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Abstract: The problem of forest fires in Yakutia is not as well studied as in other countries. Two 
methods of machine learning classifications were implemented to determine the risk of fire: 
MaxENT and random forest. The initial materials to define fire risk factors were satellite images and 
their products of various spatial and spectral resolution (Landsat TM, Modis TERRA, GMTED2010, 
VIIRS), vector data (OSM), and bioclimatic variables (WORLDCLIM). The results of the research 
showed a strong human influence on the risk in this region, despite the low population density. 
Anthropogenic factors showed a high correlation with the occurrence of wildfires, more than 
climatic or topographical factors. Other factors affect the risk of fires at the macroscale and 
microscale, which should be considered when modeling. The random forest method showed better 
results in the macroscale, however, the maximum entropy model was better in the microscale. The 
exclusion of variables that do not show a high correlation, does not always improve the modeling 
results. The random forest presence prediction model is a more accurate method and significantly 
reduces the risk territory. The reverse is the method of maximum entropy, which is not as accurate 
and classifies very large areas as endangered. Further study of this topic requires a clearer and 
conceptually developed approach to the application of remote sensing data. Therefore, this work 
makes sense to lay the foundations of the future, which is a completely automated fire risk 
assessment application in the Republic of Sakha. The results can be used in fire prophylactics and 
planning fire prevention. In the future, to determine the risk well, it is necessary to combine the 
obtained maps with the seasonal risk determined using indices (for example, the Nesterov index 
1949) and the periodic dynamics of forest fires, which Isaev and Utkin studied in 1963. Such actions 
can help to build an application, with which it will be possible to determine the risk of wildfire and 
the spread of fire during extreme events. 

Keywords: wildfires; MaxENT; random forest; risk modeling; GIS; multi-scale analysis; Yakutia; 
Artic; Siberia 

 

1. Introduction 

The disturbance regime in the boreal forest is extremely variable. Every year in Siberia, millions 
of hectares of forest are burned. Forest fires are one of the main factors causing not only long-term, 
harmful changes in plant ecosystems, but also contribute to the deterioration of living conditions in 
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society, especially in the event of wildfires. Taiga fire is a natural phenomenon. Fires determine the 
normal, ecological functioning of the forest in this region. Forest fires are an inseparable part of the 
natural cycle. After the fire, there are favorable conditions for the young generation of trees. Wildfires 
are important for the indigenous peoples of Siberia. The territory after the wildfire turns into a 
pasture and people harvest berries for winter stocks. Fires have deep consequences and issues to the 
transformation of the landscape in the specific context of permafrost. Fire in forest areas where 
permafrost is spread is considered as an important factor in modeling the surface and influencing 
geomorphological processes. 

Boreal forest plays a big role in the circulation of carbon dioxide in the regional and global scale. 
Changes in fire regime and climate in this region have already started, and they have an impact on 
the carbon releasing dynamic not only during the fire, but also years after the fire when the 
permafrost is thawing [1,2]. Forest fires in Russia, in general, and in the Republic of Sakha (Yakutia) 
are one of the main and most common natural threats. Currently, the area covered by forest fires has 
increased significantly. According to the results of scientific research, not the least role in the spread 
of fires is played by the human factor. Almost half of all forest fires that have occurred in Yakutia are 
caused by humans [2]. The occurrence and spread of forest fires are influenced by a complex of 
different factors that mutually reinforce each other and create conditions that contribute to the forest 
fire. 

Geoinformation systems and modern remote sensing methods are a popular and effective means 
of identifying the most important factors affecting fires. GIS technologies are effective for building 
the necessary long-term fire safety models in countries such as Canada, the USA, and most of the 
European countries, where sustainable forest management is wide. GIS forest fire risk models are 
commonly used, but most of them do not include the human factor [3]. In Russia, the Nesterov index, 
from the 1940s is still in use [4]. There is large interest in the development of an integrated fire hazard 
assessment system integrated with GIS, remote sensing, meteorological, and government data. A 
system like that, available for forestry, firefighters, and local authorities, can improve the fight against 
fires and reduce the damage, thanks to faster detection of fire ignition and focusing on the most 
endangered places. The purpose of this work was geoinformation modeling the long-term wildfire 
risk in the Republic of Sakha (Yakutia) on a macro- and microscale. To achieve this goal, the following 
tasks were defined: (1) study structure and regime of the wildfires in the boreal forest; (2) define the 
most important factors that cause forest fires in the region of the studies; (3) develop and implement 
statistical methods to determine the relationships between the wildfires and its factors; (4) develop 
spatial and statistical analysis methods for building a model of wildfire risk in macro- and microscale; 
and (5) validation of the built model and create wildfire risk maps at the macro-and microscale. 

The methodology of the study of wildfire risk is based on forest management and geographical 
developments. The field of studies is built on Canadian, U.S., and European approaches to deal with 
natural hazards as in the works of San-Miguel-Ayanz [3], Tedim [5], Oliveira [6], Cardille [7], 
Martinez [8], and others. Knowledge on the boreal forests in Yakutia was taken from the publications 
of such authors as A.P. Isaev [9], E.I. Troeva [2], M.M. Cherosov [10], and others. 

