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Abstract:

Dealing with missing values is an important issue in data observation or data record-
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ing process. In this paper, we consider a functional linear regression model with

partially observed covariate and missing values in the response. We use a reconstruc-

tion operator that aims at recovering the missing parts of the explanatory curves, then

we are interested in regression imputation method of missing data on the response

variable, using functional principal component regression to estimate the functional

coefficient of the model. We study the asymptotic behavior of the prediction error

when missing data are replaced by the imputed values in the original dataset. The

practical behavior of the method is also studied on simulated data and a real dataset.

Key words: Functional linear model; Functional Principal Components; Missing

data; Missing At Random; Missing Completely At Random; Regression imputation.

1 Introduction

The analysis of functional data has grown very significantly in recent years, as evi-

denced by the numerous literatures on the subject: Ramsay and Silverman (2005),

Ferraty and Vieu (2006), Hsing and Eubank (2015), Horváth and Kokoszka (2012)

provide a non-exhaustive list of monographs giving an overview of this topic. One

of the most popular model in functional data analysis is the functional linear model,

when one is interested in considering a relationship between a real-valued variable Y

and a covariate X = (X(t), t ∈ [a, b]) valued in a real separable Hilbert space H of

functions defined on a compact interval [a, b] of R. We assume that X is centered, that

is E(X(t)) = 0 for all t ∈ [a, b]. In the following, we consider the space H = L2([a, b])

of square integrable functions defined on [a, b], endowed with its usual inner product
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defined by 〈u, v〉 =
∫ b
a
u(t)v(t)dt for all functions u, v ∈ H, and its associated norm

‖.‖. This model, studied by many authors as for instance Cardot et al. (1999), Cai

and Hall (2006), Hall and Horowitz (2007), Crambes et al. (2009), is defined by

Y = θ0 +

∫ b

a

θ(t)X(t)dt+ ε, (1.1)

where θ0 ∈ R and θ is a square integrable function defined on [a, b] modeling the

relationship between the real random variable Y and the square integrable random

function X. The error of the model ε is a centered real random variable independent of

X with finite variance E(ε2) = σ2
ε . We can also write the functional linear regression

model (1.1) as

Y = θ0 + ΘX + ε,

where Θ : H → R is a linear continuous operator defined by Θu = 〈θ, u〉 for any

function u ∈ H. The existence and unicity of this regression function θ is discussed

in Cardot et al. (2003). A smooth version of the functional principal components

regression (SPCR) is introduced. It consists in considering the empirical covariance

operator of the predictor X and diagonalizing it to select the eigenfunctions associated

to the highest eigenvalues. Then, a least squares regression is performed with the

response Y and the coordinates of the functional covariate X projected on the space

spanned by the selected eigenfunctions.

Considering a sample (Xi, Yi)i=1,...,n of independent and identically distributed cou-

ples with the same distribution as (X, Y ), we define the empirical cross covari-
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ance operator ∆̂n given by ∆̂nu = 1
n

∑n
i=1〈Xi, u〉Yi for all u ∈ H, the empirical

covariance operator Γ̂n given by Γ̂nu = 1
n

∑n
i=1〈Xi, u〉Xi for all u ∈ H. Denot-

ing (φ̂j)j=1,...,kn the eigenfunctions associated to Γ̂n corresponding to the kn highest

eigenvalues λ̂1 > . . . > λ̂kn > 0 (where kn is an integer depending on n), we de-

fine the orthogonal projection operator Π̂kn onto the subspace Span(φ̂1, . . . , φ̂kn) by

Π̂knu =
∑kn

j=1〈φ̂j, u〉φ̂j for all u ∈ H. Then, the functional principal component

regression estimator Θ̂ of Θ is defined by

Θ̂ = 〈θ̂, .〉 = Π̂kn∆̂n(Π̂knΓ̂nΠ̂kn)−1.

The corresponding estimator of θ is given by

θ̂ =
1

n

n∑
i=1

kn∑
j=1

〈Xi, φ̂j〉Yi
λ̂j

φ̂j =
kn∑
j=1

ŝjφ̂j, (1.2)

with ŝj = 1

nλ̂j

∑n
i=1〈Xi, φ̂j〉Yi. In addition, the estimator of θ0 is θ̂0 = Y = 1

n

∑n
i=1 Yi.

Now, given θ̂0 and θ̂, it is easy to obtain the residuals of the fit, given by ε̂i,kn =

Yi− θ̂0−〈Xi, θ̂〉, for i = 1, . . . , n, that can be used to estimate the error variance, σ2
ε ,

through

σ̂2
ε,kn =

1

n− kn − 1

n∑
i=1

ε̂2i,kn .

In the previously cited works on the functional linear model, data is fully observed.

This may not always be the case, and missing data appear in many situations, for

example when the measuring device breaks down or when an observation interval is

not available. This topic has to be studied a lot in the multivariate framework, for

example we refer the reader to Little and Rubin (2002) and Graham (2012). For

functional data, the literature only starts developing. In functional linear regression,
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the work of Crambes and Henchiri (2019) considers a missing data mechanism on

the response Y while the functional covariate is completely observed. A regression

imputation methodology for the missing data is proposed and the authors propose an

estimation of the functional parameter θ with the reconstructed dataset, as well as the

prediction of new values. The method consistency is studied both from a theoretical

and a practical point of view. The same problematic is studied in another paper from

Febrero-Bande et al. (2019), although not exploring theoretical results. Other works

explore the context of missing data in the response while the response is missing at

random in a nonparametric setting (see Ferraty et al. (2013), Ling et al. (2015)) or in

a functional partial linear regression setting (see Ling et al. (2019), Zhou and Peng

(2020)) or while the response is not missing at random (see Li et al. (2018)). In our

work, we want to consider the functional linear model where some observations of the

real response are affected with missing data and the covariate is partially observed,

which is an unexplored topic as far as we know.

For the missing data mechanism in the response, we consider a dichotomous random

variable δ[Y ] leading to the sample (δ
[Y ]
i )i=1,...,n such that δ

[Y ]
i = 1 if the value Yi is

available and δ
[Y ]
i = 0 if the value Yi is missing, for all i = 1, . . . , n. Here, we consider

that the data in the response is missing at random (MAR): the fact that the value

Y is missing does not depend on the response of the model, but can possibly depend

on the covariate, that is,

P(δ[Y ] = 1 | X, Y ) = P(δ[Y ] = 1 | X).

As a consequence of this MAR assumption, the variable δ[Y ] (the fact that an obser-

vation is missing) is independent of the error of the model ε. In the following, the
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number of missing values among Y1, . . . , Yn is denoted

m[Y ]
n =

n∑
i=1

1{δ[Y ]
i =0}.

For the missing data mechanism of the functional covariate, we adopt the paradigm

of partially observed functions as in Kneip and Liebl (2020) or Kraus (2015). We

also refer the reader to Delaigle et al. (2020) or Kraus and Stefanucci (2020) for re-

cent contributions on this topic. More precisely, for each curve Xi, i = 1, . . . , n, we

consider the observed part Oi ⊆ [a, b] of Xi and the missing part Mi = [a, b] r Oi.

The observed part Oi refers to an interval (or several intervals) where the curve Xi

is observed at some measure points of Oi. Based on the punctual observations, the

whole curve can be reconstructed on Oi with usual methods (e.g. smoothing splines,

regression splines, local polynomial smoothing, . . . ). On the contrary, no information

is available on the missing part Mi. An example of such partially observed functions

is given in section 5 of the paper.

The objective of this paper is to predict a new value of the response Y given a new

test observation on the explanatory variable X once the partially observed curves X

have been reconstructed and the missing data Y have been imputed. More precisely,

we want to obtain convergence rates for this prediction error, and we want to analyse

how these convergence rates depend on the convergence rates of the reconstruction of

the missing parts of the covariate and the convergence rates of the imputation error.

