Damien Panciatici
email: patrick.panciatici@rte-france.com

Jocelyne Tromeur-Dervout
email: jocelyne.erhel@inria.fr

Erhel

P.-M Gibert

R Losseau
email: romain.losseau@rte-france.com

A Guironnet
email: adrien.guironnet@rte-france.com

P Panciatici

D Tromeur-Dervout
email: damien.tromeur-dervout@univ-lyon1.fr

J Erhel

SINUSOIDAL PREDICTOR METHOD WITHIN A FULLY SEPARATED MODELER/SOLVER FRAMEWORK TO SPEED EMT SIMULATIONS SUBJECT TO OSCILLATING FORCING TERM

Keywords: Electromagnetic transients, Time-domain simulations, Adaptive step size algorithm

HAL is

Introduction

Modern power systems are characterized by the development of smart-grids and the increasing proportion of renewable energy sources in the energy mix. Therefore, more and more new smart controls and power electronics devices are introduced into the transmission grid. In order to support this technological changes while providing a constant security of supply to their customers, transmission system operators (TSOs) perform numerous time-domain simulations. Time-domain simulations generally consist in studying the dynamical behavior of the power system when it is 1 subject to scenarios, which can be roughly seen as sequences of discrete events associated with perturbations and parades.

At present, most dynamic studies of large electrical networks use simulation under the "phaser mode" approximation, which assumes that the voltages and currents in the network (and in the equipment connected to it) have a sinusoidal temporal evolution, with amplitudes and phases varying over time. The simulation in phaser mode reproduces the evolution of these amplitudes and phases, using integration steps varying in practice between 1 ms and 1 s, for simulated times of up to a few minutes. More accurate "Electromagnetic Transients" (EMT) simulations reproduce oscillations and their distortions. The integration step is much smaller, which results in a large computing volume. These studies are therefore generally limited to relatively small systems and relatively short simulated times (e. g. a few seconds). While approximations allowed by phaser simulation are well known in the context of traditional equipment, there is doubt as to their validity in the presence of high-power electronic converters, which are currently in widespread use, and/or of disturbances leading to phase imbalances. The use of EMT simulations is necessary. It is therefore imperative to make EMT simulations more efficient, our ultimate objective being to simulate systems of similar size to those processed by phaser simulation, while avoiding simplifying the models and/or mixing the modeling and solving aspects without implementing the component in their discretized form.

For performing reliable long-term time-domain simulations of power systems represented with EMT models, our strategy is based on two cornerstones:

1. Completely separating the modeler and the solver. From a mathematical point of view, the idea is that the modeler should only build the DAE system to solve, which is written in implicit form i.e. F (t; X; Ẋ) =0. Then, the solver should perform the numerical integration of this system.

2. Integrating the DAE with an adaptive step size solver. By this way, the time step size is adjusted in order to meet a tolerance target, which finally reinforces the reliability of the simulation results. Furthermore, the step size adjustment enables to possibly optimize the computational cost. Indeed, as the step size is directly linked to the dynamics of the solution (the faster its variations, the smaller the step size), it enables to catch fast transient phenomena when the system is subject to perturbations while reducing the computational cost when the system returns to steady-state.

However, in EMT simulations, using an adaptive step size strategy is generally inefficient because of the sinusoidal behavior of the simulated three-phase voltages and currents. Indeed, their frequency limits the time step size that is used for the integration. Hence, the method that we implemented takes into account the sinusoidal behavior of the oscillating components in the solver. Basically, the idea is to decompose the solution as the sum of a periodic part and a correction term. The former is updated using parametric estimation. The latter is integrated using an adaptive step size solver. In this paper, we present new results obtained with the optimized implementation of our method, suggested in [Gibert et al., 2018a], into the reference solver SUNDIALS IDA (see Ref. [START_REF] Hindmarsh | Sundials: Suite of nonlinear and differential/algebraic equation solvers[END_REF]). In order to set our simulations, we used Dynaωo (see Ref. [START_REF] Guironnet | Towards an open-source solution using modelica for time-domain simulation of power systems[END_REF]), which is an open-source simulation engine (see sources at https://github.com/dynawo/dynawo/) based on the OpenModelica (see Ref. [START_REF] Fritzson | Openmodelica: A free open-source environment for system modeling, simulation, and teaching[END_REF]) environment and developed by RTE for time-domain simulations.

This paper is structured as follows. In the second section, the mathematical problem to solve when considering EMT simulations is introduced. The properties of the SPM in term of consistency and stability are analyzed on a Dahlquist's like equation with an oscillating forcing term. The effect on the corrector of the bias on the predictor is described. In the third section, our numerical method in the DAE context is presented. In particular, we detail its implementation into the reference solver IDA and its interface with Dynaωo. In the fourth section, some numerical results on two power systems are presented showing for both some speed up in number of time steps and elapsed time. The fifth section concludes this paper.

