open science

Functional linear model with partially observed covariate and missing values in the response.

Christophe Crambes, Chayma Daayeb, Ali Gannoun, Yousri Henchiri

To cite this version:

Christophe Crambes, Chayma Daayeb, Ali Gannoun, Yousri Henchiri. Functional linear model with partially observed covariate and missing values in the response.. 2022. hal-03083293v3

HAL Id: hal-03083293
 https://hal.science/hal-03083293v3

Preprint submitted on 30 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Functional linear model with partially
 observed covariate and missing values in the

response.

Christophe Crambes ${ }^{1}$, Chayma Daayeb ${ }^{1,2}$, Ali
 Gannoun ${ }^{1}$, and Yousri Henchiri ${ }^{2,3}$

${ }^{1}$ Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier, France.
${ }^{2}$ Université de Tunis El Manar, Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur (ENIT-LAMSIN), Tunisie.
${ }^{3}$ Université de la Manouba, Institut Supérieur des Arts Multimédia de la Manouba (ISAMM), Tunisie.

Address for correspondence: Yousri Henchiri, Université de la Manouba, Institut
Supérieur des Arts Multimédia de la Manouba (ISAMM), Tunisie.
E-mail: yousri.henchiri@umontpellier.fr.
Phone: (+216) 56272229.
Fax: (+216) 71603450 .

[^0]ing process. In this paper, we consider a functional linear regression model with partially observed covariate and missing values in the response. We use a reconstruction operator that aims at recovering the missing parts of the explanatory curves, then we are interested in regression imputation method of missing data on the response variable, using functional principal component regression to estimate the functional coefficient of the model. We study the asymptotic behavior of the prediction error when missing data are replaced by the imputed values in the original dataset. The practical behavior of the method is also studied on simulated data and a real dataset.

Key words: Functional linear model; Functional Principal Components; Missing data; Missing At Random; Missing Completely At Random; Regression imputation.

1 Introduction

The analysis of functional data has grown very significantly in recent years, as evidenced by the numerous literatures on the subject: Ramsay and Silverman (2005), Ferraty and Vieu (2006), Hsing and Eubank (2015), Horváth and Kokoszka (2012) provide a non-exhaustive list of monographs giving an overview of this topic. One of the most popular model in functional data analysis is the functional linear model, when one is interested in considering a relationship between a real-valued variable Y and a covariate $X=(X(t), t \in[a, b])$ valued in a real separable Hilbert space H of functions defined on a compact interval $[a, b]$ of \mathbb{R}. We assume that X is centered, that is $\mathbb{E}(X(t))=0$ for all $t \in[a, b]$. In the following, we consider the space $H=L^{2}([a, b])$ of square integrable functions defined on $[a, b]$, endowed with its usual inner product
defined by $\langle u, v\rangle=\int_{a}^{b} u(t) v(t) \mathrm{d} t$ for all functions $u, v \in H$, and its associated norm $\|$.$\| . This model, studied by many authors as for instance Cardot et al. (1999), Cai$ and Hall (2006), Hall and Horowitz (2007), Crambes et al. (2009), is defined by

$$
\begin{equation*}
Y=\theta_{0}+\int_{a}^{b} \theta(t) X(t) \mathrm{d} t+\varepsilon \tag{1.1}
\end{equation*}
$$

where $\theta_{0} \in \mathbb{R}$ and θ is a square integrable function defined on $[a, b]$ modeling the relationship between the real random variable Y and the square integrable random function X. The error of the model ε is a centered real random variable independent of X with finite variance $\mathbb{E}\left(\varepsilon^{2}\right)=\sigma_{\varepsilon}^{2}$. We can also write the functional linear regression model (1.1) as

$$
Y=\theta_{0}+\Theta X+\varepsilon,
$$

where $\Theta: H \rightarrow \mathbb{R}$ is a linear continuous operator defined by $\Theta u=\langle\theta, u\rangle$ for any function $u \in H$. The existence and unicity of this regression function θ is discussed in Cardot et al. (2003). A smooth version of the functional principal components regression (SPCR) is introduced. It consists in considering the empirical covariance operator of the predictor X and diagonalizing it to select the eigenfunctions associated to the highest eigenvalues. Then, a least squares regression is performed with the response Y and the coordinates of the functional covariate X projected on the space spanned by the selected eigenfunctions.

Considering a sample $\left(X_{i}, Y_{i}\right)_{i=1, \ldots, n}$ of independent and identically distributed couples with the same distribution as (X, Y), we define the empirical cross covari-
ance operator $\widehat{\Delta}_{n}$ given by $\widehat{\Delta}_{n} u=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, u\right\rangle Y_{i}$ for all $u \in H$, the empirical covariance operator $\widehat{\Gamma}_{n}$ given by $\widehat{\Gamma}_{n} u=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, u\right\rangle X_{i}$ for all $u \in H$. Denoting $\left(\widehat{\phi}_{j}\right)_{j=1, \ldots, k_{n}}$ the eigenfunctions associated to $\widehat{\Gamma}_{n}$ corresponding to the k_{n} highest eigenvalues $\widehat{\lambda}_{1}>\ldots>\widehat{\lambda}_{k_{n}}>0$ (where k_{n} is an integer depending on n), we define the orthogonal projection operator $\widehat{\Pi}_{k_{n}}$ onto the subspace $\operatorname{Span}\left(\widehat{\phi}_{1}, \ldots, \widehat{\phi}_{k_{n}}\right)$ by $\widehat{\Pi}_{k_{n}} u=\sum_{j=1}^{k_{n}}\left\langle\widehat{\phi}_{j}, u\right\rangle \widehat{\phi}_{j}$ for all $u \in H$. Then, the functional principal component regression estimator $\widehat{\Theta}$ of Θ is defined by

$$
\widehat{\Theta}=\langle\widehat{\theta}, .\rangle=\widehat{\Pi}_{k_{n}} \widehat{\Delta}_{n}\left(\widehat{\Pi}_{k_{n}} \widehat{\Gamma}_{n} \widehat{\Pi}_{k_{n}}\right)^{-1}
$$

The corresponding estimator of θ is given by

$$
\begin{equation*}
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_{n}} \frac{\left\langle X_{i}, \widehat{\phi}_{j}\right\rangle Y_{i}}{\widehat{\lambda}_{j}} \widehat{\phi}_{j}=\sum_{j=1}^{k_{n}} \widehat{s}_{j} \widehat{\phi}_{j}, \tag{1.2}
\end{equation*}
$$

with $\widehat{s}_{j}=\frac{1}{n \widehat{\lambda}_{j}} \sum_{i=1}^{n}\left\langle X_{i}, \widehat{\phi}_{j}\right\rangle Y_{i}$. In addition, the estimator of θ_{0} is $\widehat{\theta}_{0}=\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. Now, given $\widehat{\theta}_{0}$ and $\widehat{\theta}$, it is easy to obtain the residuals of the fit, given by $\widehat{\varepsilon}_{i, k_{n}}=$ $Y_{i}-\widehat{\theta}_{0}-\left\langle X_{i}, \widehat{\theta}\right\rangle$, for $i=1, \ldots, n$, that can be used to estimate the error variance, σ_{ε}^{2}, through

$$
\widehat{\sigma}_{\varepsilon, k_{n}}^{2}=\frac{1}{n-k_{n}-1} \sum_{i=1}^{n} \widehat{\varepsilon}_{i, k_{n}}^{2}
$$

In the previously cited works on the functional linear model, data is fully observed. This may not always be the case, and missing data appear in many situations, for example when the measuring device breaks down or when an observation interval is not available. This topic has to be studied a lot in the multivariate framework, for example we refer the reader to Little and Rubin (2002) and Graham (2012). For functional data, the literature only starts developing. In functional linear regression,
the work of Crambes and Henchiri (2019) considers a missing data mechanism on the response Y while the functional covariate is completely observed. A regression imputation methodology for the missing data is proposed and the authors propose an estimation of the functional parameter θ with the reconstructed dataset, as well as the prediction of new values. The method consistency is studied both from a theoretical and a practical point of view. The same problematic is studied in another paper from Febrero-Bande et al. (2019), although not exploring theoretical results. Other works explore the context of missing data in the response while the response is missing at random in a nonparametric setting (see Ferraty et al. (2013), Ling et al. (2015)) or in a functional partial linear regression setting (see Ling et al. (2019), Zhou and Peng (2020)) or while the response is not missing at random (see Li et al. (2018)). In our work, we want to consider the functional linear model where some observations of the real response are affected with missing data and the covariate is partially observed, which is an unexplored topic as far as we know.

For the missing data mechanism in the response, we consider a dichotomous random variable $\delta^{[Y]}$ leading to the sample $\left(\delta_{i}^{[Y]}\right)_{i=1, \ldots, n}$ such that $\delta_{i}^{[Y]}=1$ if the value Y_{i} is available and $\delta_{i}^{[Y]}=0$ if the value Y_{i} is missing, for all $i=1, \ldots, n$. Here, we consider that the data in the response is missing at random (MAR): the fact that the value Y is missing does not depend on the response of the model, but can possibly depend on the covariate, that is,

$$
\mathbb{P}\left(\delta^{[Y]}=1 \mid X, Y\right)=\mathbb{P}\left(\delta^{[Y]}=1 \mid X\right) .
$$

As a consequence of this MAR assumption, the variable $\delta^{[Y]}$ (the fact that an observation is missing) is independent of the error of the model ε. In the following, the
number of missing values among Y_{1}, \ldots, Y_{n} is denoted

$$
m_{n}^{[Y]}=\sum_{i=1}^{n} \mathbb{1}_{\left\{\delta_{i}^{[Y]}=0\right\}} .
$$

For the missing data mechanism of the functional covariate, we adopt the paradigm of partially observed functions as in Kneip and Liebl (2020) or Kraus (2015). We also refer the reader to Delaigle et al. (2020) or Kraus and Stefanucci (2020) for recent contributions on this topic. More precisely, for each curve $X_{i}, i=1, \ldots, n$, we consider the observed part $O_{i} \subseteq[a, b]$ of X_{i} and the missing part $M_{i}=[a, b] \backslash O_{i}$. The observed part O_{i} refers to an interval (or several intervals) where the curve X_{i} is observed at some measure points of O_{i}. Based on the punctual observations, the whole curve can be reconstructed on O_{i} with usual methods (e.g. smoothing splines, regression splines, local polynomial smoothing, ...). On the contrary, no information is available on the missing part M_{i}. An example of such partially observed functions is given in section 5 of the paper.

The objective of this paper is to predict a new value of the response Y given a new test observation on the explanatory variable X once the partially observed curves X have been reconstructed and the missing data Y have been imputed. More precisely, we want to obtain convergence rates for this prediction error, and we want to analyse how these convergence rates depend on the convergence rates of the reconstruction of the missing parts of the covariate and the convergence rates of the imputation error. Moreover, we want to explore the interest of the imputation methodology compared to other methods, for example the naive method which would consist in simply ignoring the missing data and only using the observations when both X and Y are observed, or other imputation methods.