Work was divided into two main stages. The first stage presents the methodology validating the 
impact of individual fire factors on fire occurrence. The result of the analysis is a determination of 
dependencies between factors and exclusion from the further classification of factors that do not affect 
fires. In the second step, based on the literature analysis [11–13] two methods of machine learning 
classifications were implemented to determine the risk of fire: MaxENT and random forest. The initial 
materials to define fire risk factors were satellite images and their products of various spatial and 
spectral resolution (Landsat TM, Modis TERRA, GMTED2010, VIIRS), vector data (OSM), and 
bioclimatic variables (WORLDCLIM). 

The results in the form of long-term fire risk maps can be used for fire prevention and planning 
fire-fighting measures in the territory of the republic. The results can help create an application that 
can be used to determine the risk of fire and the spread of fire during a disaster. This work has the 
potential to lay the foundations for the future of a fully automated application of fire risk assessment 
in the Sakha Republic. 
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2. Material and Methods 

2.1. Yakutia 

To correctly understand fire regimes in Yakutia, it is important to know the features of their 
origin. The geographical, geological, climatological, and ecological position in the landscape make it 
possible to explain the complexity of the fire phenomenon. Yakutia is a very specific region, with 
occurrence extremely high and low temperatures, a thick layer of permafrost, specific geological 
structures, and the occurrence of light taiga forests dependent on fire regimes. Due to the high 
complexity of the territory, it was decided to study wildfires on two scales to examine the 
dependencies between fires and their factors on the regional and global scale. At the macroscale, the 
territory of research was the territory of the Sakha Republic; on a microscale, one of the regions of the 
republic was chosen, which was the Nyurbinskii district (Figure 1). This region was chosen due to 
the high number of fire incidents in recent years. 

 
Figure 1. The geographical extent of the study area (source: Earthstar Geographics, low resolution 15 
m imagery). 

The Republic of Sakha (Yakutia) is in northeastern Siberia and occupies 1/5 of the territory of the 
Russian Federation. The territory of the republic from the east and south is closed by mountain 
ranges; in the north, it has access to the Arctic Ocean. The relief and geological structure are 
distinguished by a complex and diverse structure. The orography of the territory determines the 
characteristics of a sharply continental climate, permafrost, soil, vegetation, wildlife, grasslands, and 
grazing land, and influences the nature of human economic activity [14]. A characteristic feature of 
the climate of Yakutia is a sharp continentality, which is manifested in large annual fluctuations in 
temperature and a relatively small amount of precipitation. The main factor of this state is the Siberian 
anticyclone. In the study area, the average air temperature during the winter months is −30 °C, and 
the average temperature of the coldest month (January) is −35 °C. The average annual precipitation 
is 200–400 mm [15]. The permafrost thickness in the territory is sometimes more than 100 m. Seasonal 
thawing varies between 0.8 and 3.3 m, depending on the landscape and the type of soil. Permafrost 
in the conditions of Yakutia has an impact on all soil processes [16]. Sakha can be divided into three 
great vegetation belts. About 40% of Yakutia is located above the Arctic Circle, and all of this is 
covered with permafrost, which greatly affects the region’s ecology and limits the forests in the 
southern region. The arctic and subarctic tundra define a middle region where lichens and mosses 
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grow like big green carpets and are favorite pastures for deer. In the southern part of the tundra belt 
along the rivers, scattered dwarf Siberian pines and larches grow. Below the tundra is a vast region 
of the taiga zone [2]. 

According to the state report “On the state and environmental protection of the Republic of 
Sakha (Yakutia) in 2018, the forested area occupies 82% of the territory of Yakutia, but the forest is 
54% of the territory. The area of the forest zone is 252,820.0 million hectares. The forest cover is very 
diverse, from 11.5% in the Verkhoyansk district to 91.7% in South Yakutia. In the Nyurbinsky district, 
the forest area is 4416.3 thousand hectares and is more than 84% of the total area. The timber reserved 
is about 9.2 milliard m3 and 96% of it is coniferous. The average timber reserve per one hectare is 58 
m3. The biggest average timber reserves are of Pinus Sibirica stands (188 m3/ha) and Picea spp. (130 
m3/ha). The average timber reserves of Pinus sylvestris is 104 m3/ha, Larix spp. is 62 m3/ha, and Betula 
Pendula 41 m3/ha. 

A total of 95.6% of forest species in Yakutia are coniferous. The major species are Larix (4 main 
types: Larix cajanderi, L. gmelinii, L. sibirica, and L. czekanowskii (L. sibirica x L. gmelinii)), which 
represent 77.5% of the total forest resources. The second main species is Pinus sylvestris (6.5% of the 
total area) and Pinus obovata (0.24% of the total area). In southwest Yakutia, Pinus sibirica and Abies 
sibirica occur. Picea ajanensis is characteristic of the south mountainous regions. Other mountainous 
regions are occupied by Pinus pumilo (4.6% of the total forest area). The main deciduous tree species 
are Betula pendula, B. pubescens, B. ermannii, Populus staveolens, P. tremula, Chosenia arbutifolia, and Salix 
spp. Deciduous trees occupy only two million hectares, which are 1.24% of the total forest area. 