Mathematical Problem to Solve

In EMT simulations, the mathematical problem to solve is a differential-algebraic equations system of dimension d, which can be written in its most general form as

F : R × R d × R d → R d F (t; X(t); Ẋ(t)) = 0, t ∈ R, X ∈ R d , (1)
In this paper, we present our method for such implicit DAEs. Our previous paper (see Ref. [START_REF] Gibert | Speedup of EMT simulations by using an integration scheme enriched with a predictive fourier coefficients estimator[END_REF]) focuses on semi-explicit DAEs, as DAE systems can generally be rewritten in such form for most of the power system applications (see Ref. [START_REF] Astic | The mixed adams-bdf variable step size algorithm to simulate transient and long term phenomena in power systems[END_REF]).

Furthermore, the solution of this system X is assumed to contain both oscillating (for instance, the three-phase currents and voltages) and non-oscillating components, i.e.

X(t) = X s (t) X ns (t) (2)
where X s and X ns respectively refer to the oscillating components and to the non-oscillating components. Let d s (respectively d ns = dd s) be the number of oscillating (respectively nonoscillating) components and I s (respectively I ns) the associated set of index. These index sets are known a priori (e.g. network voltages and currents).

The idea of the Sinusoidal Predictor Method (SPM) is to take advantage of the behavior of the oscillating components in steady-state. Indeed, AC power systems are designed such as voltages and currents are as close as possible to balanced three-phase quantities oscillating at the reference frequency (for instance 50 Hz for the Continental Europe). In other words, its means that threephase systems should verify:

X s,∞     A ∞ cos(ω 0 t + φ ∞) A ∞ cos(ω 0 t + φ ∞ - 2 3 π) A ∞ cos(ω 0 t + φ ∞ + 2 3 π)     (3)
Where A ∞ and φ ∞ are respectively constant amplitude and phase. In addition, non-oscillating components should be constant by definition, which means that Ẋns,∞ 0.Then, in steady-state, the DAE system should verify

F (t, X s,∞ (t) X ns,∞ (t) , Ẋs,∞ (t) 0) = 0 (4)
Therefore, the SPM, presented in Ref. [START_REF] Gibert | A generic customized predictor corrector approach for accelerating emtp-like simulations[END_REF] and Ref. [START_REF] Gibert | Speedup of EMT simulations by using an integration scheme enriched with a predictive fourier coefficients estimator[END_REF], consists in decomposing the solution for each time interval [t n , t n+1] as the sum of a periodic part and a correction term, i.e.

X n (t) = Xn (t) + δ n (t)

In this equation, Xn (t) refers to the periodic part of the solution which corresponds to the guessed steadystate behavior of the oscillating components. Then, as mentioned in (3), these variables should be sinusoid oscillating at the reference frequency i.e.

Xs;n (t) = u n sin(ω 0 t) + v n cos(ω 0 t)

where ω 0 = 2π f 0 is the nominal pulsation (with f 0 = 50Hz e.g.). Hence, u n and v n are the Fourier coefficients associated to the fundamental mode f 0 . The objective of the SPM is to catch as much as possible the simple sinusoidal behavior of the solution into this periodic part. Indeed, as the power system is designed to generate balanced three-phase signals, the oscillating components of the solution should be sinusoids with constant amplitude and phase in steady-state. So, the f 0 oscillation finally corresponds to a trivial dynamical component of the solution which is paradoxically the main limit to solver performances since it constrains the usable step size. The Fourier coefficients are updated with a parametric estimator which takes advantage of the property (4). Therefore the other part of the solution, that we refer as the correction term, enables to catch transient parts of the solution that are mainly introduced by discrete events. For instance, it can be envelope variations (as the Fourier coefficients are set to constant values for each time interval) or more complex dynamics such as harmonics and offsets. This correction term is computed by integrating the equations rewritten on it. Then, an iteration of the SPM simply consists in (see figure 1): 4. updating the periodic part, by estimating its parameters.

SPM properties

This section exhibits the properties of consistency and stability of the SPM and shows that the sinusoidal predictor has to be carefully designed not to introduce bias in the corrector. We first adapt the well known Dahlquist's equation used to study the stability of linear ODEs, in the case where a oscillating forcing term b(t) is introduced:

Ẋ = λX(t) + b(t) (7)
For this, let us consider the manufactured solution:

X th (t) = u th sin(ωt) + v th cos(ωt) (8) (u th , v th) = (u ∞ , v ∞) + (u 0 -u ∞ , v 0 -v ∞)e λt , with λ < 0. (9) (10)
It is solution of (7) with:

b(t) = ūb sin(ωt) + vb cos(ωt) (11) ūb = -λu ∞ -ωv ∞ -ω(v 0 -v ∞)e λt vb = -λv ∞ + ωu ∞ -ω(u 0 -u ∞)e λt
The properties that follow have been established with considering the classical trapezoidal formula as basic time integrator.

Equivalence between the problem on the correction term and those on the global solution

Proposition 2.1. At each time step of the SPM, i.e. for each time interval [t n , t n+1], the local problem rewritten on the correction term δ is equivalent to the original system of differential equations on the global solution X at the continuous level.