In the following, we give in section 2 theoretical results when the covariate is partially observed. Then, in section 3, we extend these results when the covariate is partially observed and some observations of the real response are affected with missing data. In section 4, we present some simulation results to show the behaviour of the method in practice. Section 5 is devoted to a real dataset application. Finally, all the proofs are postponed to section 6 .

2 Partially observed covariate

2.1 Curve reconstruction

We write " O " and " M " to denote a given production of O_{i} and M_{i}. In addition, we denote the observed and missing parts of X_{i} by X_{i}^{O} and X_{i}^{M}. As noticed in Kneip and Liebl (2020, p. 7) all the following remains valid if we consider the more general case of several observed subintervals, that is $O_{i}=\cup_{j=1}^{J} O_{i}^{J}$ where $O_{i}^{1}, \ldots, O_{i}^{J}$ are J disjoint intervals where the curve X_{i} is observed. For the sake of simplicity, we will take $J=1$ and $O_{i}=O_{i}^{1}$. We write the Karhunen-Loève (KL) decomposition of X_{i}^{O} in $\mathbb{L}^{2}(O)$

$$
X_{i}^{O}(t)=\sum_{k=1}^{+\infty} \xi_{i k}^{O} \phi_{k}^{O}(t)
$$

where $t \in O$. In this decomposition, the principal component scores are defined for all $i=1, \ldots, n$ and $k \geq 1$ by $\xi_{i k}^{O}=\left\langle\phi_{k}^{O}, X_{i}^{O}\right\rangle$, where $\mathbb{E}\left(\xi_{i k}^{O}\right)=0$ and $\mathbb{E}\left(\xi_{i k}^{O} \xi_{i \ell}^{O}\right)=\lambda_{k}^{O}$ for all $k=\ell$ and zero for all $k \neq \ell$. Moreover, the eigenfunctions satisfy

$$
\begin{equation*}
\phi_{k}^{O}(t)=\frac{\left\langle\phi_{k}^{O}, \gamma_{t}^{O}\right\rangle}{\lambda_{k}^{O}} \tag{2.1}
\end{equation*}
$$

for all $t \in O$ and $k \geq 1$, where $\gamma_{t}^{O}(s)=\gamma^{O}(t, s)=\mathbb{E}\left(X_{i}^{O}(t) X_{i}^{O}(s)\right)$, and the decreasing eigenvalues $\lambda_{1}^{O}>\lambda_{2}^{O}>\ldots>0$ are tending to zero.

We consider a reconstruction problem relating the missing part of the curves to the observed part, writing

$$
X_{i}^{M}(s)=L\left(X_{i}^{O}(t)\right)+Z_{i}(s),
$$

for all $t \in O$ and $s \in M$, where $L: \mathbb{L}^{2}(O) \rightarrow \mathbb{L}^{2}(M)$ is a linear reconstruction operator and $Z_{i} \in \mathrm{~L}^{2}(M)$ is the reconstruction error. This reconstruction estimator is estimated in Kneip and Liebl (2020) by

$$
\begin{equation*}
\mathcal{L}\left(X_{i}^{O}\right)(s)=\sum_{k=1}^{+\infty} \xi_{i k}^{O} \widetilde{\phi}_{k}^{O}(s)=\sum_{k=1}^{+\infty} \xi_{i k}^{O} \frac{\left\langle\phi_{k}^{O}, \gamma_{s}\right\rangle}{\lambda_{k}^{O}}, \tag{2.2}
\end{equation*}
$$

for all $s \in M$, where $\gamma_{s}(t)=\mathbb{E}\left(X_{i}^{M}(s) X_{i}^{O}(t)\right)$ for all $t \in O$ and $s \in M$. The definition of $\widetilde{\phi}_{k}^{O}$ is a way to extend the relation (2.1) to the missing parts of the curves. It is shown in Kneip and Liebl (2020) that $\mathcal{L}\left(X_{i}^{O}\right)$ has a continuous and finite variance function and is unbiaised.

2.2 Estimation of the reconstruction in practice

We consider a discretization without measurement errors, that is $\left(\left(W_{i 1}, t_{i 1}\right), \ldots,\left(W_{i p}, t_{i p}\right)\right)$ denote the observable data pairs of the function X_{i}^{O}, namely $W_{i j}=X_{i}^{O}\left(t_{i j}\right)$, for
$i=1, \ldots, n$ and $j=1, \ldots, p$, where $t_{i j} \in O_{i}$. In order to estimate the curve X_{i}^{O} and the covariance function γ_{s}, a nonparametric curve estimation by local polynomials smoothers is used. The latter is similar to the procedure in Yao et al. (2005) or Hall et al. (2006). For the curve X_{i}^{O}, we use a kernel κ_{1} and a bandwidth h_{X}, the local linear smoother of the curve X_{i}^{O} being denoted $\widehat{X}_{i}^{O}\left(t ; h_{X}\right)$. Similarly for the covariance function γ_{s}, we use a kernel κ_{2} and a bandwidth h_{γ}, the local linear smoother of the covariance function γ being denoted $\widehat{\gamma}\left(t, s ; h_{\gamma}\right)$.

For estimating the eigenvalues λ_{k}^{O} and the eigenfunctions ϕ_{k}^{O}, we use the Fredholm integral equation

$$
\int_{O} \widehat{\gamma}\left(t, u ; h_{\gamma}\right) \widehat{\phi}_{k}^{O}(u) \mathrm{d} u=\widehat{\lambda}_{k}^{O} \widehat{\phi}_{k}^{O}(t),
$$

for all $t \in O$. For the functional principal component scores $\xi_{i k}^{O}=\int_{O} X_{i}^{O}(t) \phi_{k}(t) \mathrm{d} t$, the estimator is defined by

$$
\widehat{\xi}_{i k}^{O}=\sum_{j=1}^{p} \widehat{\phi}_{k}^{O}\left(t_{i j}\right) W_{i j}\left(t_{i j}-t_{i, j-1}\right), \quad \text { with } t_{i 0}=a .
$$

Finally, to estimate $\mathcal{L}\left(X_{i}^{O}\right)$ in (2.2), considering a positive integer k_{n}, we define

$$
\widehat{\mathcal{L}}_{k_{n}}\left(X_{i}^{O}\right)(s)=\sum_{k=1}^{k_{n}} \widehat{\xi}_{i k}^{O} \frac{\left\langle\widehat{\phi}_{k}^{O}, \widehat{\gamma}_{s}\right\rangle}{\widehat{\lambda}_{k}^{O}},
$$

where $\widehat{\gamma}_{s}=\widehat{\gamma}\left(., s ; h_{\gamma}\right)$. At this step we are able to find the estimator of the missing parts of X_{i}^{O}

$$
\widehat{X}_{i}^{M}(s)=\widehat{\mathcal{L}}_{k_{n}}\left(X_{i}^{O}\right)(t),
$$

for all $t \in O$ and $s \in M$. In the following, we denote

$$
X_{i}^{\star}(t)=\left\{\begin{array}{l}
X_{i}^{O}(t) \text { if } t \in O \\
\widehat{\mathcal{L}}_{k_{n}}\left(X_{i}^{O}\right)(t) \text { if } t \in M
\end{array}\right.
$$

2.3 Estimation of θ and prediction

For estimating θ, we set

$$
\widehat{\hat{\theta}}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_{n}} \frac{\left\langle X_{i}^{\star}, \widehat{\phi}_{j, r e c}\right\rangle Y_{i}}{\widehat{\lambda}_{j, \text { rec }}} \widehat{\phi}_{j, \text { rec }}=\sum_{j=1}^{k_{n}} \widehat{\hat{s}}_{j} \widehat{\phi}_{j, \text { rec }},
$$

with $\widehat{\widehat{s}}_{j}=\frac{1}{n \hat{\lambda}_{j, \text { rec }}} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, \widehat{\phi}_{j, \text { rec }}\right\rangle Y_{i}$. The estimation of the operator Θ is given by

$$
\widehat{\widehat{\Theta}}=\langle\widehat{\hat{\theta}}, .\rangle=\widehat{\Pi}_{k_{n}, \text { rec }} \widehat{\Delta}_{n, \text { rec }}\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Gamma}_{n, r e c} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1},
$$

where $\widehat{\Delta}_{n, \text { rec }}$ is the reconstructed cross covariance operator given by $\widehat{\Delta}_{n, \text { rec }}=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},.\right\rangle Y_{i}$, $\widehat{\Gamma}_{n, \text { rec }}$ is the reconstructed covariance operator given by $\widehat{\Gamma}_{n, \text { rec }}=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},.\right\rangle X_{i}^{\star}$, and $\widehat{\Pi}_{k_{n}, \text { rec }}$ is the projection operator onto the subspace $\operatorname{Span}\left(\widehat{\phi}_{1, \text { rec }}, \ldots, \widehat{\phi}_{k_{n}, \text { rec }}\right)$, that is the subspace spanned by the k_{n} first eigenfunctions of the covariance operator $\widehat{\Gamma}_{n, \text { rec }}$. The eigenvalues of the covariance operator $\widehat{\Gamma}_{n, \text { rec }}$ are denoted $\widehat{\lambda}_{1, \text { rec }}, \ldots, \widehat{\lambda}_{k_{n}, \text { rec }}$. Moreover, the estimator of θ_{0} is defined by $\widehat{\hat{\theta}}_{0}=\bar{Y}$. Given $\widehat{\hat{\theta}}_{0}$ and $\widehat{\hat{\theta}}$, the residuals of the fit, $\widehat{\widehat{\varepsilon}}_{i, k_{n}}=Y_{i}-\widehat{\widehat{\theta}}_{0}-\left\langle X_{i}^{\star}, \widehat{\hat{\theta}}\right\rangle$, for $i=1, \ldots, n$, can be used to estimate the error variance as follows

$$
\widehat{\widehat{\sigma}}_{\varepsilon, k_{n}}^{2}=\frac{1}{n-k_{n}-1} \sum_{i=1}^{n} \widehat{\widehat{\varepsilon}}_{i, k_{n}}^{2} .
$$

Finally, given a new observation of the covariate X, denoted $X_{\text {new }}$, possibly partially observed, we predict the corresponding value of the response Y by

$$
\widehat{Y}_{\text {new }}=\widehat{\hat{\theta}}_{0}+\left\langle\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle .
$$

