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Abstract. In this paper we consider the Schrödinger equation with nonlinear

derivative term. Our goal is to initiate the study of this equation with non

vanishing boundary conditions. We obtain the local well posedness for the
Cauchy problem on Zhidkov spaces Xk(R) and in φ + Hk(R). Moreover, we

prove the existence of conservation laws by using localizing functions. Finally,

we give explicit formulas for stationary solutions on Zhidkov spaces.
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2 PHAN VAN TIN

1. Introduction. We are interested in the Cauchy problem for the following de-
rivative nonlinear Schödinger equation with nonvanishing boundary conditions:{

i∂tu+ ∂2u = −iu2∂u,
u(0) = u0,

(1.1)

where u : Rt×Rx → C, ∂ = ∂x denotes derivative in space and ∂t denotes derivative
in time.

Our attention was drawn to this equation by the work of Hayashi and Ozawa
[10] concerning the more general nonlinear Schrödinger equation{

i∂tu+ ∂2u = iλ|u|2∂u+ iµu2∂u+ f(u),

u(0) = u0.
(1.2)

When λ = 0, µ = −1, f ≡ 0, then (1.2) reduces to (1.1). This type of equation is
usually refered to as derivative nonlinear Schrödinger equations. It may appear in
various areas of physics, e.g. in Plasma Physics for the propagation of Alfvén waves
[13, 15].

Under Dirichlet boundary conditions in space, the Cauchy problem for (1.1) has
been solved in [10]: local well-posedness holds in H1(R), i.e. for any u0 ∈ H1(R)
there exists a unique solution u ∈ C(I,H1(R)) of (1.1) on a maximal interval of time
I. Moreover, we have continuous dependence with respect to the initial data, blow-
up at the ends of the time interval of existence I if I is bounded and conservation
of energy, mass and momentum.

The main difficulty is the appearance of the derivative term −iu2ux. We cannot
use the classical contraction method for this type of nonlinear Schrödinger equations.
In [10] Hayashi and Ozawa use the Gauge transform to establish the equivalence
of the local well-posedness between the equation (1.2) and a system of equations
without derivative terms. By studying the Cauchy problem for this system, they
obtain the associated results for (1.2). In [9], Hayashi and Ozawa construct a
sequence of solutions of approximated equations and prove that this sequence is
converging to a solution of (1.2), obtaining this way the local well-posedness of
(1.2). The approximation method has also been used by Tsutsumi and Fukuda in
[16, 17]. The difference between [9] and [16, 17] lies in the way of constructing
the approximate equation. In [9], the authors use approximation on the non-linear
term, whereas in [16, 17] the authors use approximation on the linear operator.

To our knowledge, the Cauchy problem for (1.1) has not been studied under non-
zero boundary conditions, and our goal in this paper is to initiate this study. Note
that non-zero boundary conditions on the whole space are much rarely considered
in the literature around nonlinear dispersive equations than Dirichlet boundary
conditions. In the case of the nonlinear Schrödinger equation with power-type
nonlinearity, we refer to the works of Gérard [7, 8] for local well-posedness in the
energy space and to the works of Gallo [5] and Zhidkov [18] for local well-posedness
in Zhidkov spaces (see Section 2.1 for the definition of Zhidkov spaces) and Gallo
[6] for local well-posedness in u0 + H1(R). In this paper, using the method of
Hayashi and Ozawa as in [10] on the Zhidkov-space Xk(R), (k > 4) and in the
space φ + Hk(R) (k = 1, 2) for φ in a Zhidkov space, we obtain the existence,
uniqueness and continuous dependence on the initial data of solutions of (1.1) in
these spaces. Using the transform

v = ∂u+
i

2
|u|2u, (1.3)
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we see that if u is a solution of (1.1) then (u, v) is a solution of a system of two
equations without derivative terms. It is easy to obtain the local wellposedness of
this system on Zhidkov spaces. The main difficulty is how to obtain a solution of
(1.1) from a solution of the system. Actually, we must prove that the relation (1.3)
is conserved in time. The main difference in our setting with the setting in [11] is
that we work on Zhidkov spaces instead of the space of localized functions H1(R).
Our first main result is the following.

Theorem 1.1. Let u0 ∈ X4(R). Then there exists a unique maximal solution of
(1.1) u ∈ C((Tmin, Tmax), X4(R))∩C1((Tmin, Tmax), X2(R)). Moreover, u satisfies
the two following properties.

• Blow-up alternative. If Tmax <∞ (resp. Tmin > −∞) then

lim
t→Tmax(resp. Tmin)

‖u(t)‖X2 =∞.

• Continuity with respect to the initial data. If un0 ∈ X4(R) is such that un0 →
u0 in X4(R) then for any subinterval [T1, T2] ⊂ (Tmin, Tmax) the associated
solutions of equation (1.1) (un) satisfy

lim
n→∞

‖un − u‖L∞([T1,T2],X4) = 0.

To obtain the local wellposedness on φ+Hk(R) for φ in Zhidkov spaces X l(R).
First, we use the transform v = ∂u + i

2 |u|
2u. We see that if u ∈ φ + Hk(R) then

v ∈ i
2 |φ|

2φ+Hk−1(R). This motivates us to define ũ = u− φ and ṽ = v − i
2 |φ|

2φ.
We have

ṽ = ∂ũ+
i

2
(|ũ+ φ|2(ũ+ φ)− |φ|2φ) + ∂φ. (1.4)

We see that if u is a solution of (1.1) then (ũ, ṽ) is a solution of a system of two
equations without the derivative terms. For technical reasons, we will need some
regularity on φ. With a solution of the system in hand, we want to obtain a solution
of (1.1). In practice, we need to prove that the relation (1.4) is conserved in time.
Our main second result is the following.

Theorem 1.2. Let φ ∈ X4(R) and u0 ∈ φ+H2(R). Then the problem (1.1) has a
unique maximal solution u ∈ C((Tmin, Tmax), φ+H2(R)) which is differentiable as a
function of C((Tmin, Tmax), φ+L2(R)) and such that ut ∈ C((Tmin, Tmax), L2(R)).
Moreover u satisfies the following properties.
(1) Blow-up alternative: If Tmax <∞ (resp. Tmin > −∞ then

lim
t→Tmax(resp. Tmin)

(‖u(t)− φ‖H2(R)) =∞.

(2) Continuous dependence on initial data: If (un0 ) ⊂ φ+H2(R) is such that ‖un0 −
u0‖H2 → 0 as n → ∞ then for all [T1, T2] ⊂ (Tmin, Tmax) the associated solutions
(un) of (1.1) satisfy

lim
n→∞

‖un − u‖L∞([T1,T2],H2) = 0.

In the less regular space φ+H1(R), we obtain the local well posedness under a
smallness condition on the initial data. Our third main result is the following.

Theorem 1.3. Let φ ∈ X4(R) such that ‖∂φ‖L2 is small enough, u0 ∈ φ+H1(R)
such that ‖u0 − φ‖H1(R) is small enough. There exist T > 0 and a unique solution
u of (1.1) such that

u− φ ∈ C([−T, T ], H1(R)) ∩ L4([−T, T ],W 1,∞(R)).
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In the proof of Theorem 1.3, the main difference with the case φ+H2(R) is that we
use Strichartz estimates to prove the contractivity of a map on L∞([−T, T ], L2(R))∩
L4([−T, T ], L∞(R)). In the case of a general nonlinear term (as in (1.2)), our
method is not working. The main reason is that we do not have a proper transform
to give a system without derivative terms. Moreover, our method is not working if
the initial data lies on X1(R). It is because when we study the system of equations,
we would have to study it on L∞(R), but we know that the Schrödinger group is
not bounded from L∞(R) to L∞(R). Thus, the local wellposedness on less regular
spaces is a difficult problem for nonlinear derivative Schrödinger equations.

To prove the conservation laws of (1.1), we need to use a localizing function,
which is necessary for integrals to be well defined. Indeed, to obtain the conservation
of the energy, using (1.1), at least formally, we have

∂t(|∂u|2) = ∂x(F (u)) + ∂t(G(u)),

for functions F and G which will be defined later. The important thing is that when
u is not in H1(R), there are some terms in G(u) which do not belong to L1(R),
hence, it is impossible to integrate the two sides as in the usual case. However,
we can use a localizing function to deal with this problem. Similarly, we use the
localizing function to prove the conservation of the mass and the momentum. The
localizing function χ is defined as follows

χ ∈ C1(R) and even , suppχ ⊂ [−2, 2], and χ = 1 on [−1, 1]. (1.5)

For all a ∈ R and R > 0, we define

χa,R(x) = χ

(
x− a
R

)
= χ

(
|x− a|
R

)
. (1.6)

To prove the conservation of mass, we use the similar notations as in [4, section 7]

m+(u) = inf
a∈R

lim sup
R→∞

∫
R

(|u|2 − q20)χa,R dx,

m−(u) = sup
a∈R

lim inf
R→∞

∫
R
(|u|2 − q20)χa,R dx.

If u is such that m+(u) = m−(u) we define generalized mass as

m(u) ≡ m+(u) = m−(u).

Especially, for a = 0 we define

χR(x) = χ
( x
R

)
. (1.7)

Our fourth main result is the following.

Theorem 1.4. Let q0 ∈ R be a constant and u0 ∈ q0 + H2(R) and u ∈ C((Tmin,
Tmax), q0 +H2(R)) be the associated solution of (1.1) given by Theorem 1.2. Then,
we have

E(u) :=

∫
R
|∂u|2 dx+

1

2
Im
∫
R

(|u|2u− q30)∂u dx

+
1

6

∫
R

(|u|2 − |q0|2)2(|u|2 + 2|q0|2) dx = E(u0), (1.8)

P (u) :=
1

2
Im
∫
R

(u− q0)∂u dx−
∫
R

1

4
(|u|2 − |q0|2)2 dx = P (u0), (1.9)
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for all t ∈ (Tmin, Tmax). Moreover, u satisfies m+(u(t)) = m+(u0) (respectively
m−(u(t)) = m−(u0)). In particular, if u0 has finite generalized mass then the
generalized mass is conserved by the flow, that is m(u(t)) = m(u0).

Remark 1.5. When q0 = 0, we recover the classical conservation of mass, energy
and momentum as usually defined.