Tree stands are well adapted to growing under extremely hard conditions of a dry climate and 
occurrence of permafrost. Forests are also very well adapted to the recovery process after fires. The 
process is determined by several factors. The most important factors are high seed production, good 
seed germination, and highly adaptive potential. Larix cajanderi is highly adapted to the existence 
with frequent fires. This species is pouring seeds in late summer in the ripening year. Seeds are being 
covered by needle litter and snow, where it creates the right conditions for sprouting and uses the 
spring moisture. The best conditions for forest growth are during the first years after a fire. Litter is 
destroyed, and the soil is enriched with ashy elements. The upper soil horizon’s moisture is increased 
due to inflow from lower horizons [10]. 

Nyurbinsky ulus (region) is in the middle of the Vilyi River and occupies the territory adjacent 
to both Vilyi and its main tributary Marha. The region has an area of approximately 52.4 thousand sq 
km. Nyurbinsky region is part of the West Yakutia natural zone. It is characterized by plains and 
plateaus and the key elements are soil and vegetation on which relief has a big influence. According 
to Kurzhuev, the region is located on the Viluy Plateau, which is part of the Central Yakut Plateau. 
There is a characteristic occurrence of cryolithozone relief forms such as alases, yuryakhs, and 
bulgunyakhs. The number of days with snow cover is 210–225 days. The average annual temperature 
in the region is negative and in Markha it is −11.1 °C. The coldest month is January with an absolute 
minimum of –60 °C, and the warmest is July (the absolute maximum is +37 °C). The average amount 
of precipitation per year is 260–280 mm [14]. The maximum is in July. In the geobotanical 
regionalization of Yakutia, the Nyurbinsky region is situated in the boreal region in the taiga zone—
a subzone of the middle taiga forests—sub-province, Central Yakutian middle taiga. The area of the 
region is dominated by Larix forests and Pinus Sylvestris forests. The river’s valleys are characterized 
by rich meadows as well as common steppe and forest-steppe landscapes. Dry belts of alas vegetation 
are represented by the Carex duriuscula steppes [14]. 

2.2. Spatial Monitoring Factors for Fire Forest Monitoring in Yakutia 

2.2.1. Fires Data 

In the Republic of Sakha (Yakutia), open data on forest fires are not available. There is a database 
of forest fires at the Ministry of Environmental Protection (https://minpriroda.sakha.gov.ru), but 
these data are tabular, and without georeferencing, it is impossible to create a GIS database necessary 
for this type of research. These data are understated due to the addition to the database of only those 
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fires in which there was action taken to extinguish the fire. Fires that are far from human activity 
often do not extinguish, so are not classified in the database. The most popular global data source on 
fire data is the Fire Information for Resource Management System (FIRMS). Data available in the 
service are collected from the VIIRS 375 m, 750 m, and MODIS Collection 6 Active Fire Product. The 
data are collected from 2002 until now. For the studies, we chose data from the MODIS Collection 6 
sensor because of their longer availability and enough spatial resolution. We used data between 2001 
and 2018 from the FIRMS fire archive. The shapefiles were in the Geographic WGS84 projection. The 
confidence values ranged from 0% to 100% and ranged in one of three fire classes (low-confidence 
fire, nominal-confidence fire, or high-confidence fire) [17]. 

2.2.2. Factors Data 

Forest fire regimes are extremely diverse and vary due to the spread of fires and climate changes 
[8]. In difficult to manage forest areas like in Yakutia, it is necessary to properly characterize the 
factors that are causing forest fires. Researchers have used several different variables to assess 
wildfire risk [18–21]. Due to the lack of data, it was decided to investigate only long-term fire factors 
data like constant, long-term factors such as slope, aspect, fuel, climate, NDVI, etc. Constant factors 
are those factors that do not change rapidly, but gradually, in the long perspective. Constant factors 
can be calculated in medium- or long-term periods before the fire season [3]. In Yakutia, there is a 
very big data shortage. If some data are already collected, it is very difficult to access them. For these 
reasons, mostly global datasets were used. 

Variables were divided into four groups: (1) meteorological (precipitations, temperature, 
maximum summer temperature, radiation); (2) NDVI; (3) landform (elevation, slope, slope direction); 
and (4) human activity (distance from roads, distance from settlements, distance from rivers). All 
data types were in other formats and had different spatial resolutions (Table 1). 

Table 1. Technical description of the data. 

To collect bioclimatic variables, the WorldClim dataset of global climate layers was used. The 
WorldClim dataset has a spatial resolution of about 1 km2 [22]. WorldClim is a set of global climate 
layers (gridded climate data), specifically developed for ecological modeling on GIS. Currently, 
WorldClim provides several datasets for different temporal scenarios (past, current, and future 
conditions). In this work, data for the current condition scenario (1970–2000) were used. WordClim 
bioclimatic variables are analysis-ready data so the preprocessing was not necessary. 