Moreover, we want to explore the interest of the imputation methodology compared to

other methods, for example the naive method which would consist in simply ignoring

the missing data and only using the observations when both X and Y are observed,

or other imputation methods.
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In the following, we give in section 2 theoretical results when the covariate is partially

observed. Then, in section 3, we extend these results when the covariate is partially

observed and some observations of the real response are affected with missing data.

In section 4, we present some simulation results to show the behaviour of the method

in practice. Section 5 is devoted to a real dataset application. Finally, all the proofs

are postponed to section 6.

2 Partially observed covariate

2.1 Curve reconstruction

We write ”O” and ”M” to denote a given production of Oi and Mi. In addition, we

denote the observed and missing parts of Xi by XO
i and XM

i . As noticed in Kneip

and Liebl (2020, p. 7) all the following remains valid if we consider the more general

case of several observed subintervals, that is Oi = ∪Jj=1O
J
i where O1

i , . . . , O
J
i are J

disjoint intervals where the curve Xi is observed. For the sake of simplicity, we will

take J = 1 and Oi = O1
i . We write the Karhunen-Loève (KL) decomposition of XO

i

in L2(O)

XO
i (t) =

+∞∑
k=1

ξOikφ
O
k (t),

where t ∈ O. In this decomposition, the principal component scores are defined for

all i = 1, . . . , n and k ≥ 1 by ξOik = 〈φOk , XO
i 〉, where E(ξOik) = 0 and E(ξOikξ

O
i` ) = λOk for

all k = ` and zero for all k 6= `. Moreover, the eigenfunctions satisfy
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φOk (t) =
〈φOk , γOt 〉
λOk

, (2.1)

for all t ∈ O and k ≥ 1, where γOt (s) = γO(t, s) = E
(
XO
i (t)XO

i (s)
)
, and the decreas-

ing eigenvalues λO1 > λO2 > . . . > 0 are tending to zero.

We consider a reconstruction problem relating the missing part of the curves to the

observed part, writing

XM
i (s) = L(XO

i (t)) + Zi(s),

for all t ∈ O and s ∈ M , where L : L2(O) → L2(M) is a linear reconstruction

operator and Zi ∈ L2(M) is the reconstruction error. This reconstruction estimator

is estimated in Kneip and Liebl (2020) by

L(XO
i )(s) =

+∞∑
k=1

ξOikφ̃
O
k (s) =

+∞∑
k=1

ξOik
〈φOk , γs〉
λOk

, (2.2)

for all s ∈M , where γs(t) = E
(
XM
i (s)XO

i (t)
)

for all t ∈ O and s ∈M . The definition

of φ̃Ok is a way to extend the relation (2.1) to the missing parts of the curves. It is

shown in Kneip and Liebl (2020) that L(XO
i ) has a continuous and finite variance

function and is unbiaised.

2.2 Estimation of the reconstruction in practice

We consider a discretization without measurement errors, that is ((Wi1, ti1), . . . , (Wip, tip))

denote the observable data pairs of the function XO
i , namely Wij = XO

i (tij), for
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i = 1, . . . , n and j = 1, . . . , p, where tij ∈ Oi. In order to estimate the curve XO
i and

the covariance function γs, a nonparametric curve estimation by local polynomials

smoothers is used. The latter is similar to the procedure in Yao et al. (2005) or Hall

et al. (2006). For the curve XO
i , we use a kernel κ1 and a bandwidth hX , the local

linear smoother of the curve XO
i being denoted X̂O

i (t;hX). Similarly for the covari-

ance function γs, we use a kernel κ2 and a bandwidth hγ, the local linear smoother

of the covariance function γ being denoted γ̂(t, s;hγ).

For estimating the eigenvalues λOk and the eigenfunctions φOk , we use the Fredholm

integral equation

∫
O

γ̂(t, u;hγ)φ̂
O
k (u)du = λ̂Ok φ̂

O
k (t),

for all t ∈ O. For the functional principal component scores ξOik =
∫
O
XO
i (t)φk(t)dt,

the estimator is defined by

ξ̂Oik =

p∑
j=1

φ̂Ok (tij)Wij(tij − ti,j−1), with ti0 = a.

Finally, to estimate L(XO
i ) in (2.2), considering a positive integer kn, we define

L̂kn(XO
i )(s) =

kn∑
k=1

ξ̂Oik
〈φ̂Ok , γ̂s〉
λ̂Ok

,

where γ̂s = γ̂(., s;hγ). At this step we are able to find the estimator of the missing

parts of XO
i
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X̂M
i (s) = L̂kn(XO

i )(t),

for all t ∈ O and s ∈M . In the following, we denote

X?
i (t) =

 XO
i (t) if t ∈ O,

L̂kn(XO
i )(t) if t ∈M .

2.3 Estimation of θ and prediction

For estimating θ, we set

̂̂
θ =

1

n

n∑
i=1

kn∑
j=1

〈X?
i , φ̂j,rec〉Yi
λ̂j,rec

φ̂j,rec =
kn∑
j=1

̂̂sjφ̂j,rec,
with ̂̂sj = 1

nλ̂j,rec

∑n
i=1〈X?

i , φ̂j,rec〉Yi. The estimation of the operator Θ is given by

̂̂
Θ = 〈̂̂θ, .〉 = Π̂kn,rec∆̂n,rec(Π̂kn,recΓ̂n,recΠ̂kn,rec)

−1,

where ∆̂n,rec is the reconstructed cross covariance operator given by ∆̂n,rec = 1
n

∑n
i=1〈X?

i , .〉Yi,

Γ̂n,rec is the reconstructed covariance operator given by Γ̂n,rec = 1
n

∑n
i=1〈X?

i , .〉X?
i , and

Π̂kn,rec is the projection operator onto the subspace Span(φ̂1,rec, . . . , φ̂kn,rec), that is

the subspace spanned by the kn first eigenfunctions of the covariance operator Γ̂n,rec.

The eigenvalues of the covariance operator Γ̂n,rec are denoted λ̂1,rec, . . . , λ̂kn,rec. More-

over, the estimator of θ0 is defined by
̂̂
θ0 = Y . Given

̂̂
θ0 and

̂̂
θ, the residuals of the fit,

̂̂εi,kn = Yi −
̂̂
θ0 − 〈X?

i ,
̂̂
θ〉, for i = 1, . . . , n, can be used to estimate the error variance

as follows
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̂̂σ2

ε,kn =
1

n− kn − 1

n∑
i=1

̂̂ε2i,kn .
Finally, given a new observation of the covariate X, denoted Xnew, possibly partially

observed, we predict the corresponding value of the response Y by

Ŷnew =
̂̂
θ0 + 〈̂̂θ,X?

new〉.

2.4 Assumptions

We present in this part the assumptions needed for our results. These assumptions

are used in Kneip and Liebl (2020) in order to control the curve reconstruction for

the covariate.

(A.1) The variable X has a finite four moment order, that is E
(
‖X‖4

)
<∞.

(A.2) Let np→∞ when n→∞ and p = p(n). We assume p = nη1 with 0 < η1 <∞

in the following.

(A.3) The bandwidth hX satisfies hX → 0 and (phX)→∞ as p→∞. For instance,

we assume that hX = 1
nη2

with 0 < η2 < η1. The bandwidth hγ satisfies hγ → 0

and (n(p2 − p)hγ)→∞ as n(p2 − p)→∞. For example, we can take hγ = 1
nη3

with 0 < η3 < 2η1 + 1.

