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Abstract

Dealing with missing values is an important issue in data observation or data
recording process. In this paper, we consider a functional linear regression model,
where some observations of the real response and the functional covariate are af-
fected by missing data. We use a reconstruction operator that aims to recover the
missing parts of the explanatory curves, then we are interested in regression impu-
tation method of missing data on the response variable, using functional principal
component regression to estimate the functional coefficient of the model. We study
the asymptotic behavior of the prediction error we commit when missing data are
replaced by the imputed values in the original dataset. The practical behavior of the
method is also studied on simulated data and a real dataset.
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1 Introduction

The analysis of the functional data has grown very significantly in recent years, as evidenced

by the numerous literatures on the subject: Ramsay and Silverman (2005), Ferraty and Vieu

(2006), Hsing and Eubank (2015), Horváth and Kokoszka (2012) provide a non-exhaustive

list of monographs giving an overview of this topic.

One of the most popular model in functional data analysis is the functional linear

model, when one is interested to consider a relationship between a real-valued variable

Y and a covariate X = (X(t), t ∈ [a, b]) valued in a real separable Hilbert space H of

functions defined on a compact interval [a, b] of R. In the following, we consider the space

H = L2([a, b]) of square integrable functions defined on [a, b], endowed with its usual inner

product defined by 〈u, v〉 =
∫ b
a
u(t)v(t)dt for all functions u, v ∈ H, and its associated norm

‖.‖. This model, studied by many authors as for instance Cardot et al. (1999), Cai and

Hall (2006), Hall and Horowitz (2007), Crambes et al. (2009), is defined by

Y = θ0 +

∫ b

a

θ(t)X(t)dt+ ε, (1)

where θ0 ∈ R and θ is a square integrable function defined on [a, b] modeling the relationship

between the real random variable Y and the square integrable random function X. The

error of the model ε is a centered real random variable independent of X with finite variance

E(ε2) = σ2
ε . We can also write the functional linear regression model (1) as

Y = θ0 + ΘX + ε, (2)

where Θ : H → R is a linear continuous operator defined by Θu = 〈θ, u〉 for any function

u ∈ H. The existence and unicity of this regression function θ is discussed in Cardot et al.

(2003). A smooth version of the functional principal components regression (SPCR) is

introduced. It consists in considering the empirical covariance operator of the predictor

X and diagonalizing it to select the eigenfunctions associated to the highest eigenvalues.

Then, a least squares regression is performed with the response Y and the coordinates of

the functional covariate X projection on the space spanned by the selected eigenfunctions.
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Considering a sample (Xi, Yi)i=1,...,n of independent and identically distributed couples

with the same distribution as (X, Y ), we define the empirical cross covariance operator

∆̂n given by ∆̂nu = 1
n

∑n
i=1〈Xi, u〉Yi for all u ∈ H, the empirical covariance operator

Γ̂n given by Γ̂nu = 1
n

∑n
i=1〈Xi, u〉Xi for all u ∈ H. Denoting (φ̂j)j=1,...,kn the eigenfunc-

tions associated to Γ̂n corresponding to the kn highest eigenvalues λ̂1 > . . . > λ̂kn > 0,

we define the orthogonal projection operator Π̂kn onto the subspace Span(φ̂1, . . . , φ̂kn) by

Π̂knu =
∑kn

j=1〈φ̂j, u〉φ̂j for all u ∈ H. Then, the functional principal component regression

estimator Θ̂ of Θ is defined by

Θ̂ = 〈θ̂, .〉 = Π̂kn∆̂n(Π̂knΓ̂nΠ̂kn)−1. (3)

The corresponding estimator of θ is given by

θ̂ =
1

n

n∑
i=1

kn∑
j=1

〈Xi, φ̂j〉Yi
λ̂j

φ̂j =
kn∑
j=1

ŝjφ̂j, (4)

with ŝj = 1

nλ̂j

∑n
i=1〈Xi, φ̂j〉Yi. In addition, the estimator of θ0 = E(Y )−

∫ b
a
θ(t)E(X)(t)dt is

written as follows: θ̂0 = Y −
∫ b
a
θ̂(t)X(t)dt with Y = 1

n

∑n
i=1 Yi and X = 1

n

∑n
i=1Xi. Now,

given θ̂0 and θ̂, it is easy to obtain the residuals of the fit, given by ε̂i,kn = Yi− θ̂0−〈Xi, θ̂〉,

for i = 1, . . . , n, that can be used to estimate the error variance, σ2
ε , through

σ̂2
ε,kn =

1

n− kn − 1

n∑
i=1

ε̂2i,kn .

In the previously cited works on the functional linear model, data is fully observed. This

may not always be the case, and missing data appear in many situations, for example when

the measuring device breaks down. This topic has to be studied a lot in the multivariate

framework, for example we refer the reader to Little and Rubin (2002) and Graham (2012).

For functional data, the literature is not so well developed. In functional linear regression,

the work of Crambes and Henchiri (2019) considers a missing data mechanism on the

response Y while the functional covariate is completely observed. A regression imputation

methodology for the missing data is proposed and the authors propose an estimation of

the functional parameter θ with the reconstructed dataset, as well as the prediction of new

values. The method consistency is studied both from a theoretical and a practical point

3



of view. The same problematic is studied in another paper Febrero-Bande et al. (2019),

although not exploring theoretical results. In functional nonparametric setting, Ferraty

et al. (2013) consider the estimation of the mean of a real response with a functional

covariate, in a nonparametric regression model where the functional covariate is completely

observed and the real response is missing at random. In our work, we want to consider

the functional linear model where both the response and the covariate are affected with

missing data, which is an unexplored topic as far as we know.

For the missing data mechanism in the response, we consider a dichotomous random

variable δ[Y ] leading to the sample (δ
[Y ]
i )i=1,...,n such that δ

[Y ]
i = 1 if the value Yi is available

and δ
[Y ]
i = 0 if the value Yi is missing, for all i = 1, . . . , n. Here, we consider that the data

in the response is missing at random (MAR): the fact that the value Y is missing does not

depend on the response of the model, but can possibly depend on the covariate, that is,

P(δ[Y ] = 1 | X, Y ) = P(δ[Y ] = 1 | X).

As a consequence of this MAR assumption, the variable δ[Y ] (the fact that an observation

is missing) is independent of the error of the model ε. In the following, the number of

missing values among Y1, . . . , Yn is denoted

m[Y ]
n =

n∑
i=1

1{δ[Y ]
i =0}.

In Crambes and Henchiri (2019), a regression imputation methodology is given for the

missing values on the response, under this MAR assumption, but the covariate is supposed

to be completely observed, which is no more the case here. We consider a functional variable

δ[X] leading to the sample (δ
[X]
i )i=1,...,n such that, for all t ∈ [a, b], δ

[X]
i (t) = 1 if the value

X(t) is available and δ
[X]
i (t) = 0 if the value X(t) is missing. We consider that the data in

the covariate are missing completely at random (MCAR): the fact that X contains missing

data does not depend on the covariate of the model, neither on the response, that is, for

any t ∈ [a, b]

P(δ[X](t) = 1 | X, Y ) = P(δ[X](t) = 1).
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Finally, O [Y ] and O [X] correspond to the sets of indexes for which data Y and X are

completely observed, in other words

O [Y ] =
{
i ∈ {1, . . . , n} / δ

[Y ]
i = 1

}
,

and

O [X] =
{
i ∈ {1, . . . , n} / ∃t ∈ [a, b], δ

[X]
i (t) = 1

}
.