2.4 Assumptions

We present in this part the assumptions needed for our results. These assumptions are used in Kneip and Liebl (2020) in order to control the curve reconstruction for the covariate.
(A.1) The variable X has a finite four moment order, that is $\mathbb{E}\left(\|X\|^{4}\right)<\infty$.
(A.2) Let $n p \rightarrow \infty$ when $n \rightarrow \infty$ and $p=p(n)$. We assume $p=n^{\eta_{1}}$ with $0<\eta_{1}<\infty$ in the following.
(A.3) The bandwidth h_{X} satisfies $h_{X} \rightarrow 0$ and $\left(p h_{X}\right) \rightarrow \infty$ as $p \rightarrow \infty$. For instance, we assume that $h_{X}=\frac{1}{n^{\eta_{2}}}$ with $0<\eta_{2}<\eta_{1}$. The bandwidth h_{γ} satisfies $h_{\gamma} \rightarrow 0$ and $\left(n\left(p^{2}-p\right) h_{\gamma}\right) \rightarrow \infty$ as $n\left(p^{2}-p\right) \rightarrow \infty$. For example, we can take $h_{\gamma}=\frac{1}{n^{n_{3}}}$ with $0<\eta_{3}<2 \eta_{1}+1$.
(A.4) Let κ_{1} and κ_{2} be nonnegative, second order univariate and bivariate kernel functions with support $[-1,1]$. For example, we can use univariate and bivariate Epanechnikov kernel functions with compact support $[-1,1]$, namely $\kappa_{1}(x)=$ $\frac{3}{4}\left(1-x^{2}\right) \mathbb{1}_{[-1,1]}(x)$ and $\kappa_{2}(x, y)=\frac{9}{16}\left(1-x^{2}\right)\left(1-y^{2}\right) \mathbb{1}_{[-1,1]}(x) \mathbb{1}_{[-1,1]}(y)$.
(A.5) For any subinterval $O \subseteq[a, b]$, we assume that the eigenvalues $\lambda_{1}>\lambda_{2}>\ldots>$ 0 have multiplicity one. Moreover, we assume that there exist $a_{O}>1$ and $0<c_{O}<\infty$ such that (i) $\lambda_{k}^{O}-\lambda_{k+1}^{O} \geq c_{O} k^{-a_{O}-1}$, (ii) $\lambda_{k}^{O}=\mathcal{O}\left(k^{-a_{O}}\right)$, (iii) $1 / \lambda_{k}^{O}=\mathcal{O}\left(k^{a_{O}}\right)$ as $k \rightarrow \infty$.
(A.b) For any subinterval $O \subseteq[a, b]$, we assume that there exists $0<D_{O}<\infty$ such that the eigenfunctions satisfy $\sup _{t \in[a, b]} \sup _{k \geq 1}\left|\widetilde{\phi}_{k}^{O}(t)\right| \leq D_{O}$.

Assumption (A.1) holds for many processes X (Gaussian processes, bounded processes). Assumption (A.2) is mild and can be satisfied even if the number of observation points p does not go fast to infinity. As in Kneip and Liebl (2020), we assume that $p=n^{\eta_{1}}$ with $0<\eta_{1}<\infty$. Assumptions (A.3) and (A.4) are classic in the context of local polynomials smoothers. Assumptions (A.5) and (A.6), related to eigenvalues and eigenfunctions of the covariance operator of X, are given in Kneip and Liebl (2020). In particular, a polynomial decrease of the eigenvalues is required, allowing a large class of eigenvalues for the covariance operator of X.

2.5 Asymptotic results

Under assumptions (A.1)-(A.6), it is proved in Kneip and Liebl (2020) that, in the case where $p \sim n^{\eta_{1}}$ with $\eta_{1} \leq 1 / 2$, we have for any $t \in[a, b]$

$$
\begin{equation*}
\left|X_{i}^{\star}(t)-X_{i}(t)\right|=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) . \tag{2.3}
\end{equation*}
$$

The previous result allows to obtain some bounds between quantities related to functional principal components analysis with the constructed curves and with the original
curves. These bounds are given in the following proposition. For any linear continuous operator $T: H \rightarrow H$ or any linear continuous operator $S: H \rightarrow \mathbb{R}$, we define the operator norm of T as $\|T\|_{\infty}=\sup _{\|x\|=1}\|T x\|$, and the operator norm of S as $\|S\|_{\infty}=\sup _{\|x\|=1}|S x|$.

Proposition 2.1 Under assumptions (A.1)-(A.6), we have

$$
\begin{aligned}
& \text { (i) }\left\|\widehat{\Gamma}_{n, \text { rec }}-\widehat{\Gamma}_{n}\right\|_{\infty}=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) \\
& \text { (ii) }\left\|\widehat{\Delta}_{n, \text { rec }}-\widehat{\Delta}_{n}\right\|_{\infty}=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) \\
& \text { (iii) } \forall k \geq 1, \quad\left\|\widehat{\phi}_{k, \text { rec }}-\widehat{\phi}_{k}\right\|=\mathcal{O}_{p}\left(k^{a_{O}+1} p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) \\
& \text { (iv) } \forall k \geq 1, \quad\left|\widehat{\lambda}_{k, \text { rec }}-\widehat{\lambda}_{k}\right|=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
\end{aligned}
$$

We finish this section with the main result giving a bound for the prediction error of $Y_{\text {new }}$ with a new value of the covariate $X_{\text {new }}$.

Theorem 2.2 Under assumptions (A.1)-(A. $\boldsymbol{6})$, if we take $k_{n} \sim p^{1 /\left(a_{O}+2\right)}$ and $p \sim$ $n^{\eta_{1}}$ with $\eta_{1} \leq 1 / 2$, the prediction error is

$$
\mathbb{E}\left(\widehat{\hat{\theta}}_{0}+\left\langle\widehat{\hat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
$$

This prediction error rate $\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$ is related to the rate given in Corollary 4.1 in Kneip and Liebl (2020) (in the particular case where $\eta_{1}=1 / 2$). This means that, provided with some conditions on the number of observation points p and the number of principal components k_{n} are fulfilled, the prediction error rate has the same order as the curve reconstruction error rate. In other words, this means that, when
reconstructing missing parts of the explanatory curves in a functional linear model and then predicting a new value of the response, the most important step is the curve reconstruction. This step is going to fix the convergence rate of the prediction.

Remark 1 Due to the bound (2.3), the result of Theorem 2.2 remains valid if we replace $X_{\text {new }}^{\star}$ with $X_{\text {new }}$.

Corollary 2.3 Under the hypotheses of Theorem 2.2, in the favorable situation where $\eta_{1}=1 / 2$, the prediction error is

$$
\mathbb{E}\left(\widehat{\widehat{\theta}}_{0}+\left\langle\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\left(a_{O}-1\right) /\left(4\left(a_{O}+2\right)\right)}\right) .
$$

3 Partially observed covariate and missing data on the response

In this section, we are interested in the most general case of missing data in functional linear regression: when the covariate is partially observed and when the response is affected by missing data. We have seen in the previous section the methodology for reconstructing the missing parts of the explanatory curves. Concerning missing data on the response, we are going to apply the methodology presented in Crambes and Henchiri (2019), imputing missing values on the response using a regression imputation. Next, once the initial sample is completed, we will present the estimation of the functional parameter θ and predict new values for the response.

3.1 Regression imputation on the response

In this subsection, we use the methodology to impute a missing value of Y as in Crambes and Henchiri (2019). We consider the whole data, possibly with reconstructed explanatory curves, except the ones for which the value of Y is not available. We define the covariance operator with the reconstructed curves

$$
\widehat{\Gamma}_{n, \text { rec }}^{o b s}=\frac{1}{n-m_{n}^{[Y]}} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle \delta_{i}^{[Y]} X_{i}^{\star} .
$$

Let $\widehat{\Pi}_{k_{n}, \text { rec }}^{\text {oss }}$ be the projection operator onto the subspace $\operatorname{Span}\left(\widehat{\phi}_{1, \text { rec }}^{\text {obs }}, \ldots, \widehat{\phi}_{k_{n}, \text { rec }}^{\text {obs }}\right)$ where $\widehat{\phi}_{1, \text { rec }}^{\text {obs }}, \ldots, \widehat{\phi}_{k_{n}, \text { rec }}^{\text {obs }}$ are the k_{n} first eigenfunctions of the covariance operator $\widehat{\Gamma}_{n, \text { rece }}^{o b s}$. With analogous notations, $\widehat{\lambda}_{1, r e c}^{o b s}, \ldots, \widehat{\lambda}_{k_{n}, \text { rec }}^{\text {obs }}$ represent the k_{n} first eigenvalues of $\widehat{\Gamma}_{n, r e c}^{o b s}$. We first estimate θ with the observed responses and the observed or reconstructed covariates

$$
\widetilde{\theta}=\frac{1}{n-m_{n}^{[Y]}} \sum_{i=1}^{n-m_{n}^{[Y]}} \sum_{j=1}^{k_{n}} \frac{\left\langle X_{i}^{\star}, \widehat{\phi}_{j=, \text { oce }}^{\text {obs }}\right\rangle \delta_{i}^{[Y]} Y_{i}}{\widehat{\lambda}_{j, \text { rec }}^{\text {obs }}} \widehat{\phi}_{j, r e c}^{o b s}=\sum_{j=1}^{k_{n}} \widetilde{s}_{j} \widehat{\phi}_{j, r e c}^{o b s},
$$

with $\widetilde{s}_{j}=\frac{1}{\left(n-m_{n}^{[Y]} \widehat{\lambda}_{j, r \text { rec }}^{b s}\right.} \sum_{i=1}^{n-m_{n}^{[Y]}}\left\langle X_{i}^{\star}, \widehat{\phi}_{j, r e c}^{\text {obs }}\right\rangle \delta_{i}^{[Y]} Y_{i}$. We also estimate the intercept θ_{0} with $\widetilde{\theta}_{0}=\bar{Y}_{o b s}=\frac{1}{n-m_{n}^{[Y]}} \sum_{i=1}^{n} \delta_{i}^{[Y]} Y_{i}$. Now, the residuals of the fit, $\widetilde{\varepsilon}_{i, k_{n}}=Y_{i}-\widetilde{\theta}_{0}-$ $\left\langle X_{i}^{\star}, \widetilde{\theta}\right\rangle$ for $i=1, \ldots, n$, can be used to estimate the error variance as follows

$$
\widetilde{\sigma}_{\varepsilon, k_{n}}^{2}=\frac{1}{n-m_{n}^{[Y]}-k_{n}-1} \sum_{i=1}^{n} \delta_{i}^{[Y]} \widetilde{\varepsilon}_{i, k_{n}}^{2} .
$$

Then, considering a missing value on the response, say Y_{ℓ} such that $\delta_{\ell}^{[Y]}=0$, we define the imputed value $Y_{\ell, \text { imp }}$ by

$$
Y_{\ell, i m p}=\widetilde{\theta}_{0}+\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle=\widetilde{\theta}_{0}+\sum_{j=1}^{k_{n}} \widetilde{\widetilde{s}}_{j}\left\langle X_{\ell}^{\star}, \widehat{\phi}_{j, r e c}^{\text {obs }}\right\rangle,
$$

with $\widetilde{\widetilde{s}}_{j}=\frac{1}{\left(n-m_{n}^{[Y]}\right) \widehat{\lambda}_{j, r e c}^{o b s}} \sum_{\substack{i=1 \\ i \neq \ell}}^{n}\left\langle X_{i}^{\star}, \widehat{\phi}_{j, \text { rece }}^{\text {oss }}\right\rangle \delta_{i}^{[Y]} Y_{i}$. Let us remark that the imputation $Y_{\ell, \text { imp }}$ can also be written

$$
Y_{\ell, i m p}=\widehat{\Pi}_{k_{n}, r e c}^{o b s} \widehat{\Delta}_{n, \text { rec }}^{o b s}\left(\widehat{\Pi}_{k_{n}, \text { rec }}^{o b s} \widehat{e}_{k_{n}, \text { rec }}^{o b s} \widehat{\Lambda}_{k_{n}, \text { rec }}^{o b s}\right)^{-1} X_{\ell}^{\star},
$$

where $\widehat{\Delta}_{n, \text { rec }}^{\text {obs }}=\frac{1}{n-m_{n}^{[Y]}} \sum_{i=1}^{n}\left\langle X_{i}^{\star},.\right\rangle \delta_{i}^{[Y]} Y_{i}$.