Factor Source Format Resolution Preprocessing 
Radiation 

WorldClim GeoTiff 30 s ROI 
Precipitations 
Temperature 

Max temperature 

NDVI 
MODIS/LANDSA

T 
Hdf/GeoTif

f 
250 m/30 

m  

Mosaic, resampling, 
atmospheric correction 

ROI 
Elevation 

GMTED2010 GeoTiff 7.5 s 
Mosaic, resampling 

ROI 
Slope 

Slope direction 
Distance from 

settelments 
OSM Shape   Eulicdean distance/ROI Distance from roads 

Distance from water 
lines 
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NDVI is greatly used in the evaluation of the phenology and productivity of the vegetation. 
Onigemo et al. claims that the values of NDVI obtained through images at the peak of drought were 
related to the content moisture and fresh phytomass, showing its potential to estimate fire risk [23]. 
Illaera et al. found a good correlation between the NDVI values and the location of wildfires [24]. To 
assess NDVI in macro-and microscale, it was decided to use NDVI from two sources: MODIS and 
LANDSAT images. The Landsat data were used for the determination of NDVI in the Nyurbinsky 
region. As the region of interest, the following paths and rows were defined: 129-15; 129-16; 130-14; 
130-15; 130-16; 131-15. There were selected available images from the year with the smallest cloud 
cover. Images without cloud cover at the peak of the growing season (July) were available only for 
Landsat 5 in 2009. Before creating the mosaic, atmospheric correction was necessary. It allowed for 
improving images from level 1 to level 2. For NDVI calculations, bands 3 and 4 were used by the 
formula described by J.W. Rouse in 1973 [25]. To determine the average NDVI in the vegetation 
season for Yakutia between 2001 and 2018 with MODIS, dataset MOD13A2 Version 6 was used. 
MOD13A2 provides NDVI values with a resolution of 1 km. The product is derived with a monthly 
interval. There were selected images at the peak of the growing season (July) from each year. At the 
territory of Yakutia, there are the following tiles, which were defined as region of interests: h21v01, 
h22v01, h23v01, h21v02, h22v02, h23v02, h24v02, h23v03, h24v03, h25v03. After the selection of the 
data yearly, an NDVI mosaic was created and the mean NDVI calculated between 2001 and 2015. 

To model landform factor data, it was decided to use one of the most used in these types of 
works, digital elevation models: the Global Multi-resolution Terrain Elevation Data 2010 
(GMTED2010). It incorporates the current best available global elevation data. GMTED2010 is 
commonly used for radiometric and geometric correction, cover mapping, and extraction of drainage 
features for hydrologic modeling [26]. There was a necessity for mosaicking. For the GMTED, the 
following entities were used: GMTED2010N50E120, GMTED2010N50E150, GMTED2010N70E120, 
and GMTED2010N70E150. From the DEM, the information about elevation, slope, and slope 
direction was derived. 

To investigate the relationship between the fire and the presence of a human, it was necessary 
to obtain information on the distance of fires from roads, buildings, and rivers. The data in shape 
format were downloaded from Open Street Map (OSM). According to previous works on this subject 
[27,28], to achieve this goal, the Euclidean distance was used. Euclidean distance is a straight line 
between two points in Euclidean space. The locations were converted to raster. The resolution of the 
raster was defined by the shortest of the width or height of the extent of the input feature, in the input 
spatial reference, divided by 250. 

After the preprocessing, two regions of interest (ROI) were defined for each obtained raster. Each 
of them was clipped using the forest cover of the Nyurbinsky region and Republic of Sakha (Yakutia) 
forest cover. The forest cover was made available by the Institute of Biological Problems of 
Cryolithozone in Yakutia. The same ROI was made for fire points between 2001–2015 from the FIRMS 
dataset. 

2.3. Modeling the Risk Assessment of Forest Fires 

2.3.1. Fire Factors Analysis 

The first step after the preprocessing (Figure 2) was the classification of the values in each raster, 
for ordering data and eliminating individual pixels strongly deviating from the average pixels were 
probably deviating due to measurement error or instrument inaccuracy. Due to a large amount of 
data, the surface to cover (3,084,000 km2), and computing capabilities, it was necessary to simplify 
the data to some extent but retain their characteristics. Jenks’s optimization method was used. The 
Jenks classification is designed to identify data clusters as well as maintain a representation of all data 
in the set. The optimization lasts as long as the limits of the intervals are obtained, respecting the 
principle of the smallest possible differentiation of the observations contained in them, with the 
greatest distance between the intervals at the same time. This method aims to reduce the variance 
within classes and maximize the variance between classes. This is done by striving to minimize the 
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average deviations of each class from the middle class while maximizing the deviations of each class 
from the means of other groups [29]. New values in rasters have been extracted to each fire point 
from the FIRMS dataset of over 17 years in the territory of Yakutia and the Nyurbinsky region. 

 
Figure 2. Schema of the analysis of the relationship between the fires and their factors. 