We denote the number of curves where missing values appear

m[X]
n = n− Card

(
O [X]

)
.

The objective of this paper is: (i) to reconstruct missing X curves and to impute missing

data to Y , (ii) to estimate either θ or Θ with the reconstructed dataset, (iii) predict a

new value of the response Y given a new test observation on the explanatory variable X.

Moreover, we want to explore the interest of the imputation methodology compared to the

naive method which would consist in simply ignoring the missing data and only using the

observations when both X and Y are observed.

In the following, we give in section 2 theoretical results when missing data appear on

the covariate. Then, in section 3, we extend these results when missing data appear both

on the covariate and the response. In section 4, we present some simulation results to show

the behaviour of the method in practice. Section 5 is devoted to a real dataset application.

Finally, all the proofs are postponed to section 6.

2 Missing data on the covariate

2.1 Curve reconstruction

Some works dealing with curve reconstruction use the data structure through functional

principal components analysis. Recent contributions on this topic are Kraus (2015), De-

laigle and Hall (2016), Descary and Panaretos (2019), Kneip and Liebl (2020), Kraus and
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Stefanucci (2020), Delaigle et al. (2020), Lin et al. (2020), Lin and Wang (2020). In this

part, we are first going to reconstruct the missing parts of the functional covariate using the

methodology from Kneip and Liebl (2020). Let (Oi)i=1,...,n be the sample of the observation

parts of the curves, in other words Oi =
{
t ∈ [a, b], / δ

[X]
i (t) = 1

}
, for all i = 1, . . . , n.

On the contrary, we denote Mi = [a, b] \ Oi, for all i = 1, . . . , n. In the following, we use

“O” and “M” to denote a given production of Oi and Mi. In addition, we denote the

observed and missing parts of Xi by XO
i and XM

i . We write the Karhunen-Loève (KL)

decomposition of XO
i in L2(O)

XO
i (t) =

+∞∑
k=1

ξOikφ
O
k (t), (5)

where t ∈ O. In this decomposition, the principal component scores are defined for all

i = 1, . . . , n and k ≥ 1 by ξOik = 〈φOk , XO
i 〉, where E(ξOik) = 0 and E(ξOikξ

O
i` ) = λOk for all k = `

and zero for all k 6= `. The decreasing eigenvalues λO1 > λO2 > . . . > 0 are tending to zero

and (φ̂k)k≥1 are the eigenfunctions of the covariance operator of XO
i .

The missing part of the curves are assumed to be related to the observed parts, writing

XM
i (s) = L(XO

i (t)) + Zi(s), (6)

for all t ∈ O and s ∈ M , where L : L2(O) → L2(M) is a linear reconstruction operator

and Zi ∈ L2(M) is the reconstruction error. This reconstruction estimator is estimated in

Kneip and Liebl (2020) by

L(XO
i )(s) =

+∞∑
k=1

ξOikφ̃
O
k (s) =

+∞∑
k=1

ξOik
〈φOk , γs〉
λOk

, (7)

for all s ∈M , where γs(t) = E
(
XM
i (s)XO

i (t)
)

for all t ∈ O and s ∈M . In particular, it is

shown in Kneip and Liebl (2020) that L(XO
i ) has a continuous and finite variance function

and is unbiaised.
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2.2 Estimation of the reconstruction in practice

We consider a discretization without measurement errors, that is ((Wi1, ti1), . . . , (Wip, tip))

denote the observable data pairs of the function XO
i , namely

Wij = XO
i (tij), (8)

for i = 1, . . . , n and j = 1, . . . , p, where tij ∈ Oi. In order to estimate the curve XO
i and the

covariance function γs, a nonparametric curve estimation by local polynomials smoothers

is used. For the curve XO
i , the kernel is denoted κ1 and the bandwidth hX , and for the

covariance function γs, the kernel is denoted κ2 and the bandwidth hγ. More precisely, we

consider

p∑
j=1

(Wij − β0 − β1(tij − t))2κ1
(
tij − t
hX

)
, (9)

which we minimize with respect to β0, β1 for all t ∈ O. The local linear smoother of the

curve XO
i is defined by X̂O

i (t;hX) = β̂0. Similarly, we consider

n∑
i=1

p∑
j,`=1

(Cij` − τ0 − τ1(tij − t)− τ2(ti` − s))2κ2
(
tij − t
hγ

,
ti` − s
hγ

)
, (10)

which we minimize with respect to τ0, τ1, τ2 for all t ∈ O, s ∈ M , where Cij` = WijWi` are

the raw covariance points. The local linear smoother of the covariance function γ is defined

by γ̂(t, s;hγ) = τ̂0.

For estimating the eigenvalues λOk and the eigenfunctions φOk , we use the Fredholm

integral equation

∫
O

γ̂(t, u;hγ)φ̂
O
k (u)du = λ̂Ok φ̂

O
k (t),

for all t ∈ O. For the functional principal component scores ξOik =
∫
O
XO
i (t)φk(t)dt, the

estimator is defined by

ξ̂Oik =

p∑
j=1

φ̂Ok (tij)Wij(tij − ti,j−1), with ti0 = a.
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Finally, to estimate L(XO
i ) in (7), considering a positive integer kn, we define

L̂kn(XO
i )(s) =

kn∑
k=1

ξ̂Oik
〈φ̂Ok , γ̂s〉
λ̂Ok

, (11)

where γ̂s = γ̂(., s;hγ). In this step we are able to find the estimator of the missing parts of

XO
i

X̂M
i (s) = L̂((XO

i )(t)), (12)

for all t ∈ O and s ∈ M . A boundary problem is highlighted in Kneip and Liebl (2020),

due to the fact that the nonparametric smoothing of X on the observed interval may not

coincide with the estimation of X on the missing interval at the boundary. Consequently,

the authors consider a corrected version of the estimation of L(XO
i ). Let Vs be the boundary

point closest to s ∈M , the corrected estimator of L(XO
i ) is written in the following form

L̂?kn(XO
i )(s) = X̂O

i (Vs;hX) +
kn∑
k=1

ξ̂Oik

(
〈φ̂Ok , γ̂s〉
λ̂Ok

− 〈φ̂
O
k , γ̂Vs〉
λ̂Ok

)
. (13)

In the following, we denote

X̃i(t) =

 XO
i (t) if t ∈ O,

L̂kn(XO
i )(t) if t ∈M .

(14)

2.3 Estimation of θ and prediction

Let X? be defined by

X? = δ[X]X + (1− δ[X])X̃, (15)

with X̃ defined by (14).

Remark 2.1 The gap between X? and the true function leads us to the gap between the

true function and its reconstruction with the proportion of curves completely observed.