Proof. Let us consider an ordinary differential equation whose form is X(t) = f (t, X(t)). By injecting the local values of the Fourier coefficients (u n , v n) for the time interval [t n , t n+1], the local equation on the correction term is given by

δ(t) = Φ(t, δ(t)) = f (t, δ(t) + Xn (t)) -Ẋn (t) (12)
Considering the Picard integral form of equation (12), we have

δ(t n+1) + Xn (t n+1) = δ(t n) + t n+1 tn Φ(t, δ(t))dt + Xn (t n+1) = δ(t n) + t n+1 tn f (t, δ(t) + Xn (t)) -Ẋn (t)dt + Xn (t n+1) = δ(t n) + t n+1 tn Ẋ(t) -Ẋn (t)dt + Xn (t n+1) = δ(t n) + X(t n+1) -X(t n) -Xn (t n+1) + Xn (t n) + Xn (t n+1) = X(t n+1)

Local truncation error and consistency

The following proposition shows that the SPM introduces a specific residual term which is directly due to the SPM decomposition and is associated to the periodic function.

Proposition 2.2. The SPM with the trapezoidal formula as basic integration scheme is secondorder consistent as its local truncation error is given by

LT E n+1 = - h 3 n 12 δ (3) |(un,vn) (t n) + O(h 4 n) (13
)
where δ

(3)

|(un,vn) (t n) = (X (3) th (t n) -X(3) (t n))
is the third time-derivative at time t n of the correction term associated to the used local values of the Fourier coefficients (u n , v n).

Proof. Applying the Trapezoidal formula to the local differential equation on the correction term (12), we obtain:

δ n+1 = δ n + h n 2 (Φ n (t n , δ n) + Φ n (t n+1 , δ n+1)) (14)
where

δ n+1 = X n+1 -Xn (t n+1) (15) δ n = X n -Xn (t n) (16) Φ n (t n , δ n) = f (t n , X n) -Ẋn (t n) (17) Φ n (t n+1 , δ n+1) = f (t n+1 , X n+1) -Ẋn (t n+1) (18)
Inserting these values into the equation (14) leads to the following global solution formula:

X n+1 = X n + h n 2 (f (t n , X n) + f (t n+1 , X n+1)) =X T R n+1 + Xn (t n+1) -Xn (t n) - h n 2 (Ẋn (t n+1) + Ẋn (t n)) =e SP M n+1 (19)
Where one can identify the solution obtained by applying the classical trapezoidal formula to the original differential equation to compute the global solution at the time t n+1 :

X T R n+1 = X n + h n 2 (f (t n , X n) + f (t n+1 , X n+1)) (20
)
which leads to the following local truncation error:

LT E T R n+1 = - h 3 n 12 X (3) th (t n) + O(h 4 n) (21)
In addition, we can note the presence of a residual term e SP M n+1 due to the numerical integration scheme (in this example, the Trapezoidal Formula) which is implicitly applied to the solution periodic part, thus

e SP M n+1 = - h 3 n 12 X(3) n (t n) + O(h 4) = ω 3 h 3 n 12 (u n cos(ωt n) -v n sin(ωt n)) + O(h 4 n) (22)
In other words, by injecting identical input data, the SPM computes the same solution as the classical trapezoidal scheme with the add of an O(h 3 n) term. Thus, the second order consistency of the SPM is locally ensured:

e n+1 = X th (t n+1) -(X T R n+1 + e SP M n+1) = - h 3 n 12 X (3) th (t n) + h 3 n 12 X(3) (t n) + O(h 4 n) = - h 3 n 12 (X (3) th (t n) -X(3) (t n)) + O(h 4 n) = - h 3 n 12 δ (3) |(un,vn) (t n) + O(h 4 n)
Proposition 2.3. For the equation (7), the global error of the SPM with the trapezoidal formula as basic integration scheme can be described by the following recurrence formula:

SP M n+1 = η n SP M n + µ n [LT E δ th,n n -LT E X uv n n] (23
)
where

n = X n -X th (t n) (24) LT E X n h 3 n 12 ||X (3) || (25)
η n = 1 + h n λ 2 1 - h n λ 2
, and

µ n = 1 1 - h n λ 2 (26) δ th,n (t) = X th (t) -Xth,n (t) = (u th (t) -u th (t n)) sin(ωt) + (v th (t) -v th (t n)) cos(ωt) (27) X uv n (t) = Xn (t) -Xth,n (t) = u n sin(ωt) + v n cos(ωt) (28)
Proof. The periodic solution can be decomposed into two parts:

Xn (t) = Xth,n (t) + X uv n (t), with Xth,n (t) = u th,n sin(ωt) + v th,n cos(ωt) X uv n (t) = u n sin(ωt) + v n cos(ωt) (29)
First, we define the local theoretical correction which is based on the piecewise-constant Fourier coefficients model:

δ th,n (t) = X th (t) -Xth,n (t) = (u th (t) -u th,n) sin(ωt) + (v th (t) -v th,n) cos(ωt).
Furthermore, the local ODE associated to δ is derived from the original ODE as below:

Φ n (t, δ(t)) = f (t, δ(t) + X(t)) -Ẋ(t) = λδ(t) + λ Xn (t) + b(t) -Ẋ(t) (30
)
where we can define the local oscillating forcing term bn which is directly linked to the difference between the original equation oscillating forcing term b(t) = -(λu ∞ + ωv th (t)) sin(ωt) -(λv ∞ + ωu th (t)) cos(ωt) and the periodic function used by the SPM Xn (t):

bn (t) = b(t) + λ Xn (t) -Ẋn (t) (31)
In addition, let us introduce b n , the oscillating forcing term associated to the perturbation on the Fourier coefficients:

b n = λ X uv n (t) -Ẋ n (t) (32)
Therefore, the ODE RHS function Φ n can be rewritten as a linear function of δ with an oscillation forcing term:

Φ n (t, δ(t)) = λδt + bn (t) (33)
The theoretical time-derivative of δ th,n , i.e. δth,n (t) can be bring out with considering the oscillating forcing term associated to the correction (31)

bn (t) = b + λ Xn (t) -Ẋn (t) = b(t) + λ[Xth,n (t) + X uv n (t)] -[Ẋth,n (t) + Ẋ n (t)] = uth,n sin(ωt) + vth,n cos(ωt) +ω[(u th (t) -u th,n) cos(ωt) -(v th (t) -v th,n) sin(ωt)] + b n (t) = δth,n (t) -[uth (t) -uth,n] sin(ωt) -[vth (t) -vth,n] cos(ωt) + b n (t)
Hence, if we use the fact that uth (t)

-uth,n = λ(u th (t) -u ∞) -λ(u th,n -u ∞) = λ(u th (t) -u th,n) and, similarly, vth (t) -vth,n = λ(v th (t) -v th,n), we have Φ n (t, δ th,n (t)) = λδ th,n (t) + bn (t) = λ(u th (t) -u th,n) sin(ωt) + λ(v th (t) -v th,n) sin(ωt) + δth,n (t) -λ(u th (t) -u th,n) sin(ωt) + λ(v th (t) -v th,n) + b n (t) = δth,n (t) + b n (t) (34)
In addition, we can readily prove the following formulas:

Φ n (t n , δ + n) = Φ n (t n , δ th,n (t n) + δ+ n = Φ n (t n , δ th,n (t n)) + λ δ+ n Φ n (t n+1 , δ - n+1) = Φ n (t n+1 , δ th,n (t n+1) + δ- n+1) = Φ n (t n+1 , δ th,n (t n+1)) + λ δ- n+1
Then, from the SPM decomposition, the global error can be also decomposed as

n+1 = X n+1 -X th (t n+1) = (Xn (t n+1) + δ - n+1) -(Xth,n (t n+1) + δ th,n (t n+1)) = X uv n (t n+1) + δ- n+1
The objective is now to quantify δ- n+1 :

δ- n+1 = δ - n+1 -δ th,n (t n+1) = δ + n + h n 2 [Φ n (t n , δ + n) + Φ n (t n+1 , δ - n+1)] -δ th,n (t n+1) = δ th,n (t n) + h n 2 [δth,n (t n) + δth,n (t n+1)] -δ th,n (t n+1) =Residual of the trapezoidal formula =LT E δ th,n n + δ+ n + h n 2 [λ(δ+ n + δ- n+1) + b n (t n) + b n (t n+1)]
where

LT E δ th,n n = h 3 n 12 δ th,n (t n) + O(h 4 n) Consequently δ- n+1 = η n δ- n + µ n [LT E δ th,n n + h n 2 [b n (t n) + b n (t n+1)] where                  η n = 1 + h n λ 2 1 - h n λ 2 , µ n = 1 1 - h n λ 2 .
Then, by injecting

δ+ n = δ + n -δ th,n (t n) = n X uv n (t n) into this equation, the relation (23) is finally obtained: n+1 = η n n classical numerical damping + µ n [LT E δ th,n n -LT E X uv n n]
local error (specific to the SPM)

If we look more closely to this recursive sequence, we can see that the formula is divided into two parts:

1. η n n corresponding to the previous global error damping, which is similar to those of a classical integration scheme.

2. µ n [LT E δ th,n n -LT E X uv n n
] which is the local error injection. Concerning this local error several comments can be done:

Both LT E δ th,n n
and LT E X uv n n are O(h 3 n) terms, which means that the method is secondorder consistent, as the basic trapezoidal rule integrator.

LT E

δ th,n n corresponds to the theoretical correction which is defined in reference to the chosen periodic function. For instance, in our developments, it was a sinusoid oscillating at a fixed fundamental frequency, without harmonics, and with piecewise constant Fourier coefficients. So the theoretical periodic function was this function with the theoretical values of the Fourier coefficients evaluated at the left bound of the integration interval. Then, the theoretical correction was a sine function with time-varying Fourier coefficients, corresponding to the difference between time-varying and the constant envelopes, i.e. (u th (t)-u th (t n), v th (t)-v th (t n)). Therefore we can deduct that, if the system comes back to steady-state, this difference tends toward zero as uth (t), vth (t) → 0. Finally, this means that the theoretical correction naturally tends towards zero and so the corresponding injection of error.