The next step was to calculate the area of each class in each factor. Then, all fires between 2001–
2018 were summed, separately for each category in each obtained earlier categorized raster. With 
these data, it was possible to determine the regression, and correlation between the dependent 
variables and explanatory variables. The same calculation scheme was repeated for each variable. In 
the last step, Pearson correlation and coefficient of determination between the fire data and factors 
data were calculated for each model. 

2.3.2. Long-Term Fire Risk Modeling 

The next step was to build risk models using two machine learning methods (Figure 3). The 
training dataset was built from the FIRMS fire data between 2001–2015. All registered fire points at 
the territory in the Republic of Sakha Yakutia and Nyurbinsky region in this period were used. The 
variables were divided, according to the previously obtained correlation coefficient. As the 
predictors, two types of datasets were examined. A dataset with a coefficient of correlation equal or 
higher than satisfactory (higher than 0.6) and a dataset with all 11 previously selected fire factors. All 
predictor rasters have been resampled and converted to grid format. Such a set of training data and 
predictor data were created, separately for the territory of Yakutia and the territory of the Nyurbinsky 
region. 
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Figure 3. Long-term fire risk modeling methodology. 

In the simulation, two types of prediction methods were selected, referring to the works of 
authors such as Peters [11], Parisien [30] (maximum entropy prediction model) and Oliveira [6] 
(random forest prediction model). In their studies, the authors showed a good correlation between 
the risk models obtained when using machine learning and forest fires. The authors demonstrated 
the superiority of methods using machine learning over traditional ones. 

The maximum entropy prediction model is a widely used and accepted statistical method to 
produce predicting probability distributions. The model is adapted in diverse topics such as 
thermodynamics, economics, forensics, imaging technologies, and recently, ecology. Maximum 
entropy can provide accurate predictions of patterns in macroecology and help identify the 
mechanisms that matter most [31]. The algorithm is widely used for mapping species distributions 
[32] and conservation planning [31]. In recent years, the model of maximum entropy began to be used 
in the ecology of fires. Maximum entropy is a density estimation method based on a probability 
distribution. It is a presence-only machine learning algorithm that iteratively contrasts environmental 
predictor values at occurrence locations with those of a large background sample taken across the 
study area [33]. Maximum entropy has proved to be an enormously powerful tool for reconstructing 
images from many types of data [34]. 

The biggest advantage of a random forest is that it is a very flexible method, and it can be used 
in different types of problems. The random forest algorithm is a fully nonparametric machine 
learning method for data analysis. Classification and regression random forest is competitive with 
the best available methods and superior to most methods in common use [35]. The application of 
random forest can be an effective methodology to predict fire occurrence in different sites. The 
random forest algorithm is a technique developed by Breiman (2001) [35]. It combines a large set of 
decision trees, which is the biggest advantage compared to a simple decision tree algorithm. Each 
tree is trained by a set of variables, which are randomly selected from the training dataset. 

All classifications were carried out using SAGA—6.4.0 and its modules “Maximum Entropy 
Presence Prediction”, “Random Forest Presence Prediction (ViGrA) Classification”. After the 
processing, two types of models were obtained: presence prediction and presence probability maps. 
Presence prediction maps are only meant to determine if there is a possibility of a fire. All raster pixels 
are classified into two classes: 

• Absence—there is the possibility of a forest fire. 
• Presence—there is no possibility of the forest fire. 

Presence probability maps are meant to determine how high the possibility is of the fire. All 
raster pixels are classified into six classes: 
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• Very low—very low possibility of the fire. 
• Low—low possibility of fire. 
• Moderate—moderate possibility of fire. 
• High—high possibility of fire. 
• Very high—very high possibility of fire. 
• Extreme—extreme possibility of fire. 

To obtain only six possibility classes, it was necessary to reclassify the models. For 
reclassification, the natural breaks method was used. 

For the validation of the results, raw fire points data between 2015 and 2018 in the Republic of 
Sakha (Yakutia) and the Nyurbinsky region were used. To carry out statistical analysis pixel count in 
each probability class in the presence probability maps and each class at the presence prediction maps 
were summed. Fire points in each class were summed and divided by the pixel sum in each class. 
This process was carried out to consider the surface of each class when verifying models. Next, the 
percentage share of fires in each class was calculated. The last step was regression and correlation 
analysis. 

3. Results 

3.1. Fire Factors 

In the first part of the studies, attempts were made to uncover the main factors affecting the 
possibility of a wildfire. Of the 11 preselected factors, not all of them showed a good correlation with 
fire points (Table 2). 

Table 2. Coefficient of correlation for each variable in the Republic of Sakha (Yakutia) and the 
Nyurbinsky region. 

In Yakutia (macroscale), the correlation above 70% was shown by factors such as solar radiation, 
maximum summer temperature, NDVI, elevation, slope, distance from roads, distance from 
settlements, and distance from rivers. 