X?
i −Xi = δ

[X]
i Xi + (1− δ[X]

i )X̃i −Xi

= (1− δ[X]
i )X̃i − (1− δ[X]

i )Xi = (1− δ[X]
i )(X̃i −Xi).
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Concerning the estimation of θ, we define

̂̂
θ =

1

n

n∑
i=1

kn∑
j=1

〈X?
i , φ̂j,rec〉Yi
λ̂j,rec

φ̂j,rec =
kn∑
j=1

̂̂sjφ̂j,rec, (16)

with ̂̂sj = 1

nλ̂j,rec

∑n
i=1〈X?

i , φ̂j,rec〉Yi. The estimation of the operator Θ is given by

̂̂
Θ = 〈̂̂θ, .〉 = Π̂kn,rec∆̂n,rec(Π̂kn,recΓ̂n,recΠ̂kn,rec)

−1, (17)

where ∆̂n,rec is the reconstructed cross covariance operator given by ∆̂n,rec = 1
n

∑n
i=1〈X?

i , .〉Yi,

Γ̂n,rec is the reconstructed covariance operator given by Γ̂n,rec = 1
n

∑n
i=1〈X?

i , .〉X?
i , and

Π̂kn,rec is the projection operator onto the subspace Span(φ̂1,rec, . . . , φ̂kn,rec), that is the

subspace spanned by the kn first eigenfunctions of the covariance operator Γ̂n,rec. The

eigenvalues of the covariance operator Γ̂n,rec are denoted λ̂1,rec, . . . , λ̂kn,rec.

Moreover, the estimator of θ0 is defined by

̂̂
θ0 = Y −

∫ b

a

̂̂
θ(t)X

?
(t)dt, (18)

where Y and X
?

represent the respective empirical means of Y1, . . . , Yn and X?
1 , . . . , X

?
n.

Given
̂̂
θ0 and

̂̂
θ, the residuals of the fit, ̂̂εi,kn = Yi −

̂̂
θ0 − 〈X?

i ,
̂̂
θ〉, for i = 1, . . . , n, can be

used to estimate the error variance as following

̂̂σ2

ε,kn =
1

n− kn − 1

n∑
i=1

̂̂ε2i,kn .
Finally, given a new observation of the covariate X, denoted Xnew, with possibly missing

data, we predict the corresponding value of the response Y by

Ŷnew =
̂̂
θ0 + 〈̂̂θ,X?

new〉. (19)

2.4 Assumptions

We present in this part the assumptions needed for our results. These assumptions are used

in Kneip and Liebl (2020) in order to control the curve reconstruction for the covariate.

(A.1) The variable X has a finite four moment order, that is E
(
‖X‖4

)
<∞.
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(A.2) Let np→∞ when n→∞ and p = p(n). We assume p = nη1 with 0 < η1 <∞ in

the following.

(A.3) The bandwidth hX satisfies hX → 0 and (phX) → ∞ as p → ∞. For instance, we

assume that hX = 1
nη2

with 0 < η2 < η1. The bandwidth hγ satisfies hγ → 0 and

(n(p2 − p)hγ) → ∞ as n(p2 − p) → ∞. For example, we can take hγ = 1
nη3

with

0 < η3 < 2η1 + 1.

(A.4) Let κ1 and κ2 be nonnegative, second order univariate and bivariate kernel functions

with support [−1, 1]. For example, we can use univariate and bivariate Epanechnikov

kernel functions with compact support [−1, 1], namely κ1(x) = 3
4
(1 − x2)1[−1,1](x)

and κ2(x, y) = 9
16

(1− x2)(1− y2)1[−1,1](x)1[−1,1](y).

(A.5) For any subinterval O ⊆ [a, b], we assume that the eigenvalues λ1 > λ2 > . . . > 0

have multiplicity one. Moreover, we assume that there exist aO > 1 and 0 < cO <∞

such that (i) λOk − λOk+1 ≥ cOk
−aO−1, (ii) λOk = O(k−aO), (iii) 1/λOk = O(kaO) as

k →∞.

(A.6) For any subinterval O ⊆ [a, b], we assume that there exists 0 < DO <∞ such that

the eigenfunctions satisfy supt∈[a,b] supk≥1

∣∣∣φ̃Ok (t)
∣∣∣ ≤ DO.

Assumption (A.1) holds for many processes X (Gaussian processes, bounded pro-

cesses). Assumption (A.2) is mild and can be satisfied even if the number of observation

points p does not go fast to infinity. As in Kneip and Liebl (2020), we assume that p = nη1

with 0 < η1 <∞. Assumptions (A.3) and (A.4) are classic in the context of local polyno-

mials smoothers. Assumptions (A.5) and (A.6), related to eigenvalues and eigenfunctions

of the covariance operator of X, are given in Kneip and Liebl (2020). In particular, a poly-

nomial decrease of the eigenvalues is required, allowing a large class of eigenvalues for the

covariance operator of X.
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2.5 Asymptotic results

Under assumptions (A.1)-(A.6), it is proved in Kneip and Liebl (2020) that, in the case

where p ∼ nη1 with η1 ≤ 1/2, we have for any t ∈ [a, b]

∣∣∣X̃i(t)−Xi(t)
∣∣∣ = Op

(
p−(aO−1)/(2(aO+2))

)
, (20)

from which we deduce, for any t ∈ [a, b]

|X?
i (t)−Xi(t)| = Op

(
p−(aO−1)/(2(aO+2))

)
. (21)

The previous result allows to obtain some bounds between quantities related to func-

tional principal components analysis with the constructed curves and with the original

curves. These bounds are given in the following proposition. For any linear continuous

operator T : H → H or any linear continuous operator S : H → R, we define the operator

norm of T as ‖T‖∞ = sup‖x‖=1 ‖Tx‖, and the operator norm of S as ‖S‖∞ = sup‖x‖=1 |Sx|.

Proposition 2.2 Under assumptions (A.1)-(A.6), we have

(i)
∥∥∥Γ̂n,rec − Γ̂n

∥∥∥
∞

= Op
(
p−(aO−1)/(2(aO+2))

)
,

(ii)
∥∥∥∆̂n,rec − ∆̂n

∥∥∥
∞

= Op
(
p−(aO−1)/(2(aO+2))

)
,

(iii) ∀k ≥ 1,
∥∥∥φ̂k,rec − φ̂k∥∥∥ = Op

(
α̂−1k p−(aO−1)/(2(aO+2))

)
,

(iv) ∀k ≥ 1,
∣∣∣λ̂k,rec − λ̂k∣∣∣ = Op

(
p−(aO−1)/(2(aO+2))

)
,

where we set α̂1 = λ̂1 − λ̂2 and α̂k = min
(
λ̂k−1 − λ̂k; λ̂k − λ̂k+1

)
for all k ≥ 2.

We finish this section about missing data on the covariate with the main result giving

a bound for the prediction error of Ynew with a new value of the covariate Xnew.

Theorem 2.3 Under assumptions (A.1)-(A.6), if we take kn ∼ p1/(aO+2) and p ∼ nη1

with η1 ≤ 1/2, the prediction error is

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= Op
(
n−η1(aO−1)/(2(aO+2))

)
.
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This prediction error rate Op
(
n−η1(aO−1)/(2(aO+2))

)
is related to the rate given in Corol-

lary 4.1 in Kneip and Liebl (2020) (in the particular case where η1 = 1/2). This means

that, provided with some conditions on the number of observation points p and the num-

ber of principal components kn are fulfilled, the prediction error rate has the same order as

the curve reconstruction error rate. In other words, this means that, when reconstructing

missing parts of the explanatory curves in a functional linear model and then predicting a

new value of the response, the most important step is the curve reconstruction. This step

is going to fix the convergence rate of the prediction.

Remark 2.4 Due to the bound (21), the result of Theorem 2.3 remains valid if we replace

X?
new with Xnew.

Corollary 2.5 Under the hypotheses of Theorem 2.3, in the favorable situation where η1 =

1/2, the prediction error is

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= Op
(
n−(aO−1)/(4(aO+2))

)
.