3.2 Estimation of θ and prediction

Once the whole database has been reconstructed, we estimate the functional coefficient θ with

$$
\widehat{\theta}^{\star}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_{n}} \frac{\left\langle X_{i}^{\star}, \widehat{\phi}_{j, r \text { rec }}^{\star}\right) Y_{i}^{\star}}{\widehat{\lambda}_{j, \text { rec }}^{\star}} \widehat{\phi}_{j, \text { rec }}=\sum_{j=1}^{k_{n}} \widehat{s}_{j}^{\star} \widehat{\phi}_{j, r e c}^{\star},
$$

where $\widehat{s}_{j}^{\star}=\frac{1}{n \widehat{\lambda}_{j, \text { rec }}^{\star}} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, \widehat{\phi}_{j, \text { rec }}^{\star}\right\rangle Y_{i}^{\star}$ and $Y_{i}^{\star}=Y_{i} \delta_{i}^{[Y]}+Y_{i, i m p}\left(1-\delta_{i}^{[Y]}\right)$ for all $i=$ $1, \ldots, n$. The estimation of the operator Θ is similarly given by

$$
\widehat{\Theta}^{\star}=\left\langle\widehat{\theta}^{\star}, .\right\rangle=\widehat{\Pi}_{k_{n}, r e c}^{\star} \widehat{\Delta}_{n, \text { rec }}^{\star}\left(\widehat{\Pi}_{k_{n}, \text { recec }}^{\star} \widehat{\Gamma}_{n, r e c}^{\star} \widehat{\Pi}_{k_{n}, r e c}^{\star}\right)^{-1},
$$

where the cross covariance operator is $\widehat{\Delta}_{n, \text { rec }}^{\star}=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},.\right\rangle Y_{i}^{\star}$, the covariance operator is $\widehat{\Gamma}_{n, \text { rec }}^{\star}=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},.\right\rangle X_{i}^{\star}$, and $\widehat{\phi}_{1, \text { rec }}^{\star}, \ldots, \widehat{\phi}_{k_{n}, \text { rec }}^{\star}$ and $\widehat{\lambda}_{1, \text { rec }}^{\star}, \ldots, \widehat{\lambda}_{k_{n}, \text { rec }}^{\star}$ represent respectively the k_{n} first eigenfunctions and eigenvalues of the operator $\widehat{\Gamma}_{n, \text { rec }}^{\star}$. We use
this estimation to predict a new value of the response Y when a new explanatory curve $X_{\text {new }}$ is given

$$
\begin{aligned}
\widehat{Y}_{\text {new }}=\widehat{\theta}_{0}^{\star}+\left\langle\widehat{\theta}^{\star}, X_{\text {new }}^{\star}\right\rangle & =\widehat{\theta}_{0}^{\star}+\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_{n}} \frac{\left\langle X_{i}^{\star}, \widehat{\phi}_{j, \text { rec }}^{\star}\right\rangle\left\langle X_{\text {new }}^{\star}, \widehat{\phi}_{j, \text { rec }}^{\star}\right\rangle Y_{i}^{\star}}{\widehat{\lambda}_{j, \text { rec }}^{\star}} \\
& =\widehat{\theta}_{0}^{\star}+\sum_{j=1}^{k_{n}} \widehat{s}_{j}^{\star}\left\langle X_{\text {new }}^{\star}, \widehat{\phi}_{j, \text { rec }}^{\star}\right\rangle,
\end{aligned}
$$

where $\widehat{\theta}_{0}^{\star}=\bar{Y}^{\star}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\star}$. Then, the residuals of the fit, $\widehat{\varepsilon}_{i, k_{n}}=Y_{i}^{\star}-\widehat{\theta}_{0}^{\star}-\left\langle X_{i}^{\star}, \widehat{\theta}^{\star}\right\rangle$ for $i=1, \ldots, n$, allow to estimate the error variance writing

$$
\left(\widehat{\sigma}_{\varepsilon, k_{n}}^{\star}\right)^{2}=\frac{1}{n-k_{n}-1} \sum_{i=1}^{n}\left(\widehat{\varepsilon}_{i, k_{n}}^{\star}\right)^{2} .
$$

3.3 Asymptotic results

The first result gives an error rate of the imputed values.

Theorem 3.1 Under assumptions (A.1)-(A.6), if we take $k_{n} \sim p^{1 /\left(a_{O}+2\right)}$ and $p \sim$ $n^{\eta_{1}}$ with $\eta_{1} \leq 1 / 2$, we have

$$
\mathbb{E}\left(Y_{\ell, i m p}-\theta_{0}-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{[Y]}}\right) .
$$

Moreover, the aggregate error for all the imputed values is given by

$$
\sum_{\ell=1}^{n}\left(1-\delta_{\ell}^{[Y]}\right) \mathbb{E}\left(Y_{\ell, i m p}-\theta_{0}-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(m_{n}^{[Y]} n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{m_{n}^{[Y]} n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{[Y]}}\right) .
$$

Table 1: Single and aggregate imputation mean square error convergence rates.

	single error	aggregate error
$(i) m_{n}^{[Y]}=\left\lfloor a_{n} n\right\rfloor$	$\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$	$\mathcal{O}_{p}\left(a_{n} n^{1-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$
$(i i) m_{n}^{[Y]} \sim\lfloor\rho n\rfloor$	$\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$	$\mathcal{O}_{p}\left(n^{1-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$
$(i i i) n-m_{n}^{[Y]}=\left\lfloor n^{\gamma}\right\rfloor$	$\gamma \geq \frac{\eta_{1}\left(a_{O}+1\right)}{2\left(a_{O}+2\right)}$	
	$\gamma<\frac{\eta_{1}\left(a_{O}+1\right)}{2\left(a_{O}+2\right)}$	$\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$
	$\mathcal{O}_{p}\left(n^{1-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)$	

The following corollary explores some specific cases of the above error rates. The given results simply come from a comparison between the convergence rates of the above result, hence the proof is ommited.

Corollary 3.2 We consider cases where the number of missing values on the response are (i) negligeable with respect to the sample size, (ii) proportional to the sample size, (iii) of the same order than the sample size. More precisely
(i) $m_{n}^{[Y]}=\left\lfloor a_{n} n\right\rfloor$ where a_{n} goes to zero when n goes to infinity,
(ii) $m_{n}^{[Y]} \sim\lfloor\rho n\rfloor$ with $0<\rho<1$,
(iii) $n-m_{n}^{[Y]}=\left\lfloor n^{\gamma}\right\rfloor$ with $0<\gamma<1$.

We summarize the error rate for a single imputed value and the aggregate error in
Table 1.

We finish the theoretical results with the prediction error of $Y_{\text {new }}$ with a new value of the covariate $X_{\text {new }}$. The proof of this result is ommited as it uses previous results of Theorems 2.2 and 3.1 and follows exactly the same lines as the proof of Theorem 2.2.

Theorem 3.3 Under assumptions (A.1)-(A. $\boldsymbol{6})$, and $k_{n} \sim p^{1 /\left(a_{O}+2\right)}$ and $p \sim n^{\eta_{1}}$ with $\eta_{1} \leq 1 / 2$, the prediction error is

$$
\mathbb{E}\left(\widehat{\theta}_{0}^{\star}+\left\langle\widehat{\theta}^{\star}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{[Y]}}\right) .
$$

In the particular case where $\eta_{1}=1 / 2$, the first term in the convergence rate is $\mathcal{O}_{p}\left(n^{-\left(a_{O}-1\right) /\left(4\left(a_{O}+2\right)\right)}\right)$.

All our convergence rates depend in particular on the parameter $a_{O}>1$, which is directly linked to the smoothness of the stochastic process X. The larger a_{O} is, the smoother X is. When a_{O} tends to 1 (non-smooth processes, for example a standard Brownian motion corresponds to $a_{O}=2$), the convergence rate deteriorates. When a_{O} tends to infinity (very smooth processes), the convergence rate $n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}$ is equivalent to $n^{-\eta_{1} / 2}$.

As before, we consider cases in the corollary below where the number of missing values on the response are (i) negligeable with respect to the sample size, (ii) proportional to the sample size, (iii) of the same order than the sample size.

Corollary 3.4 In the cases (i), (ii) and (iii) with $\gamma \geq \frac{\eta_{1}\left(a_{O}+1\right)}{2\left(a_{O}+2\right)}$, the prediction error of a new value of the response is

$$
\mathbb{E}\left(\widehat{\theta}_{0}^{\star}+\left\langle\widehat{\theta}^{\star}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) .
$$

In the case (iii) with $\gamma<\frac{\eta_{1}\left(a_{O}+1\right)}{2\left(a_{O}+2\right)}$, the prediction error of a new value of the response is

$$
\mathbb{E}\left(\widehat{\theta}_{0}^{\star}+\left\langle\widehat{\theta}^{\star}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{\eta_{1} /\left(a_{O}+2\right)-\gamma}\right) .
$$

In other words, in situations where the number of missing values on the response is negligeable or moderate with respect to the sample size, the convergence rate of the prediction error is given by the convergence rate obtained in Kneip and Liebl (2020) for the curve reconstruction. As a conclusion, when dealing with a functional linear model with a partially observed covariate and missing values in the response, the convergence rate of the prediction error strongly depends on the curve reconstruction error, with respect to the response imputation error.

Remark 2 As noticed at the end of the previous section, all the results obtained in this section remain valid if we replace X^{\star} with X.

4 Simulations

4.1 Model and samples

All the procedures described below were implemented with the R software. In the simulations, we deal with functions defined on the interval $[0,1]$. We consider the model

$$
\begin{equation*}
Y=\theta_{0}+\langle\theta, X\rangle+\varepsilon, \tag{4.1}
\end{equation*}
$$

where the error ε is either a Gaussian noise $\varepsilon \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$ with $\sigma_{\varepsilon}=0.2$ and $\sigma_{\varepsilon}=1.5$, or drawn from a centered $\operatorname{Beta}(2,2)$ law. We derived different models from (4.1), simulating more or less smooth processes X. For the sake of concision, we only give the results for the model presented below. Results for other models are available on demand to the authors.