(A.4) Let κ1 and κ2 be nonnegative, second order univariate and bivariate kernel

functions with support [−1, 1]. For example, we can use univariate and bivariate

Epanechnikov kernel functions with compact support [−1, 1], namely κ1(x) =

3
4
(1− x2)1[−1,1](x) and κ2(x, y) = 9

16
(1− x2)(1− y2)1[−1,1](x)1[−1,1](y).
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(A.5) For any subinterval O ⊆ [a, b], we assume that the eigenvalues λ1 > λ2 > . . . >

0 have multiplicity one. Moreover, we assume that there exist aO > 1 and

0 < cO <∞ such that (i) λOk − λOk+1 ≥ cOk
−aO−1, (ii) λOk = O(k−aO), (iii)

1/λOk = O(kaO) as k →∞.

(A.6) For any subinterval O ⊆ [a, b], we assume that there exists 0 < DO < ∞ such

that the eigenfunctions satisfy supt∈[a,b] supk≥1

∣∣∣φ̃Ok (t)
∣∣∣ ≤ DO.

Assumption (A.1) holds for many processes X (Gaussian processes, bounded pro-

cesses). Assumption (A.2) is mild and can be satisfied even if the number of obser-

vation points p does not go fast to infinity. As in Kneip and Liebl (2020), we assume

that p = nη1 with 0 < η1 < ∞. Assumptions (A.3) and (A.4) are classic in the

context of local polynomials smoothers. Assumptions (A.5) and (A.6), related to

eigenvalues and eigenfunctions of the covariance operator of X, are given in Kneip

and Liebl (2020). In particular, a polynomial decrease of the eigenvalues is required,

allowing a large class of eigenvalues for the covariance operator of X.

2.5 Asymptotic results

Under assumptions (A.1)-(A.6), it is proved in Kneip and Liebl (2020) that, in the

case where p ∼ nη1 with η1 ≤ 1/2, we have for any t ∈ [a, b]

|X?
i (t)−Xi(t)| = Op

(
p−(aO−1)/(2(aO+2))

)
. (2.3)

The previous result allows to obtain some bounds between quantities related to func-

tional principal components analysis with the constructed curves and with the original
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curves. These bounds are given in the following proposition. For any linear contin-

uous operator T : H → H or any linear continuous operator S : H → R, we define

the operator norm of T as ‖T‖∞ = sup‖x‖=1 ‖Tx‖, and the operator norm of S as

‖S‖∞ = sup‖x‖=1 |Sx|.

Proposition 2.1 Under assumptions (A.1)-(A.6), we have

(i)
∥∥∥Γ̂n,rec − Γ̂n

∥∥∥
∞

= Op
(
p−(aO−1)/(2(aO+2))

)
,

(ii)
∥∥∥∆̂n,rec − ∆̂n

∥∥∥
∞

= Op
(
p−(aO−1)/(2(aO+2))

)
,

(iii) ∀k ≥ 1,
∥∥∥φ̂k,rec − φ̂k∥∥∥ = Op

(
kaO+1p−(aO−1)/(2(aO+2))

)
,

(iv) ∀k ≥ 1,
∣∣∣λ̂k,rec − λ̂k∣∣∣ = Op

(
p−(aO−1)/(2(aO+2))

)
.

We finish this section with the main result giving a bound for the prediction error of

Ynew with a new value of the covariate Xnew.

Theorem 2.2 Under assumptions (A.1)-(A.6), if we take kn ∼ p1/(aO+2) and p ∼

nη1 with η1 ≤ 1/2, the prediction error is

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= Op
(
n−η1(aO−1)/(2(aO+2))

)
.

This prediction error rate Op
(
n−η1(aO−1)/(2(aO+2))

)
is related to the rate given in Corol-

lary 4.1 in Kneip and Liebl (2020) (in the particular case where η1 = 1/2). This means

that, provided with some conditions on the number of observation points p and the

number of principal components kn are fulfilled, the prediction error rate has the same

order as the curve reconstruction error rate. In other words, this means that, when
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reconstructing missing parts of the explanatory curves in a functional linear model

and then predicting a new value of the response, the most important step is the curve

reconstruction. This step is going to fix the convergence rate of the prediction.

Remark 1 Due to the bound (2.3), the result of Theorem 2.2 remains valid if we

replace X?
new with Xnew.

Corollary 2.3 Under the hypotheses of Theorem 2.2, in the favorable situation where

η1 = 1/2, the prediction error is

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= Op
(
n−(aO−1)/(4(aO+2))

)
.

3 Partially observed covariate and missing data on the

response

In this section, we are interested in the most general case of missing data in functional

linear regression: when the covariate is partially observed and when the response is

affected by missing data. We have seen in the previous section the methodology

for reconstructing the missing parts of the explanatory curves. Concerning missing

data on the response, we are going to apply the methodology presented in Crambes

and Henchiri (2019), imputing missing values on the response using a regression

imputation. Next, once the initial sample is completed, we will present the estimation

of the functional parameter θ and predict new values for the response.
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3.1 Regression imputation on the response

In this subsection, we use the methodology to impute a missing value of Y as in

Crambes and Henchiri (2019). We consider the whole data, possibly with recon-

structed explanatory curves, except the ones for which the value of Y is not available.

We define the covariance operator with the reconstructed curves

Γ̂obsn,rec =
1

n−m[Y ]
n

n∑
i=1

〈X?
i , .〉δ

[Y ]
i X?

i .

Let Π̂obs
kn,rec

be the projection operator onto the subspace Span(φ̂obs1,rec, . . . , φ̂
obs
kn,rec

) where

φ̂obs1,rec, . . . , φ̂
obs
kn,rec

are the kn first eigenfunctions of the covariance operator Γ̂obsn,rec. With

analogous notations, λ̂obs1,rec, . . . , λ̂
obs
kn,rec

represent the kn first eigenvalues of Γ̂obsn,rec. We

first estimate θ with the observed responses and the observed or reconstructed co-

variates

θ̃ =
1

n−m[Y ]
n

n−m[Y ]
n∑

i=1

kn∑
j=1

〈X?
i , φ̂

obs
j,rec〉δ

[Y ]
i Yi

λ̂obsj,rec
φ̂obsj,rec =

kn∑
j=1

s̃jφ̂
obs
j,rec,

with s̃j = 1

(n−m[Y ]
n )λ̂obsj,rec

∑n−m[Y ]
n

i=1 〈X?
i , φ̂

obs
j,rec〉δ

[Y ]
i Yi. We also estimate the intercept θ0

with θ̃0 = Y obs = 1

n−m[Y ]
n

∑n
i=1 δ

[Y ]
i Yi. Now, the residuals of the fit, ε̃i,kn = Yi − θ̃0 −

〈X?
i , θ̃〉 for i = 1, . . . , n, can be used to estimate the error variance as follows

σ̃2
ε,kn =

1

n−m[Y ]
n − kn − 1

n∑
i=1

δ
[Y ]
i ε̃2i,kn .

Then, considering a missing value on the response, say Y` such that δ
[Y ]
` = 0, we

define the imputed value Y`,imp by
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Y`,imp = θ̃0 + 〈θ̃, X?
` 〉 = θ̃0 +

kn∑
j=1

˜̃sj〈X?
` , φ̂

obs
j,rec〉,

with ˜̃sj = 1

(n−m[Y ]
n )λ̂obsj,rec

∑n
i=1
i 6=`
〈X?

i , φ̂
obs
j,rec〉δ

[Y ]
i Yi. Let us remark that the imputation

Y`,imp can also be written

Y`,imp = Π̂obs
kn,rec∆̂

obs
n,rec

(
Π̂obs
kn,recΓ̂

obs
kn,recΠ̂

obs
kn,rec

)−1
X?
` ,

where ∆̂obs
n,rec = 1

n−m[Y ]
n

∑n
i=1〈X?

i , .〉δ
[Y ]
i Yi.

