintervals are found,351

it means that the point remains 3D across the whole interval and its local 3D scale is set as the highest scale.352

3.4 Local 3D scale analysis of neuronal traces353

We consider a neuronal trace as a 3D tree and first resample it with a spacing distance between two points equal to 1354

µm. B-spline interpolation (Boor, 1978) of order 2 is used for the resampling. We then decompose the neuronal arbor355

into potentially overlapping curves, since the intrinsic dimension decomposition and local 3D scale are computed on356

individual neuronal branches. Several algorithms are available for tree decomposition. We explored three, functioning357

either by longest branch (first taking the longest branch, then repeating this process for all subtrees extracted along358

the longest branch), by node (taking each curve between two branching nodes) or by leaf (taking, for each leaf, the359

curve joining the leaf to the root). Local scales were computed for all three considered decompositions and the ‘leaf’360

decomposition was found to give the most robust and meaningful results as shown in Figure S5. That method gives361

partially overlapping curves; thus, we compute the average of the values when needed; we verified that the standard362

deviations were small.363

Next, the local 3D scale is computed for each extracted sub-branch within a scale interval of interest. The scale is364

defined as the radius of curvature and can be selected based on the size of the branches or that of the region studied.365

For example, in the case of Xeonopus Laevis tadpole neurons (Figure 2), we selected scales from 1 to 60 µm which366
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nAdder: A scale-space approach for the 3D analysis of neuronal traces

was sufficient to study neuronal branches of about 180 µm in length (i.e. a 60 µm radius of curvature corresponds to a367

semicircle with length equal to 60π ≈ 180 µm). In the case of the zebrafish brain dataset (Figure 3), we selected scales368

from 1 to 100 µm based on the length of the largest region, which was about 300 µm. When studying axons arriving to369

the Torus Semicircularis (Figure 5), we set the maximum scale to 175 µm as the neuronal branches are on average 525370

µm long. Moreover, we excluded the sub-branches whose lengths are smaller than a threshold set to 5 µm, which is371

half the size of the smallest brain region. Branches shorter than 5 µm contribute very little to the local 3D scale result.372

This is also useful to reduce artifact caused by manual tracing of neurons.373

3.5 Toolset for neuronal traces manipulation374

We provide an open source Python toolset for seamless handling of 3D neuronal traces data. It supports reading from375

standard formats (swc, csv, etc), visualizing, resampling, denoising, extracting sub-branches, calculating basic features376

(branches, lengths, orientations, curvatures, torsions, Strahler order (Horton, 1945), etc), computing the proposed377

intrinsic dimension decompositions and the local 3D scales. The toolset is part of the open source Python library378

GeNePy3D (Phan & Chessel, 2020) available at https://genepy3d.gitlab.io/ which gives full access to manipulation and379

interaction of various kinds of geometrical 3D objects (trees, curves, point cloud, surfaces).380

3.6 Analyzed neuronal traces datasets381

The traces used in our studies are all open and available online for downloading. They consist of neuronal reconstructions382

from NeuroMorpho.Org and the Max Planck Zebrafish Brain Atlas listed in the table below:383

Name Source article Donwload page Search key Note
Medium spiny
neuron

(Li et al., 2019) http://neuromorpho.org by neuron name:
3817_CPi_PHAL_
Z001_app2_split_34

Section
2.1

Purkinje neuron (Chen et al., 2013) http://neuromorpho.org by neuron name:
Purkinje-slice-age
P43-6

Section
2.1

Retina ganglion
cell

(Badea & Nathans,
2011)

http://neuromorpho.org by neuron name:
Badea2011Fig2Ca-R

Section
2.1

Xenopus laevis (Santos et al., 2018) http://neuromorpho.org by archive: Cohen-
Cory