3 Missing data on the covariate and the response

In this section, we are interested in the most general case of missing data in functional

linear regression: when both the covariate and the response are affected by missing data.

We have seen in the previous section the methodology for reconstructing the missing parts

of the explanatory curves. Concerning missing data on the response, we are going to apply

the methodology presented in Crambes and Henchiri (2019), imputing missing values on

the response using a regression imputation. Next, once the initial sample is completed, we

will present the estimation of the functional parameter θ and predict new values for the

response.

3.1 Regression imputation on the response

In this subsection, we use the methodology to impute a missing value of Y as in Crambes

and Henchiri (2019). We consider the whole data, possibly with reconstructed explanatory

12



curves, except the ones for which the value of Y is not available. We define the covariance

operator with the reconstructed curves

Γ̂obsn,rec =
1

n−m[Y ]
n

n∑
i=1

〈X?
i , .〉δ

[Y ]
i X?

i .

Let Π̂obs
kn,rec

be the projection operator onto the subspace Span(φ̂obs1,rec, . . . , φ̂
obs
kn,rec

) where

φ̂obs1,rec, . . . , φ̂
obs
kn,rec

are the kn first eigenfunctions of the covariance operator Γ̂obsn,rec. With

analogous notations, λ̂obs1,rec, . . . , λ̂
obs
kn,rec

represent the kn first eigenvalues of Γ̂obsn,rec. We first

estimate θ with the observed responses and the observed or reconstructed covariates

θ̃ =
1

n−m[Y ]
n

n−m[Y ]
n∑

i=1

kn∑
j=1

〈X?
i , φ̂

obs
j,rec〉δ

[Y ]
i Yi

λ̂obsj,rec
φ̂obsj,rec =

kn∑
j=1

s̃jφ̂
obs
j,rec, (22)

with s̃j = 1

(n−m[Y ]
n )λ̂obsj,rec

∑n−m[Y ]
n

i=1 〈X?
i , φ̂

obs
j,rec〉δ

[Y ]
i Yi. We also estimate the intercept θ0 with

θ̃0 = Y obs −
∫ b

a

θ̃(t)X
?
(t)dt,

where Y obs = 1

n−m[Y ]
n

∑n
i=1 δ

[Y ]
i Yi. Now, the residuals of the fit, ε̃i,kn = δ

[Y ]
i Yi − θ̃0 − 〈X?

i , θ̃〉,

for i = 1, . . . , n−m[Y ]
n , can be used to estimate the error variance as following

σ̃2
ε,kn =

1

n−m[Y ]
n − kn − 1

n−m[Y ]
n∑

i=1

ε̃2i,kn .

Then, considering a missing value on the response, say Y` such that δ
[Y ]
` = 0, we define the

imputed value Y`,imp by

Y`,imp = θ̃0 + 〈θ̃, X?
` 〉 = θ̃0 +

kn∑
j=1

˜̃sj〈X?
` , φ̂

obs
j,rec〉, (23)

with ˜̃sj = 1

(n−m[Y ]
n )λ̂obsj,rec

∑n
i=1
i 6=`
〈X?

i , φ̂
obs
j,rec〉δ

[Y ]
i Yi. Let us remark that the imputation Y`,imp can

also be written

Y`,imp = Π̂obs
kn,rec∆̂

obs
n,rec

(
Π̂obs
kn,recΓ̂

obs
kn,recΠ̂

obs
kn,rec

)−1
X?
` , (24)

where ∆̂obs
n,rec = 1

n−m[Y ]
n

∑n
i=1〈X?

i , .〉δ
[Y ]
i Yi.

13



3.2 Estimation of θ and prediction

Once the whole database has been reconstructed, we estimate the functional coefficient θ

with

θ̂? =
1

n

n∑
i=1

kn∑
j=1

〈X?
i , φ̂

?
j,rec〉Y ?

i

λ̂?j,rec
φ̂?j,rec =

kn∑
j=1

ŝ?j φ̂
?
j,rec, (25)

where ŝ?j = 1

nλ̂?j,rec

∑n
i=1〈X?

i , φ̂
?
j,rec〉Y ?

i and Y ?
i = Yiδ

[Y ]
i + Yi,imp(1− δ[Y ]

i ) for all i = 1, . . . , n.

The estimation of the operator Θ is similarly given by

Θ̂? = 〈θ̂?, .〉 = Π̂?
kn,rec∆̂

?
n,rec

(
Π̂?
kn,recΓ̂

?
n,recΠ̂

?
kn,rec

)−1
, (26)

where the cross covariance operator is ∆̂?
n,rec = 1

n

∑n
i=1〈X?

i , .〉Y ?
i , the covariance operator is

Γ̂?n,rec = 1
n

∑n
i=1〈X?

i , .〉X?
i , and φ̂?1,rec, . . . , φ̂

?
kn,rec

and λ̂?1,rec, . . . , λ̂
?
kn,rec

represent respectively

the kn first eigenfunctions and eigenvalues of the operator Γ̂?n,rec. We use this estimation

to predict a new value of the response Y when a new explanatory curve Xnew is given

Ŷnew = θ̂?0 + 〈θ̂?, X?
new〉 = θ̂?0 +

1

n

n∑
i=1

kn∑
j=1

〈X?
i , φ̂

?
j,rec〉〈X?

new, φ̂
?
j,rec〉Y ?

i

λ̂?j,rec

= θ̂?0 +
kn∑
j=1

ŝ?j〈X?
new, φ̂

?
j,rec〉, (27)

where θ̂?0 = Y
? −

∫ b
a
θ̂?(t)X

?
(t)dt and Y

?
= 1

n

∑n
i=1 Y

?
i . Then, the residuals of the fit,

ε̂?i,kn = Y ?
i − θ̂?0 − 〈X?

i , θ̂
?〉, for i = 1, . . . , n, can be used to estimate the error variance

through

(σ̂?ε,kn)2 =
1

n− kn − 1

n∑
i=1

(ε̂?i,kn)2.

3.3 Asymptotic results

The first result gives an error rate of the imputed values.

Theorem 3.1 Under assumptions (A.1)-(A.6), if we take kn ∼ p1/(aO+2) and p ∼ nη1

with η1 ≤ 1/2, we have

14



E (Y`,imp − θ0 − 〈θ,X?
` 〉)

2 = Op
(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

Moreover, the aggregate error for all the imputed values is given by

n∑
`=1

(1− δ[Y ]
` )E (Y`,imp − θ0 − 〈θ,X?

` 〉)
2 = Op

(
m[Y ]
n n−η1(aO−1)/(2(aO+2)) +

m
[Y ]
n nη1/(aO+2)

n−m[Y ]
n

)
.

The following corollary explores some specific cases of the above error rates. The given

results simply come from a comparison between the convergence rates of the above result,

hence the proof is ommited.

Corollary 3.2 We consider cases where the number of missing values on the covariate are

(i) negligeable with respect to the sample size, (ii) proportional to the sample size, (iii) of

the same order than the sample size. More precisely

(i) m
[Y ]
n = bannc where an goes to zero when n goes to infinity,

(ii) m
[Y ]
n ∼ bρnc with 0 < ρ < 1,

(iii) n−m[Y ]
n = bnγc with 0 < γ < 1.

We summarize the error rate for a single imputed value and the aggregate error in

Table 1.