3.2 Estimation of θ and prediction

Once the whole database has been reconstructed, we estimate the functional coeffi-

cient θ with

θ̂? =
1

n

n∑
i=1

kn∑
j=1

〈X?
i , φ̂

?
j,rec〉Y ?

i

λ̂?j,rec
φ̂?j,rec =

kn∑
j=1

ŝ?j φ̂
?
j,rec,

where ŝ?j = 1

nλ̂?j,rec

∑n
i=1〈X?

i , φ̂
?
j,rec〉Y ?

i and Y ?
i = Yiδ

[Y ]
i + Yi,imp(1 − δ

[Y ]
i ) for all i =

1, . . . , n. The estimation of the operator Θ is similarly given by

Θ̂? = 〈θ̂?, .〉 = Π̂?
kn,rec∆̂

?
n,rec

(
Π̂?
kn,recΓ̂

?
n,recΠ̂

?
kn,rec

)−1
,

where the cross covariance operator is ∆̂?
n,rec = 1

n

∑n
i=1〈X?

i , .〉Y ?
i , the covariance oper-

ator is Γ̂?n,rec = 1
n

∑n
i=1〈X?

i , .〉X?
i , and φ̂?1,rec, . . . , φ̂

?
kn,rec

and λ̂?1,rec, . . . , λ̂
?
kn,rec

represent

respectively the kn first eigenfunctions and eigenvalues of the operator Γ̂?n,rec. We use
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this estimation to predict a new value of the response Y when a new explanatory

curve Xnew is given

Ŷnew = θ̂?0 + 〈θ̂?, X?
new〉 = θ̂?0 +

1

n

n∑
i=1

kn∑
j=1

〈X?
i , φ̂

?
j,rec〉〈X?

new, φ̂
?
j,rec〉Y ?

i

λ̂?j,rec

= θ̂?0 +
kn∑
j=1

ŝ?j〈X?
new, φ̂

?
j,rec〉,

where θ̂?0 = Y
?

= 1
n

∑n
i=1 Y

?
i . Then, the residuals of the fit, ε̂?i,kn = Y ?

i − θ̂?0 − 〈X?
i , θ̂

?〉

for i = 1, . . . , n, allow to estimate the error variance writing

(σ̂?ε,kn)2 =
1

n− kn − 1

n∑
i=1

(ε̂?i,kn)2.

3.3 Asymptotic results

The first result gives an error rate of the imputed values.

Theorem 3.1 Under assumptions (A.1)-(A.6), if we take kn ∼ p1/(aO+2) and p ∼

nη1 with η1 ≤ 1/2, we have

E (Y`,imp − θ0 − 〈θ,X?
` 〉)

2 = Op
(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

Moreover, the aggregate error for all the imputed values is given by

n∑
`=1

(1−δ[Y ]
` )E (Y`,imp − θ0 − 〈θ,X?

` 〉)
2 = Op

(
m[Y ]
n n−η1(aO−1)/(2(aO+2)) +

m
[Y ]
n nη1/(aO+2)

n−m[Y ]
n

)
.
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Table 1: Single and aggregate imputation mean square error convergence rates.

single error aggregate error

(i) m
[Y ]
n = bannc Op

(
n−η1(aO−1)/(2(aO+2))

)
Op
(
ann

1−η1(aO−1)/(2(aO+2))
)

(ii) m
[Y ]
n ∼ bρnc Op

(
n−η1(aO−1)/(2(aO+2))

)
Op
(
n1−η1(aO−1)/(2(aO+2))

)
(iii) n−m[Y ]

n = bnγc
γ ≥ η1(aO+1)

2(aO+2) Op
(
n−η1(aO−1)/(2(aO+2))

)
Op
(
n1−η1(aO−1)/(2(aO+2))

)
γ < η1(aO+1)

2(aO+2) Op
(
nη1/(aO+2)−γ) Op

(
n1+η1/(aO+2)−γ)

The following corollary explores some specific cases of the above error rates. The

given results simply come from a comparison between the convergence rates of the

above result, hence the proof is ommited.

Corollary 3.2 We consider cases where the number of missing values on the response

are (i) negligeable with respect to the sample size, (ii) proportional to the sample size,

(iii) of the same order than the sample size. More precisely

(i) m
[Y ]
n = bannc where an goes to zero when n goes to infinity,

(ii) m
[Y ]
n ∼ bρnc with 0 < ρ < 1,

(iii) n−m[Y ]
n = bnγc with 0 < γ < 1.

We summarize the error rate for a single imputed value and the aggregate error in

Table 1.

We finish the theoretical results with the prediction error of Ynew with a new value of

the covariate Xnew. The proof of this result is ommited as it uses previous results of

Theorems 2.2 and 3.1 and follows exactly the same lines as the proof of Theorem 2.2.
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Theorem 3.3 Under assumptions (A.1)-(A.6), and kn ∼ p1/(aO+2) and p ∼ nη1

with η1 ≤ 1/2, the prediction error is

E
(
θ̂?0 + 〈θ̂?, X?

new〉 − θ0 − 〈θ,X?
new〉

)2
= Op

(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

In the particular case where η1 = 1/2, the first term in the convergence rate is

Op
(
n−(aO−1)/(4(aO+2))

)
.

All our convergence rates depend in particular on the parameter aO > 1, which is

directly linked to the smoothness of the stochastic process X. The larger aO is, the

smoother X is. When aO tends to 1 (non-smooth processes, for example a standard

Brownian motion corresponds to aO = 2), the convergence rate deteriorates. When

aO tends to infinity (very smooth processes), the convergence rate n−η1(aO−1)/(2(aO+2))

is equivalent to n−η1/2.

As before, we consider cases in the corollary below where the number of missing values

on the response are (i) negligeable with respect to the sample size, (ii) proportional

to the sample size, (iii) of the same order than the sample size.

Corollary 3.4 In the cases (i), (ii) and (iii) with γ ≥ η1(aO+1)
2(aO+2)

, the prediction error

of a new value of the response is

E
(
θ̂?0 + 〈θ̂?, X?

new〉 − θ0 − 〈θ,X?
new〉

)2
= Op

(
n−η1(aO−1)/(2(aO+2))

)
.
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In the case (iii) with γ < η1(aO+1)
2(aO+2)

, the prediction error of a new value of the response

is

E
(
θ̂?0 + 〈θ̂?, X?

new〉 − θ0 − 〈θ,X?
new〉

)2
= Op

(
nη1/(aO+2)−γ) .

In other words, in situations where the number of missing values on the response is

negligeable or moderate with respect to the sample size, the convergence rate of the

prediction error is given by the convergence rate obtained in Kneip and Liebl (2020)

for the curve reconstruction. As a conclusion, when dealing with a functional linear

model with a partially observed covariate and missing values in the response, the

convergence rate of the prediction error strongly depends on the curve reconstruction

error, with respect to the response imputation error.

Remark 2 As noticed at the end of the previous section, all the results obtained in

this section remain valid if we replace X? with X.

4 Simulations

4.1 Model and samples

All the procedures described below were implemented with the R software. In the

simulations, we deal with functions defined on the interval [0, 1]. We consider the

model
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Y = θ0 + 〈θ,X〉+ ε, (4.1)

where the error ε is either a Gaussian noise ε ∼ N(0, σ2
ε) with σε = 0.2 and σε = 1.5,

or drawn from a centered Beta(2,2) law. We derived different models from (4.1),

simulating more or less smooth processes X. For the sake of concision, we only give

the results for the model presented below. Results for other models are available on

demand to the authors.

In this model, as in Hall and Horowitz (2007), the functional covariate X is generated

by a set of cosine basis functions φ1 ≡ 1 and φj+1 =
√

2 cos(jπt) for j > 1, such that

X(t) =
∑150

j=1 %jζjφj(t) for all t ∈ [0, 1], where the ζj’s are independently sampled from

the uniform distribution on [−
√

3,
√

3] and the %j’s are defined by %j = (−1)j+1(j)−β/2

with β = 4. The covariance function writes

cov(X(t), X(s)) =
150∑
j=1

2

jβ
cos(jπt) cos(jπs).