LT E

X uv n n corresponds to the injection of error due to the error done on the Fourier coefficients which could be large during transients but should tend toward zero when the system comes back to steady-state. It is thus necessary to have an accurate and especially a convergent estimator of the Fourier coefficient in order to get optimal performances. This recursive sequence (23) can be rewritten as

n+1 = η n η n-1 . . . η 0 0 + η n η n-1 . . . η 1 µ 0 LT E SM P 0 + η n η n-1 . . . η 2 µ 1 LT E SM P 1 + . . . + η n µ n-1 LT E SM P n-1 + µ n LT E SM P n (35
)
with

LT E SM P n = LT E δ th,n n -LT E X uv n n
. By introducing the convention η n+1 = 1, this sum can be rewritten in a more compact form as

n+1 = n+1 k=1 [n+1 j=k η j]µ k-1 LT E SP M k-1 + [n+1 j=0 η j] 0 (36)
Therefore, as λ < 0, the global error can be upper-bounded by a constant which is independent from the step size since there exists η > max j η j such as η ≤ 1 and μ > max j µ j such as μ ≤ 1 Furthermore, the formula (23) enables to compare the SPMwith the classical trapezoidal formula, whose global error is given by

T R n+1 = η n T R n + µ n [LT E δ th,n n + LT E Xth,n n] (37)
Actually, if we use the same step sequence for the classical Trapezoidal formula and the SPM (which is never done in practice as the aim of the SPM is to use larger steps rather than to be more precise, since we use an adaptive step size strategy which adapts the time step to keep the global error close to a fixed tolerance), we only have to compare the local injection of error of each method, i.e.

e SP M n+1 = LT E δ th,n n -LT E X uv n e T R n+1 = LT E δ th,n n + LT E Xth,n
So, if we assume that the relative error on the Fourier coefficients is small enough i.e. if || uv || << u 2 th,n + v 2 th,n , which is generally true and guaranteed in steady state, the SPM is more accurate than the trapezoidal formula. However, if the Fourier coefficients used in the SPM are too biased or noisy, the method might not be able to be as precise, but that would likely mean that the system is facing a strong EMT transient, which the SPM is not designed for. As mentioned above, this also means that the SPM will use larger step size than the classical trapezoidal formula since it is based on an adaptive step size strategy.

3 Proposed Solver: IDASPM Since we need a basic time integration scheme using adaptive step size for the corrector step, our choice focused on the implicit differential algebraic equations solver (IDA) from the SUNDIALS library (see Ref. [START_REF] Hindmarsh | Sundials: Suite of nonlinear and differential/algebraic equation solvers[END_REF]) developed and still maintained by Lawrence Livermore National Laboratory. After having recalled the principles of IDA solver, we explain in detail how we implemented the SPM into it, especially the optimizations done on the predictor step for the Jacobian matrix evaluation and on the adaptive time step strategy tuning because the time step size getting bigger faster with the SPM.

Existing reference solver: IDA

IDA is a modern version of the solver DASSL (see Ref. [Petzold et al., 1982]), which is an industrially validated implementation of the adaptive step size BDF (see Ref. [START_REF] Brayton | A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas[END_REF]). The adaptive step size BDF of order q for solving (1) consists in approximating the searched solution X(t) by a polynome P of order q + 1 that interpolates points (t n+i-q , X n+i-q), i = 0, . . . , q + 1.

Then one can write Ṗ (t n+1) = 1 h n q i=0 α n,i X n+1-i where h n = t n+1 -t n and the solution X n+1 is defined such that F (t n+1 , X n+1 , Ṗ (t n+1)) = 0. X n+1 is then obtained by solving the following fixed-point problem :

G(X n+1) = F (t n+1 , X n+1 , α n,0 h n X n+1 + 1 h n q i=1 α n,i X n+1-i) = 0 (38)
by a Newton's method involving the Jacobian matrix of G:

J G (X n+1) = ∂F ∂X + α n,0 h n ∂F ∂ Ẋ (39)
Then, the architecture of IDA roughly consists in:

a generic differential algebraic equations solver, which corresponds to the implementation of the BDF with variable step size and order. So, this general module performs the prediction, the correction and the step size and order adjustment. In our case, the maximum order is fixed to 2. More precisely, in the correction step, it executes the Newton-Raphson iterations by calling virtual functions for building and solving the linear system: initialization, setup and solve.

Specific modules for the different linear solvers to solve the linear systems those appear in Newton-Raphson iterations. Notably, between the wide variety of linear solvers present in IDA, we use the KLU direct solver particularly adapted to systems with sparse matrices in CompressedSparse-Row storage, which are found in power grid applications (see Ref. [START_REF] Crsa | D4.1: Algorithmic requirements for simulation of large network extreme scenarios[END_REF]). As for the classical BDF, the fixed-point problem on δ n+1 is obtained by applying the BDF discretization formula (38) to approximate : δn+1 :

Integrating SPM into IDA

δn+1 1 h n q i=0 α n,i δ n+1-i (41)
In this equation, δ n+1-i = X n+1-i -Xn (t n+1-i). Indeed, the DAE function associated to the correction term is locally defined as it depends on the Fourier coefficients u n and v n . Hence, at the beginning of each time step, the history of δ is updated for taking into account the new values of the Fourier coefficients. By this way, the consistency of δ is ensured with Φ n . By applying this integration scheme on the differential algebraic equation (41), we get an implicit problem similar to (38) that can be solved with a fixed point algorithm:

Γ n (δ n+1) = Φ n (t n+1 , δ n+1 , α n,0 h n δ n+1) (42) = F (t n+1 , Xn (t n+1) + δ n+1 , Ẋn (t n+1) + α n,0 h n δ n+1 + q i=1 α n,i h n δ n+1-i)
Whose Jacobian matrix is actually equal to the Jacobian matrix of the original system:

J Γn (δ n+1) = ∂F ∂X + α n,0 h n ∂F ∂ Ẋ (43)
Once δ n+1 is computed, the global solution X n+1 is directly obtained from (5):

X n+1 = Xn (t n+1) + δ n+1 (44)
Then the parameters of the periodic part of the solution can be updated. In our current implementation, this update is done using a predictive parametric estimator. Hence, our estimation process consists in applying an iteration of the modified Newton algorithm for minimizing a measurement of the stationarity of the system. Indeed, as shown in (4), in steady-state:

The oscillating components of the solution should be centered sinusoids with constant Fourier coefficients oscillating at the reference frequency of the system.

The non-oscillating components of the solution should be constant and so their time-derivative should be equal to zero.

So, our objective is to minimize the energy function R : R 2ds → R d . associated to (4) :

R(u n+1 , v n+1) = t n+1 +T t n+1 ||F (t, X s,∞ (t) X ns,∞ (t) , Ẋs,∞ (t) 0)|| 2 dt (45)
We searched the zero of the gradient of R, with a Newton's method. In the present implementation we limited this minimization to one iteration of Newton which leads to the resolution of the following linear system:

H uu n+1 H uv n+1 H vu n+1 H vv n+1 ∆ u n+1 ∆ v n+1 = - g u n+1 g v n+1 (46
)
where the sub-matrices H uu n+1 , H uv n+1 , H vu n+1 , H vv n+1 ∈ R ds×ds correspond to an approximation of the components of the Hessian matrix of (45) and the right-handside vector composed of g u n+1 , g v n+1 ∈ R ds corresponds to its gradient. Hence, these components require the evaluation of the DAE system residual function and Jacobian matrix, i.e. F and J F . Once this linear system is solved, the new Fourier coefficients are simply given by u n+1 = u n + ∆ u n+1 and v n+1 = v n + ∆ v n+1 .

Practical considerations of IDASPM

Then, in order to implement the SPM into IDA, modifications have been made at the two architecture levels of IDA: at the general algorithm level and at the matrix-specific level.

First of all, additional information was written into the main data structure IDAMem containing the solver's data, in the form of a generic pointer to a data structure dedicated to storing the information related to the SPM. In more detail, it includes the system's reference pulsation, the Fourier coefficients vector and the boolean vector that references the non-oscillating and oscillating variables, along with integration and estimation work-space data. Once the data-structure is initialized with user-set above-mentioned pulsation and boolean vector, the SPM automatically performs the DAE system reformulation, the solution's decomposition, the correction term integration and the Fourier coefficients update.

With such adjustments, the DAE system considered by the generic IDA algorithm is the one rewritten on the correction term, and the SPM steps are then performed as following. First, we determine the Fourier coefficients, and the history data is made consistent with Φ n using the continuity condition mentioned earlier. The prediction δn+1 is then computed based on this data history, and the full solution prediction Xn+1 rebuilt by adding Xn (t n+1). It is followed by the correction step that requires DAE residual function evaluations to perform its Newton iterations, and to finish, the error test on δ that allows to update the step size.

The Fourier coefficient estimation is coded in a SPM-specific module. Its implementation depends on the matrix storage format chosen for the Jacobian of the considered DAE system that is evaluated in the function to optimize. In our case it is the CSR matrix storage because of our use of KLU for LU decompositions, the power systems being very sparse problems by nature. Moreover, we shifted to a computationally less expensive implementation of the estimator where the Jabobian matrix is updated only when IDA updates it, whereas in our first version, the update was done each time within the estimator function. It entails a dramatic reduction of Jabobian evaluations while preserving a good level of approximation since IDA performs several robust numerical tests to infer on the validity of the Jacobian matrix. Besides, several other optimisations proposed in [Gibert et al., 2018a] have been implemented for the present results. Also, we adapted IDA's c j threshold which triggers the calculation of a new Jacobian if the adaptive time step grows too fast. Indeed, as the SPM tends to make time steps getting bigger faster than IDA, the Jacobian update criterion needed to be more permissive in order to keep the number of reevaluations reasonable.

Finally, considering that the Jacobian matrix of the DAE system in IDA is given by the formula

: J F = ∂F ∂X + c j ∂F ∂ Ẋ ,
we optimized the Fourier coefficients estimation by computing the two partial derivatives of F , ∂F ∂X (with c j = 0) and ∂F ∂ Ẋ (with c j = 1) and the Jacobian J F in a single call. We also filled the very sparse estimator matrix in CSR format in order to solve the resulting linear system with KLU.