In the classical Schrödinger equation, there are special solutions which are called
standing waves. There are many works on standing waves (see e.g [12], [2] and the
references therein). In [18], Zhidkov shows that there are two types of bounded
solitary waves possessing limits as x → ±∞. These are monotone solutions and
solutions which have precisely one extreme point. They are called kinks and soliton-
like solutions, respectively. In [18], Zhidkov studied the stability of kinks of classical
Schrödinger equations. In [1], the authors have studied the stability of kinks in the
energy space. To our knowledge, all these solitary waves are in Zhidkov spaces i.e
the Zhidkov space is largest space we know to find special solutions. We want to
investigate stationary solutions of (1.1) in Zhidkov spaces. Before stating the next
main result, we need the following definition:

Definition 1.6. The stationary solutions of (1.1) are functions φ ∈ X2(R) satisfy-
ing

φxx + iφ2φx = 0. (1.10)

In [14], the authors proved the existence of periodic traveling waves of a derivative
nonlinear Schrödinger equation using a skillful changes of variables. In this paper,
we use a similar changes of variables as in [14] to prove the existence and uniqueness
of stationary solution of (5.2) on X2(R). Our fifth main result is the following.

Theorem 1.7. Let φ be a stationary solution of (1.1) (see Definition 1.6). The
followings is true:
(1) If φ is not a constant function and satisfies

inf
x∈R
|φ(x)| > 0

then φ is of the form eiθ
√
k where

k(x) = 2
√
B +

−1√
5

72B cosh(2
√
B(x− x0)) + 5

12
√
B

,

θ = θ0 −
∫ ∞
x

(
B

k(y)
− k(y)

4

)
dy,

for some constants θ0, x0 ∈ R, B > 0.
(2) If φ is a stationary solution of (1.1) such that φ(∞) = 0 then φ ≡ 0 on R.

Remark 1.8. We have classified stationary solutions of (1.1) for the functions
which are vanishing at infinity, and for the functions which are not vanishing on R.
One question still unanswered is the class of stationary solutions of (1.1) vanishing
at a point in R.

This paper is organized as follows. In Section 2, we give the proof of local well
posedness of solution of (1.1) on Zhidkov spaces. In Section 3, we prove the local
well posedness on φ + H2(R) and φ + H1(R), for φ ∈ X4(R) a given function.
In Section 4, we give the proof of conservation laws when the initial data is in
q0 +H2(R), for a given constant q0 ∈ R. Finally, in Section 5, we have some results
on stationary solutions of (1.1) on Zhidkov spaces.
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Notation. In this paper, we will use in the following notation L for the linear part
of the Schrödinger equation, that is

L = i∂t + ∂2.

Moreover, C denotes various positive constants and C(R) denotes constants de-
pending on R.

2. Local existence in Zhidkov spaces. In this section, we give the proof of
Theorem 1.1.

2.1. Preliminaries on Zhidkov spaces. Before presenting our main results, we
give some preliminaries. We start by recalling the definition of Zhidkov spaces,
which were introduced by Peter Zhidkov in his pioneering works on Schrödinger
equations with non-zero boundary conditions (see [18] and the references therein).

Definition 2.1. Let k ∈ N, k > 1. The Zhidkov space Xk(R) is defined by

Xk(R) = {u ∈ L∞(R) : ∂u ∈ Hk−1(R)}.

It is a Banach space when endowed with the norm

‖·‖Xk = ‖·‖L∞ +

k∑
α=1

‖∂α·‖L2 .

It was proved by Gallo [5, Theorem 3.1 and Theorem 3.2] that the Schrödinger
operator defines a group on Zhidkov spaces. More precisely, we have the following
result.

Proposition 2.2. Let k > 1 and u0 ∈ Xk(R). For t ∈ R and x ∈ R, the quantity

S(t)u0(x) :=


e−iπ/4π−1/2 lim

ε→0

∫
R
e(i−ε)z

2

u0(x+ 2
√
tz)dz if t > 0,

eiπ/4π−1/2 lim
ε→0

∫
R
e(−i−ε)z

2

u0(x+ 2
√
−tz)dz if t 6 0.

(2.1)

is well-defined and S defines a strongly continuous group on Xk(R). For all u0 ∈
Xk(R) and t ∈ R we have

‖S(t)u0‖Xk 6 C(k)(1 + |t|1/4)‖u0‖Xk .

The generator of the group (S(t))|t∈R on Xk(R) is i∂2 and its domain is Xk+2(R).

Remark 2.3. Since, for all φ ∈ Xk(R), we have φ+Hk(R) ⊂ Xk(R), the uniqueness
of solution in Xk(R) implies the uniqueness of solution in φ + Hk(R), and the
existence of solution in φ+Hk(R) implies the existence of solution in Xk(R).

2.2. From the equation to the system. The equation (1.1) contains a spatial
derivative of u in the nonlinear part, which makes it difficult to work with. In the
following proposition, we indicate how to eliminate the derivative in the nonlinearity
by introducing an auxiliary function and converting the equation into a system.

Proposition 2.4. Let k > 2. Given u ∈ Xk(R), we define v by

v = ∂u+
i

2
|u|2u. (2.2)
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Hence, v ∈ Xk−1(R). Furthermore, if u satisfies the equation (1.1), then the couple
(u, v) verifies the system {

Lu = P1(u, v),

Lv = P2(u, v),
(2.3)

where P1 and P2 are given by

P1(u, v) = −iu2v +
1

2
|u|4u,

P2(u, v) = iuv2 +
3

2
|u|4v + u2|u|2v.

(2.4)

Proof. Let u be a solution of (1.1) and v be defined by (2.2). Then we have

Lu = −iu2∂u = −iu2
(
v +

i

2
(|u|2u)

)
= −iu2v +

1

2
|u|4u,

which gives us the first equation in (2.3).
On the other hand, since L and ∂ commute and u solves (1.1), we have

Lv = ∂(Lu) +
i

2
L(|u|2u) = ∂(−iu2∂u) +

i

2
L(|u|2u)

= −i(u2∂2u+ 2u|∂u|2) +
i

2
L(|u|2u). (2.5)

Using

L(uv) = L(u)v + uL(v) + 2∂u∂v, L(u) = −Lu+ 2∂2u, (2.6)

we have

L(|u|2u) = L(u2u) = L(u2)u+ u2L(u) + 2∂(u2)∂u

=
(
2L(u)u+ 2(∂u)2)

)
u+ u2(−Lu+ 2∂2u) + 4u|∂u|2

= 2L(u)|u|2 + 2u(∂u)2 + 2u2∂2u− u2Lu+ 4u|∂u|2. (2.7)

We now recall that u verifies (1.1) to obtain

i

2
L(|u|2u) = u2∂u|u|2 + iu(∂u)2 + iu2∂2u+

1

2
∂u|u|4 + 2iu|∂u|2. (2.8)

Subsituting in (2.5), we get

Lv = −i(u2∂2u+ 2u|∂u|2) + u2∂u|u|2 + iu(∂u)2 + iu2∂2u+
1

2
∂u|u|4 + 2iu|∂u|2,

= u2∂u|u|2 + iu(∂u)2 +
1

2
∂u|u|4.

Observe here that the second order derivatives of u have vanished and only first
order derivatives remain. Therefore, using the expression of v given in (2.2) to
subsitute ∂u, we obtain by direct calculations

Lv = iuv2 +
3

2
|u|4v + u2|u|2v,

which gives us the second equation in (2.3).
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2.3. Resolution of the system. We now establish the local well-posedness of the
system (2.3) in Zhidkov spaces.

Proposition 2.5. Let k > 3, and (u0, v0) ∈ Xk(R)×Xk(R). There exist Tmin < 0,
Tmax > 0 and a unique maximal solution (u, v) of system (2.3) such that (u, v) ∈
C((Tmin, Tmax), Xk(R)) ∩ C1((Tmin, Tmax), Xk−2(R)). Furthermore the following
properties are satisfied.

• Blow-up alternative. If Tmax <∞ (resp. Tmin > −∞ then

lim
t→Tmax(resp. Tmin)

(‖u(t)‖X1 + ‖v(t)‖X1) =∞.

• Continuity with respect to the initial data. If (un0 , v
n
0 ) ∈ Xk×Xk is such that

‖un0 − u0‖Xk + ‖vn0 − v0‖Xk → 0

then for any subinterval [T1, T2] ⊂ (Tmin, Tmax) the associated solution (un, vn)
of (2.3) satisfies

lim
n→∞

(
‖un − u‖L∞([T1,T2],Xk) + ‖vn − v‖L∞([T1,T2],Xk)

)
= 0.

Proof. Consider the operator A : D(A) ⊂ Xk−2(R)→ Xk−2(R) defined by A = i∂2

with domain D(A) = Xk(R). From Proposition 2.2 we know that the opera-
tor A is the generator of the Schrödinger group S(t) on Xk−2(R). From clas-
sical arguments (see [3, Lemma 4.1.1 and Corollary 4.1.8]) the couple (u, v) ∈
C((Tmin, Tmax), Xk(R))∩C1((Tmin, Tmax), Xk−2(R)) solves (2.3) if and only if the
couple (u, v) ∈ C((Tmin, Tmax), Xk(R)) solves{

(u, v) = S(t)(u0, v0)− i
∫ t
0
S(t− s)P (u, v)(s)ds,

u(0) = u0 ∈ Xk(R), v(0) = v0 ∈ Xk(R),
(2.9)

where S(t)(u, v) := (S(t)u, S(t)v), P (u, v) = (P1(u, v), P2(u, v)) and P1 and P2 are
defined in (2.4). Consider P as a map from Xk(R)×Xk(R) into Xk(R)×Xk(R).
Since P1 and P2 are polynomial in u and v, the map P is Lipschitz continuous on
bounded sets of Xk(R)×Xk(R). Since (see [3, Theorem 4.3.4 and Theorem 4.3.7]),
there exists unique maximal solution (u, v) ∈ C((Tmin, Tmax), Xk(R) × Xk(R)) ∩
C1((Tmin, Tmax), Xk−2(R) × Xk−2(R)) of system (2.3). Moreover, (u, v) satisfy
blow-up alternative continuous dependence on initial data in Xk(R) × Xk(R). It
remains to prove the blow-up alternative in X1(R) × X1(R). We use the similar
arguments as in [18, Proof of Theorem 1.2.4]. For each 1 6 s 6 k−1, since the map
P is Lipschitz continuous on bounded sets of Xs(R) × Xs(R), there exists Tsmin
and Tsmax such that (u, v) is the maximal Xs(R)×Xs(R) solution of system (2.9)
on (Tsmin, Tsmax) and (u, v) satisfy:

lim
t→Tsmax(resp. Tsmin)

(‖u(t)‖Xs + ‖v(t)‖Xs) =∞.