The true parameters of the model are θ0 = 3 and θ defined for all t ∈ [0, 1] by

θ(t) =
50∑
j=1

bjφj(t),

with b1 = 0.3 and bj = 4(−1)j+1j−2 for all j > 1.

The trajectories of Xi for i = 1, . . . , N are discretized in p = 100 equidistant points.

We consider n = 4
5
N for the training sets (X1, Y1), . . . , (Xn, Yn) and n1 = 1

5
N for the



22 Christophe Crambes et al.

test sets (Xn+1, Yn+1), . . . , (Xn+n1 , Yn+n1), where N = 1400. In each simulation, we

replicated S = 400 samples.

4.2 Criteria

We used the following criteria, related to the prediction step with the test samples.

• Criterion 1: the mean square errors (MSE) averaged over S samples

MSE =
1

S

S∑
j=1

MSE(j),

where MSE(j) = 1
n1

∑n+n1

`=n+1

(
Y j
` − θ̂0 − 〈θ̂, X

j
` 〉
)2

is the mean square error

computed on the jth simulated sample, j ∈ {1, . . . ,S}.

• Criterion 2: the ratio respect to truth between the mean square prediction error

and the mean square prediction error when the true mean is known averaged

over S samples

RT =
1

S

S∑
j=1

RT (j),

where RT (j) =
∑n+n1
`=n+1(Y

j
` −θ̂0−〈θ̂,X

j
` 〉)

2∑n+n1
`=n+1(ε

j
`)

2 is the ratio between the mean square pre-

diction error and the mean square prediction error when the true mean is known,

computed on the jth simulated sample.

Notice that all the criteria tend to zero when the sample size tends to infinity. Crite-

rion RT is a rescaled version of MSE if we substitute the denominator by its limit

(specifically, MSE(j) = RT (j)σ2
ε ).
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4.3 Methodology

As in Crambes and Henchiri (2019), we use a smoothed version of the estimator (1.2)

based on the SPCR. We use a regression spline basis with parameters: the number

κ of knots of the spline functions, the degree q of spline functions and the order m

of derivative. Let us remark that, with appropriate conditions, all the theoretical

results obtained in our work will also apply when using the SPCR estimation. We

take κ = 20, q = 3 and m = 2. The choice of these parameters is not crucial

in our study, especially in comparison with the choice of the number of principal

components (see Crambes and Henchiri (2019) for more details). In this subsection,

we firstly present the missing data simulation scenarios for the response and functional

covariate. Secondly, we give a procedure to choose the optimal tuning parameter on

a growing sequence of dimension kn = 2, . . . , 22.

Missing data simulation scenario

In our simulations, we have adopted the following scenario to determine the number of

missing data on the response Y as in Crambes and Henchiri (2019): we simulate δ[Y ]

according to the logistic functional regression. The variable δ follows the Bernoulli

law with parameter p(X) such that

log
( p(X)

1− p(X)

)
=
〈
α0, X

〉
+ c,

where α0 = sin(2πt) for all t ∈ [0, 1] and c is a constant allowing to take different

levels of missing data. For exemple c = 1 for around 26.97% of missing data, c = 0.2

for around 44.99% of missing data and c = −0.2 for around 45.087% of missing data.
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To deal with partially observed curves for the covariate, we adopted the missing data

simulation scenario from Kneip and Liebl (2020) such that

• 70% (respectively 55%) of the curves are fully observed on [0, 1],

• for the 30% (respectively 45%) of partially observed curves, the curve Xi is fully

observed on [Ai, Bi] ⊂ [0, 1] with Ai drawn with uniform law on the interval

[0, A] and Bi = Ai +B, with A = 3/8 and B = 6/8.

Choice of the optimal parameter

Theoretical results are generally obtained under assumptions concerning the rate of

convergence of the integer kn. In practice, this integer is selected by minimizing

a certain empirical criterion, for example the Generalized Cross Validation (GCV)

criterion, the Cross Validation (CV) criterion and the K-fold Cross Validation (K-

fold CV) criterion (see Crambes and Henchiri (2019)). In our simulations, we chose

the GCV procedure, known to be computationally fast. The GCV criterion is given

below for imputation

GCV(kn) =
(n−m[Y ]

n )
∑n

i=1(Ŷi − θ0 − 〈θ,Xi〉)2δi
((n−m[Y ]

n )− kn)2
,

and the analogous criterion for prediction

GCV(kn) =
n
∑n

i=1(Ŷi − θ0 − 〈θ,Xi〉)2

(n− kn)2
.
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4.4 Analysis of results

The criteria were computed according to the different cases listed below.

• Case 1: FULL: X and Y are fully observed, this corresponds to the complete

reference dataset,

• Case 2: REC X IMP Y:X is partially observed and Y is affected with missing

values, the missing parts of X are reconstructed and the missing values of Y

are imputed, according to the method presented in this paper,

• Case 3: REC X MEAN IMP Y: X is partially observed and Y is affected

with missing values, the missing parts of X are reconstructed and the missing

values of Y are imputed by the mean of the response observed values,

• Case 4: REC X RAND IMP Y: X is partially observed and Y is affected

with missing values, the missing parts of X are reconstructed and the missing

values of Y are imputed by a random response observed value,

• Case 5: REC X ZERO IMP Y: X is partially observed and Y is affected

with missing values, the missing parts of X are reconstructed and the missing

values of Y are imputed by a value equal to zero,

• Case 6: REC X DEL Y: X is partially observed and Y is affected with miss-

ing values, the missing parts of X are reconstructed and the missing values of

Y are removed from the sample,

• Case 7: DEL X DEL Y: X is partially observed and Y is affected with missing

values, the individuals presenting either a partially observed curve or a missing

response are removed from the sample.
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Our results are presented in Tables 2, 3 and 4. Other intermediate cases have been

examinated (when X is fully observed and Y is affected by missing values, or when

X is partially observed and Y is not affected by missing values). Complete results

are available on demand to the authors.

As it can be expected, the errors increase as the model error increases. The main point

we want to discuss is related to the level of missing data in the sample. Our method

(REC X IMP Y) always behaves better than the other methods, specially with

respect to the imputation with the value zero (REC X ZERO IMP Y) or the more

naive methods where we delete missing data on the response (REC X DEL Y) or

where we delete all missing data (DEL X DEL Y). The other imputation methods

with the mean (REC X MEAN IMP Y) or with a random value drawn in the

observed values (REC X RAND IMP Y) behave better than (REC X DEL Y)

and (DEL X DEL Y). There is a more clear-cut difference between our method and

the other ones when the percentage of missing data increases. We can empirically

see the advantage of reconstructing the missing parts of the covariate. This echoes to

our theoretical results where we remark that the prediction error rate is subordinate

to the reconstruction error of the covariate.

5 Real dataset study

In this section, we are interested in a model involving electricity production, de-

mand and prices of the German power market. Kneip and Liebl (2020) were already

interested in the curve reconstruction problem of electricity prices curves (function
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Table 2: Mean and standard deviation errors for the predicted values based on 400

simulation replications with different levels of missing data and a sample size N =

1400. Partially observed curves are fully observed on [3/8, 6/8] and the error ε ∼

N(0, σ2
ε) with σε = 0.2.