In this model, as in Hall and Horowitz (2007), the functional covariate X is generated by a set of cosine basis functions $\phi_{1} \equiv 1$ and $\phi_{j+1}=\sqrt{2} \cos (j \pi t)$ for $j>1$, such that $X(t)=\sum_{j=1}^{150} \varrho_{j} \zeta_{j} \phi_{j}(t)$ for all $t \in[0,1]$, where the ζ_{j} 's are independently sampled from the uniform distribution on $[-\sqrt{3}, \sqrt{3}]$ and the ϱ_{j} 's are defined by $\varrho_{j}=(-1)^{j+1}(j)^{-\beta / 2}$ with $\beta=4$. The covariance function writes

$$
\operatorname{cov}(X(t), X(s))=\sum_{j=1}^{150} \frac{2}{j^{\beta}} \cos (j \pi t) \cos (j \pi s) .
$$

The true parameters of the model are $\theta_{0}=3$ and θ defined for all $t \in[0,1]$ by

$$
\theta(t)=\sum_{j=1}^{50} b_{j} \phi_{j}(t),
$$

with $b_{1}=0.3$ and $b_{j}=4(-1)^{j+1} j^{-2}$ for all $j>1$.

The trajectories of X_{i} for $i=1, \ldots, N$ are discretized in $p=100$ equidistant points. We consider $n=\frac{4}{5} N$ for the training sets $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ and $n_{1}=\frac{1}{5} N$ for the
test sets $\left(X_{n+1}, Y_{n+1}\right), \ldots,\left(X_{n+n_{1}}, Y_{n+n_{1}}\right)$, where $N=1400$. In each simulation, we replicated $\boldsymbol{S}=400$ samples.

4.2 Criteria

We used the following criteria, related to the prediction step with the test samples.

- Criterion 1: the mean square errors (MSE) averaged over \boldsymbol{S} samples

$$
\overline{M S E}=\frac{1}{\boldsymbol{S}} \sum_{j=1}^{S} M S E(j),
$$

where $\operatorname{MSE}(j)=\frac{1}{n_{1}} \sum_{\ell=n+1}^{n+n_{1}}\left(Y_{\ell}^{j}-\widehat{\theta}_{0}-\left\langle\widehat{\theta}, X_{\ell}^{j}\right\rangle\right)^{2}$ is the mean square error computed on the $j^{\text {th }}$ simulated sample, $j \in\{1, \ldots, \boldsymbol{S}\}$.

- Criterion 2: the ratio respect to truth between the mean square prediction error and the mean square prediction error when the true mean is known averaged over \boldsymbol{S} samples

$$
\overline{R T}=\frac{1}{\boldsymbol{S}} \sum_{j=1}^{S} R T(j)
$$

where $R T(j)=\frac{\sum_{\ell=n+1}^{n+n_{1}}\left(Y_{\ell}^{j}-\widehat{\theta}_{0}-\left\langle\widehat{\theta} X_{\ell}^{j}\right\rangle\right)^{2}}{\sum_{\ell=n+1}^{n+n_{1}}\left(\epsilon_{\ell}^{j}\right)^{2}}$ is the ratio between the mean square prediction error and the mean square prediction error when the true mean is known, computed on the $j^{\text {th }}$ simulated sample.

Notice that all the criteria tend to zero when the sample size tends to infinity. Criterion $R T$ is a rescaled version of $M S E$ if we substitute the denominator by its limit (specifically, $\left.\operatorname{MSE}(j)=R T(j) \sigma_{\epsilon}^{2}\right)$.

4.3 Methodology

As in Crambes and Henchiri (2019), we use a smoothed version of the estimator (1.2) based on the SPCR. We use a regression spline basis with parameters: the number κ of knots of the spline functions, the degree q of spline functions and the order m of derivative. Let us remark that, with appropriate conditions, all the theoretical results obtained in our work will also apply when using the SPCR estimation. We take $\kappa=20, q=3$ and $m=2$. The choice of these parameters is not crucial in our study, especially in comparison with the choice of the number of principal components (see Crambes and Henchiri (2019) for more details). In this subsection, we firstly present the missing data simulation scenarios for the response and functional covariate. Secondly, we give a procedure to choose the optimal tuning parameter on a growing sequence of dimension $k_{n}=2, \ldots, 22$.

Missing data simulation scenario

In our simulations, we have adopted the following scenario to determine the number of missing data on the response Y as in Crambes and Henchiri (2019): we simulate $\delta^{[Y]}$ according to the logistic functional regression. The variable δ follows the Bernoulli law with parameter $p(X)$ such that

$$
\log \left(\frac{p(X)}{1-p(X)}\right)=\left\langle\alpha_{0}, X\right\rangle+c,
$$

where $\alpha_{0}=\sin (2 \pi t)$ for all $t \in[0,1]$ and c is a constant allowing to take different levels of missing data. For exemple $c=1$ for around 26.97% of missing data, $c=0.2$ for around 44.99% of missing data and $c=-0.2$ for around 45.087% of missing data.

To deal with partially observed curves for the covariate, we adopted the missing data simulation scenario from Kneip and Liebl (2020) such that

- 70% (respectively 55%) of the curves are fully observed on $[0,1]$,
- for the 30% (respectively 45%) of partially observed curves, the curve X_{i} is fully observed on $\left[A_{i}, B_{i}\right] \subset[0,1]$ with A_{i} drawn with uniform law on the interval $[0, A]$ and $B_{i}=A_{i}+B$, with $A=3 / 8$ and $B=6 / 8$.

Choice of the optimal parameter

Theoretical results are generally obtained under assumptions concerning the rate of convergence of the integer k_{n}. In practice, this integer is selected by minimizing a certain empirical criterion, for example the Generalized Cross Validation (GCV) criterion, the Cross Validation (CV) criterion and the K-fold Cross Validation (Kfold CV) criterion (see Crambes and Henchiri (2019)). In our simulations, we chose the GCV procedure, known to be computationally fast. The GCV criterion is given below for imputation

$$
\operatorname{GCV}\left(k_{n}\right)=\frac{\left(n-m_{n}^{[Y]}\right) \sum_{i=1}^{n}\left(\widehat{Y}_{i}-\theta_{0}-\left\langle\theta, X_{i}\right\rangle\right)^{2} \delta_{i}}{\left(\left(n-m_{n}^{[Y]}\right)-k_{n}\right)^{2}}
$$

and the analogous criterion for prediction

$$
\operatorname{GCV}\left(k_{n}\right)=\frac{n \sum_{i=1}^{n}\left(\widehat{Y}_{i}-\theta_{0}-\left\langle\theta, X_{i}\right\rangle\right)^{2}}{\left(n-k_{n}\right)^{2}}
$$

4.4 Analysis of results

The criteria were computed according to the different cases listed below.

- Case 1: FULL: X and Y are fully observed, this corresponds to the complete reference dataset,
- Case 2: REC_X_IMP_Y: X is partially observed and Y is affected with missing values, the missing parts of X are reconstructed and the missing values of Y are imputed, according to the method presented in this paper,
- Case 3: REC_X_MEAN_IMP_Y: X is partially observed and Y is affected with missing values, the missing parts of X are reconstructed and the missing values of Y are imputed by the mean of the response observed values,
- Case 4: REC_X_RAND_IMP_Y: X is partially observed and Y is affected with missing values, the missing parts of X are reconstructed and the missing values of Y are imputed by a random response observed value,
- Case 5: REC_X_ZERO_IMP_Y: X is partially observed and Y is affected with missing values, the missing parts of X are reconstructed and the missing values of Y are imputed by a value equal to zero,
- Case 6: REC_X_DEL_Y: X is partially observed and Y is affected with missing values, the missing parts of X are reconstructed and the missing values of Y are removed from the sample,
- Case 7: DEL_X_DEL_Y: X is partially observed and Y is affected with missing values, the individuals presenting either a partially observed curve or a missing response are removed from the sample.

Our results are presented in Tables 2, 3 and 4. Other intermediate cases have been examinated (when X is fully observed and Y is affected by missing values, or when X is partially observed and Y is not affected by missing values). Complete results are available on demand to the authors.

As it can be expected, the errors increase as the model error increases. The main point we want to discuss is related to the level of missing data in the sample. Our method (REC_X_IMP_Y) always behaves better than the other methods, specially with respect to the imputation with the value zero (REC_X_ZERO_IMP_Y) or the more naive methods where we delete missing data on the response (REC_X_DEL_Y) or where we delete all missing data (DEL_X_DEL_Y). The other imputation methods with the mean (REC_X_MEAN_IMP_Y) or with a random value drawn in the observed values (REC_X_RAND_IMP_Y) behave better than (REC_X_DEL_Y) and (DEL_X_DEL_Y). There is a more clear-cut difference between our method and the other ones when the percentage of missing data increases. We can empirically see the advantage of reconstructing the missing parts of the covariate. This echoes to our theoretical results where we remark that the prediction error rate is subordinate to the reconstruction error of the covariate.

5 Real dataset study

In this section, we are interested in a model involving electricity production, demand and prices of the German power market. Kneip and Liebl (2020) were already interested in the curve reconstruction problem of electricity prices curves (function

Table 2: Mean and standard deviation errors for the predicted values based on 400 simulation replications with different levels of missing data and a sample size $N=$ 1400. Partially observed curves are fully observed on $[3 / 8,6 / 8]$ and the error $\varepsilon \sim$ $N\left(0, \sigma_{\varepsilon}^{2}\right)$ with $\sigma_{\varepsilon}=0.2$.

Rate of missing data in Y in $\%$	$\begin{aligned} & 26.97 \\ & (1.41) \end{aligned}$	$\begin{aligned} & 26.99 \\ & (1.22) \end{aligned}$	$\begin{aligned} & 44.99 \\ & (1.47) \end{aligned}$	$\begin{aligned} & 45.01 \\ & (1.58) \end{aligned}$	55.07 (1.50)	$\begin{aligned} & 54.91 \\ & (1.43) \end{aligned}$
Rate of missing	30.03	45.01	30.07	44.81	29.89	44.94
data in X in \%	(1.16)	(1.36)	(1.19)	(1.32)	(1.22)	(1.36)
(FULL) $\overline{M S E} \times 10^{3}$	18.65	17.07	18.45	18.29	18.41	18.61
	(16.48)	(14.23)	(15.87)	(16.30)	(15.96)	(16.94)
$\overline{R T}$	1.47	1.44	1.47	1.46	1.47	1.47
	(0.41)	(0.39)	(0.42)	(0.42)	(0.40)	(0.44)
$\left(\mathbf{R E C}\right.$ - X_IMP_Y) $\overline{M S E} \times 10^{3}$	31.46	30.92	49.33	52.54	68.51	67.95
	(28.39)	(27.65)	(39.08)	(48.53)	(59.54)	(59.67)
$\overline{R T}$	1.79	1.79	2.24	2.31	2.72	2.72
	(0.72)	(0.74)	(0.97)	(1.21)	(1.46)	(1.53)
$\left(\mathbf{R E C}\right.$-X_MEAN_IMP_Y) $\overline{M S E} \times 10^{3}$	31.58	31.44	52.82	56.15	72.59	70.48
	(27.40)	(25.46)	(36.49)	(40.56)	(42.02)	(44.07)
$\overline{R T}$	1.79	1.80	2.33	2.40	2.83	2.78
	(0.70)	(0.68)	(0.92)	(1.01)	(1.08)	(1.12)
$\left(\mathbf{R E C} \text { _X_RAND_IMP_Y) } \overline{M S E} \times 10^{3}\right.$	31.81	31.26	52.31	56.00	72.26	70.49
	(27.68)	(25.19)	(36.01)	(40.90)	(41.86)	(44.39)
$\overline{R T}$	1.80	1.79	2.31	2.40	2.83	2.78
	(0.71)	(0.68)	(0.91)	(1.02)	(1.07)	(1.12)
$\left(\right.$ REC_X_ZERO_IMP_Y) $\overline{M S E} \times 10^{2}$$\overline{R T}$	72.31	72.96	194.18	194.74	287.29	286.35
	(8.53)	(8.23)	(15.01)	(14.51)	(16.93)	(17.04)
	19.27	19.38	49.63	49.96	72.94	73.22
	(2.62)	(2.67)	(5.57)	(5.23)	(7.47)	(7.68)
$\left(\mathbf{R E C} \text { _X_DEL_Y) } \overline{M S E} \times 10^{3}\right.$	39.55	42.69	72.04	78.83	96.71	96.87
	(32.79)	(36.91)	(53.85)	(59.65)	(70.89)	(75.14)
$\overline{R T}$	1.99	2.08	2.81	2.98	3.42	3.45
	(0.84)	(0.95)	(1.35)	(1.50)	(1.77)	(1.95)
$\left(\mathbf{D E L}\right.$ - $\left.\mathbf{X C D E L}_{-} \mathbf{Y}\right) \overline{M S E} \times 10^{3}$	48.66	57.22	84.33	103.34	112.44	123.62
	(46.92)	(53.12)	(69.73)	(91.15)	(89.72)	(107.01)
$\overline{R T}$	2.21	2.46	3.14	3.61	3.81	4.14
	(1.17)	(1.43)	(1.78)	(2.32)	(2.28)	(2.68)