Table 1: Single and aggregate imputation mean square error convergence rates.

single error aggregate error

(i) m
[Y ]
n = bannc Op

(
n−η1(aO−1)/(2(aO+2))

)
Op
(
ann

1−η1(aO−1)/(2(aO+2))
)

(ii) m
[Y ]
n ∼ bρnc Op

(
n−η1(aO−1)/(2(aO+2))

)
Op
(
n1−η1(aO−1)/(2(aO+2))

)
(iii) n−m[Y ]

n = bnγc
γ ≥ η1(aO+1)

2(aO+2)
Op
(
n−η1(aO−1)/(2(aO+2))

)
Op
(
n1−η1(aO−1)/(2(aO+2))

)
γ < η1(aO+1)

2(aO+2)
Op
(
nη1/(aO+2)−γ) Op

(
n1+η1/(aO+2)−γ)

We finish the theoretical results with the prediction error of Ynew with a new value of the

covariate Xnew. The proof of this result is ommited as it uses previous results of Theorems

2.3 and 3.1 and follows exactly the same lines as the proof of Theorem 2.3.
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Theorem 3.3 Under assumptions (A.1)-(A.6), and kn ∼ p1/(aO+2) and p ∼ nη1 with

η1 ≤ 1/2, the prediction error is

E
(
θ̂?0 + 〈θ̂?, X?

new〉 − θ0 − 〈θ,X?
new〉

)2
= Op

(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

In the particular case where η1 = 1/2, the first term in the convergence rate is Op
(
n−(aO−1)/(4(aO+2))

)
.

As before, we consider cases in the corollary below where the number of missing values on

the covariate are (i) negligeable with respect to the sample size, (ii) proportional to the

sample size, (iii) of the same order than the sample size.

Corollary 3.4 In the cases (i), (ii) and (iii) with γ ≥ η1(aO+1)
2(aO+2)

, the prediction error of a

new value of the response is

E
(
θ̂?0 + 〈θ̂?, X?

new〉 − θ0 − 〈θ,X?
new〉

)2
= Op

(
n−η1(aO−1)/(2(aO+2))

)
.

In the case (iii) with γ < η1(aO+1)
2(aO+2)

, the prediction error of a new value of the response is

E
(
θ̂?0 + 〈θ̂?, X?

new〉 − θ0 − 〈θ,X?
new〉

)2
= Op

(
nη1/(aO+2)−γ) .

In other words, in situations where the number of missing values on the response is

negligeable or moderate with respect to the sample size, the convergence rate of the pre-

diction error is given by the convergence rate obtained in Kneip and Liebl (2020) for the

curve reconstruction.

Remark 3.5 As noticed at the end of the previous section, all the results obtained in this

section remain valid if we replace X? with X.
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4 Simulations

4.1 Models and samples

All the procedures described below were implemented with the R software. In the simula-

tions, we deal with functions defined on the interval [0, 1]. We consider the model

Y = θ0 + 〈θ,X〉+ ε, (28)

where the error ε is a Gaussian noise: ε ∼ N(0, σ2
ε) with σε = 0.2. We derive three different

models from (28).

First model

In this model called Model1, as in Hall and Horowitz (2007), the functional covariate X is

generated by a set of cosine basis functions φ1 ≡ 1 and φj+1 =
√

2 cos(jπt) for j > 1, such

that X(t) =
∑150

j=1 %jζjφj(t) for all t ∈ [0, 1], where the ζj’s are independently sampled from

the uniform distribution on [−
√

3,
√

3] and the %j’s are defined by %j = (−1)j+1(j)−β/2 with

β = 4. The covariance function writes

cov(X(t), X(s)) =
150∑
j=1

2

jβ
cos(jπt) cos(jπs).

The true parameters of the model are θ0 = 3 and θ := θ1(t) defined for all t ∈ [0, 1] by

θ1(t) =
50∑
j=1

bjφj(t),

with b1 = 0.3 and bj = 4(−1)j+1j−2 for all j > 1.

Second model

In this model called Model2, we consider the same model as Model1, with β = 1. This

corresponds to a less smooth process X.
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Third model

In this model called Model3, even if a polynomial decrease of the eigenvalues of the co-

variance operator of X is required in our theoretical results (see assumption (A.5)), we

want to see how the method works in practice if this assumption is no more satisfied. The

covariance function is defined, for t, s ∈ [0, 1] by

cov(X(s), X(t)) =
σ2 exp(− |t− s|α)

ς
,

with σ > 0, α > 0 and ς > 0. In our case, we take σ = 1, α = 2, and ς = 0.2. The true

slope function of the model is θ := θ2(t) defined for all t ∈ [0, 1] by

θ2(t) = ln(15t2 + 10) + cos(4πt).

Samples

The trajectories of Xi for i = 1, . . . , N are discretized in p = 100 equidistant points.

To comprehend the effect of sample size, we consider n = 4
5
N for the training sets

(X1, Y1), . . . , (Xn, Yn) and n1 = 1
5
N for the test sets (Xn+1, Yn+1), . . . , (Xn+n1 , Yn+n1) where

N = 90 and 1440. In each simulation, we replicated S = 400 samples.

4.2 Criteria

The criteria we used are the following. Criteria 1 and 2 are related to the imputation step

with the training samples, criteria 3 and 4 are related to the prediction step with the test

samples.

• Criterion 1: the mean square errors (MSE) averaged over S samples

MSE =
1

S

S∑
j=1

MSE(j)

where MSE(j) = 1

m
[Y ]
n

∑n
`=1

(
Y j
`,imp − θ0 − 〈θ,X

j
` 〉
)2

(1− δ`) is the mean square error

computed on the jth simulated sample, j ∈ {1, . . . ,S}.
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• Criterion 2: the ratio respect to truth between the mean square prediction error

and the mean square prediction error when the true mean is known averaged over S

samples

RT =
1

S

S∑
j=1

RT (j),

where RT (j) =
∑n
`=1(Y

j
`,imp−θ0−〈θ,X

j
` 〉)

2
(1−δ`)∑n

`=1(ε
j
`)

2
(1−δ`)

is the ratio between the mean square pre-

diction error and the mean square prediction error when the true mean is known,

computed on the jth simulated sample.

• Criterion 3: the mean square errors (MSE ′) averaged over S samples

MSE ′ =
1

S

S∑
j=1

MSE ′(j),

where MSE ′(j) = 1
n1

∑n+n1

`′=n+1

(
Y j
`′ − θ0 − 〈θ,X

j
`′〉
)2

is the mean square error com-

puted on the jth simulated sample, j ∈ {1, . . . ,S}.

• Criterion 4: the ratio respect to truth between the mean square prediction error

and the mean square prediction error when the true mean is known averaged over S

samples

RT ′ =
1

S

S∑
j=1

RT ′(j),

where RT ′(j) =
∑n+n1
`′=n+1(Y

j

`′−θ0−〈θ,X
j

`′ 〉)
2

∑n+n1
`′=n+1(ε

j

`′)
2 is the ratio between the mean square prediction

error and the mean square prediction error when the true mean is known, computed

on the jth simulated sample.