Rate of missing 26.97 26.99 44.99 45.01 55.07 54.91

data in Y in % (1.41) (1.22) (1.47) (1.58) (1.50) (1.43)

Rate of missing 30.03 45.01 30.07 44.81 29.89 44.94

data in X in % (1.16) (1.36) (1.19) (1.32) (1.22) (1.36)

(FULL) MSE × 103 18.65 17.07 18.45 18.29 18.41 18.61

(16.48) (14.23) (15.87) (16.30) (15.96) (16.94)

RT 1.47 1.44 1.47 1.46 1.47 1.47

(0.41) (0.39) (0.42) (0.42) (0.40) (0.44)

(REC X IMP Y) MSE × 103 31.46 30.92 49.33 52.54 68.51 67.95

(28.39) (27.65) (39.08) (48.53) (59.54) (59.67)

RT 1.79 1.79 2.24 2.31 2.72 2.72

(0.72) (0.74) (0.97) (1.21) (1.46) (1.53)

(REC X MEAN IMP Y) MSE × 103 31.58 31.44 52.82 56.15 72.59 70.48

(27.40) (25.46) (36.49) (40.56) (42.02) (44.07)

RT 1.79 1.80 2.33 2.40 2.83 2.78

(0.70) (0.68) (0.92) (1.01) (1.08) (1.12)

(REC X RAND IMP Y) MSE × 103 31.81 31.26 52.31 56.00 72.26 70.49

(27.68) (25.19) (36.01) (40.90) (41.86) (44.39)

RT 1.80 1.79 2.31 2.40 2.83 2.78

(0.71) (0.68) (0.91) (1.02) (1.07) (1.12)

(REC X ZERO IMP Y) MSE × 102 72.31 72.96 194.18 194.74 287.29 286.35

(8.53) (8.23) (15.01) (14.51) (16.93) (17.04)

RT 19.27 19.38 49.63 49.96 72.94 73.22

(2.62) (2.67) (5.57) (5.23) (7.47) (7.68)

(REC X DEL Y) MSE × 103 39.55 42.69 72.04 78.83 96.71 96.87

(32.79) (36.91) (53.85) (59.65) (70.89) (75.14)

RT 1.99 2.08 2.81 2.98 3.42 3.45

(0.84) (0.95) (1.35) (1.50) (1.77) (1.95)

(DEL X DEL Y) MSE × 103 48.66 57.22 84.33 103.34 112.44 123.62

(46.92) (53.12) (69.73) (91.15) (89.72) (107.01)

RT 2.21 2.46 3.14 3.61 3.81 4.14

(1.17) ( 1.43) (1.78) (2.32) (2.28) (2.68)
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Table 3: Mean and standard deviation errors for the predicted values based on 400

simulation replications with different levels of missing data and a sample size N =

1400. Partially observed curves are fully observed on [3/8, 6/8] and the error ε ∼

N(0, σ2
ε) with σε = 1.5.

Rate of missing 27.12 27.14 45.16 45.23 54.91 54.84

data in Y in % (1.35) (1.28) (1.57) (1.43) (1.49) (1.46)

Rate of missing 29.92 45.16 30.00 45.08 30.06 44.83

data in X in % (1.20) (1.26) (1.21) (1.29) (1.26) (1.29)

(FULL) MSE × 103 23.52 22.89 27.12 22.68 23.44 24.35

(18.16) (19.36) (22.32) (19.22) (18.06) (21.13)

RT 1.01 1.01 1.01 1.01 1.01 1.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

(REC X IMP Y) MSE × 103 37.45 34.22 62.68 57.56 76.55 76.61

(29.46) (25.32) (42.74) (41.20) (44.91) (42.59)

RT 1.02 1.02 1.03 1.03 1.03 1.04

(0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

(REC X MEAN IMP Y) MSE × 103 38.84 36.41 63.90 57.45 79.56 79.80

(33.00) (31.36) (50.87) (52.04) (64.31) (64.38)

RT 1.02 1.02 1.03 1.03 1.04 1.04

(0.02) (0.02) (0.03) (0.03) (0.04) (0.04)

(REC X RAND IMP Y) MSE × 103 39.55 35.75 63.88 60.15 77.23 76.95

(31.29) (27.00) (44.83) (44.00) (47.60) (44.50)

RT 1.02 1.02 1.03 1.03 1.04 1.04

(0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

(REC X ZERO IMP Y) MSE × 102 73.55 73.31 195.88 195.79 286.40 285.60

(11.01) (9.76) (17.75) (17.13) (20.29) (18.75)

RT 1.33 1.34 1.88 1.88 2.30 2.29

(0.09) (0.09) (0.16) (0.15) (0.20) (0.20)

(REC X DEL Y) MSE × 103 44.07 48.93 85.43 81.84 110.13 113.27

(36.69) (41.30) (67.26) (64.54) (85.67) (82.88)

RT 1.02 1.02 1.04 1.04 1.05 1.05

(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)

(DEL X DEL Y) MSE × 103 63.17 68.44 102.19 115.53 133.12 154.27

(55.99) (61.75) (81.25) (99.83) (121.22) (125.97)

RT 1.03 1.03 1.05 1.05 1.06 1.07

(0.04) (0.04) (0.05) (0.06) (0.07) (0.08)
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Table 4: Mean and standard deviation errors for the predicted values based on 400

simulation replications with different levels of missing data and a sample size N =

1400. Partially observed curves are fully observed on [3/8, 6/8] and the error ε equals

η − 0.5 with η ∼ Beta(2, 2).

Rate of missing 26.98 26.90 45.04 45.06 54.96 54.95

data in Y in % (1.38) (1.27) (1.50) (1.37) (1.52) (1.43)

Rate of missing 29.92 45.14 29.89 45.01 30.08 44.92

data in X in % (1.22) (1.34) (1.26) (1.31) (1.15) (1.23)

(FULL) MSE × 103 19.31 18.89 18.33 18.69 19.26 18.35

(18.28) (15.85) (16.81) (16.77) (17.99) (16.03)

RT 1.38 1.38 1.37 1.37 1.39 1.37

(0.38) (0.33) (0.35) (0.34) (0.37) (0.34)

(REC X IMP Y) MSE × 103 32.16 33.62 48.88 52.85 69.84 68.75

(29.96) (29.51) (44.84) (51.28) (44.40) (59.57)

RT 1.64 1.67 1.98 2.05 2.40 2.39

(0.62) (0.60) (0.92) (1.03) (0.90) (1.21)

(REC X MEAN IMP Y) MSE × 103 32.24 34.30 54.38 56.56 70.74 70.03

(26.73) (27.56) (39.92) (38.24) (44.25) (42.84)

RT 1.64 1.69 2.09 2.15 2.42 2.42

(0.55) (0.57) (0.82) (0.77) (0.90) (0.87)

(REC X RAND IMP Y) MSE × 103 32.25 34.49 53.79 56.45 70.20 69.49

(26.75) (27.73) (39.75) (38.38) (66.94) (43.25)

RT 1.64 1.69 2.08 2.14 2.41 2.41

(0.55) (0.57) (0.82) (0.78) (1.38) (0.88)

(REC X ZERO IMP Y) MSE × 102 72.39 71.81 194.32 194.74 286.33 287.001

(8.34) (8.32) (14.90) (14.08) (17.00) (16.60)

RT 15.57 15.47 40.15 39.98 58.39 58.61

(1.96) (1.98) (4.11) (3.78) (5.24) (4.83)

(REC X DEL Y) MSE × 103 40.28 41.28 69.12 74.00 98.81 98.99

(33.20) (35.94) (53.94) (62.68) (77.89) (76.62)

RT 1.81 1.83 2.39 2.48 2.99 3.00

(0.69) (0.73) (1.10) (1.26) (1.60) (1.56)

(DEL X DEL Y) MSE × 103 49.27 53.20 79.46 95.38 110.30 126.28

(43.41) (49.08) (66.09) (95.39) (90.27) (113.34)

RT 1.99 2.07 2.60 2.92 3.24 3.58

(0.91) (1.00) (1.37) (1.92) (1.89) (2.39)
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of the demand). These data are provided from three different publicly available

sources: The European Power Exange (www.epexspot.com), the European Network

of Transmission System Operators for Electricity (www.entsoe.eu) and the European

Energy Exchange (www.eex-transparency.com). The observation period corresponds

to n = 241 working days from March 15, 2012 to March 14, 2013. The dataset con-

sists in n = 241 daily electricity prices curves in Germany (measured every hour) in

function of the residual electricity demand, which is the relevant value for consider-

ing electricity demand. It corresponds to germany’s gross electricity demand minus

infeeds from renewable energy sources plus net-imports from foreign countries. Some

prices greater than 120 EUR/MWh have to be treated as outliers since they cannot

be explained by the model and were set to the value 120. Negative prices are not

impossible in this situation: electricity producers prefer to sell electricity at negative

prices (meaning that they are paying for delivering electricity), it is sometimes more

profitable than shutting off and restarting a central plant. Figure 1 shows the prices

curves (in EUR/MWh) in function of the residual demand (in MWh), and Figure 2

shows the reconstructed curves with the method from Kneip and Liebl (2020). Price

curves can be seen as partially observed curves, as some prices cannot be observed

with respect to some residual demand values.