The problem was studied in the scale of the region using the example of the Nyurbinsky. In this 
example, only five factors out of 11 showed a good correlation. A very strong relationship between 
fires and precipitation was demonstrated. As the amount of precipitation falls, the number of points 
of ignition increases, which was not observed on a macroscale. The distribution of NDVI in 
microscale is almost the same as for the Yakutia. With an increase of the slope, fewer fires are 
observed, as in the macroscale. 
  

Factor 
Yakutia Nyurbinksy 

R R 
Radiation 0.97 0.39 

Precipitations −0.33 −0.99 
Temperature −0.41 0.20 

Max temperature 0.93 0.47 
NDVI 0.91 0.97 
DEM −0.76 0.28 
Slope −0.97 −0.73 

Slope direction −0.43 0.15 
Settlements 0.97 0.86 

Roads −0.80 −0.82 
Water lines 0.91 −0.54 
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3.2. Fire Risk 

The next step was to create fire hazard models using two types of modeling methods. Fire risk 
models in the territory of Yakutia are shown in Figures 4 and 5. Results of the modeling differed, but 
both methods gave satisfying results. For the territory of the Republic of Sakha (Yakutia), high 
coefficients of correlation for each prediction method can be observed (Tables 3 and 4). Coefficients 
were slightly higher for the random forest prediction method. In this method, the model with 11 
variables did not give considerably better results than the model with nine variables. 

 
Figure 4. Results of the long-term wildfire presence probability in Yakutia (macroscale). 

 
Figure 5. Results of long-term wildfire presence prediction modeling in Yakutia (macroscale). 
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Table 3. Comparison of the different types of long-term wildfire presence probability modeling 
methods in Yakutia (macroscale). 

Table 4. Comparison of the different types of long-term wildfire presence prediction modeling 
methods in Yakutia (macroscale). 

When modeling using the maximum entropy prediction model, better results gave a dataset 
with nine variables. In both models, the highest number of fires between 2015–2018 is in the high, 
very high, and extreme probability classes. In the very low-risk class, there were less than 1% of fire 
points. Presence prediction models showed a superior random forest method over the maximum 
entropy method. In the random forest method, almost 100% of the fire points were in the presence 
class. The maximum entropy method was characterized by worse results. In the absence, the class 
located more than 10% of the fire points from the validation dataset. 

Modeling carried out at the territory of the Nyurbinsky region showed slightly different results 
than in Yakutia (Figures 6 and 7). Correlation coefficients were not as high and did not exceed 0.9 
(Table 5). According to the coefficient of correlation, the smallest error was characterized by a model 
of maximum entropy using six predictor variables. The coefficient of correlation for 11 predictors was 
only slightly lower and was equal to 0.89. 

Fire Probability 
Percentage of Fire Points in Each Probability Class 

Random Forest MaxENT 
9 Predictors 11 Predictors 9 Predictors 11 Predictors 

Very Low 0.07 0.07 0.69 0.95 
Low 1.74 1.65 1.57 2.30 

Moderate 8.96 9.89 9.19 9.59 
High 19.82 18.53 10.64 10.58 

Very High 25.52 28.02 27.01 25.37 
Extreme 43.89 41.84 50.89 51.21 

R 0.97 0.98 0.91 0.90 

Presence 
Prediction 

Percentage of Fire Points in Presence and Absence Class 
Random Forest MaxENT 

9 Predictors 11 Predictors 9 Predictors 11 Predictors 
Absence 0.20 0.14 12.50 14.13 
Presence 99.80 99.86 87.50 85.87 
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Figure 6. Results of the long-term wildfire presence probability modeling in Nyurbinksy (microscale). 

 
Figure 7. Results of the long-term wildfire presence prediction modeling in Nyurbinsky (macroscale). 
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Table 5. Comparison of the different types of long-term wildfire presence probability modeling 
methods in Nyurbinsky (microscale). 

Fire 
Probability 

Percentage of Fire Points in Each Probability Class 
Random Forest MaxENT 

6 Predictors 11 Predictors 6 Predictors 11 Predictors 
Very Low 498 4.97 0.00 0.00 

Low 15.09 17.04 0.00 0.00 
Moderate 20.40 16.06 1.92 12.81 

High 15.60 20.25 32.28 31.23 
Very High 24.94 21. 56 31.73 29.02 
Extreme 19.00 20.13 34.07 26.94 

R 0.75 0.82 0.90 0.89 

It was observed that in the low and very low fire risk classes, there were no fire points. 
Significantly worse results were shown by the random forest prediction method. In both cases of the 
random forest method (six and 11 predictors), the coefficient of correlation did not exceed 0.82. Over 
20% of all fire points were at low-risk classes. Similar results were observed by analyzing the presence 
prediction maps (Table 6). The random forest prediction method was characterized by more than 
30% of fire points in the absence class. The results were distributed in a similar way in the maximum 
entropy prediction model, which is characterized by 11 predictors. The best results were observed in 
the maximum entropy classification using six predictive variables. In this model, more than 90% of 
the points were in the presence class. 

Table 6. Comparison of the different types of long-term wildfire presence prediction modeling 
methods in Nyurbinsky (microscale). 