Notice that all the criteria tend to zero when the sample size tends to infinity. Criteria

RT and RT ′ are rescaled versions of MSE and MSE ′ if we substitute the denominator by

its limit (specifically, MSE(j) = RT (j)σ2
ε ).
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4.3 Methodology

As in Crambes and Henchiri (2019), we use a smoothed version of the estimator (4) based

on the SPCR. We use a regression spline basis with parameters: the number κ of knots of

the spline functions, the degree q of spline functions and the order m of derivative. Let us

remark that, with appropriate conditions, all the theoretical results obtained in our work

will also apply to the SPCR estimation. Here, we have fixed κ = 20, q = 3 and m = 2. The

choice of these parameters is not crucial in our study, especially in comparison with the

choice of the number of principal components (see Crambes and Henchiri (2019) for more

details). In this subsection, we firstly present the missing data simulation scenarios for the

response and functional covariate. Secondly, we give a procedure to choose the optimal

tuning parameter on a growing sequence of dimension kn = 2, . . . , 22.

Missing data simulation scenario

In our simulations, we have adopted the following scenario to determine the number of

missing data on the response Y as in Crambes and Henchiri (2019): we simulate δ according

to the logistic functional regression. The variable δ follows the Bernoulli law with parameter

p(X) such that

log
( p(X)

1− p(X)

)
=
〈
α0, X

〉
+ c,

where α0 = sin(2πt) for all t ∈ [0, 1] and c is a constant allowing to take different levels

of missing data. For exemple c = 2 for around 12.02% of missing data, c = 1 for around

26.91% of missing data and c = 0.2 for around 45.08% of missing data.

To generate missing data on the covariate, we have adopted the missing data simulation

scenario as in Kneip and Liebl (2020) such that

• 85% (respectively 70%) of the curves are fully observed on [0, 1],

• and for the 15% (respectively 30%) of curves affected by missing data, the curve Xi

is fully observed on [Ai, Bi] ⊂ [0, 1] with Ai drawn with uniform law on the interval

[0, A] and Bi = Ai +B, in the two following cases
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– A = 1/8 and B = 7/8 (case corresponding to Model1, Model2 and Model3),

– A = 3/8 and B = 6/8 (case corresponding to Model′1, Model′2 and Model′3).

Choice of the optimal parameter

Theoretical results are generally obtained under assumptions concerning the rate of con-

vergence of the integer kn. In practice, this integer is selected by minimizing a certain

empirical criterion, for example the Generalized Cross Validation (GCV) criterion, the

Cross Validation (CV) criterion and the K-fold Cross Validation (K-fold CV) criterion (see

Crambes and Henchiri (2019)). In our simulations, we chose the GCV procedure, known

to be computationally fast. The GCV criterion is given below for imputation

GCV(kn) =
(n−m[Y ]

n )
∑n

i=1(Ŷi − θ0 − 〈θ,Xi〉)2δi
((n−m[Y ]

n )− kn)2
,

and the analogous criterion for prediction

GCV(kn) =
n
∑n

i=1(Ŷi − θ0 − 〈θ,Xi〉)2

(n− kn)2
.

4.4 Analysis of results

The complete results can be found in supplementary material. Tables 1-12 in (A1) give the

mean and standard deviation errors for the imputed values on training samples for different

models. Tables 1-12 in (A2) give the mean and standard deviation errors for the predicted

values on test samples for different models. These errors are computed according to the

different cases listed below.

• Case 1: X and Y are fully observed, this corresponds to the complete reference

dataset.

• Case 2: X is fully observed and Y is affected with missing values, which will be

imputed according to the method presented in Crambes and Henchiri (2019).
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• Case 3: X is affected with missing values and Y is fully observed, the missing parts

of X will be reconstructed according to the method from Kneip and Liebl (2020)

presented in section 2 of this paper.

• Case 4: X and Y are affected with missing values, the missing parts of X are recon-

structed and the missing values of Y are imputed, according to the method presented

in this paper.

• Case 5: X and Y are affected with missing values, these missing data are removed

from the sample.

As it can be expected, the errors decrease as the sample size increases. Moreover, the

regularity of the process X does not seem to have a crucial impact on the results. The main

point we want to discuss is related to the level of missing data in the sample, in particular

with respect to cases 4 and 5. The most favorable situation for our method (case 4) seems

to be when there is a quite small sample size, and when the missing part of the curves is

not so much important (see for example Table 1 in (A2)). In this situation, our method

(case 4) behaves better than the naive method (case 5). Our method show a real advantage

in reconstructing the missing parts of the curves and imputing the missing values of the

response. It is particularly clear when the percentage of missing data on Y increases. The

difference between cases 4 and 5 narrows (generally still in favor of case 4, though) when

the sample size increases (see for example Table 2 in (A2)). In this situation, even if we

have important percentages of missing data on Y , there are enough remaining data in the

sample. Finally, when the missing part of the curves is more important (see for example

Tables 3 and 4 in (A2)), the curve reconstruction from Kneip and Liebl (2020) is more

difficult, and the difference between cases 4 and 5 also narrows in this situation.

5 Real dataset study

In order to illustrate our contribution in a prediction setting when the functional covariate

and the real response are affected with missing data, we present in this section an energy

consumption and economic dataset application.
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Figure 1: Plot of the 30 electricity price index curves.
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Figure 2: Plot of the average yearly electricity consumption (kWh by household).
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Figure 3: Example of missing data simulation scenario on X and Y: 24% of missing data

on X and 36% of missing data on Y.

We start by describing the dataset. The functional covariate X is the electricity price

index curve in France from January 1990 to December 20191. This yearly curve is observed

at p = 12 discretization points corresponding to the monthly values. The graphical display

of the electricity price index curves can be observed in Figure 1. The response variable Y

is the average yearly electricity consumption in France2. The response variable goes up to

2014.

In the following, we consider missing data in this sample, created as in the simulations.

From the sample of 25 pairs (Yi, Xi)i=1,...,25, we want to forecast the yearly electricity

consumption for the years 2015, 2016, 2017, 2018 and 2019.

1http://www.insee.fr/fr/statistiques/serie/001763554
2https://donnees.banquemondiale.org/indicateur/EG.USE.ELEC.KH.PC?locations=FR
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We have fixed the number of knots κ = 12, the degree of splines q = 3 and the order of

derivative m = 2. Then, we use the GCV criterion to find the best parameter of projection

dimension kn trying growing sequences: kn = 2, 3, . . . , 11, 12.

In order to see the impact of missing data on this dataset, we have randomly drawn

700 tests samples in the initial sample and computed prediction errors on these tests sam-

ples, using the remaining of the sample as training sample. Results are given in Table 2.

To measure the performance of the prediction, we consider mean absolute errors (MAE)

averaged over S = 700 samples. The first mean absolute error is defined by

MAE =
1

S

S∑
i=1

MAE(i),

where MAE(i) = 1
5

∑2019
j=2015

∣∣∣Ŷ i
j − Ŷ

?,i
j

∣∣∣ is the mean absolute error computed on the ith

simulated testing sample, for i ∈ {1, . . . ,S}. This error corresponds to our method (case 4

presented in the simulations) when we reconstruct the missing parts of the curves and we

imput missing data on the response. The second mean absolute error is defined by

MAE ′ =
1

S

S∑
i=1

MAE ′(i),

where MAE ′(i) = 1
5

∑2019
j=2015

∣∣∣Ŷ i
j − Ŷ

suppr,i
j

∣∣∣ is the mean absolute error computed on the

ith simulated testing sample i ∈ {1, . . . ,S}. This error corresponds to the naive method

(case 5 presented in the simulations): Ŷ suppr,i
j is the prediction of Yj for the ith simulated

testing sample, when we remove the missing data from the sample. We can see that, in this

illustrating example, our method (case 4) favorably compares again to the naive method

(case 5).