Here, the price-demand functions are observed on different domains. This distin-

guishes our functional data set from classical functional data sets, where all func-

tions are observed on a common domain. We consider a standardized domain where

the standardization can be achieved as follows: for i = 1, . . . , n, we consider a se-

quence from min1≤j≤p tij to max1≤j≤p tij with a regular step (b − a)/p, where a :=

min
1≤i≤n

min
1≤j≤p

tij and b := max
1≤i≤n

max
1≤j≤p

tij.

https://www.epexspot.com/
https://www.entsoe.eu
https://www.eex-transparency.com/
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Figure 1: Daily electricity price curves in function of the residual demand.

Our experimental study is based on two steps. In the first treatment step, we do

not observe the price-demand functions directly but we have to estimate each price-

demand function by a local polynomial smoother estimator. Here, we choose the

Gaussian kernel and we consider a cross validation criterion to select the optimal tun-

ing bandwidth parameter from a grid of parameter values in the interval [1070,35000].

In the second step, we reconstructed the missing parts of the differents curves.

We introduce now the model

Yi = θ0 + 〈θ,Xi〉+ εi,

for i = 1, . . . , 241, where Xi is the daily electricity price curve on day i (function

of the residual demand), and Yi is the value of electricity production (in MWh) on
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Figure 2: Reconstructed daily electricity price curves in function of the residual de-

mand.
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day i. The production data come from https://www.agora-energiewende.de1. Only

a graphic (with numerical values marked at the observation points) was available on

this website to collect a data (neither a table nor an Excel file). It can be possible

to use a software to get numerical values from a graphic (see https://automeris.io2).

However, this software is not completely reliable and some numerical values, being

not possible, can be considered as missing data for the response variable. In our case,

the percentage of missing data is 13.26%.

We split the initial sample into a learning sample (the index set is denoted IL) with

size 181 and a test sample with size 60 (the index set is denoted IT ). Firstly, we

reconstructed the missing parts of the differents curves (see Figure 2) and, on the

learning sample, we imputed the missing values on the response. Then, on the

test sample, we computed the prediction values for the response. In order to eval-

uate the quality of the prediction with our method (REC X IMP Y), we calcu-

lated the mean square error MSE = 1
60

∑
i∈IT (Yi − Ŷi)

2 = 40.44 and the mean

absolute error MAE = 1
60

∑
i∈IT |Yi − Ŷi| = 5.35. As a point of comparison, the

MSE is 40.50 for the method (REC X MEAN IMP Y), 41.40 for the method

(REC X RAND IMP Y), 107.95 for the method (REC X ZERO IMP Y) and

40.54 for the method (REC X DEL Y). The MAE is 5.35 for the method

(REC X MEAN IMP Y), 5.37 for the method (REC X RAND IMP Y), 8.89

for the method (REC X ZERO IMP Y) and 5.35 for the method (REC X DEL Y).

Again, our method performs better than the other ones, even if the differences are

1https://www.agora-energiewende.de/en/service/recent-electricity-

data/chart/power generation/15.03.2012/14.03.2013/
2https://automeris.io/WebPlotDigitizer/

https://www.agora-energiewende.de/en/service/recent-electricity-data/chart/power_generation/15.03.2012/14.03.2013/
https://automeris.io/WebPlotDigitizer/
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sometimes slight. Notice finally that, in this situation, the method (DEL X DEL Y)

would not be possible since all the curves are partially observed and this would cause

removing all individuals in the sample.

6 Proofs

Proof of Proposition 2.1

For any x ∈ H such that ‖x‖ = 1, we have

Γ̂n,recx−Γ̂nx =
1

n

n∑
i=1

〈X?
i−Xi, x〉Xi+

1

n

n∑
i=1

〈Xi, x〉 (X?
i −Xi)+

1

n

n∑
i=1

〈X?
i−Xi, x〉 (X?

i −Xi) .

Using the Cauchy-Schwarz inequality, we get

‖〈X?
i −Xi, x〉Xi‖ ≤ ‖X?

i −Xi‖ ‖x‖ ‖Xi‖ ,

from which we deduce with (2.3) that

‖〈X?
i −Xi, x〉Xi‖ = Op

(
p−(aO−1)/(2(aO+2))

)
.

We prove in the same way that

‖〈Xi, x〉 (X?
i −Xi)‖ = Op

(
p−(aO−1)/(2(aO+2))

)
,
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and

‖〈X?
i −Xi, x〉 (X?

i −Xi)‖ = Op
(
p−(aO−1)/(aO+2)

)
,

which gives the first result (i). The result (ii) can be shown exactly the same way.

Finally, we notice that α̂k = Op(k−aO−1) where we set α̂1 = λ̂1 − λ̂2 and α̂k =

min
(
λ̂k−1 − λ̂k; λ̂k − λ̂k+1

)
for all k ≥ 2. This allows to show results (iii) and (iv)

from (i) and respectively Lemma 2.3 and Lemma 2.2 in Horváth and Kokoszka (2012).

Proof of Theorem 2.2

We start with the decomposition

E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

= E
(

Π̂kn,rec∆̂n,rec

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

≤ 2E
(

Π̂kn,recΘΓ̂n,rec

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new

)2

+ 2E

(
Π̂kn,rec

(
1

n

n∑
i=1

〈X?
i , .〉εi

)(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

.

Applying several times the identity (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R, we get
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E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

≤ 32E
(

ΘΠ̂kn,recX
?
new −ΘΠ̂knX

?
new

)2
+ 32E

(
ΘΠ̂knX

?
new −ΘΠ̂knXnew

)2
+ 16E

(
ΘΠ̂knXnew −ΘΠknXnew

)2
+ 8E (ΘΠknXnew −ΘXnew)2

+ 4E (ΘXnew −ΘX?
new)2

+ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new〉εi

)2

.

We start with the first term in the above decompositionA1 := 32E
(

ΘΠ̂kn,recX
?
new −ΘΠ̂knX

?
new

)2
.

Applying Lemma 5.1 in Crambes and Henchiri (2019), we obtain

A1 = O

(
λ̂knk

2
n

n
+
kn
n

)
.

With Lemma 2.2 in Horváth and Kokoszka (2012), we get

A1 = O

(
λknk

2
n

n
+
kn
n

)
.

Now, we use (2.3) to obtain

A2 := 32E
(

ΘΠ̂knX
?
new −ΘΠ̂knXnew

)2
= Op

(
p−(aO−1)/(2(aO+2))

)
.

Moreover, again with Lemma 5.1 in Crambes and Henchiri (2019), we obtain
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A3 := 16E
(

ΘΠ̂knXnew −ΘΠknXnew

)2
= O

(
λknk

2
n

n
+
kn
n

)
.