Interface with our customized framework based on Modelica

OpenModelica (see Ref. [START_REF] Fritzson | Openmodelica: A free open-source environment for system modeling, simulation, and teaching[END_REF]) is an open-source suite based on Modelica language (see Ref. [START_REF] Fritzson | Modelica: A unified objectoriented language for system modeling and simulation[END_REF]), which is used for the modeling and simulation of complex systems. It is an object-oriented, formal and non-causal language for writing models in an equation-based style. Furthermore, OpenModelica contains a compiler which enables to generate simulation files, that are compatible with IDA, from a Modelica model file. In particular, as it is specifically dedicated to writing the models, Modelica enables to clearly separate the modeling and solving aspects. The European projects PEGASE (see Ref. [START_REF] Chieh | Power system modeling in modelica for time-domain simulation[END_REF]) and then iTesla (see Ref. [START_REF] Vanfretti | itesla power systems library (ipsl): A modelica library for phasor time-domain simulations[END_REF]) have introduced and proved the industrial potential of Modelica for time-domain simulations of transmission grids. Moreover, the latter resulted in the development of the iPSL library, which is open-source and still maintained. Then, the dynamical-study tools team of RTE implemented Dynaωo, a new open-source simulation engine (see Ref. [START_REF] Guironnet | Towards an open-source solution using modelica for time-domain simulation of power systems[END_REF]) which is based on this framework. It especially enables to easily connect models with solvers in order to perform simulations in a very flexible way. For more information on Dynaωo, feel free to check the sources at https://github.com/dynawo/dynawo/ or the website http://dynawo.org.

In other words, our framework uses Modelica to implement the model of the simulated system with the Modelica language and then, the simulation is performed with IDASPM from Dynaωo. More precisely, in OpenModelica-type frameworks the simulation process consists in three main steps:

1. The user implements a model from existing or user-defined libraries. A model generally consists in assembling unit models within a global model from their physical connections.

2. The model compiler, e.g. OpenModelica Compiler, interprets this model to construct the associated DAE system to be solved. So, it constructs a "flat model" by injecting all the mathematical equations associated to the different unit components and connections. In output of this process, OpenModelica Compiler generates several source files corresponding to the simulation: residual function of the DAE system, parameters, initial values, etc.

3. To finish, as we have the files containing the DAE system at our disposal, it can be integrated using the chosen solver, e.g. SUNDIALS IDA. To do this, our simulation engine contains generic modules which automatically initialize the solver data structures and data, and perform the simulation from the chosen solver library.

Therefore, in order to interface our solver with Dynaωo, we have to generate the solver library corresponding to IDASPM and then to implement a customized solver module which properly initializes the data structures of IDASPM. In particular, it supplies to IDASPM the pulsation of the system and the boolean vector distinguishing the oscillating and non-oscillating variables from a configuration file. In the current version of our implementation, this file is manually completed by the user and provided at execution time, which could be automatically done from the modeler in a future version. Then, from these data, IDASPM can be used for the simulation. Our implementation does not require the initial Fourier coefficients to be set during the initialization, they are computed directly during the simulation starting from arbitrary values. This is why performances are generally lower during the first time steps, even if the system is in steady-state. Indeed some iterations are required for the Fourier coefficients to converge and consequently for the step size to increase. As a matter of fact, by properly initializing the Fourier coefficients, some iterations could be saved at that very time. However, the presented results that follow prove the robustness of the estimator as Fourier coefficients converge in a few number of iterations. First of all, our implementation has been tested on a small three-phase power system with 4 nodes (see figure 4). It contains 3 perfect generators, 1 resistive load and connections with transmission lines modeled with RL branches. In our framework, this model results in a system of 188 equations including 15 differential equations. Then, this system is subject to an exponential increase of the electrical load at time tevent = 1s. Our results have been obtained from a Fedora Virtual Machine (launched from VirtualBox) running with 2 processors (CPU: Intel i5-5257U @2.7GHz, cache=3MB) and 4GB of RAM.

The figure 5 shows that the solution obtained with IDASPM perfectly fits with those obtained with IDA. Then, in the figure 6, the step sizes used by IDA and IDASPM are compared. Then, we can see that the SPM globally enables to integrate the DAE with much larger time steps. As expected, the step size used with the SPM reaches high values when the system is in steady-state. Hence, one can identify three time intervals:

1. From the beginning of the simulation to the event, the step size increases regularly. At the very beginning, the SPM uses small time steps as the Fourier coefficients are initialized to zero. Then, some iterations are required for them to converge.

2. During the load variation, the step size remains at very low values. As the estimator is designed from the assumption that the system is in steadystate, this step size limitation is logical.

3. When the system returns to steady-state, the step size increases again and reaches high values.

Hence, IDASPM requires 266 iterations and 0.084s to perform the simulation with a tolerance of 10 -4 , IDA requires 62822 time steps and 2.47s to perform the simulation. Their performances are summarized in table 2. So, using the SPM enables to dramatically reduce the number of iterations for performing this simulation (divided by more than 236). The speedup is also significant (divided by 29). However, we can see that it is not as important as for the number of iterations. Indeed, the SPM requires to perform more mathematical operations whose computational cost is not negligible than a classical integration method. Better performances on elapsed time ratio are obtained with smaller tolerance while keeping quite the same ratio on the number of time steps.