Finally, the predicted values of yearly electricity consumption for the years 2015, 2016,

2017, 2018 and 2019 are given in Table 3
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Table 2: Real dataset: prediction errors over 700 drawn tests samples.

Rate of missing data (%) of Y 42.6

Rate of missing data (%) of X 20.06

MAE 858.9762

(756.4337)

MAE ′ 1932.134

(2514.136)

Table 3: Predicted values of yearly electricity consumption.

year 2015 2016 2017 2018 2019

case 1 9006.685 10284.094 9454.371 10009.066 10112.296

case 4 9190.074 10198.675 9616.474 10293.353 9502.263

case 5 9451.357 10204.158 9842.176 10167.635 8420.580

6 Proofs

Proof of Proposition 2.2

For any x ∈ H such that ‖x‖ = 1, we have

Γ̂n,recx−Γ̂nx =
1

n

n∑
i=1

〈X?
i−Xi, x〉Xi+

1

n

n∑
i=1

〈Xi, x〉 (X?
i −Xi)+

1

n

n∑
i=1

〈X?
i−Xi, x〉 (X?

i −Xi) .

Using the Cauchy-Schwarz inequality, we get

‖〈X?
i −Xi, x〉Xi‖ ≤ ‖X?

i −Xi‖ ‖x‖ ‖Xi‖ ,

from which we deduce with (21) that

‖〈X?
i −Xi, x〉Xi‖ = Op

(
p−(aO−1)/(2(aO+2))

)
.

We prove in the same way that

‖〈Xi, x〉 (X?
i −Xi)‖ = Op

(
p−(aO−1)/(2(aO+2))

)
,
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and

‖〈X?
i −Xi, x〉 (X?

i −Xi)‖ = Op
(
p−(aO−1)/(aO+2)

)
,

which gives the first result (i). The result (ii) can be shown exactly the same way. Con-

cerning results (iii) and (iv), they are directly deduced from (i) and respectively Lemma

2.3 and Lemma 2.2 in Horváth and Kokoszka (2012).

Proof of Theorem 2.3

We start with the decomposition

E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

= E
(

Π̂kn,rec∆̂n,rec

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

≤ 2E
(

Π̂kn,recΘΓ̂n,rec

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

+ 2E

(
Π̂kn,rec

(
1

n

n∑
i=1

〈X?
i , .〉εi

)(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

.

Applying several times the identity (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R, we get

E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

≤ 32E
(

ΘΠ̂kn,recX
?
new −ΘΠ̂knX

?
new

)2
+ 32E

(
ΘΠ̂knX

?
new −ΘΠ̂knXnew

)2
+ 16E

(
ΘΠ̂knXnew −ΘΠknXnew

)2
+ 8E (ΘΠknXnew −ΘXnew)2

+ 4E (ΘXnew −ΘX?
new)2

+ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new〉εi

)2

.

We start with the first term in the above decompositionA1 := 32E
(

ΘΠ̂kn,recX
?
new −ΘΠ̂knX

?
new

)2
.

Applying Lemma 5.1 in Crambes and Henchiri (2019), we obtain

27



A1 = O

(
λ̂knk

2
n

n
+
kn
n

)
.

With Lemma 2.2 in Horváth and Kokoszka (2012), we get

A1 = O

(
λknk

2
n

n
+
kn
n

)
.

Now, we use (21) to obtain

A2 := 32E
(

ΘΠ̂knX
?
new −ΘΠ̂knXnew

)2
= Op

(
p−(aO−1)/(2(aO+2))

)
.

Moreover, again with Lemma 5.1 in Crambes and Henchiri (2019), we obtain

A3 := 16E
(

ΘΠ̂knXnew −ΘΠknXnew

)2
= O

(
λknk

2
n

n
+
kn
n

)
.

We go on with A4 := 8E (ΘΠknXnew −ΘXnew)2. With Lemma 5.3 in Crambes and

Henchiri (2019), we get

A4 = 8
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
.

Next, using again (21), we can write

A5 := 4E (ΘXnew −ΘX?
new)2 = Op

(
p−(aO−1)/(2(aO+2))

)
.

Finally, the last term of the decomposition comes from Lemma 5.2 in Crambes and

Henchiri (2019) and gives

A6 := 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new〉εi

)2

=
2σ2

εkn
n

+ O

(
kn
n

)
.

We can now conclude the proof of Theorem 2.3. The decomposition from the beginning

of the proof gives
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E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

=Op

(
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
+ p−(aO−1)/(2(aO+2)) +

σ2
εkn
n

)

+ O

(
λknk

2
n

n
+
kn
n

)
.

The first term in the convergence rate is

+∞∑
j=kn+1

(
ΘΓ1/2φj

)2
=

+∞∑
j=kn+1

λj (Θφj)
2 ≤

+∞∑
j=kn+1

j−aO .

Comparing the latter sum to an integral, we get

+∞∑
j=kn+1

(
ΘΓ1/2φj

)2
= O

(
k−(aO+1)
n

)
= O

(
p−(aO+1)/(aO+2)

)
= O

(
n−η1(aO+1)/(aO+2)

)
.

The second term in the convergence rate is

p−(aO−1)/(2(aO+2)) ∼ n−η1(aO−1)/(2(aO+2)),

and the third term in the convergence rate is

σ2
εkn
n
∼ σ2

εn
η1/(aO+2)

n
= σ2

εn
η1/(aO+2)−1.

If we compare the different rates, with the condition η1 ≤ 1/2, we get

E
(
〈̂̂θ,X?

new〉 − 〈θ,X?
new〉

)2

= Op
(
n−η1(aO−1)/(2(aO+2))

)
.

Finally, we can write

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= E
(
Y − θ0 − 〈θ,X

?〉+ 〈̂̂θ,X?
new −X

?〉 − 〈θ,X?
new −X

?〉
)2

≤ 2E
(
Y − E(Y )

)2
+ 2E

(
〈̂̂θ,X?

new −X
?〉 − 〈θ,X?

new −X
?〉
)2

.

The first term of the right-hand side is given by E
(
Y − E(Y )

)2 ≤ 2ε2 + 2〈θ,E(X)〉2 =

Op(n−1) (with Bienaymé-Tchebychev inequality), and the second term of the right-hand
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side gives a convergence rate in probability of n−η1(aO−1)/(2(aO+2)), which gives the desired

result

E
(̂̂
θ0 + 〈̂̂θ,X?

new〉 − θ0 − 〈θ,X?
new〉

)2

= Op
(
n−η1(aO−1)/(2(aO+2))

)
.

Proof of Theorem 3.1

This proof follows the same lines as the proof of Theorem 2.3. We write the decomposition

E
(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2
≤ 32E

(
ΘΠ̂obs

kn,recX
?
` −ΘΠ̂knX

?
`

)2
+ 32E

(
ΘΠ̂obs

kn X
?
` −ΘΠ̂knX`

)2
+ 16E

(
ΘΠ̂knX` −ΘΠknXnew

)2
+ 8E (ΘΠknX` −ΘX`)

2

+ 4E (ΘX` −ΘX?
` )2

+ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂obs
kn,recΓ̂

obs
n,recΠ̂

obs
kn,rec

)−1
X?
` 〉δ

[Y ]
i εi

)2

.