We go on with A4 := 8E (ΘΠknXnew −ΘXnew)2. With Lemma 5.3 in Crambes and

Henchiri (2019), we get

A4 = 8
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
.

Next, using again (2.3), we can write

A5 := 4E (ΘXnew −ΘX?
new)2 = Op

(
p−(aO−1)/(2(aO+2))

)
.

Finally, the last term of the decomposition comes from Lemma 5.2 in Crambes and

Henchiri (2019) and gives

A6 := 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new〉εi

)2

=
2σ2

εkn
n

+ O

(
kn
n

)
.

We can now conclude the proof of Theorem 2.2. The decomposition from the begin-

ning of the proof gives

E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

=Op

(
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
+ p−(aO−1)/(2(aO+2)) +

σ2
εkn
n

)

+ O

(
λknk

2
n

n
+
kn
n

)
.

The first term in the convergence rate is
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+∞∑
j=kn+1

(
ΘΓ1/2φj

)2
=

+∞∑
j=kn+1

λj (Θφj)
2 ≤

+∞∑
j=kn+1

j−aO .

Comparing the latter sum to an integral, we get

+∞∑
j=kn+1

(
ΘΓ1/2φj

)2
= O

(
k−(aO+1)
n

)
= O

(
p−(aO+1)/(aO+2)

)
= O

(
n−η1(aO+1)/(aO+2)

)
.

The second term in the convergence rate is

p−(aO−1)/(2(aO+2)) ∼ n−η1(aO−1)/(2(aO+2)),

and the third term in the convergence rate is

σ2
εkn
n
∼ σ2

εn
η1/(aO+2)

n
= σ2

εn
η1/(aO+2)−1.

If we compare the different rates, with the condition η1 ≤ 1/2, we get

E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

= Op
(
n−η1(aO−1)/(2(aO+2))

)
.

Finally, we can write

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= E
(
Y − θ0 + 〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

≤ 2E
(
Y − E(Y )

)2
+ 2E

(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

.
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The first term of the right-hand side is given by E
(
Y − E(Y )

)2
= Op(n−1) (with

Bienaymé-Tchebychev inequality), and the second term of the right-hand side gives

a convergence rate in probability of n−η1(aO−1)/(2(aO+2)), which gives the desired result

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= Op
(
n−η1(aO−1)/(2(aO+2))

)
.

Proof of Theorem 3.1

This proof follows the same lines as the proof of Theorem 2.2. We write the decom-

position

E
(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2
≤ 32E

(
ΘΠ̂obs

kn,recX
?
` −ΘΠ̂knX

?
`

)2
+ 32E

(
ΘΠ̂obs

kn X
?
` −ΘΠ̂knX`

)2
+ 16E

(
ΘΠ̂knX` −ΘΠknXnew

)2
+ 8E (ΘΠknX` −ΘX`)

2

+ 4E (ΘX` −ΘX?
` )2

+ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂obs
kn,recΓ̂

obs
n,recΠ̂

obs
kn,rec

)−1
X?
` 〉δ

[Y ]
i εi

)2

.

The first term in the above decomposition B1 := 32E
(

ΘΠ̂obs
kn,rec

X?
` −ΘΠ̂knX

?
`

)2
.

Applying Lemma 5.1 in Crambes and Henchiri (2019) and Lemma 2.2 in Horváth

and Kokoszka (2012), we get

B1 = O

(
λknk

2
n

n−m[Y ]
n

+
kn

n−m[Y ]
n

)
.
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Now, we use (2.3) to obtain

B2 := 32E
(

ΘΠ̂obs
kn X

?
` −ΘΠ̂knX`

)2
= Op

(
p−(aO−1)/(2(aO+2))

)
.

Again with Lemma 5.1 in Crambes and Henchiri (2019), we obtain

B3 := 16E
(

ΘΠ̂knX` −ΘΠknXnew

)2
= O

(
λknk

2
n

n
+
kn
n

)
.

The next term is B4 := 8E (ΘΠknX` −ΘX`)
2. With Lemma 5.3 in Crambes and

Henchiri (2019), we get

B4 = 8
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
.

Then, using again (2.3), we can write

B5 := 4E (ΘX` −ΘX?
` )2 = Op

(
p−(aO−1)/(2(aO+2))

)
.

Finally, the last term of the decomposition comes from Lemma 5.2 in Crambes and

Henchiri (2019) and gives

B6 := 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂obs
kn,recΓ̂

obs
n,recΠ̂

obs
kn,rec

)−1
X?
` 〉δ

[Y ]
i εi

)2

=
2σ2

εkn

n−m[Y ]
n

+O

(
kn

n−m[Y ]
n

)
.

We can now conclude the proof of Theorem 3.1. Coming back to the decomposition

from the beginning, we get
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E
(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2

=Op

(
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
+ p−(aO−1)/(2(aO+2)) +

σ2
εkn

n−m[Y ]
n

)

+ O

(
λknk

2
n

n−m[Y ]
n

+
kn

n−m[Y ]
n

)
.

Comparing the convergence rates, we obtain

E
(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2

= Op
(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

Finally, we can get the desired result including the intercept. We follow the end of

the proof of Theorem 2.2 to write

E
(
θ̃0 + 〈θ̃, X?

` 〉 − θ0 − 〈θ,X?
` 〉
)2

= E
(
Y obs − θ0 + 〈̂̂θ,X?

` 〉 − 〈θ,X?
` 〉
)2

≤ 2E
(
Y obs − E(Y )

)2
+ 2E

(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2
.

The first term of the right-hand side is given by E
(
Y obs − E(Y )

)2
= Op

(
(n−m[Y ]

n )−1
)

(with Bienaymé-Tchebychev inequality), and the second term of the right-hand side

gives a convergence rate in probability of n−η1(aO−1)/(2(aO+2)) + nη1/(aO+2)

n−m[Y ]
n

, which gives

E
(
θ̃0 + 〈θ̃, X?

` 〉 − θ0 − 〈θ,X?
` 〉
)2

= Op
(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

Proof of Theorem 3.3

Following the same lines of previous proofs but first we write the cross covariance

operator as
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∆̂?
n,rec =

1

n

n∑
i=1

〈X?
i , .〉Y ?

i

=
1

n

n∑
i=1

〈X?
i , .〉
(
Yiδ

[Y ]
i + Yi,imp(1− δ[Y ]

i )
)

=
1

n

n∑
i=1

〈X?
i , .〉δ

[Y ]
i Yi +

1

n

n∑
i=1

〈X?
i , .〉(1− δ

[Y ]
i )Yi,imp.

Next, we observe that

E
(
〈θ̂?, X?

new〉 − 〈θ,X?
new〉

)2
= E

(
Π̂kn,rec∆̂

?
n,rec

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

≤ 2E

(
Π̂kn,rec

1

n

n∑
i=1

〈X?
i , .〉δ

[Y ]
i Yi

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new

)2

+ 2E

(
Π̂kn,rec

(
1

n

n∑
i=1

〈X?
i , .〉Yi,imp(1− δ

[Y ]
i )

)(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

.

The first term is given by the result of Theorem 2.2. For the second term

E

(
Π̂kn,rec

(
1

n

n∑
i=1

〈X?
i , .〉Yi,imp(1− δ

[Y ]
i )

)(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

≤ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Γ̂n,recΠ̂kn,rec

)−1
X?
new(Yi,imp − Yi)(1− δ[Y ]

i )

)

+ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Γ̂n,recΠ̂kn,rec

)−1
X?
new〉Yi(1− δ

[Y ]
i )−ΘX?

new

)2

.

We notice that the first term above is exactly the same as in Theorem 3.1 and the

second term is directly the result of the Theorem 2.2. So, comparing the convergence

rates, we get
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E
(
〈θ̂?, X?

new〉 − 〈θ,X?
new〉

)2
= Op

(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
,

which gives the desired result.
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