It is sufficient to prove that T1max = Tmax and T1min = Tmin. We have

T1max > T2max > .. > T(k−1)max > Tmax.
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We first prove T1max = T2max. Assume T1max > T2max. For t ∈ [0, T2max], since
(2.9) we have

‖u‖X2 + ‖v‖X2

6 ‖u0‖X2 + ‖v0‖X2 + max
t∈[0,T2max]

(‖u‖X1 + ‖v‖X1 + 1)4
∫ t

0

(‖u(s)‖X2

+ ‖v(s)‖X2) ds.

By Gronwall’s inequality in integral form we obtain

sup
t∈[0,T2max]

(‖u‖X2 + ‖v‖X2) <∞.

This contradicts to blow-up alternative of (u, v) in X2(R)×X2(R). Thus, T1max =
T2max. By apply many times this arguments we obtain T1max = Tmax and by
similar arguments we have T1min = Tmin. This completes the proof of Proposition
2.5.

2.4. Preservation of the differential identity. The following proposition estab-
lishes the link from (2.3) to (1.1) by showing preservation along the time evolution
of the differential identity

v0 = ∂u0 +
i

2
|u0|2u0.

Proposition 2.6. Let u0, v0 ∈ X3(R) be such that

v0 = ∂u0 +
i

2
u0|u0|2.

Then the associated solution (u, v) ∈ C((−Tmin, Tmax), X3(R) × X3(R)) obtained
in Proposition 2.5 satisfies for all t ∈ (−Tmin, Tmax) the differential identity

v = ∂u+
i

2
|u|2u.

Proof. Given (u, v) ∈ C((−Tmin, Tmax), X3(R) ×X3(R)) the solution of (2.3) ob-
tained in Proposition 2.5, we define

w = ∂u+
i

2
|u|2u.

Our goal will be to show that w = v. We first have

Lu = −iu2v +
1

2
|u|4u

= −iu2(v − w)− iu2w +
1

2
|u|4u

= −iu2(v − w)− iu2∂u.

Applying L to w and using (2.7) and the expression previously obtained for Lu, we
get

Lw = ∂(Lu) +
i

2
L(|u|2u)

= ∂(Lu) +
i

2

(
2Lu|u|2 + 2u(∂u)2 + 2u2∂2u− u2Lu+ 4u|∂u|2

)
= ∂(−iu2(v − w)− iu2∂u)

+
i

2

(
2(−iu2∂u)|u|2 + 2u(∂u)2 − u2(−iu2∂u) + 2u2∂2u+ 4u|∂u|2

)
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+
i

2

[
2(−iu2(v − w))|u|2 − u2(−iu2(v − w))

]
=

(
−i∂(u2(v − w)) + u2|u|2(v − w) +

1

2
|u|4(v − w)

)
+

(
−i∂(u2∂u) + u2∂u|u|2 + iu(∂u)2 +

1

2
|u|4∂u+ iu2∂2u+ 2iu|∂u|2

)
=: I1 + I2.

As in the proof of Proposition 2.4, we obtain

I2 = iuw2 +
3

2
|u|4w + |u|2u2w.

Furthermore

I1 = ∂(−iu2(v − w)) + u2|u|2(v − w) +
1

2
|u|4(v − w)

= −iu2∂(v − w)− 2iu∂u(v − w) + u2|u|2(v − w) +
1

2
|u|4(v − w).

It follows that

Lw − Lv = I1 + (I2 − Lv) (2.10)

= I1 + iu(w − v)(w + v) +
3

2
|u|4(w − v) + |u|2u2(w − v) (2.11)

= (w − v)A1 + (w − v)A2 − iu2∂(v − w), (2.12)

where A1 and A2 are polynomials of degree at most 4 in u, ∂u, v, ∂v and their
complex conjugates. Hence,

(Lw − Lv)(w − v) = |w − v|2A1 + (w − v)2A2 − iu2
∂(v − w)2

2
:= K, (2.13)

where K is a polynomial of degree at most 6 in u, v, w, ∂u, ∂v, ∂w and their
complex conjugates. Remembering that L = i∂t + ∂2, and taking imaginary part
in the two sides of (2.13) we obtain

1

2
∂t|w − v|2 + Im(∂ ((∂w − ∂v)(w − v))) = Im(K). (2.14)

Let χ : R→ R be a cut-off function such that

χ ∈ C1(R), supp(χ) ⊂ [−2, 2],

χ ≡ 1 on (−1, 1), 0 6 χ 6 1, |χ′(x)|2 . χ(x) for allx ∈ R.

For each n ∈ N, define

χn(x) = χ
(x
n

)
.

Multiplying both sides of (2.14) by χn and integrating in space we obtain

1

2
∂t‖(w−v)

√
χn‖2L2 +

∫
R
Im (∂ ((∂w − ∂v)(w − v)))χndx =

∫
R
Im(K)χndx. (2.15)

For the right hand side, we have∫
R
Im(K)χndx

= Im
∫
R
|w − v|2A1χndx+ Im

∫
R
(w − v)2A2χndx− Im

∫
R
iu2

∂((v − w)2)

2
χndx,
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and therefore∣∣∣∣∫
R
Im(K)χndx

∣∣∣∣
6 ‖(w − v)

√
χn‖2L2 (‖A1‖L∞ + ‖A2‖L∞) +

1

2

∣∣∣∣∫
R
u2∂((v − w)2)χndx

∣∣∣∣ .
We now fix some arbitrary interval [−T1, T2] such that 0 ∈ [−T1, T2] ⊂ (−Tmin,
Tmax) in which we will be working from now on, and we set

R = ‖u‖L∞([T1,T2],X3) + ‖v‖L∞([T1,T2],X3).

From the fact that A1 and A2 are polynomials in u, ∂u, v, ∂v of degree at most 4,
for all t ∈ [T1, T2] we have

‖A1‖L∞ + ‖A2‖L∞ 6 C(R).

It follows that∣∣∣∣∫
R
Im(K)χndx

∣∣∣∣
6 ‖(w − v)

√
χn‖2L2C(R) +

1

2

∣∣∣∣∫
R

(v − w)2
(
∂(u2)χn + u2∂χn)dx

)∣∣∣∣ .
By definition of χ we have∣∣∂(u2)χn

∣∣ 6 C(R)χn,∣∣u2∂χn∣∣ 6 |u2| 1
n

∣∣∣χ′ ( ·
n

)∣∣∣ 6 1

n
C(R)

√
χ
( ·
n

)
6 C(R)

1

n

√
χn(.).

Hence,∣∣∣∣∫
R
Im(K)χndx

∣∣∣∣ 6 ‖(w − v)
√
χn‖2L2C(R) +

C(R)

n

∣∣∣∣∫
R

(v − w)2
√
χndx

∣∣∣∣
6 C(R)‖(w − v)

√
χn‖2L2 +

C(R)2

n

∫
R
|v − w|√χndx

6 C(R)‖(w − v)
√
χn‖2L2 +

C(R)2

n

∫ 2n

−2n
|v − w|√χndx

6 C(R)‖(w − v)
√
χn‖2L2 +

C(R)2

n

(∫ 2n

−2n
(|v − w|√χn)2dx

) 1
2
(∫ 2n

−2n
dx

) 1
2

6 C(R)‖(w − v)
√
χn‖2L2 +

2C(R)2√
n
‖(w − v)

√
χn‖L2 . (2.16)

In addition, we have∣∣∣∣∫
R
Im(∂ ((∂w − ∂v)(w − v))χn)dx

∣∣∣∣ =

∣∣∣∣∫
R
Im(((∂w − ∂v)(w − v))χ′n)dx

∣∣∣∣
=

∣∣∣∣∫
R
Im
(

(∂w − ∂v)(w − v)
1

n
χ′
(x
n

))
dx

∣∣∣∣
6
∫
R
|∂w − ∂v||w − v| 1

n

√
χndx

6
1

n
‖∂w − ∂v‖L2‖(w − v)

√
χn‖L2

6
C(R)

n
‖(w − v)

√
χn‖L2 . (2.17)
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From (2.15), (2.16), (2.17) we obtain that

∂t‖(w − v)
√
χn‖2L2 6 C(R)‖(w − v)

√
χn‖2L2 +

C(R)√
n
‖(w − v)

√
χn‖L2 (2.18)

6 C(R)‖(w − v)
√
χn‖2L2 +

C(R)√
n

(2.19)

where we have used the Cauchy inequality |x| 6 |x|2+1
2 . Define the function g :

[−T1, T2] by

g = ‖(w − v)
√
χn‖2L2 .

Then by definition of w we have g(t = 0) = 0. Furthermore, from (2.19) we have

∂tg 6 C(R)g +
C(R)√
n
.

By Gronwall inequality for all t ∈ [−T1, T2] we have

g 6
C(R)√
n

exp(C(R)(T2 + T1)) 6
C(R)√
n
. (2.20)

Assume by contradiction that there exist t and x such that

w(t, x) 6= v(t, x).

By continuity of v and w, there exists ε > 0 such that (for n > |x|) we have

g(t) = ‖(w − v)
√
χn‖2L2 > ε.

Since ε > 0 is independant of n, we obtain a contradiction with (2.20) when n is
large enough. Therefore for all t and x, we have

v(t, x) = w(t, x),

which concludes the proof.

2.5. From the system to the equation. With Proposition 2.6 in hand, we give
the proof of Theorem 1.1.

Proof of Theorem 1.1. We start by defining v0 by

v0 = ∂u0 +
i

2
|u0|2u0 ∈ X3(R).

From Proposition 2.5 there exists a unique maximal solution (u, v) ∈ C((Tmin,
Tmax), X3(R) × X3(R)) ∩ C1((Tmin, Tmax), X1(R) × X1(R)) of the system (2.3)
associated with (u0, v0). From Proposition 2.6, for all t ∈ (Tmin, Tmax) we have

v = ∂u+
i

2
|u|2u. (2.21)

It follows that

Lu = −iu2v +
1

2
|u|4u = −iu2∂u,

and therefore u is a solution of (1.1) on (Tmin, Tmax). Furthermore

u ∈ C((Tmin, Tmax), X3(R)) ∩ C1((Tmin, Tmax), X1(R)).

To obtain the desired regularity on u, we observe that, since v has the same regu-
larity as u, and verifies (2.21), we have

∂u = v − i

2
|u|2u ∈ C((Tmin, Tmax), X3(R)) ∩ C1((Tmin, Tmax), X1(R))
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This implies that

u ∈ C((Tmin, Tmax), X4(R)) ∩ C1((Tmin, Tmax), X2(R)).

This proves the existence part of the result. Uniqueness is a direct consequence
from Proposition 2.4 and Proposition 2.5.