The first term in the above decompositionB1 := 32E
(

ΘΠ̂obs
kn,rec

X?
` −ΘΠ̂knX

?
`

)2
. Apply-

ing Lemma 5.1 in Crambes and Henchiri (2019) and Lemma 2.2 in Horváth and Kokoszka

(2012), we get

B1 = O

(
λknk

2
n

n−m[Y ]
n

+
kn

n−m[Y ]
n

)
.

Now, we use (21) to obtain

B2 := 32E
(

ΘΠ̂obs
kn X

?
` −ΘΠ̂knX`

)2
= Op

(
p−(aO−1)/(2(aO+2))

)
.

Again with Lemma 5.1 in Crambes and Henchiri (2019), we obtain

B3 := 16E
(

ΘΠ̂knX` −ΘΠknXnew

)2
= O

(
λknk

2
n

n
+
kn
n

)
.

30



The next term is B4 := 8E (ΘΠknX` −ΘX`)
2. With Lemma 5.3 in Crambes and

Henchiri (2019), we get

B4 = 8
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
.

Then, using again (21), we can write

B5 := 4E (ΘX` −ΘX?
` )2 = Op

(
p−(aO−1)/(2(aO+2))

)
.

Finally, the last term of the decomposition comes from Lemma 5.2 in Crambes and

Henchiri (2019) and gives

B6 := 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Π̂obs
kn,recΓ̂

obs
n,recΠ̂

obs
kn,rec

)−1
X?
` 〉δ

[Y ]
i εi

)2

=
2σ2

εkn

n−m[Y ]
n

+ O

(
kn

n−m[Y ]
n

)
.

We can now conclude the proof of Theorem 3.1. Coming back to the decomposition

from the beginning, we get

E
(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2

=Op

(
+∞∑

j=kn+1

(
ΘΓ1/2φj

)2
+ p−(aO−1)/(2(aO+2)) +

σ2
εkn

n−m[Y ]
n

)

+ O

(
λknk

2
n

n−m[Y ]
n

+
kn

n−m[Y ]
n

)
.

Comparing the convergence rates, we obtain

E
(
〈θ̃, X?

` 〉 − 〈θ,X?
` 〉
)2

= Op
(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

Finally, we can get the desired result including the intercept. We follow the end of the

proof of Theorem 2.3 to write

E
(
θ̃0 + 〈θ̃, X?

` 〉 − θ0 − 〈θ,X?
` 〉
)2

= E
(
Y obs − θ0 − 〈θ,X

?

obs〉+ 〈̂̂θ,X?
` −X

?

obs〉 − 〈θ,X?
` −X

?

obs〉
)2

≤ 2E
(
Y obs − E(Y )

)2
+ 2E

(
〈θ̃, X?

` −X
?

obs〉 − 〈θ,X?
` −X

?

obs〉
)2
.
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The first term of the right-hand side is given by E
(
Y obs − E(Y )

)2 ≤ 2ε2obs + 2〈θ,E(X)〉2 =

Op
(

(n−m[Y ]
n )−1

)
(with Bienaymé-Tchebychev inequality), and the second term of the

right-hand side gives a convergence rate in probability of n−η1(aO−1)/(2(aO+2)) + nη1/(aO+2)

n−m[Y ]
n

,

which gives

E
(
θ̃0 + 〈θ̃, X?

` 〉 − θ0 − 〈θ,X?
` 〉
)2

= Op
(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
.

Proof of Theorem 3.3

Following the same lines of previous proofs but first we write the cross covariance operator

as

∆̂?
n,rec =

1

n

n∑
i=1

〈X?
i , .〉Y ?

i

=
1

n

n∑
i=1

〈X?
i , .〉
(
Yiδ

[Y ]
i + Yi,imp(1− δ[Y ]

i )
)

=
1

n

n∑
i=1

〈X?
i , .〉δ

[Y ]
i Yi +

1

n

n∑
i=1

〈X?
i , .〉(1− δ

[Y ]
i )Yi,imp.

Next, we observe that

E
(
〈θ̂?, X?

new〉 − 〈θ,X?
new〉

)2
= E

(
Π̂kn,rec∆̂

?
n,rec

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

≤ 2E

(
Π̂kn,rec

1

n

n∑
i=1

〈X?
i , .〉δ

[Y ]
i Yi

(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

+ 2E

(
Π̂kn,rec

(
1

n

n∑
i=1

〈X?
i , .〉Yi,imp(1− δ

[Y ]
i )

)(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

.

The first term is given by the result of Theorem 2.3. For the second term
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E

(
Π̂kn,rec

(
1

n

n∑
i=1

〈X?
i , .〉Yi,imp(1− δ

[Y ]
i )

)(
Π̂kn,recΓ̂n,recΠ̂kn,rec

)−1
X?
new −ΘX?

new

)2

≤ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Γ̂n,recΠ̂kn,rec

)−1
X?
new(Yi,imp − Yi)(1− δ[Y ]

i )

)

+ 2E

(
1

n

n∑
i=1

〈X?
i ,
(

Γ̂n,recΠ̂kn,rec

)−1
X?
new〉Yi(1− δ

[Y ]
i )−ΘX?

new

)2

.

We notice that the first term above is exactly the same as in Theorem 3.1 and the

second term is directly the result of the Theorem 2.3. So, comparing the convergence rates,

we get

E
(
〈θ̂?, X?

new〉 − 〈θ,X?
new〉

)2
= Op

(
n−η1(aO−1)/(2(aO+2)) +

nη1/(aO+2)

n−m[Y ]
n

)
,

which gives the desired result.

SUPPLEMENTARY MATERIAL

Title: Imputation values (A1).

Title: Predicted values (A2).
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Horváth, L. and Kokoszka, P. (2012), Inference for functional data with applications ,

Springer-Verlag, New York.

Hsing, T. and Eubank, R. (2015), Theoretical foundations of functional data analysis, with

an introduction to linear operators , Wiley series in probability and statistics, John Wiley

& Sons.

Kneip, A. and Liebl, D. (2020), “On the optimal reconstruction of partially observed func-

tional data,” The Annals of Statistics , 4, 1692–1717.

Kraus, D. (2015), “Components and completion of partially observed functional data,”

Journal of the Royal Statistical Society: Series B , 77, 777–801.

Kraus, D. and Stefanucci, M. (2020), “Ridge reconstruction of partially observed func-

tional data is asymptotically optimal,” Statistics and Probability Letters , 165, DOI:

10.1016/j.spl.2020.108813.

Lin, Z. and Wang, J. L. (2020), “Mean and covariance estimation for functional snippets,”

Technical report, University of California, Davis .

Lin, Z., Wang, J.-L., and Zhong, Q. (2020), “Basis Expansions for Functional Snippets,”

Biometrika, asaa088, 1–18.

Little, R. and Rubin, D. B. (2002), Statistical analysis with missing data (Second edition),

John Wiley, New York.

Ramsay, J. O. and Silverman, B. W. (2005), Statistical analysis with missing data (Second

edition), Springer-Verlag, New York.

35


	Introduction
	Missing data on the covariate
	Curve reconstruction
	Estimation of the reconstruction in practice
	Estimation of  and prediction
	Assumptions
	Asymptotic results

	Missing data on the covariate and the response
	Regression imputation on the response
	Estimation of  and prediction
	Asymptotic results

	Simulations
	Models and samples
	Criteria
	Methodology
	Analysis of results

	Real dataset study
	Proofs