Section
2.2

Zebrafish atlas (Kunst et al., 2019) https://fishatlas.neuro
.mpg.de/neurons/download

by neuron groups:
Kunst et al

Section
2.3

384

4 Discussion385

We presented a novel method for the multiscale estimation of intrinsic dimensions along an open 3D curve and used it386

to compute a local 3D scale, which we propose as a new local metric to characterize the geometrical complexity of387

neuronal arbors. We demonstrated that our method, dubbed nAdder, is accurate and robust, and applied it to published388

trace data, showing its relevance and usefulness to compare neurite trajectories from the level of single neurons to the389

whole brain.390

Our new approach provides a solution to the problem of measuring the geometrical complexity of 3D curves not just391

globally but also locally, i.e. at successive points of their trajectory. It enables to compute the dimensionality of such392

curves at any position, for a given scale of analysis. By scanning the scale space, one can then determine the value at393

which the curve requires all three dimensions of space for its description, a sampling-independent local metric which394
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we term the local 3D scale. Mathematically, scale spaces of curves are trickier to implement in 3D than in 2D and have395

been much less studied. In 2D for example, scale spaces based on curvature motion are known to have advantageous396

properties compared to Gaussian ones: they arise naturally from principled axiomatic approaches, are well described397

mathematically and can be computed through well characterized numerical solutions of partial differential equations398

(Cao, 2003). They are readily extended to 3D surfaces by using principal curvatures (Brakke, 2015), but no simple399

equivalent is known for 3D curves. One theoretical issue is that using only the curvature to determine the motion of 3D400

curves would not affect the torsion, and for example a set of increasingly tighter helices would have increasingly higher401

curvature but identical torsion. Here, we provided and thoroughly evaluated a practical solution to this problem by402

associating a spatial scale to an ensemble of Gaussian kernels. In future work, additional theoretical studies of 3D scale403

spaces of curves could potentially lead to simpler and more robust algorithms with solid mathematical foundations.404

The nAdder approach fills a gap in the methodologies available to analyze neuronal traces, which until now were405

lacking a straightforward way to measure their geometrical complexity and its variations, both within and between406

traces. It is complementary to techniques classically used to study the topology of dendritic and axonal arbors (number407

and position of branching points, for example), providing a geometrical dimension to the analysis that is a both simpler408

and more robust than the alternative direct computation of curvature and torsion. In practice, the local 3D scale of409

neurons (as measured with nAdder and observed in this study) ranges from 0 to 100-200 µm. The lowest values are410

typically found in axonal tracts that follow straight trajectories, or in special cases such as the planar dendritic arbor of411

cerebellar Purkinje neurons shown in Figure 1C2. Higher, intermediate values are for instance observed at inflexion412

points along tracts where axons change course in a concerted manner. The highest values of local 3D scale typically413

characterize axonal arbor portions where their branches adopt a more exploratory behavior, in particular in their most414

distal segments where synapses form. A striking example is given in Figure 5G, showing the trajectory of an axon415

from the MON/MOS5 to the torus semicircularis, where changes in local 3D scale correlate with distinct successive416

patterns: a straight section through the midline, a sharp turn followed by another straight section before more complex417

patterns in the target nucleus. Importantly, nAdder not only enables to quantify how geometric complexity varies along418

a single axon trace, but also to compare co-registered axons of a same type and to characterize coordinated changes419

in their behavior (Figure 5G, right panel). It thus offers a way to identify key points and stereotyped patterns along420

traces. This will be of help to study and hypothesize on the developmental processes at the origin of these patterns, such421

as guidance by attractive or repulsive molecules (Lowery & Van Vactor, 2009), mechanical cues (Gangatharan et al.,422

2018), or pruning (Lichtman & Colman, 2000; Riccomagno & Kolodkin, 2015).423

The high values of local 3D scale near-systematically observed in the most distal part of axonal arbors are also of strong424

interest, as these segments typically undergo significant activity-based remodeling accompanied by branch elimination425

during postnatal development (Lichtman & Colman, 2000), resulting in complex, convoluted trajectories in adults426

(Keller-Peck et al., 2001; Lu et al., 2009). In accordance with this, we observed a correlation between local 3D scale427

and axon branching at the whole brain level (Figure 3E). Further integrating topological and geometrical analysis and428

linking these two aspects with synapse position could then be a very beneficial, if challenging, extension of nAdder. To429

this aim, one would greatly benefit from methods enabling both faithful multiplexed axon tracing over long distances430

and mapping of the synaptic contacts that they establish. Progress in volume electron (Motta et al., 2019), optical431