Results on a customized version of the IEEE 14-bus reference test case

Then, our implementation has been tested on a larger power system with 14 nodes (see figure 7), inspired on the reference test case IEEE-14 bus. Its contains 5 perfect generators, 11 resistive loads, connections with transmission lines modeled with RL branches and ideal transformers. In our framework, this model results in a system of 754 equations including 51 differential equations. Then, this system is subject to an exponential increase of the electrical load attached to Bus 4 at time tevent = 1s.

The figure 8 shows that the solution obtained with IDASPM perfectly fits with those obtained with IDA. In figure 9, the step sizes used by IDA and IDASPM are compared. Results are very similar to those obtained on the Simple Electrical Grid test case. Indeed, IDASPM requires 252 time steps and 0.96 seconds to perform the simulation with a tolerance of 10 -4 . IDA requires 48504 time steps and 3.27 seconds to perform the simulation. Their performances are summarized in Table 2. Then, as for the Simple Electrical Grid test case, the number of time steps is very significantly reduced (192 times less) by using the SPM. The speedup is only of 3.4 but increases to 8.6 with diminushing the tolerance to 10 -6 .

Conclusion

In conclusion, the implementation presented in this paper paves the way to long-term EMT simulations of power systems within a very flexible framework. Using Modelica and especially in our customized environment Dynaωo based on OpenModelica enables to clearly distinguish the modeling and solving aspects of the simulation. Our IDASPM solver takes advantage of the known oscillation frequency of the electrical network to solve the DAE system modeling it, without a priori assumptions on the mathematical modeling of electrical components. Our study on its convergence shows the crucial role of the predictor calculation in our approach of decomposing the solution into an oscillating part and a corrective part. The original approach of decomposing the DAE solver in an optimisation step to compute the Fourier coefficients with respect to the minimisation of a residual function giving the distance of the solution to its oscillating steady state and then a solving of the resulting system on the corrector with an adaptative time step DAE solver allows us to ensure accuracy on the solution of the full DAE system's solution. The non intrusive implementation into the IDA solver consisting in a software add-on of the optimization step, with some enhanced tuning on the adaptative time step strategy and memory access to the Jacobian matrix, allows very important reduction of the number of time steps compared to the original IDA solver. This leads to an effective speedup in elapsed time less significant than the one related to the number of time steps due to the computational overcost of the estimator which currently remains the main part of the computational time. Some opportunities exist to enhance this optimisation step from the numerical point of view with Newton's methods variants and from the implementation point of view with dedicated pool of processes and some predictive computations taking in account time extrapolation of the non oscillating terms. We could also expect to use the optimisation step to define some adaptative strategies for activating and deactivating the Fourier coefficients update during transient phases where the time step size is finally limited.

Figure 1 :

 1 Figure 1: Overall view of an SPM iteration

Figure 2 :

 2 Figure 2: Modifications made to the IDA algorithm for using the SPM

Figure 3 :

 3 Figure 3: Workflow of Dynaωo simulation engine

Figure 4 :

 4 Figure 4: Simple Electrical Grid test case

Table 1 :

 1 Performances comparison of IDA vs IDASPM (with the implemented optimisations on Jacobian computations) solvers for the Simple Electrical Grid test case

	Tolerance	Solver	N iterations t CP U	h mean	h max
		IDA	24707	1.08 4.05e-4 5.00e-4
	1.e-3	IDASPM	142	0.08 7.04e-2	3.12
		IDA/IDASPM	174	13.5	
		IDA	62822	2.47 1.59e-4 2.00e-4
	1.e-4	IDASPM	266	0.084 3.76e-2	3.98
		IDA/IDASPM	236.1	29.4	
		IDA	112026	5.26 8.93e-5 1.30e-4
	1.e-5	IDASPM	483	0.107 2.07e-2	3.07
		IDA/IDASPM	231.9	49.1	
		IDA	238807	11.65 4.19e-5 6.00e-5
	1.e-6	IDASPM	998	0.16 1.00e-2	3.48
		IDA/IDASPM	239.2	72.8	

Table 2 :

 2 Performances comparison of IDA vs IDASPM (with the implemented optimisations on Jacobian computations) solvers on IEEE 14-bus test case Tolerance Solver N iterations t CP U h mean h max

		IDA	22241	1.66 4.50e-4 5.00e-4
	1.e-3	IDASPM	138	0.85 7.25e-2	3.69
		IDA/IDASPM	161.1	1.95	
		IDA	48504	3.27 2.06e-4 2.20e-4
	1.e-4	IDASPM	252	0.96 3.97e-2	3.57
		IDA/IDASPM	192.4	3.4	
		IDA	116705	7.90 8.57e-5 9.50e-5
	1.e-5	IDASPM	516	1.27 1.94e-2	4.15
		IDA/IDASPM	226.1	6.22	
		IDA	207563	14.58 4.82e-5 5.31e-5
	1.e-6	IDASPM	948	1.69 1.05e-2	3.93
		IDA/IDASPM	218.9	8.62	

Acknowledgement

The authors would like to thank the French National Research Agency in Technology who founded this project under the contract CIFRE no 2015/0885.