To prove the blow-up alternative, assume that Tmax <∞. Then from Proposition
2.5 we have

lim
t→Tmax

(‖u(t)‖X1(R) + ‖v(t)‖X1(R)) =∞

On the other hand, since (2.21) we obtain

lim
t→Tmax

(‖u(t)‖X1(R) + ‖∂u(t)‖X1(R)) =∞.

It follows that

lim
t→Tmax

‖u(t)‖X2(R) =∞.

Finally, we establish the continuity with respect to the initial data. Take a subin-
terval [T1, T2] ⊂ (Tmin, Tmax), and a sequence (un0 ) ∈ X4(R) such that un0 → u0 in
X4. Let un be the solution of (1.1) associated with un0 and define vn by

vn = ∂un +
i

2
|un|2un. (2.22)

By Proposition 2.5 the couple (un, vn) is the unique maximal solution of system
(2.3) in

C((Tmin, Tmax), X3(R)×X3(R)) ∩ C1((Tmin, Tmax), X1(R)×X1(R)).

Moreover, we have

lim
n→+∞

(
‖un − u‖L∞([T1,T2],X3) + ‖vn − v‖L∞([T1,T2],X3)

)
= 0 (2.23)

Since v and vn verify the differential identity (2.22), we have

∂(un − u) = (vn − v)− i

2

(
|un|2un − |u|2u

)
.

Therefore we have

lim
n→+∞

‖un − u‖L∞([T1,T2],X4) = 0,

which completes the proof.

3. Results on the space φ+Hk(R) for φ ∈ Xk(R). In this section, we give the
proof of Theorem 1.2 and Theorem 1.3. For k > 1, let φ ∈ Xk(R).

3.1. The local well posedness on φ+H2(R).

3.1.1. From the equation to the system. Define

v = ∂u+
i

2
|u|2u. (3.1)

Since Proposition 2.4, if u solves (1.1) then (u, v) solves the following system:
Lu = −iu2v + 1

2 |u|
4u,

Lv = iuv2 + 3
2 |u|

4v + u2|u|2v,
u(0) = u0,

v(0) = v0 := ∂u0 + i
2 |u0|

2u0.

(3.2)
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Let φ ∈ X4(R). Define ũ = u − φ, ṽ = v − i
2 |φ|

2φ. We have if u solves (1.1) then
(ũ, ṽ) solves: 

Lũ = Q1(ũ, ṽ, φ),

Lṽ = Q2(ũ, ṽ, φ),

ũ(0) = ũ0 := u0 − φ,
ṽ(0) = ṽ0 := v0 − i

2 |φ|
2φ,

(3.3)

where

Q1(ũ, ṽ, φ) = −i(ũ+ φ)2
(
ṽ − i

2
|φ|2φ

)
+

1

2
|ũ+ φ|4(ũ+ φ)− L(φ), (3.4)

Q2(ũ, ṽ, φ) = i(ũ+ φ)

(
ṽ +

i

2
|φ|2φ

)2

+
3

2
|ũ+ φ|4

(
ṽ +

i

2
|φ|2φ

)
+ (ũ+ φ)2|ũ+ φ|2

(
ṽ − i

2
|φ|2φ

)
− i

2
L(|φ|2φ). (3.5)

3.1.2. Resolution of the system. Let k > 1. We note that if φ ∈ Xk+2 then Q1 :
(ũ, ṽ) → Q1(ũ, ṽ, φ) and Q2 : (ũ, ṽ) → Q2(ũ, ṽ, φ) defined as in (3.4) and (3.5) are
Lipschitz continuous on bounded set of Hk(R) ×Hk(R). By similar arguments to
the one used for the proof of Proposition 2.5, we obtain the following local well-
posedness result:

Proposition 3.1. Let k > 1, φ ∈ Xk+2, ũ0, ṽ0 ∈ Hk(R). There exist Tmin < 0,
Tmax > 0 and a unique maximal solution (ũ, ṽ) of the system (3.3) such that ũ, ṽ ∈
C((Tmin, Tmax), Hk(R)) ∩ C1((Tmin, Tmax), Hk−2(R)). Furthermore the following
properties are satisfied.

• Blow-up alternative. If Tmax <∞ (resp. Tmin > −∞ then

lim
t→Tmax(resp. Tmin)

(‖ũ‖Hk + ‖ṽ‖Hk) =∞.

• Continuity with respect to the initial data. If ũn0 , ṽ
n
0 ∈ Hk(R) are such that

‖ũn0 − ũ0‖Hk + ‖ṽn0 − ṽ0‖Hk → 0

then for any subinterval [T1, T2] ⊂ (Tmin, Tmax) the associated solution (ũn,
ṽn) of (3.3) satisfies

lim
n→+∞

(
‖ũn − ũ‖L∞([T1,T2],Hk) + ‖ṽn − ṽ‖L∞([T1,T2],Hk)

)
= 0.

3.1.3. Preservation of a differential identity. Let (ũ0, ṽ0) be defined as in section
3.1.1. By elementary calculation we have

ṽ0 = ∂ũ0 +
i

2
(|ũ0 + φ|2(ũ0 + φ)− |φ|2φ) + ∂φ. (3.6)

We have the following results:

Proposition 3.2. Let φ ∈ X4(R) and ũ0, ṽ0 ∈ H2(R) satisfy (3.6). Then the
associated solution (ũ, ṽ) obtained in Proposition 3.1 also satisfy (3.6) for all t ∈
(Tmin, Tmax).

Proof. We define

w̃ = ∂ũ+
i

2
(|ũ+ φ|2(ũ+ φ)− |φ|2φ) + ∂φ. (3.7)
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Set u = ũ+ φ, v = ṽ + i
2 |φ|

2φ, w = w̃ + i
2 |φ|

2φ. We have

w = ∂u+
i

2
|u|2u. (3.8)

Since (ũ, ṽ) is a solution of (3.3), we have (u, v) is a solution of (3.2). We have

Lu = −iu2(v − w) +H,

where H defined by

H = −iu2w +
1

2
|u|4u.

By using (2.7) and the previously expression obtained for Lu, we get

Lw = ∂(Lu) +
i

2
L(|u|2u)

= ∂(Lu) +
i

2

(
2L(u)|u|2 + 2u(∂u)2 + 2u2∂2u− u2L(u) + 4u|∂u|2

)
= ∂

(
−iu2(v − w)

)
+ ∂H

+i

(
H|u|2 − iu2|u|2(v − w) + u(∂u)2 + u2∂2u− 1

2
u2
(
iu2(v − w) +H

)
+ 2u|∂u|2

)
= −i∂

(
u2(v − w)

)
+ u2|u|2(v − w) +

1

2
|u|4(v − w) +K,

where K is defined by

K = ∂H + iH|u|2 + iu(∂u)2 + iu2∂2u− i

2
u2H + 2iu|∂u|2.

Using (3.8) to replace the term ∂u in K and remark that the role of w is the same
the one of v as in Proposition 2.4, we have

K = iuw2 +
3

2
|u|4w + u2|u|2w.

Thus,

Lw − Lv = −i∂
(
u2(v − w)

)
+ u2|u|2(v − w) +

1

2
|u|4(v − w) + (K − L(v))

= −i∂
(
u2(v − w)

)
+ u2|u|2(v − w)

+
1

2
|u|4(v − w) + iu(w2 − v2) +

3

2
|u|4(w − v) + u2|u|2(w − v)

= −iu2∂(v − w) +A(v − w) +B(v − w),

where

A := −|u|4 − iu(v + w),

B := −2iu∂u = −2iu

(
w − i

2
|u|2u

)
= −2iuw − |u|2u2.

This implies that

L(w̃ − ṽ) = −i(ũ+ φ)2∂(ṽ − w̃) +A(ṽ − w̃) +B(ṽ − w̃). (3.9)

Multiplying both sides of (3.9) by w̃− ṽ, taking the imaginary part, and integrating
over space with integration by part for the first term of right hand side of (3.9), we
obtain

d

dt
‖w̃ − ṽ‖2L2 . (‖ũ+ φ‖L∞‖∂ũ+ ∂φ‖L∞ + ‖A‖L∞ + ‖B‖L∞)‖w̃ − ṽ‖2L2 .
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By Grönwall’s inequality we obtain

‖w̃ − ṽ‖2L2

6 ‖w̃(0)− ṽ(0)‖2L2 × exp(C

∫ t

0

(‖ũ+ φ‖L∞‖∂ũ+ ∂φ‖L∞ + ‖A‖L∞ + ‖B‖L∞) ds).

Using the fact that w̃(0) = ṽ(0), we obtain w̃ = ṽ, for all t. This implies that

ṽ = ∂ũ+
i

2
(|ũ+ φ|2(ũ+ φ)− |φ|2φ) + ∂φ.

This completes the proof of Proposition 3.2.

3.1.4. From the system to the equation. Now, we finish the proof of Theorem 1.2.

Proof of Theorem 1.2. Let φ ∈ X4(R) and u0 ∈ φ+H2(R). We define v0 ∈ X1(R),
ũ0 ∈ H2(R) and ṽ0 ∈ H1(R) in the following way:

v0 = ∂u0 +
i

2
u0|u0|2, ũ0 = u0 − φ, and ṽ0 = v0 −

i

2
|φ|2φ.

We have

ṽ0 = ∂ũ0 +
i

2
(|ũ0 + φ|2(ũ0 + φ)− |φ|2φ) + ∂φ.

From Proposition 3.1 there exists a unique maximal solution (ũ, ṽ) ∈ C((Tmin,
Tmax), H1(R)) ∩ C1((Tmin, Tmax), H−1(R)) of (3.3). Let ũn0 ∈ H3(R) be such that

‖ũn0 − ũ0‖H2(R) → 0

as n→∞. Define ṽn0 ∈ H2(R) by

ṽn0 = ∂ũn0 +
i

2
(|ũn0 + φ|2(ũn0 + φ)− |φ|2φ) + ∂φ.

From Proposition 3.1, there exists a unique solution maximal solution.

ũn, ṽn ∈ C((Tnmin, T
n
max), H2(R)) ∩ C1((Tnmin, T

n
max), L2(R))

of the system (3.3). Let [T1, T2] ⊂ (Tmin, Tmax) be any closed interval. From [3,
proposition 4.3.7], for n > N0 large enough, we have [T1, T2] ⊂ (Tnmin, T

n
max). By

Proposition 3.2, for n > N0, t ∈ [T1, T2], we have

ṽn = ∂ũn +
i

2
(|ũn + φ|2(ũn + φ)− |φ|2φ) + ∂φ.