(Abdeladim et al., 2019) or X-ray holographic microscopy (Kuan et al., 2020) will be key to achieve this in vertebrate432

models.433

Beyond neuroscience, we also expect nAdder to find applications in analyzing microscopy data in other biological434

fields wherever 3D curves are obtained. For example, it could help characterizing the behavior of migrating cells during435

embryogenesis (Faure et al., 2016), or be used beside precise biophysical models to interpret traces from single-particle436

tracking experiments (Shen et al., 2017).437

Importantly, an implementation of the proposed algorithms, along with all codes to reproduce the figures, is openly438

available, making it a potential immediate addition to computational neuroanatomy studies. Specifically, nAdder is part439
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of GeNePy3D, a larger quantitative geometry Python package providing access to a range of methods for geometrical440

data management and analysis. More generally, it demonstrates the interest of geometrical mathematical theories441

such as spatial statistics, computational geometry or scale-space for providing some of the theoretical concepts and442

computational algorithms needed to transform advanced microscopy images into neurobiological understanding.443
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Mihaljević, B., Larrañaga, P., Benavides-Piccione, R., Hill, S., DeFelipe, J., & Bielza, C. (2018, December). Towards564

a supervised classification of neocortical interneuron morphologies. BMC Bioinformatics, 19(1), 511. Retrieved565

2020-05-21, from https://doi.org/10.1186/s12859-018-2470-1 doi: 10.1186/s12859-018-2470-1566

Miyasaka, N., Arganda-Carreras, I., Wakisaka, N., Masuda, M., Sümbül, U., Seung, H. S., & Yoshihara, Y. (2014,567

April). Olfactory projectome in the zebrafish forebrain revealed by genetic single-neuron labelling. Nature Communi-568

cations, 5(1), 3639. Retrieved 2020-05-20, from https://www.nature.com/articles/ncomms4639 (Number:569

1 Publisher: Nature Publishing Group) doi: 10.1038/ncomms4639570

Mokhtarian, F. (1988, June). Multi-scale description of space curves and three-dimensional objects. In CVPR (pp.571

298–303).572

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., . . . Helmstaedter, M. (2019, November).573

Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science, 366(6469). Retrieved 2020-10-27,574

from https://science.sciencemag.org/content/366/6469/eaay3134 (Publisher: American Association575

for the Advancement of Science Section: Research Article) doi: 10.1126/science.aay3134576

Muñoz-Castañeda, R., Zingg, B., Matho, K. S., Wang, Q., Chen, X., Foster, N. N., . . . Dong, H.-W. (2020). Cellular577

anatomy of the mouse primary motor cortex. bioRxiv. Retrieved from https://www.biorxiv.org/content/578

early/2020/10/02/2020.10.02.323154 doi: 10.1101/2020.10.02.323154579

Petilla Interneuron Nomenclature Group, Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G.,580

Benavides-Piccione, R., . . . Yuste, R. (2008, July). Petilla terminology: nomenclature of features of GABAergic581

interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568. doi: 10.1038/nrn2402582

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.06.01.127035doi: bioRxiv preprint 

http://www.sciencedirect.com/science/article/pii/S0896627319303915
http://www.sciencedirect.com/science/article/pii/S0896627319303915
http://www.sciencedirect.com/science/article/pii/S0896627319303915
https://www.nature.com/articles/s41467-019-09515-0
https://www.cell.com/neuron/abstract/S0896-6273(00)80893-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714171/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714171/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714171/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727034/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727034/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727034/
https://jeb.biologists.org/content/221/10/jeb164954
https://jeb.biologists.org/content/221/10/jeb164954
https://jeb.biologists.org/content/221/10/jeb164954
https://doi.org/10.1186/s12859-018-2470-1
https://www.nature.com/articles/ncomms4639
https://science.sciencemag.org/content/366/6469/eaay3134
https://www.biorxiv.org/content/early/2020/10/02/2020.10.02.323154
https://www.biorxiv.org/content/early/2020/10/02/2020.10.02.323154
https://www.biorxiv.org/content/early/2020/10/02/2020.10.02.323154
https://doi.org/10.1101/2020.06.01.127035
http://creativecommons.org/licenses/by-nc/4.0/


nAdder: A scale-space approach for the 3D analysis of neuronal traces

Phan, M.-S., & Chessel, A. (2020). Genepy3d: a quantitative geometry python toolbox for large scale bioimaging583

[version 1; peer review: awaiting peer review]. F1000Research, 9(1374). doi: 10.12688/f1000research.27395.1584
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