Table 3: Mean and standard deviation errors for the predicted values based on 400 simulation replications with different levels of missing data and a sample size $N=$ 1400. Partially observed curves are fully observed on $[3 / 8,6 / 8]$ and the error $\varepsilon \sim$ $N\left(0, \sigma_{\varepsilon}^{2}\right)$ with $\sigma_{\varepsilon}=1.5$.

Rate of missing data in Y in $\%$	$\begin{aligned} & 27.12 \\ & (1.35) \end{aligned}$	27.14 (1.28)	45.16 (1.57)	$\begin{aligned} & 45.23 \\ & (1.43) \end{aligned}$	$\begin{aligned} & 54.91 \\ & (1.49) \end{aligned}$	$\begin{aligned} & 54.84 \\ & (1.46) \end{aligned}$
Rate of missing	29.92	45.16	30.00	45.08	30.06	44.83
data in X in \%	(1.20)	(1.26)	(1.21)	(1.29)	(1.26)	(1.29)
$\left(\right.$ FULL) $\overline{M S E} \times 10^{3}$	23.52	22.89	27.12	22.68	23.44	24.35
	(18.16)	(19.36)	(22.32)	(19.22)	(18.06)	(21.13)
$\overline{R T}$	1.01	1.01	1.01	1.01	1.01	1.01
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
$\left(\mathbf{R E C}\right.$-X_IMP_Y) $\overline{M S E} \times 10^{3}$	37.45	34.22	62.68	57.56	76.55	76.61
	(29.46)	(25.32)	(42.74)	(41.20)	(44.91)	(42.59)
$\overline{R T}$	1.02	1.02	1.03	1.03	1.03	1.04
	(0.02)	(0.02)	(0.03)	(0.03)	(0.03)	(0.03)
$\left(\mathbf{R E C}\right.$-X_MEAN_IMP_Y) $\overline{M S E} \times 10^{3}$	38.84	36.41	63.90	57.45	79.56	79.80
	(33.00)	(31.36)	(50.87)	(52.04)	(64.31)	(64.38)
$\overline{R T}$		1.02	1.03			
	(0.02)	(0.02)	(0.03)	(0.03)	(0.04)	(0.04)
$\left(\mathbf{R E C} \text { _X_RAND_IMP_Y) } \overline{M S E} \times 10^{3}\right.$	39.55	35.75	63.88	60.15	77.23	76.95
	(31.29)	(27.00)	(44.83)	(44.00)	(47.60)	(44.50)
$\overline{R T}$	1.02	1.02	1.03	1.03	1.04	1.04
	(0.02)	(0.02)	(0.03)	(0.03)	(0.03)	(0.03)
$\begin{array}{r} \left(\text { REC_X_ZERO_IMP_Y) } \overline{M S E} \times 10^{2}\right. \\ \overline{R T} \end{array}$	73.55	73.31	195.88	195.79	286.40	285.60
	(11.01)	(9.76)	(17.75)	(17.13)	(20.29)	(18.75)
	1.33	1.34	1.88	1.88	2.30	2.29
	(0.09)	(0.09)	(0.16)	(0.15)	(0.20)	(0.20)
$\left(\mathbf{R E C}\right.$ _X_DEL_Y) $\overline{M S E} \times 10^{3}$	44.07	48.93	85.43	81.84	110.13	113.27
	(36.69)	(41.30)	(67.26)	(64.54)	(85.67)	(82.88)
$\overline{R T}$	1.02	1.02	1.04	1.04	1.05	1.05
	(0.03)	(0.03)	(0.04)	(0.04)	(0.05)	(0.05)
$\left(\mathbf{D E L}\right.$ _X_DEL_Y) $\overline{M S E} \times 10^{3}$	63.17	68.44	102.19	115.53	133.12	154.27
	(55.99)	(61.75)	(81.25)	(99.83)	(121.22)	(125.97)
$\overline{R T}$	1.03	1.03	1.05	1.05	1.06	1.07
	(0.04)	(0.04)	(0.05)	(0.06)	(0.07)	(0.08)

Table 4: Mean and standard deviation errors for the predicted values based on 400 simulation replications with different levels of missing data and a sample size $N=$ 1400. Partially observed curves are fully observed on $[3 / 8,6 / 8]$ and the error ε equals $\eta-0.5$ with $\eta \sim \operatorname{Beta}(2,2)$.

Rate of missing	26.98	26.90	45.04	45.06	54.96	54.95
data in Y in $\%$	(1.38)	(1.27)	(1.50)	(1.37)	(1.52)	(1.43)
Rate of missing	29.92	45.14	29.89	45.01	30.08	44.92
data in X in $\%$	(1.22)	(1.34)	(1.26)	(1.31)	(1.15)	(1.23)
(FULL) $\overline{M S E} \times 10^{3}$	19.31	18.89	18.33	18.69	19.26	18.35
(REC_X_IMP_Y) $\overline{M S E} \times 10^{3}$	32.16	33.62	48.88	52.85	69.84	68.75
		(18.28)	(15.85)	(16.81)	(16.77)	(17.99)
			1.38	1.38	1.37	1.37

of the demand). These data are provided from three different publicly available sources: The European Power Exange (www.epexspot.com), the European Network of Transmission System Operators for Electricity (www.entsoe.eu) and the European Energy Exchange (www.eex-transparency.com). The observation period corresponds to $n=241$ working days from March 15, 2012 to March 14, 2013. The dataset consists in $n=241$ daily electricity prices curves in Germany (measured every hour) in function of the residual electricity demand, which is the relevant value for considering electricity demand. It corresponds to germany's gross electricity demand minus infeeds from renewable energy sources plus net-imports from foreign countries. Some prices greater than 120 EUR/MWh have to be treated as outliers since they cannot be explained by the model and were set to the value 120. Negative prices are not impossible in this situation: electricity producers prefer to sell electricity at negative prices (meaning that they are paying for delivering electricity), it is sometimes more profitable than shutting off and restarting a central plant. Figure 1 shows the prices curves (in EUR/MWh) in function of the residual demand (in MWh), and Figure 2 shows the reconstructed curves with the method from Kneip and Liebl (2020). Price curves can be seen as partially observed curves, as some prices cannot be observed with respect to some residual demand values.

Here, the price-demand functions are observed on different domains. This distinguishes our functional data set from classical functional data sets, where all functions are observed on a common domain. We consider a standardized domain where the standardization can be achieved as follows: for $i=1, \ldots, n$, we consider a sequence from $\min _{1 \leq j \leq p} t_{i j}$ to $\max _{1 \leq j \leq p} t_{i j}$ with a regular step $(b-a) / p$, where $a:=$ $\min _{1 \leq i \leq n} \min _{1 \leq j \leq p} t_{i j}$ and $b:=\max _{1 \leq i \leq n} \max _{1 \leq j \leq p} t_{i j}$.

Figure 1: Daily electricity price curves in function of the residual demand.

Our experimental study is based on two steps. In the first treatment step, we do not observe the price-demand functions directly but we have to estimate each pricedemand function by a local polynomial smoother estimator. Here, we choose the Gaussian kernel and we consider a cross validation criterion to select the optimal tuning bandwidth parameter from a grid of parameter values in the interval [1070,35000]. In the second step, we reconstructed the missing parts of the differents curves.

We introduce now the model

$$
Y_{i}=\theta_{0}+\left\langle\theta, X_{i}\right\rangle+\varepsilon_{i},
$$

for $i=1, \ldots, 241$, where X_{i} is the daily electricity price curve on day i (function of the residual demand), and Y_{i} is the value of electricity production (in MWh) on

Figure 2: Reconstructed daily electricity price curves in function of the residual demand.
day i. The production data come from https://www.agora-energiewende.de ${ }^{1}$. Only a graphic (with numerical values marked at the observation points) was available on this website to collect a data (neither a table nor an Excel file). It can be possible to use a software to get numerical values from a graphic (see https://automeris.io ${ }^{2}$). However, this software is not completely reliable and some numerical values, being not possible, can be considered as missing data for the response variable. In our case, the percentage of missing data is 13.26%.

We split the initial sample into a learning sample (the index set is denoted I_{L}) with size 181 and a test sample with size 60 (the index set is denoted I_{T}). Firstly, we reconstructed the missing parts of the differents curves (see Figure 2) and, on the learning sample, we imputed the missing values on the response. Then, on the test sample, we computed the prediction values for the response. In order to evaluate the quality of the prediction with our method (REC_X_IMP_Y), we calculated the mean square error $M S E=\frac{1}{60} \sum_{i \in I_{T}}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=40.44$ and the mean absolute error $M A E=\frac{1}{60} \sum_{i \in I_{T}}\left|Y_{i}-\widehat{Y}_{i}\right|=5.35$. As a point of comparison, the MSE is 40.50 for the method (REC_X_MEAN_IMP_Y), 41.40 for the method (REC_X_RAND_IMP_Y), 107.95 for the method (REC_X_ZERO_IMP_Y) and 40.54 for the method (REC_X_DEL_Y). The MAE is 5.35 for the method (REC_X_MEAN_IMP_Y), 5.37 for the method (REC_X_RAND_IMP_Y), 8.89 for the method (REC_X_ZERO_IMP_Y) and 5.35 for the method (REC_X_DEL_Y). Again, our method performs better than the other ones, even if the differences are

[^1]sometimes slight. Notice finally that, in this situation, the method (DEL_X_DEL_Y) would not be possible since all the curves are partially observed and this would cause removing all individuals in the sample.