By Proposition 3.1, we have

lim
n→∞

sup
t∈[T1,T2]

(‖ũn(t)− ũ(t)‖H1(R) + ‖ṽn(t)− ṽ(t)‖H1(R))→ 0.

We obtain that for all t ∈ [T1, T2], and then for all t ∈ (Tmin, Tmax):

ṽ = ∂ũ+
i

2
(|ũ+ φ|2(ũ+ φ)− |φ|2φ) + ∂φ.

This follows that

∂ũ ∈ C((Tmin, Tmax), H1(R)) ∩ C1((Tmin, Tmax), H−1(R)).

Hence we have

ũ ∈ C((Tmin, Tmax), H2(R)) ∩ C1((Tmin, Tmax), L2(R)).

Define u = φ+ ũ and define v by

v = ṽ +
i

2
|φ|2φ = ∂u+

i

2
|u|2u.
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Since (ũ, ṽ) solves (3.3), we have (u, v) solves (3.2). Therefore, u ∈ φ + C((Tmin,
Tmax), H2(R)) ∩ C1((Tmin, Tmax), L2(R)) solves:

Lu = −iu2v +
1

2
|u|4u = −iu2∂u.

This establishes the existence of a solution to (1.1). To prove uniqueness, assume
that U ∈ φ+C((Tmin, Tmax), H2(R))∩C1((Tmin, Tmax), L2(R)) is another solution

of (1.1). Set V = ∂U + i
2 |U |

2U , and Ũ = U − φ, Ṽ = V − i
2 |φ|

2φ. Thus, (Ũ , Ṽ ) ∈
C((Tmin, Tmax), H1(R)) ∩ C1((Tmin, Tmax), H−1(R)) is a solution of (3.3). By the

uniqueness statement in Proposition 3.1, we obtain Ũ = ũ. Hence, u = U , which
proves uniqueness. The blow-up alternative and continuity with respect to the
initial data are proved using similar arguments as in the proof of Theorem 1.1.
This completes the proof of Theorem 1.2.

3.2. The local well posedness on φ+H1(R). In this section, we give the proof
of Theorem 1.3, using the method of Hayashi and Ozawa [11]. As in Section 3.1.1,
we work with the system (3.3).

3.2.1. Resolution of the system. Since we are working in the less regular space φ+
H1(R), we cannot use Proposition 3.1. Instead, we establish the following result
using Strichartz estimate.

Proposition 3.3. Consider the system (3.3). Let φ ∈ X2(R), ũ0, ṽ0 ∈ L2(R).
There exists R > 0 such that if ‖ũ0‖L2 + ‖ṽ0‖L2 < R then there exist T > 0 and a
unique solution (ũ, ṽ) of the system (3.3) verifying

ũ, ṽ ∈ C([−T, T ], L2(R)) ∩ L4([−T, T ], L∞(R)).

Moreover, we have the following continuous dependence on initial data property: If
(ũn0 , ṽ

n
0 ) ∈ L2(R)×L2(R) is a sequence such that ‖ũn0 − ũ0‖2 + ‖ṽn0 − ṽ0‖2 → 0 then

for n large enough we have ‖ũn0‖2 +‖ṽn0 ‖2 < R and the associated solutions (ũn, ṽn)
satisfy:

‖ũn − ũ‖L∞L2∩L4L∞ + ‖ṽn − ṽ‖L∞L2∩L4L∞ → 0,

where we have used the following notation:

L∞L2 = L∞([−T, T ], L2(R)), L4L∞ = L4([−T, T ], L∞(R))

and the norm on L∞L2 ∩ L4L∞ is defined, as usual for the intersection of two
Banach spaces, as the sum of the norms on each space.

Proof. Let Q1, Q2 be defined as in system (3.3). By direct computations, we have

Q1(ũ, ṽ, φ) = −i(ũ+ φ)2ṽ − 1

2
|φ|2φ(ũ2 + 2ũφ) +

1

2
(|ũ+ φ|4 − |φ|4)ũ− ∂2φ,

(3.10)

Q2(ũ, ṽ, φ) = iũ

(
ṽ +

i

2
|φ|2φ

)2

+ iφ

[(
ṽ +

i

2
|φ|2φ

)2

−
(
i

2
|φ|2φ

)2
]

+
3

2
|ũ+ φ|4ṽ,

+
3

4
i|φ|2φ(|ũ+ φ|4 − |φ|4) + ṽ(ũ+ φ)|ũ+ φ|2

− i

2
|φ|2φ((ũ+ φ)2|ũ+ φ|2 − |φ|2φ2)− i

2
∂2(|φ|2φ). (3.11)
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Thus,

|Q1(ũ, ṽ, φ)|
. |ṽ|(|ũ|2 + |φ|2) + |φ|3|ũ|2 + |φ|4|ũ|+ (|ũ|5 + |φ|4|ũ|) + |φ|(|ũ|4 + |ũ||φ|3) + |∂2φ|
. |ṽ||ũ|2 + |ṽ||φ|2 + |ũ|5 + |ũ||φ|4 + |∂2φ|,
|Q2(ũ, ṽ, φ)|
. |ũ|(|ṽ|2 + |φ|6) + |φ|(|ṽ|2 + |ṽ||φ|3) + |ṽ|(|ũ|4 + |φ|4)

+ |φ|3(|ũ|4 + |ũ||φ|3) + |ṽ|(|ũ|3 + |φ|3) + |φ|3(|ũ|4 + |φ|3|ũ|) + |∂2(|φ|2φ)|
. |ũ||ṽ|2 + |ũ||φ|6 + |φ||ṽ|2 + |φ|4|ṽ|+ |ũ|4|ṽ|+ |φ|3|ũ|4

+ |ũ|3|ṽ|+ |φ|3|ṽ|+ |∂2(|φ|2φ)|.
Consider the following problem

(ũ, ṽ) = S(t)(ũ0, ṽ0)− i
∫ t

0

S(t− s)Q(ũ, ṽ, φ) ds (3.12)

where Q = (Q1, Q2). Let

Φ(ũ, ṽ) = S(t)(ũ0, ṽ0)− i
∫ t

0

S(t− s)Qds.

Assume that ‖ũ0‖L2(R) + ‖ṽ0‖L2(R) 6 R
4 for R > 0 small enough. For T > 0 we

define the space XT,R by

XT,R =
{

(ũ, ṽ) ∈ (C([−T, T ], L2(R))

∩L4([−T, T ], L∞(R)))2 : ‖ũ‖L∞L2∩L4L∞ + ‖ṽ‖L∞L2∩L4L∞ 6 R
}
.

We are going to prove that for R, T small enough the map Φ is a contraction from
XT,R to itself.

We first prove that for R, T small enough, Φ maps XT,R into XT,R. Let (ũ, ṽ) ∈
XT,R. By Strichartz estimates we have

‖Φ(ũ, ṽ)‖(L∞L2∩L4L∞)2 . ‖(ũ0, ṽ0)‖L2×L2 + ‖Q‖L1L2×L1L2 ,

.
R

4
+ (‖Q1‖L1L2 + ‖Q2‖L1L2).

We have

‖Q1‖L1L2 . ‖|ũ|2ṽ‖L1L2 + ‖|ṽ||φ|2‖L1L2 + ‖|ũ|5‖L1L2 + ‖∂2φ‖L1L2

.‖ṽ‖L2L2‖ũ‖2L4L∞ + ‖ṽ‖L2L2‖|φ|‖2L4L∞ + ‖ũ‖4L4L∞‖ũ‖L∞L2 + ‖∂2φ‖L1L2

. (2T )
1
2 ‖ṽ‖L∞L2‖ũ‖2L4L∞ + (2T )

1
2 ‖ṽ‖L∞L2‖φ‖L∞(2T )

1
4

+ ‖ũ‖4L4L∞‖ũ‖L∞L2 + ‖∂2φ‖L2(2T )

. (2T )
1
2R3 + (2T )

3
4 ‖φ‖L∞R+R5 + (2T )‖φ‖X2 <

R

4
.

for T,R small enough. Similarly, we also have

‖Q̃2‖L1L2 <
R

4
for T,R small enough. Therefore, for T,R small enough, we have

‖Φ(ũ, ṽ)‖(L∞L2∩L4L∞)2 <
3R

4
< R.

Hence, Φ maps from XT,R into itself.
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We now show that for T,R small enough, the map Φ is a contraction from XT,R

to itself.
Indeed, let (u1, v1), (u2, v2) ∈ XT,R. By Strichartz estimates we have

‖Φ(u1, v1)− Φ(u2, v2)‖(L∞L2∩L4L∞)2

= ‖
∫ t

0

S(t− s) (Q(u1, v1)−Q(u2, v2)) ds‖
(L∞L2∩L4L∞)2

,

. ‖Q1(u1, v1)−Q1(u2, v2)‖L1L2 + ‖Q2(u1, v1)−Q2(u2, v2)‖L1L2 .

Using the same kind of arguments as before we obtain that Φ is a contraction on
XT,R. Therefore, using the Banach fixed-point theorem, there exist T > 0 and
a unique solution (ũ, ṽ) ∈ C([−T, T ], L2(R)) ∩ L4([−T, T ], L∞(R)) of the problem
(3.12). As above, we see that if h, k ∈ C([−T, T ], L2(R))∩L4([−T, T ], L∞(R)) then
Q1(h, k, φ), Q2(h, k, φ) ∈ L1([−T, T ], L2(R)). By [3, Proposition 4.1.9], (ũ, ṽ) ∈
C([−T, T ], L2(R)) ∩ L4([−T, T ], L∞(R)) solves (3.12) if only if (ũ, ṽ) solves (3.3).
Thus, we proved the existence of a solution of (3.3). The uniqueness of solution of
(3.3) is obtained by the uniqueness of solution of (3.12).

It is remains to prove the continuous dependence on initial data. Assume that
(un0 , v

n
0 ) ∈ L2(R)× L2(R) is such that

‖un0 − ũ0‖L2(R) + ‖vn0 − ṽ0‖L2(R) → 0,

as n→∞. In particular, for n large enough, we have

‖un0‖L2(R) + ‖vn0 ‖L2(R) < R.

There exists a unique maximal solution (un, vn) of system (3.3), and we may assume
that for n large enough, (un, vn) is defined on [−T, T ]. Assume that T small enough
such that

‖ũ‖L∞L2∩L4L∞ + ‖ṽ‖L∞L2∩L4L∞ + sup
n

(‖un‖L∞L2∩L4L∞ + ‖vn‖L∞L2∩L4L∞) 6 2R.

(3.13)
We have (ũ, ṽ) is a solution of the following system

(ũ, ṽ) = S(t)(ũ0, ṽ0)− i
∫ t

0

S(t− s)(Q1(ũ, ṽ, φ), Q2(ũ, ṽ, φ)).