It was observed that in both regions (Yakutia and Nyurbinsky), the random forest presence 
prediction method gave more accurate results. Even though the Nyurbinsky region incorrectly 
classified a larger number of fire points, it can be unambiguously stated that it is wrong. This is 
because (Figures 5 and 7) in the presence maximum entropy, presence prediction method, almost all 
of the territory of Yakutia and Nyurbinsky was classified as territory with the presence of fires. The 
results of the random forest presence prediction method showed a much narrower territory of the 
possibility of the occurrence of fires and yet it classified more points correctly in the territory of 
Yakutia. 

4. Discussion 

In fire studies, fire risk is one of the major topics and there are many different approaches to this 
subject. Blanchi et al., in their work about a methodological approach in fire risk studies, collected 
more than 50 works connected with fire probability cartography. Risk mapping has less than twenty 
years. Previously, there were rather preferred descriptive approaches. Since the 1990s, there has been 
an increasing interest in this field [36]. 

The study presented the possibilities of using different types of GIS and remote sensing data in 
modeling the wildfire risk. Results allow us to reflect various aspects of fire studies. The difficulties 
in fire risk assessment were to point out and clarify possibilities to define wildfire risk. There are 
many different approaches in hazard mapping based on different datasets, scales, and algorithms. 

Presence 
Prediction 

Percentage of Fire Points in Presence and Absence Class 
Random Forest MaxENT 

6 Predictors 11 Predictors 6  Predictors 11 Predictors 
Absence 32.73 31.22 8.34 32.66 
Presence 67.27 68.78 91.66 67.34 
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The multi-approach is relevant in fire management studies [37,38]. Gai et al. [39] developed a spatially 
weighted index model for fire risk assessment. You et al. [40] integrated a Forest Resource Inventory 
Database based on four aspects of topographical, human activity, climate, and forest characteristic 
factors. Goldarag et al. [41] used neural networks and logistic regression for fire risk assessment. The 
biggest challenge in the study was to collect the necessary data due to poor exploration of the area of 
studies. GIS technologies in Yakutia are under development [42]. For this purpose, we chose a semi-
probabilistic mode of modeling, which gave possibilities of combining historical fire data and 
physical fire mechanisms [43]. 

The results of the analysis showed that the fire risk assessment in the Republic of Sakha (Yakutia) 
is not a problem that can be easily solved. The specificity of the studied territory is significantly 
different from other parts of the world that are facing the problem of wildfires. Boreal forests of 
Yakutia are perfectly adapted to extremely severe climatic conditions. Fires have been affecting the 
natural functioning of the forests of the region for centuries. Fires not only affect the climatic 
conditions, but also the formation of the terrain [36]. 

Results of the correlation analysis in macroscale showed that with increasing radiation, the risk 
of fires increases, and the same happened with increasing maximum summer temperature. Lim et 
al., in their study, highlighted that fire data showed a high correlation with climate factors [44]. NDVI 
was highly correlated with fires (R = 0.91). With increasing NDVI, the number of points of ignition 
increased. This situation was associated with the accumulation of combustible materials along with 
an increase in forest biomass. Elevation and slope correlated inversely proportional. According to 
Pourghasemi et al., slope and aspect are some of the most important factors controlling forest fire 
occurrence [45]. Kurbatsky et al. wrote that long drought conditions in the Yakutian valleys caused 
intense droughts and accumulation of fire fuels, which caused strong fires [46]. As the slope 
increased, we observed a decreasing number of wildfires. This situation may be due to the strongly 
inclined slopes that act as a barrier to the spread of fire. Additionally, on inclined slopes, many 
combustible materials cannot accumulate. Ghorbanzadeh et al. claimed that environmental variables 
are not the only reason for fire susceptibility and risk [47]. A very strong connection between the 
increase in the number of fire points and the human factors was observed. In places with proximity 
to transport routes, the number of fires increases, and the same thing happens if we consider the 
settlements. This situation indicates a strong anthropogenic impact on the risk of fire. There are not 
so many fires near water lines, which can be caused by the presence of moist areas close to the rivers. 

The largest correlation at the microscale was observed when taking rainfall into account. As the 
rainfall increased, the number of fires increased. The other climatic factors did not show a strong 
correlation. NDVI, similar to the macroscale, strongly influences the number of fires. The properties 
of combustible materials relate to type, phytomass, condition, and moisture, among which the 
moisture content is the most important for fire protection [48]. In a completely different way, 
anthropogenic factors were distributed on the microscale than on the macroscale. The Nyurbinsky 
region has a relatively high population density compared to the entire territory of Yakutia, which 
may affect the differences between the results. Most fires continue to occur along roads, but the closer 
the settlements are, it occurs less frequently. This situation may be because fires that approach the 
villages pose a threat to people and fire-fighting starts quickly (fires do not reach large sizes), while 
those that are far from populated areas remain without any action as they do not pose a great threat. 
Along roads that are far from villages, fires can reach serious sizes. Additionally, villages in this 
region are usually not surrounded by forests, but by meadows called “alas”, with lower susceptibility 
to ignition. 