6 Proofs

Proof of Proposition 2.1

For any $x \in H$ such that $\|x\|=1$, we have
$\widehat{\Gamma}_{n, r e c} x-\widehat{\Gamma}_{n} x=\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}-X_{i}, x\right\rangle X_{i}+\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, x\right\rangle\left(X_{i}^{\star}-X_{i}\right)+\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}-X_{i}, x\right\rangle\left(X_{i}^{\star}-X_{i}\right)$.

Using the Cauchy-Schwarz inequality, we get

$$
\left\|\left\langle X_{i}^{\star}-X_{i}, x\right\rangle X_{i}\right\| \leq\left\|X_{i}^{\star}-X_{i}\right\|\|x\|\left\|X_{i}\right\|,
$$

from which we deduce with (2.3) that

$$
\left\|\left\langle X_{i}^{\star}-X_{i}, x\right\rangle X_{i}\right\|=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) .
$$

We prove in the same way that

$$
\left\|\left\langle X_{i}, x\right\rangle\left(X_{i}^{\star}-X_{i}\right)\right\|=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right),
$$

and

$$
\left\|\left\langle X_{i}^{\star}-X_{i}, x\right\rangle\left(X_{i}^{\star}-X_{i}\right)\right\|=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(a_{O}+2\right)}\right),
$$

which gives the first result (i). The result (ii) can be shown exactly the same way. Finally, we notice that $\widehat{\alpha}_{k}=\mathcal{O}_{p}\left(k^{-a_{O}-1}\right)$ where we set $\widehat{\alpha}_{1}=\widehat{\lambda}_{1}-\widehat{\lambda}_{2}$ and $\widehat{\alpha}_{k}=$ $\min \left(\widehat{\lambda}_{k-1}-\widehat{\lambda}_{k} ; \widehat{\lambda}_{k}-\widehat{\lambda}_{k+1}\right)$ for all $k \geq 2$. This allows to show results (iii) and (iv) from (i) and respectively Lemma 2.3 and Lemma 2.2 in Horváth and Kokoszka (2012).

Proof of Theorem 2.2

We start with the decomposition

$$
\begin{aligned}
& \left.\mathbb{E}\left(\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2} \\
& =\mathbb{E}\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Delta}_{n, r e c}\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, r e c}\right)^{-1} X_{\text {new }}^{\star}-\Theta X_{\text {new }}^{\star}\right)^{2} \\
& \leq 2 \mathbb{E}\left(\widehat{\Pi}_{k_{n}, \text { rec }} \Theta \widehat{\Gamma}_{n, \text { rec }}\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1} X_{\text {new }}^{\star}\right)^{2} \\
& +2 \mathbb{E}\left(\widehat{\Pi}_{k_{n}, \text { rec }}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle \varepsilon_{i}\right)\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Gamma}_{n, r e c} \widehat{\Pi}_{k_{n}, r e c}\right)^{-1} X_{\text {new }}^{\star}-\Theta X_{\text {new }}^{\star}\right)^{2} .
\end{aligned}
$$

Applying several times the identity $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ for any $a, b \in \mathbb{R}$, we get

$$
\begin{aligned}
\mathbb{E}\left(\left\langle\widehat{\hat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2} & \leq 32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}, r e c} X_{\text {new }}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}^{\star}\right)^{2} \\
& +32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}\right)^{2} \\
& +16 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}-\Theta \Pi_{k_{n}} X_{\text {new }}\right)^{2} \\
& +8 \mathbb{E}\left(\Theta \Pi_{k_{n}} X_{\text {new }}-\Theta X_{\text {new }}\right)^{2} \\
& +4 \mathbb{E}\left(\Theta X_{\text {new }}-\Theta X_{\text {new }}^{\star}\right)^{2} \\
& +2 \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, r e c}\right)^{-1} X_{\text {new }}^{\star}\right\rangle \varepsilon_{i}\right)^{2}
\end{aligned}
$$

We start with the first term in the above decomposition $A_{1}:=32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}, \text { rec }} X_{\text {new }}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}^{\star}\right)^{2}$.
Applying Lemma 5.1 in Crambes and Henchiri (2019), we obtain

$$
A_{1}=\mathcal{O}\left(\frac{\widehat{\lambda}_{k_{n}} k_{n}^{2}}{n}+\frac{k_{n}}{n}\right) .
$$

With Lemma 2.2 in Horváth and Kokoszka (2012), we get

$$
A_{1}=\mathcal{O}\left(\frac{\lambda_{k_{n}} k_{n}^{2}}{n}+\frac{k_{n}}{n}\right) .
$$

Now, we use (2.3) to obtain

$$
A_{2}:=32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}\right)^{2}=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
$$

Moreover, again with Lemma 5.1 in Crambes and Henchiri (2019), we obtain

$$
A_{3}:=16 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}} X_{\text {new }}-\Theta \Pi_{k_{n}} X_{\text {new }}\right)^{2}=\mathcal{O}\left(\frac{\lambda_{k_{n}} k_{n}^{2}}{n}+\frac{k_{n}}{n}\right) .
$$

We go on with $A_{4}:=8 \mathbb{E}\left(\Theta \Pi_{k_{n}} X_{\text {new }}-\Theta X_{\text {new }}\right)^{2}$. With Lemma 5.3 in Crambes and Henchiri (2019), we get

$$
A_{4}=8 \sum_{j=k_{n}+1}^{+\infty}\left(\Theta \Gamma^{1 / 2} \phi_{j}\right)^{2} .
$$

Next, using again (2.3), we can write

$$
A_{5}:=4 \mathbb{E}\left(\Theta X_{\text {new }}-\Theta X_{\text {new }}^{\star}\right)^{2}=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right) .
$$

Finally, the last term of the decomposition comes from Lemma 5.2 in Crambes and Henchiri (2019) and gives

$$
A_{6}:=2 \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},\left(\widehat{\Pi}_{k_{n}, \text { rec }} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1} X_{n e w}^{\star}\right\rangle \varepsilon_{i}\right)^{2}=\frac{2 \sigma_{\varepsilon}^{2} k_{n}}{n}+\mathcal{O}\left(\frac{k_{n}}{n}\right) .
$$

We can now conclude the proof of Theorem 2.2. The decomposition from the beginning of the proof gives

$$
\begin{aligned}
\mathbb{E}\left(\left\langle\widehat{\hat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}= & \mathcal{O}_{p}\left(\sum_{j=k_{n}+1}^{+\infty}\left(\Theta \Gamma^{1 / 2} \phi_{j}\right)^{2}+p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{\sigma_{\varepsilon}^{2} k_{n}}{n}\right) \\
& +\mathcal{O}\left(\frac{\lambda_{k_{n}} k_{n}^{2}}{n}+\frac{k_{n}}{n}\right) .
\end{aligned}
$$

The first term in the convergence rate is

$$
\sum_{j=k_{n}+1}^{+\infty}\left(\Theta \Gamma^{1 / 2} \phi_{j}\right)^{2}=\sum_{j=k_{n}+1}^{+\infty} \lambda_{j}\left(\Theta \phi_{j}\right)^{2} \leq \sum_{j=k_{n}+1}^{+\infty} j^{-a_{O}} .
$$

Comparing the latter sum to an integral, we get

$$
\sum_{j=k_{n}+1}^{+\infty}\left(\Theta \Gamma^{1 / 2} \phi_{j}\right)^{2}=\mathcal{O}\left(k_{n}^{-\left(a_{O}+1\right)}\right)=\mathcal{O}\left(p^{-\left(a_{O}+1\right) /\left(a_{O}+2\right)}\right)=\mathcal{O}\left(n^{-\eta_{1}\left(a_{O}+1\right) /\left(a_{O}+2\right)}\right)
$$

The second term in the convergence rate is

$$
p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)} \sim n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)},
$$

and the third term in the convergence rate is

$$
\frac{\sigma_{\varepsilon}^{2} k_{n}}{n} \sim \frac{\sigma_{\varepsilon}^{2} n^{\eta_{1} /\left(a_{O}+2\right)}}{n}=\sigma_{\varepsilon}^{2} n^{\eta_{1} /\left(a_{O}+2\right)-1} .
$$

If we compare the different rates, with the condition $\eta_{1} \leq 1 / 2$, we get

$$
\mathbb{E}\left(\left\langle\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
$$

Finally, we can write

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\widehat{\theta}}_{0}+\left\langle\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2} & =\mathbb{E}\left(\bar{Y}-\theta_{0}+\left\langle\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2} \\
& \leq 2 \mathbb{E}(\bar{Y}-\mathbb{E}(Y))^{2}+2 \mathbb{E}\left(\left\langle\widehat{\widehat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}
\end{aligned}
$$

The first term of the right-hand side is given by $\mathbb{E}(\bar{Y}-\mathbb{E}(Y))^{2}=\mathcal{O}_{p}\left(n^{-1}\right)$ (with Bienaymé-Tchebychev inequality), and the second term of the right-hand side gives a convergence rate in probability of $n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}$, which gives the desired result

$$
\mathbb{E}\left(\hat{\widehat{\theta}}_{0}+\left\langle\widehat{\hat{\theta}}, X_{\text {new }}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
$$

Proof of Theorem 3.1

This proof follows the same lines as the proof of Theorem 2.2. We write the decomposition

$$
\begin{aligned}
\mathbb{E}\left(\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2} & \leq 32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}, r e c}^{o b s} X_{\ell}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\ell}^{\star}\right)^{2} \\
& +32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}}^{o s s} X_{\ell}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\ell}\right)^{2} \\
& +16 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}} X_{\ell}-\Theta \Pi_{k_{n}} X_{\text {new }}\right)^{2} \\
& +8 \mathbb{E}\left(\Theta \Pi_{k_{n}} X_{\ell}-\Theta X_{\ell}\right)^{2} \\
& +4 \mathbb{E}\left(\Theta X_{\ell}-\Theta X_{\ell}^{\star}\right)^{2} \\
& +2 \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},\left(\widehat{\Pi}_{k_{n}, r e c}^{o b s} \widehat{\Gamma}_{n, r e c}^{o s s} \widehat{\Pi}_{k_{n}, \text { rec }}^{\text {obs }}\right)^{-1} X_{\ell}^{\star}\right\rangle \delta_{i}^{[Y]} \varepsilon_{i}\right)^{2}
\end{aligned}
$$

The first term in the above decomposition $B_{1}:=32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}, r e c}^{o s} X_{\ell}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\ell}^{\star}\right)^{2}$. Applying Lemma 5.1 in Crambes and Henchiri (2019) and Lemma 2.2 in Horváth and Kokoszka (2012), we get

$$
B_{1}=\mathcal{O}\left(\frac{\lambda_{k_{n}} k_{n}^{2}}{n-m_{n}^{[Y]}}+\frac{k_{n}}{n-m_{n}^{[Y]}}\right) .
$$

Now, we use (2.3) to obtain

$$
B_{2}:=32 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}}^{o b s} X_{\ell}^{\star}-\Theta \widehat{\Pi}_{k_{n}} X_{\ell}\right)^{2}=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
$$