Similarly, (un, vn) are solutions of the following system

(un, vn) = S(t)(un0 , v
n
0 )− i

∫ t

0

S(t− s)(Q1(un, vn, φ), Q2(un, vn, φ)).

Hence,

(un − u, vn − v)

= S(t)(un0 − ũ0, vn0 − ṽ0)

− i
∫ t

0

S(t− s)(Q1(ũ, ṽ, φ)−Q1(un, vn, φ), Q2(ũ, ṽ, φ)−Q2(un, vn, φ)).
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Using Strichartz estimates and (3.13), for all t ∈ [−T, T ] and R, T small enough,
we have

‖un − ũ‖L∞L2∩L4L∞ + ‖vn − ṽ‖L∞L2∩L4L∞

. ‖un0 − ũ0‖L2 + ‖vn0 − ṽ0‖L2

+ ‖Q1(ũ, ṽ, φ)−Q1(un, vn, φ)‖L1L2 + ‖Q2(ũ, ṽ, φ)−Q2(un, vn, φ))‖L1L2

. ‖un0 − ũ0‖L2 + ‖vn0 − ṽ0‖L2

+R(‖un − ũ‖L∞L2∩L4L∞ + ‖vn − ṽ‖L∞L2∩L4L∞).

For R < 1
2 small enough, we have

1

2
(‖un − ũ‖L∞L2∩L4L∞ + ‖vn − ṽ‖L∞L2∩L4L∞) 6 ‖ũ0 − un0‖L2(R) + ‖ṽ0 − vn0 ‖L2(R).

Letting n→ +∞ we obtain the desired result.

3.2.2. From the system to the equation. Now, we finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Let φ ∈ X4(R) be such that ‖∂φ‖L2 is small enough. Let
u0 ∈ φ+H1(R) be such that ‖u0−φ‖H1 is small enough. Set v0 = ∂u0 + i

2 |u0|
2u0,

ũ0 = u0 − φ and ṽ0 = v0 − i
2 |φ|

2φ. We have

ṽ0 = ∂ũ0 +
i

2
(|ũ0 + φ|2(ũ0 + φ)− |φ|2φ) + ∂φ.

Furthermore, ũ0 ∈ H1(R), ṽ0 ∈ L2(R) satisfy:

‖ũ0‖L2(R) + ‖ṽ0‖L2(R) . ‖ũ0‖H1(R) + ‖∂φ‖L2 ,

which is small enough by the assumption. By Proposition 3.3, there exist T > 0
and a unique solution (ũ, ṽ) ∈ C([−T, T ], L2(R))∩L4([−T, T ], L∞(R)) of the system
(3.3). Let un0 ∈ H3(R) satisfy ‖un0 − ũ0‖H1(R) → 0 as n→ +∞. Set

vn0 = ∂un0 +
i

2
(|un0 + φ|2(un0 + φ)− |φ|2) + ∂φ.

Let (un, vn) be the H2(R) solution of the system (3.3) obtained by Proposition 3.1
with data (un0 , v

n
0 ). By Proposition 3.2 we have

vn = ∂un +
i

2
(|un + φ|2(un + φ)− |φ|2φ) + ∂φ. (3.14)

Furthermore,
‖un0 − ũ0‖L2(R) + ‖vn0 − ṽ0‖L2(R) → 0.

From the continuous dependence on the initial data obtained in Proposition 3.3,
(un, vn), (ũ, ṽ) are solutions of the system (3.3) on [−T, T ] for n large enough, and

‖un − ũ‖L∞L2∩L4L∞ + ‖vn − ṽ‖L∞L2∩L4L∞ → 0

as n→∞. Letting n→∞ on the two sides of (3.14), we obtain for all t ∈ [−T, T ]

ṽ = ∂ũ+
i

2
(|ũ+ φ|2(ũ+ φ)− |φ|2φ) + ∂φ, (3.15)

which makes sense in H−1(R). From (3.15) we see that ∂ũ ∈ C([−T, T ], L2(R)) and
(3.15) makes sense in L2(R). Then ũ ∈ C([−T, T ], H1(R)) ∩ L4([−T, T ], L∞(R)).
By the Sobolev embedding of H1(R) in L∞(R) we obtain that

‖|ũ+ φ|2(ũ+ φ)− |φ|2φ‖L4L∞ . ‖|ũ|3‖L4L∞ + ‖|ũ||φ|2‖L4L∞

< ‖ũ‖L4L∞‖ũ‖L∞L∞ + ‖ũ‖L4L∞‖φ‖2L∞L∞ <∞.
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Hence, |ũ + φ|2(ũ + φ) − |φ|2φ ∈ L4L∞. From (3.15) we obtain that ∂ũ ∈ L4L∞

which implies ũ ∈ L4([−T, T ],W 1,∞(R)). Set u = ũ+φ, v = ṽ+ i
2 |φ|

2φ, then u−φ ∈
C([−T, T ], H1(R)) ∩ L4([−T, T ],W 1,∞(R)) and v − i

2 |φ|
2φ ∈ C([−T, T ], L2(R)) ∩

L4([−T, T ], L∞(R)). Moreover,

v = ∂u+
i

2
|u|2u.

Since (u, v) solves (3.2), we have

Lu = −iu2v +
1

2
|u|4u = −iu2∂u.

The existence of a solution of the equation (1.1) follows. To prove the uniqueness
property, assume that U ∈ C([−T, T ], φ + H1(R)) ∩ L4([−T, T ], φ + W 1,∞(R)) is

another solution of the equation (1.1). Set V = ∂U + i
2 |U |

2U and Ũ = U −
φ, Ṽ = V − i

2 |φ|
2φ. Hence Ũ ∈ C([−T, T ], H1(R)) ∩ L4([−T, T ],W 1,∞(R)) and

Ṽ ∈ C([−T, T ], L2(R)) ∩ L4([−T, T ], L∞(R)). Moreover, (Ũ , Ṽ ) is a solution of the

system (3.3). By the uniqueness of solutions of (3.3), we obtain that Ũ = ũ. Hence,
u = U , which completes the proof.

4. Conservation of the mass, the energy and the momentum. In this sec-
tion, we prove Theorem 1.4. Let q0 ∈ R and u ∈ q0 +H2(R) be a solution of (1.1).
Let χ and χR be the functions defined as in (1.5) and (1.7). We have

‖χ′R‖L2(R) =

(∫
R

1

R2

(
χ′
( x
R

))2
dx

) 1
2

=
1

R
1
2

‖χ′‖L2(R) → 0 asR→∞. (4.1)

Similarly, for each a ∈ R, we have

‖χ′a,R‖L2(R) → 0 asR→∞. (4.2)

By the continuous dependence on initial data property of solution, we can assume
that u0 ∈ q0 +H3(R), so that

u ∈ C((Tmin, Tmax), q0 +H3(R)).

It is enough to prove conservation of generalized mass, conservation of energy (1.8)
and conservation of momentum (1.9) for any closed interval [T0, T1] ∈ (Tmin, Tmax).
Let T0 < 0, T1 > 0 be such that [T0, T1] ⊂ (Tmin, Tmax). Let M > 0 be defined by

M = sup
t∈[T0,T1]

‖u− q0‖H3(R).

4.1. Conservation of mass. Multiplying both sides of (1.1) by u and taking
imaginary part to obtain

Re(utu) + Im(∂2uu) +Re(|u|2u∂u) = 0.

This implies that

0 =
1

2
∂t(|u|2) + ∂(Im(∂uu)) +

1

4
∂(|u|4)

=
1

2
∂t(|u|2 − q20) + ∂(Im(∂uu)) +

1

4
∂(|u|4 − q40).
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By multiplying both sides by χR, integrating on space, and integrating by part
we have

0 = ∂t

∫
R

1

2
(|u|2 − q20)χRdx−

∫
R
Im(∂uu)χ′R −

∫
R

(|u|4 − q40)

4
χ′Rdx

= ∂t

∫
R

1

2
(|u|2 − q20)χRdx−

∫
R

(
Im(∂uu) +

1

4
(|u|4 − q40)

)
χ′Rdx. (4.3)

Denote the second term of (4.3) by K, using (4.1), we have

|K| 6 ‖Im(∂uu) +
1

4
(|u|4 − q40)‖L2‖χ′R‖L2 . C(M)

1

R
1
2

→ 0 as R→∞.

Thus, by integrating from 0 to t and taking R to infinity we obtain

lim
R→∞

(∫
R

1

2
(|u|2 − q20)χRdx−

∫
R

1

2
(|u0|2 − q20)χRdx

)
= 0. (4.4)

Similarly, for each a ∈ R, we have

lim
R→∞

(∫
R

1

2
(|u|2 − q20)χa,Rdx−

∫
R

1

2
(|u0|2 − q20)χa,Rdx

)
= 0. (4.5)

as R → ∞. This implies that m+(u(t)) and m−(u(t)) are conserved in time. In
particular, if m+(u0) = m−(u0) = m(u0) then m+(u(t)) = m−(u(t)) = m(u(t)) =
m(u0). This completes the proof of conservation of mass.

4.2. Conservation of energy. Now, we prove the conservation of the energy.
Since u solves (1.1), after elementary calculations, we have

∂t(|∂u|2) = ∂
(
2Re(∂u∂tu) +Re(u2(∂u)2)− |∂u|2|u|2 − |u|4Im(u∂u)

)
+ |u|4∂Im(u∂u) + 2Im(|u|2∂uut). (4.6)

Recall that we have

∂Im(∂uu) = −1

2
∂t(|u|2)− 1

4
∂(|u|4). (4.7)

Furthermore,

∂tIm(|u|2u∂u) = 4Im(ut|u|2∂u) + ∂Im(|u|2u∂tu).

Thus,

2Im(|u|2ut∂u) =
1

2

(
∂tIm(|u|2u∂u)− ∂Im(|u|2u∂tu)

)
. (4.8)

Combining (4.6), (4.7) and (4.8) we obtain

∂t(|∂u|2)

= ∂

(
2Re(∂u∂tu) +Re(u2(∂u)2)− |u|2|∂u|2 − |u|4Im(∂uu)− 1

2
Im(|u|2u∂tu)

)
+

1

2
∂tIm(|u|2u∂u)− 1

8
∂(|u|8)− 1

6
∂t(|u|6).