Human activity has a greater influence on the fire regimes and differs in the macro- and 
microscale. The results showed that distance from settlements (R = −0.97, and R = 0.86), distance from 
rivers (R = 0.91, and R = −0.54), and distance from roads (R = −0.80, and R = −0.82) had a great 
importance in fire risk assessment. Ajin et al. [49] showed a high correlation between fire occurrence 
and distance from roads and settlements. The study by Werf showed that in residential areas and 
near roads, more human activities are witnessed, and human activity is the most significant factor in 
the fire outbreak [50]. Studies of the territory of Yakutia in residential areas and near roads show that 
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more human activities are witnessed, and the human activity is the most significant factor in fire 
outbreaks. 

Very large differences were observed between the results of the research on the macro- and 
microscale. Often the results were quite the opposite. It is probably related to the specificity of the 
Yakutia region. The Niyurbinsky region is quite highly urbanized compared to other regions of 
Yakutia, which may affect the results. Additionally, the regional climatic conditions differed from the 
average for the entire region. The Nyuribnsky region is characterized by flat terrain, and most of 
Yakutia is mountainous, which can also affect the conditions for fires. To analyze the macroscale, it 
is necessary to take into account a wide variety of conditions: climatic, geographical, and human 
influence. However, on a microscale, these conditions are more homogeneous. 

The analysis of the different methods of wildfire risk assessment allows for the identification of 
the high danger areas in Nyurbinsky and the entire Yakutia. The maximum accuracy was 
demonstrated by the random forest method with 11 predictors (R = 0.98) for the entire territory of 
Yakutia. The analysis showed that the random forest method gave more accurate results and a much 
narrower area of the possibility of fires than the MaxENT method, which allows us to propose that 
this model is preferable. A model created using the maximum entropy method has a small 
differentiation into zones, which does not allow for its use in practice as uninformative. Parisien used 
the MaxENT and random forest model to predict fire ignition across the USA [30] with satisfactory 
results. The MaxENT model was used to assess fire risk in India’s Ghats Mountains [34]. In their 
studies, the authors showed a good correlation between the risk models obtained when using 
machine learning and forest fires. Due to their power, versatility, and ease of use, random forests are 
quickly becoming one of the most popular machine learning methods [48]. The studies confirmed 
that the use of GIS and remote sensing technologies can be used to assess the long-term risk and 
probability of fires in Yakutia. The results showed that reducing the number of factors during 
modeling did not show a significant impact on the results in both methods. In the few last years, an 
increase in the number and severity of fires has been observed as has more years with extreme fire 
seasons [9]. This situation may also be affected by climate change. On the other hand, a larger number 
of fires may have an impact on the climate, permafrost ecosystems, and the functioning of indigenous 
people. In connection with this situation, it is necessary to work on new fire risk assessment methods 
in the Arctic and subarctic zone of Yakutia. Methods should use global databases of fire, climate, and 
human activities. For building new models that include all these factors, it is necessary to use different 
types of datasets, like OSM data, climatic datasets, and remote sensing data from different sensors 
(MODIS, Landsat, Sentinel). According to Gigović et al., the random forest model could be used at 
the regional level for forest fire susceptibility mapping [51]. Banerjee et al. claim that the MaxENT 
method can be used as a decision support tool for stakeholders of forest resources [52]. Pham et al. 
claim that models that consider climate variables, vegetation, and human influences can explain fire 
risk better than those that only account for some of these factors [53]. 

The objective of work on modeling long-term wildfire risk in the Nyurbinsky region of Yakutia 
was accomplished. The accuracy of the results depends on the data used, and here available. The 
results were valid within the limits caused by the data used; the approach was chosen as was the 
research objective. Despite these limitations, it was possible to obtain interesting results that enabled 
us to answer the main questions posed by the problem. 

5. Conclusions 

The problem of the forest fires in Yakutia is not as well studied as in other countries. The results 
of the research have shown a strong human influence on the risk in this region despite the low 
population density. Anthropogenic factors showed a high correlation with the occurrence of wildfires 
more than climatic or topographical factors. Other factors affect the risk of fires at the macroscale, 
and others the microscale, which should be considered when modeling. 

The random forest method showed better results in the macroscale, however, the maximum 
entropy model was better in the microscale. The exclusion of variables that do not show high 
correlation does not always improve the modeling results. The random forest presence prediction 
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model is a more accurate method and significantly reduces the risk territory. The reverse is the 
method of maximum entropy, which is not as accurate and classifies very large areas as endangered. 

Further study of this topic requires a clearer and conceptually developed approach to the 
application of remote sensing data. Therefore, this work makes sense to lay the foundations for the 
future of a completely automated fire risk assessment application in the Republic of Sakha. The 
results can be used for fire prophylactics and planning fire prevention. In the future, to determine the 
risk well, it is necessary to combine the obtained maps with the seasonal risk determined using 
indices (for example, the Nesterov index 1949) and the periodic dynamics of forest fires, which Isaev 
and Utkin studied in 1963. Such actions can help build an application with which it will be possible 
to determine the risk of wildfire and the spreading of fire during extreme events. 
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