Again with Lemma 5.1 in Crambes and Henchiri (2019), we obtain

$$
B_{3}:=16 \mathbb{E}\left(\Theta \widehat{\Pi}_{k_{n}} X_{\ell}-\Theta \Pi_{k_{n}} X_{n e w}\right)^{2}=\mathcal{O}\left(\frac{\lambda_{k_{n}} k_{n}^{2}}{n}+\frac{k_{n}}{n}\right) .
$$

The next term is $B_{4}:=8 \mathbb{E}\left(\Theta \Pi_{k_{n}} X_{\ell}-\Theta X_{\ell}\right)^{2}$. With Lemma 5.3 in Crambes and Henchiri (2019), we get

$$
B_{4}=8 \sum_{j=k_{n}+1}^{+\infty}\left(\Theta \Gamma^{1 / 2} \phi_{j}\right)^{2} .
$$

Then, using again (2.3), we can write

$$
B_{5}:=4 \mathbb{E}\left(\Theta X_{\ell}-\Theta X_{\ell}^{\star}\right)^{2}=\mathcal{O}_{p}\left(p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}\right)
$$

Finally, the last term of the decomposition comes from Lemma 5.2 in Crambes and Henchiri (2019) and gives
$B_{6}:=2 \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},\left(\widehat{\Pi}_{k_{n}, \text { rec }}^{o b s} \widehat{\Gamma}_{n, r e c}^{o s s} \widehat{\Pi}_{k_{n}, \text { rec }}^{o b s}\right)^{-1} X_{\ell}^{\star}\right\rangle \delta_{i}^{[Y]} \varepsilon_{i}\right)^{2}=\frac{2 \sigma_{\varepsilon}^{2} k_{n}}{n-m_{n}^{[Y]}}+\mathcal{O}\left(\frac{k_{n}}{n-m_{n}^{[Y]}}\right)$.

We can now conclude the proof of Theorem 3.1. Coming back to the decomposition from the beginning, we get

$$
\begin{aligned}
\mathbb{E}\left(\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2}= & \mathcal{O}_{p}\left(\sum_{j=k_{n}+1}^{+\infty}\left(\Theta \Gamma^{1 / 2} \phi_{j}\right)^{2}+p^{-\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{\sigma_{\varepsilon}^{2} k_{n}}{n-m_{n}^{[Y]}}\right) \\
& +\mathcal{O}\left(\frac{\lambda_{k_{n}} k_{n}^{2}}{n-m_{n}^{[Y]}}+\frac{k_{n}}{n-m_{n}^{[Y]}}\right) .
\end{aligned}
$$

Comparing the convergence rates, we obtain

$$
\mathbb{E}\left(\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{[Y]}}\right) .
$$

Finally, we can get the desired result including the intercept. We follow the end of the proof of Theorem 2.2 to write

$$
\begin{aligned}
\mathbb{E}\left(\widetilde{\theta}_{0}+\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2} & =\mathbb{E}\left(\bar{Y}_{\text {obs }}-\theta_{0}+\left\langle\widehat{\hat{\theta}}, X_{\ell}^{\star}\right\rangle-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2} \\
& \leq 2 \mathbb{E}\left(\bar{Y}_{\text {obs }}-\mathbb{E}(Y)\right)^{2}+2 \mathbb{E}\left(\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2} .
\end{aligned}
$$

The first term of the right-hand side is given by $\mathbb{E}\left(\bar{Y}_{\text {obs }}-\mathbb{E}(Y)\right)^{2}=\mathcal{O}_{p}\left(\left(n-m_{n}^{[Y]}\right)^{-1}\right)$ (with Bienaymé-Tchebychev inequality), and the second term of the right-hand side gives a convergence rate in probability of $n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{\mid Y]}}$, which gives

$$
\mathbb{E}\left(\widetilde{\theta}_{0}+\left\langle\widetilde{\theta}, X_{\ell}^{\star}\right\rangle-\theta_{0}-\left\langle\theta, X_{\ell}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{[Y]}}\right) .
$$

Proof of Theorem 3.3

Following the same lines of previous proofs but first we write the cross covariance operator as

$$
\begin{aligned}
\widehat{\Delta}_{n, \text { rec }}^{\star} & =\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle Y_{i}^{\star} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle\left(Y_{i} \delta_{i}^{[Y]}+Y_{i, i m p}\left(1-\delta_{i}^{[Y]}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle \delta_{i}^{[Y]} Y_{i}+\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle\left(1-\delta_{i}^{[Y]}\right) Y_{i, i m p} .
\end{aligned}
$$

Next, we observe that

$$
\begin{aligned}
& \mathbb{E}\left(\left\langle\widehat{\theta}^{\star}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2} \\
& =\mathbb{E}\left(\widehat{\Pi}_{k_{n}, \text { rec }} \widehat{\Delta}_{n, \text { rec }}^{\star}\left(\widehat{\Pi}_{k_{n}, \text { rec }} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1} X_{\text {new }}^{\star}-\Theta X_{\text {new }}^{\star}\right)^{2} \\
& \leq 2 \mathbb{E}\left(\widehat{\Pi}_{k_{n}, \text { rec }} \frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle \delta_{i}^{[Y]} Y_{i}\left(\widehat{\Pi}_{k_{n}, r e c} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, r e c}\right)^{-1} X_{\text {new }}^{\star}\right)^{2} \\
& +2 \mathbb{E}\left(\widehat{\Pi}_{k_{n}, \text { rec }}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle Y_{i, \text { imp }}\left(1-\delta_{i}^{[Y]}\right)\right)\left(\widehat{\Pi}_{k_{n}, \text { rec }} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1} X_{\text {new }}^{\star}-\Theta X_{\text {new }}^{\star}\right)^{2} .
\end{aligned}
$$

The first term is given by the result of Theorem 2.2. For the second term

$$
\begin{aligned}
& \mathbb{E}\left(\widehat{\Pi}_{k_{n}, \text { rec }}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star}, .\right\rangle Y_{i, i m p}\left(1-\delta_{i}^{[Y]}\right)\right)\left(\widehat{\Pi}_{k_{n}, \text { rec }} \widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1} X_{\text {new }}^{\star}-\Theta X_{\text {new }}^{\star}\right)^{2} \\
& \quad \leq 2 \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},\left(\widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, r e c}\right)^{-1} X_{\text {new }}^{\star}\left(Y_{i, \text { imp }}-Y_{i}\right)\left(1-\delta_{i}^{[Y]}\right)\right)\right. \\
& \quad+2 \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}^{\star},\left(\widehat{\Gamma}_{n, \text { rec }} \widehat{\Pi}_{k_{n}, \text { rec }}\right)^{-1} X_{\text {new }}^{\star}\right\rangle Y_{i}\left(1-\delta_{i}^{[Y]}\right)-\Theta X_{\text {new }}^{\star}\right)^{2}
\end{aligned}
$$

We notice that the first term above is exactly the same as in Theorem 3.1 and the second term is directly the result of the Theorem 2.2. So, comparing the convergence rates, we get

$$
\mathbb{E}\left(\left\langle\widehat{\theta}^{\star}, X_{\text {new }}^{\star}\right\rangle-\left\langle\theta, X_{\text {new }}^{\star}\right\rangle\right)^{2}=\mathcal{O}_{p}\left(n^{-\eta_{1}\left(a_{O}-1\right) /\left(2\left(a_{O}+2\right)\right)}+\frac{n^{\eta_{1} /\left(a_{O}+2\right)}}{n-m_{n}^{[Y]}}\right),
$$

which gives the desired result.

References

Cai, T. and Hall, P. (2006). Prediction in functional linear regression. The Annals of Statistics, 34, 2159-2179.

Cardot, H., Ferraty, F., and Sarda, P. (1999). Functional linear model. Statistics and Probability Letters, 45, 11-22.

Cardot, H., Ferraty, F., and Sarda, P. (2003). Spline estimators for the functional linear model. Statistica Sinica, 13, 571-591.

Crambes, C. and Henchiri, Y. (2019). Regression imputation in the functional linear model with missing values in the response. Journal of Statistical Planning and Inference, 201, 103-119.

Crambes, C., Kneip, A., and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. The Annals of statistics, 37, 35-72.

Delaigle, A., Hall, P., Huang, W., and Kneip, A. (2020). Estimating the covariance of fragmented and other related types of functional data. Journal of the American Statistical Association, to appear.

Febrero-Bande, M., Galeano, P., and Gonzalez-Manteiga, W. (2019). Estimation, imputation and prediction for the functional linear model with scalar response
with responses missing at random. Computational Statistics and Data Analysis, 131, 91-103.

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: Theory and practice. Springer-Verlag, New York.

Ferraty, F., Sued, M., and Vieu, P. (2013). Mean estimation with data missing at random for functional covariables. Statistics, 47, 688-706.

Graham, J. (2012). Missing data analysis and design. Springer-Verlag, New York.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35, 70-91.

Hall, P., Müller, H.-G., and Wang, J.-L. (2006). Properties of principal component methods for functional and longitudinal data analysis. The Annals of Statistics, 34, 1493-1517.

Horváth, L. and Kokoszka, P. (2012). Inference for functional data with applications. Springer-Verlag, New York.

Hsing, T. and Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley series in probability and statistics, John Wiley \& Sons.

Kneip, A. and Liebl, D. (2020). On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 4, 1692-1717.

Kraus, D. (2015). Components and completion of partially observed functional data. Journal of the Royal Statistical Society: Series B, 77, 777-801.

Kraus, D. and Stefanucci, M. (2020). Ridge reconstruction of partially observed functional data is asymptotically optimal. Statistics and Probability Letters, 165, DOI: 10.1016/j.spl.2020.108813.

Li, T., Xie, F., Feng, X., Ibrahim, J., Zhu, H., and the Alzheimers Disease Neuroimaging Initiative (2018). Functional linear regression models for nonignorable missing scalar responses. Statistica Sinica, 28, 1867-1886.

Ling, N., Liang, L., and Vieu, P. (2015). Nonparametric regression estimation for functional stationary ergodic data with missing at random. Journal of Statistical Planning and Inference, 162, 75-87.

Ling, N., Kan, R., Vieu, P., and Meng, S. (2019). Semi-functional partially linear regression model with responses missing at random. Metrika, 82, 39-70.

Little, R. and Rubin, D. B. (2002). Statistical analysis with missing data (Second edition). John Wiley, New York.

Ramsay, J. O. and Silverman, B. W. (2005). Statistical analysis with missing data (Second edition). Springer-Verlag, New York.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590.

Zhou, J. and Peng, Q. (2020). Estimation for functional partial linear models with missing responses. Statistics and Probability Letters, 156.

[^0]: Abstract:

 Dealing with missing values is an important issue in data observation or data record-

[^1]: ${ }^{1}$ https://www.agora-energiewende.de/en/service/recent-electricitydata/chart/power_generation/15.03.2012/14.03.2013/
 ${ }^{2}$ https://automeris.io/WebPlotDigitizer/