Hence,

∂t

(
|∂u|2 − 1

2
Im((|u|2u− q30)∂u) +

1

6
(|u|6 − q60)

)
= ∂

(
2Re(∂u∂tu) +Re(u2(∂u)2)− |u|2|∂u|2 − |u|4Im(∂uu)



ON THE CAUCHY PROBLEM FOR DERIVATIVE NLS 23

−1

2
Im(|u|2u∂tu)− 1

8
(|u|8 − q80)

)
+

1

2
q30Im∂t∂(u− q0).

Multiplying both sides by χR, integrating in space and integrating by part we obtain

∂t

∫
R

(
|∂u|2 − 1

2
Im((|u|2u− q30)∂u) +

1

6
(|u|6 − q60)

)
χR dx

= −
∫
R
χ′R
(
2Re(∂u∂tu) +Re(u2(∂u)2)− |u|2|∂u|2 − |u|4Im(∂uu)

−1

2
Im(|u|2u∂tu)− 1

8
(|u|8 − q80)

)
dx

− q30
2
Im∂t

∫
R

(u− q0)χ′R dx.

Integrating from 0 to t we obtain∫
R

(
|∂u|2 − 1

2
Im((|u|2u− q30)∂u) +

1

6
(|u|6 − q60)

)
χR dx (4.9)

−
∫
R

(
|∂u0|2 −

1

2
Im((|u0|2u0 − q30)∂u0) +

1

6
(|u0|6 − q60)

)
χR dx (4.10)

=

∫ t

0

∫
R
χ′R
(
2Re(∂u∂tu) +Re(u2(∂u)2)− |u|2|∂u|2 − |u|4Im(∂uu)

−1

2
Im(|u|2u∂tu)− 1

8
(|u|8 − q80)

)
dx ds (4.11)

− q30
2

(
Im
∫
R

(u− q0)χ′R dx− Im
∫
R

(u0 − q0)χ′R dx

)
. (4.12)

Denoting the term (4.11) by AR, using (4.1), we have

|AR| 6 ‖χ′R‖L2‖2Re(∂u∂tu) +Re(u2(∂u)2)− |u|2|∂u|2 − |u|4Im(∂uu)

− 1

2
Im(|u|2u∂tu)− 1

8
(|u|8 − q80)‖L2

. C(M)‖χ′R‖L2 → 0 as R→∞. (4.13)

Moreover, using (4.1) again, we have∣∣∣∣Im ∫
R

(u− q0)χ′R dx

∣∣∣∣ 6 ‖u− q0‖L2‖χ′R‖L2 . C(M)‖χ′R‖L2 → 0 as R→∞.

(4.14)∣∣∣∣Im ∫
R

(u0 − q0)χ′R dx

∣∣∣∣ 6 ‖u0 − q0‖L2‖χ′R‖L2 . C(M)‖χ′R‖L2 → 0 as R→∞.

(4.15)

To deal with the term (4.9), we need to divide it into two terms. First, using
u ∈ q0 +H3(R), as R→∞, we have∫
R

(
|∂u|2 − 1

2
Im((|u|2u− q30)∂u)

)
χR dx→

∫
R

(
|∂u|2 − 1

2
Im((|u|2u− q30)∂u)

)
dx.

(4.16)

Second, by easy calculations, we have

1

6

∫
R

(|u|6 − q60)χR −
1

6

∫
R

(|u0|6 − q60)χR dx
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=
1

6

∫
R

[
(|u|2 − q20)(|u|4 + q20 |u|2 − 2q40) + 3q40(|u|2 − q20)

]
χR dx

− 1

6

∫
R

[
(|u0|2 − q20)(|u0|4 + q20 |u0|2 − 2q40) + 3q40(|u0|2 − q20)

]
χR dx

=
1

6

∫
R

(|u|2 − q20)2(|u|2 + 2q20)χR dx−
1

6

∫
R
(|u0|2 − q20)2(|u0|2 + 2q20)χR dx (4.17)

+
q40
2

∫
R

(|u|2 − q20)χR dx−
q40
2

∫
R

(|u0|2 − q20)χR dx. (4.18)

Denote the term (4.17) by BR, we have

BR →
1

6

∫
R

(|u|2 − q20)(|u|4 + q20 |u|2 − 2q40) dx

− 1

6

∫
R

(|u0|2 − q20)(|u0|4 + q20 |u0|2 − 2q40) dx as R→ +∞. (4.19)

The term (4.18) converges to 0 as R→∞ by (4.4). Finally, we have

lim
R→∞

(
1

6

∫
R

(|u|6 − q60)χR dx−
1

6

∫
R

(|u0|6 − q60)χR dx

)
=

1

6

∫
R

(|u|2 − q20)2(|u|2 + 2q20) dx− 1

6

∫
R

(|u0|2 − q20)2(|u0|2 + 2q20) dx. (4.20)

Combining (4.20) and (4.16) we have

lim
R→∞

( the term (4.9)− the term (4.10))

=

∫
R
|∂u|2 − 1

2
Im(|u|2u− q30)∂u) dx+

1

6

∫
R

(|u|2 − q20)2(|u|2 + 2q20) dx

−
∫
R
|∂u0|2 −

1

2
Im(|u0|2u− q30)∂u0) dx− 1

6

∫
R
(|u0|2 − q20)2(|u0|2 + 2q20) dx (4.21)

Combining (4.9)-(4.15), (4.21), we have∫
R
|∂u|2 − 1

2
Im(|u|2u− q30)∂u) dx+

1

6

∫
R
(|u|2 − q20)2(|u|2 + 2q20) dx

=

∫
R
|∂u0|2 −

1

2
Im(|u0|2u0 − q30)∂u0) dx+

1

6

∫
R

(|u0|2 − q20)2(|u0|2 + 2q20) dx.

This implies (1.8).

4.3. Conservation of momentum. Now, we prove (1.9). Multiplying both sides
of (1.1) by −∂u and taking real part we obtain

0 = −Re(iut∂u+ ∂2u∂u+ iu2(∂u)2)

= Im(ut∂u) + Im(u2(∂u)2)− 1

2
∂(|∂u|2). (4.22)

Moreover, by elementary calculation, we have

∂tIm(u∂u) = 2Im(ut∂u) + ∂Im(u∂tu).

Replacing Im(ut∂u) = 1
2 (∂tIm(u∂u)− ∂Im(u∂tu)) in (4.22), we obtain that

0 =

(
1

2
∂tIm(u∂u)− 1

2
∂Im(u∂tu)

)
+ 2Re(u∂u)Im(u∂u)− 1

2
∂(|∂u|2)



ON THE CAUCHY PROBLEM FOR DERIVATIVE NLS 25

= ∂t

[
1

2
Im(u∂u)− 1

4
(|u|4 − q40)

]
+ ∂

[
Im(|u|2u∂u)− 1

2
|∂u|2 − 1

6
(|u|6 − q60)

]
.

Multiply both sides by χR, integrating on space and integrating by part, we have

0 = ∂t

∫
R

[
1

2
Im(u∂u)− 1

4
(|u|4 − q40)

]
χRdx

−
∫
R

[
Im(|u|2u∂u)− 1

2
|∂u|2 − 1

6
(|u|6 − q60)

]
χ′Rdx

= ∂t

∫
R

[
1

2
Im(u∂u)− 1

4
(|u|2 − q20)2 − 1

2
q20(|u|2 − q20)

]
χRdx

−
∫
R

[
Im(|u|2u∂u)− 1

2
|∂u|2 − 1

6
(|u|6 − q60)

]
χ′Rdx. (4.23)

Denoting the second term of (4.23) by DR, we have

|DR| 6 ‖Im(|u|2u∂u)− 1

2
|∂u|2 − 1

6
(|u|6 − q60)‖L2‖χ′R‖L2

. C(M)‖χ′R‖L2 → 0 as R→∞. (4.24)

Integrating from 0 to t the two sides of (4.23) and taking R to infinity, using (4.24)
and (4.4), we have∫

R

[
1

2
Im(u∂u)− 1

4
(|u|2 − q20)2

]
dx =

∫
R

[
1

2
Im(u0∂u0)− 1

4
(|u0|2 − q20)2

]
dx.

(4.25)

We thus obtain the conservation of momentum, which completes the proof of The-
orem 1.4.

5. Stationary solutions. In this section, we give the proof of Theorem 1.7. To
convenience for readers, we first introduce a fundamental lemma which is a classical
version of the Cauchy-Lipschitz theorem:

Lemma 5.1. Let C1, C2 ∈ R and f : R → R be a C1 function. There exists a
unique real valued C2 local solution of following equation

uxx = f(u),

u(0) = C1,

ux(0) = C2.

(5.1)

Remark 5.2. Let C1, C2 ∈ C and f be considered as C1 function from R2 to
R2. By using Picard’s uniqueness and existence theorem for system equations, we
obtain the existence and uniqueness of complex valued solution for (5.1). However,
the Lemma 5.1 is sufficient for our analysis in this paper.

Now, we give the proof of Theorem 1.7. We use the similar of variable changing
as in [14, Proof of Proposition 1.1].

Proof of Theorem 1.7. Let φ be a nonconstant solution of (1.10) such that m =
inf
x∈R
|φ(x)| > 0. From (1.10), we have φ ∈ X3(R). Using the assumptions on φ we

can write φ as

φ(x) = R(x)eiθ(x)
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where R > 0 and R, θ ∈ C2(R) are real-valued functions. We have

φx = eiθ(Rx + iθxR),

φxx = eiθ(Rxx + 2iRxθx + iRθxx −Rθ2x).

Hence, since φ satisfies (1.10) we obtain

0 = (Rxx −Rθ2x +R3θx) + i(2Rxθx +Rθxx +R2Rx).

This is equivalent to

0 = Rxx −Rθ2x +R3θx, (5.2)

0 = 2Rxθx +Rθxx +R2Rx. (5.3)

The equation (5.3) is equivalent to

0 = ∂x

(
R2θx +

1

4
R4

)
.

Hence there exists B ∈ R such that

B = R2θx +
1

4
R4. (5.4)

This implies

θx =
B

R2
− R2

4
. (5.5)

Substituting the above equality in (5.2) we obtain

0 = Rxx −R
(
B

R2
− R2

4

)2

+R3

(
B

R2
− R2

4

)
= Rxx −

B2

R3
− 5R5

16
+

3BR

2
. (5.6)

We prove that the set V = {x ∈ R : Rx(x) 6= 0} is dense in R. Indeed, assume there
exists x ∈ R \ V . Thus, there exists ε such that B(x, ε) ∈ R \ V . It implies that for
all y ∈ B(x, ε), we have Rx(y) = 0 so R ≡ C0 on B(x, ε) for some constants C0. Let
x0 ∈ B(x, ε) then R(x0) = C0 and Rx(x0) = 0. By Lemma 5.1, R ≡ C0. By (5.5),
θx is constant. Thus, φ(x) is of form Ceiαx, for some constants C,α ∈ R. If α = 0,
φ is a constant and if α 6= 0 φ is not in X1(R), which contradicts the assumption
of φ. From (5.6), we have

0 = Rx

(
Rxx −

B2

R3
− 5R5

16
+

3BR

2

)
=

d

dx

[
1

2
R2
x +

B2

2R2
− 5

96
R6 +

3B

4
R2

]
.

Hence there exists a ∈ R such that

a =
1

2
R2
x +

B2

2R2
− 5

96
R6 +

3B

4
R2.

This is equivalent to

0 = R2
xR

2 +B2 − 5

48
R8 +

3B

2
R4 − 2aR2

=
1

4
[(R2)x]2 +B2 − 5

48
R8 +

3B

2
R4 − 2aR2.
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Set k = R2. We have

0 =
1

4
k2x +B2 − 5

48
k4 +

3B

2
k2 − 2ak. (5.7)

Differentiating the two sides of (5.7) we have

0 = kx

(
kxx
2
− 5

12
k3 + 3Bk − 2a

)
On the other hand, since kx = 2RxR 6= 0 for a.e x in R, we obtain the following
equation for a.e x in R, hence, by continuity of k, it is true for all x in R:

0 =
kxx
2
− 5

12
k3 + 3Bk − 2a. (5.8)

Now, using Lemma 5.3 we have k−2
√
B ∈ H3(R). Combining with (5.8) we obtain

a = 4B
√
B

3 . Set h = k − 2
√
B. Then from (5.8) h ∈ H3(R) solves{

0 = hxx − 5
6h

3 − 5
√
Bh2 − 4Bh,

h > −2
√
B,

(5.9)

Since h ∈ H3(R), there exists x0 ∈ R such that hx(x0) = 0. Indeed, if hx does not
change sign on R then |h(−∞)| > 0 or |h(∞)| > 0. This contradicts to h ∈ H3(R).
Multiplying both sides of (5.9) by hx we obtain

0 =
1

2
∂x(h2x)− 5

24
∂x(h4)− 5

√
B

3
∂x(h3)− 2B∂x(h2).

Since h ∈ H3(R) we have h(∞) = hx(∞) = 0 and hence,

1

2
(hx)2 =

5

24
h4 +

5
√
B

3
h3 + 2Bh2. (5.10)

Using hx(x0) = 0, since (5.10), we have h(x0) = 0 or h(x0) = 4
5 (−5±

√
10)
√
B. If

h(x0) = 0 then by using Lemma 5.1, we have h ≡ 0, this is a contradiction. Since

h > −2
√
B, we obtain h(x0) = 4

5 (−5+
√

10)
√
B. Define v(x) = h(x+x0). We have

0 = vxx − 5
6v

3 − 5
√
Bv2 − 4Bv,

v(0) = 4
5 (−5 +

√
10)
√
B,

vx(0) = 0.

(5.11)

Using Lemma 5.1, there exists a unique solution v of (5.11). Moreover, we can
check that the following function is a solution of (5.11):

v(x) =
−1√

5
72B cosh(2

√
Bx) + 5

12
√
B

.

Hence,

h(x) =
−1√

5
72B cosh(2

√
B(x− x0)) + 5

12
√
B

This implies

k = 2
√
B + h = 2

√
B +

−1√
5

72B cosh(2
√
B(x− x0)) + 5

12
√
B

.
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Furthermore, using θx = B
k −

k
4 , there exists θ0 ∈ R such that

θ(x) = θ0 −
∫ ∞
x

(
B

k
− k

4

)
dy.

Now, assume that φ is a solution of (1.10) such that φ(∞) = 0. We prove φ ≡ 0 on
R. Multiplying both sides of (1.10) by φ then taking the imaginary part we obtain

∂xIm(φxφ) +
1

4
∂x(|φ|4) = 0

On the other hand, φ(∞) = φx(∞) = 0 then on R we have

Im(φxφ) +
1

4
|φ|4 = 0. (5.12)

If there exists y0 such that φx(y0) = 0 then from (5.12) we have φ(y0) = 0. By
the uniqueness of Cauchy problem we obtain φ ≡ 0 on R. Otherwise, φx does not
vanish on R. From now on, we will consider this case. Multiplying both sides of
(1.10) by φx then taking the real part, we have

0 = Re(φxxφx)− Im(φ2φx
2
)

=
1

2

d

dx
|φx|2 − 2Re(φφx)Im(φφx)

=
1

2

d

dx
|φx|2 − ∂x(|φ|2)

1

4
|φ|4

=
d

dx

(
1

2
|φx|2 −

1

12
|φ|6

)
.

This implies that

|φx|2 −
1

6
|φ|6 = 0.

Hence, since φx is non vanishing, φ is also non vanishing on R. We can write
φ = ρeiθ for ρ > 0, ρ, θ ∈ C2(R). Similar to (5.2) we have

0 = −ρθ2x + ρxx + ρ3θx. (5.13)

Replacing φ = ρeiθ in (5.12) we have

0 = ρ2θx +
1

4
ρ4.

Then θx = −1
4 ρ

2, replacing this equality in (5.13) we obtain

0 = ρxx −
5

16
ρ5.

Multiplying both sides of the above equality by ρx we obtain

0 = ρxxρx −
5

16
ρ5ρx =

d

dx

(
1

2
ρ2x −

5

96
ρ6
)
.

Hence,

0 = ρ2x −
5

48
ρ6.

Moreover, φ is non vanishing on R then ρ > 0 and then ρx is not change sign on R.
If ρx > 0 then since ρ(∞) = 0 we have ρ < 0 on R, a contradiction. Hence, ρx < 0



ON THE CAUCHY PROBLEM FOR DERIVATIVE NLS 29

and ρx = −
√

5
48ρ

3. From this we easily check that

ρ2(x) =
1

ρ(0)2 +
√

5/12x
,

which implies the contradiction, for the right hand side is not a continuous function
on R. This completes the proof.

Lemma 5.3. Let B > 0 be the constant given as the above. The following is true:

k − 2
√
B ∈ L2(R), k ∈ X3(R).

Proof. Using φ ∈ L∞(R) we obtain k ∈ L∞(R). On the other hand, since φ ∈
X3(R), we have φx ∈ L2(R), φxx ∈ L2(R) and it easy to see that

|φx|2 =
k2x
4k

+ kθ2x ∈ L1(R),

|φxx|2 =

∣∣∣∣kxθx√k + θxx
√
k

∣∣∣∣2 +

∣∣∣∣ kxx2
√
k
−
√
kθ2x −

k2x

4k
√
k

∣∣∣∣2 ∈ L1(R).

This implies

kx

2
√
k
∈ L2(R) and

√
kθx ∈ L2(R)

kxθx√
k

+ θxx
√
k ∈ L2(R) and

kxx

2
√
k
−
√
kθ2x −

k2x

4k
√
k
∈ L2(R).

Using
√
m < k < ‖k‖L∞ , θx = 4B−k2

4k ∈ L∞(R), kx = 2RRx ∈ L∞( indeed |φx|2 =

|Rx|2 + |Rθx|2 ∈ L∞(R)) we have

kx ∈ L2 and θx ∈ L2,

θxx ∈ L2 and kxx ∈ L2.

By using θx = 4B−k2
4k ∈ L2(R), we have 4B − k2 ∈ L2(R). Thus, B > 0 and

2
√
B − k ∈ L2(R). If B = 0 then k ∈ L2(R), hence, R ∈ L2(R). Which contradicts

to the assumption m > 0. Thus, B > 0. It remains to prove that kxxx ∈ L2(R).
Indeed, from φxxx ∈ L2(R) we have

|φxxx|2 = |θxxx
√
k +M|2 +

∣∣∣∣kxxx2
√
k

+N
∣∣∣∣2 ∈ L1(R) (5.14)

whereM,N are functions of θ, θx, θxx, k, kx, kxx. We can easily check thatM,N ∈
L2(R). Hence, from (5.14) and the facts that θx ∈ H1(R), k ∈ X2(R), k bounded
from below we obtain θxxx, kxxx ∈ L2(R). This implies the desired results.

From now on, we will denote φB is the stationary solution of (1.10) given by
Theorem 1.7 with θ0 = 0. We have

φB = eiθ
√
k , (5.15)

k(x) = 2
√
B +

−1√
5

72B cosh(2
√
Bx) + 5

12
√
B

, (5.16)

θ(x) = −
∫ ∞
x

B

k(y)
− k(y)

4
dy. (5.17)

We have the following asymptotic properties for φB at ∞.
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Proposition 5.4. Let B > 0 and φB be kink solution of (1.1). Then for x > 0, we
have

|φB −
√

2
√
B| . e−

√
Bx.

As consequence φB converges to
√

2
√
B as x tends to ∞ and there exists limit of

φB as x tends to −∞.

Proof. Since (5.16) we have

|k − 2
√
B| . e−2

√
Bx.

Hence, for all x ∈ R we have

|φB(x)−
√

2
√
B| . |eiθ(x)

√
k(x)−

√
k(x)|+ |

√
k(x)−

√
2
√
B| (5.18)

. ‖k‖
1
2

L∞ |eiθ(x) − 1|+ e−
√
Bx (5.19)

Moreover, for x > 0, we have

|eiθ(x) − 1| 6 |θ(x)| 6
∫ ∞
x

∣∣∣∣Bk − k

4

∣∣∣∣ dx
6
∫ ∞
x

∣∣∣∣∣Bk −
√
B

2

∣∣∣∣∣+

∣∣∣∣∣
√
B

2
− k

4

∣∣∣∣∣ dx
.
∫ ∞
x

∣∣∣k − 2
√
B
∣∣∣ dx .

∫ ∞
x

e−2
√
Bx dx . e−2

√
Bx.

Combining with (5.19) we obtain

|φB(x)−
√

2
√
B| . e−

√
Bx.

As consequence φB converges to
√

2
√
B as x tends to ∞. Since (5.16), we have

|k − 2
√
B| ∈ L1(R) and k >

(
2− 1

5
12+
√

5
72

)√
B. Thus, B

k −
k
4 = 4B−k2

4k ∈ L1(R).

Hence since (5.17) we have

lim
x→−∞

θ(x) = −
∫ ∞
−∞

(
B

k(y)
− k(y)

4

)
dy.

Hence,

lim
x→−∞

φB(x) = exp

(
−i
∫ ∞
−∞

(
B

k(y)
− k(y)

4

)
dy

)√
2
√
B.

This completes the proof.
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