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Every polynomial P (X) ∈ Z[X] satisfies the congruences P (n + m) ≡ P (n) mod m for all integers n, m ≥ 0. An integer valued sequence (a n ) n≥0 is called a pseudo-polynomial when it satisfies these congruences. Hall characterized pseudopolynomials and proved that they are not necessarily polynomials. A long standing conjecture of Ruzsa says that a pseudo-polynomial a n is a polynomial as soon as lim sup n |a n | 1/n < e. Under this growth assumption, Perelli and Zannier proved that the generating series ∞ n=0 a n z n is a G-function. A primary pseudo-polynomial is an integer valued sequence (a n ) n≥0 such that a n+p ≡ a n mod p for all integers n ≥ 0 and all prime numbers p. The same conjecture has been formulated for them, which implies Ruzsa's, and this paper revolves around this conjecture. We obtain a Hall type characterization of primary pseudo-polynomials and draw various consequences from it. We give a new proof and generalize a result due to Zannier that any primary pseudo-polynomial with an algebraic generating series is a polynomial. This leads us to formulate a conjecture on diagonals of rational fractions and primary pseudo-polynomials, which is related to classic conjectures of Christol and van der Poorten. We make the Perelli-Zannier Theorem effective. We prove a Pólya type result: if there exists a function F analytic in a right-half plane with not too large exponential growth (in a precise sense) and such that for all large n the primary pseudo-polynomial a n = F (n), then a n is a polynomial. Finally, we show how to construct a non-polynomial primary pseudo-polynomial starting from any primary pseudo-polynomial generated by a G-function different of 1/(1x).

Introduction

Let P (X) be a polynomial in Z[X]. For all distinct integers m and n, the integer mn divides P (m) -P (n). Equivalently, for all integers n and k with k = 0, we have the congruence P (n + k) ≡ P (n) mod k.

In the sense of Hall [START_REF] Hall | On pseudo-polynomials[END_REF], a sequence (a n ) n≥0 ∈ Z N is said to be a pseudo-polynomial when the following property holds: for any integers n ≥ 0 and k ≥ 1, we have a n+k ≡ a n mod k.

Note that an integer-valued polynomial is not necessarily a pseudo-polynomial as X(X+ 1)/2 shows, see below. Pseudo-polynomials have long been studied for themselves, but they have also found recent applications in analytic number theory [START_REF] Kowalski | Equidistribution from the Chinese Remainder Theorem[END_REF][START_REF] Kuperberg | A note on pseudo-polynomials divisible only by a sparse set of primes[END_REF].

For every non-negative integer k, we consider the polynomial

P k (X) = X(X -1) • • • (X -k + 1)
k! , and P 0 (X) := 1, whose integer values are binomial coefficients. It is well known [15, Problem 85] that integer valued polynomials are Z-linear combinations of the P k 's. It turns out that those polynomials also lead to a characterization of pseudo-polynomials.

Hall proved in [START_REF] Hall | On pseudo-polynomials[END_REF] that a sequence (a n ) n≥0 is a pseudo-polynomial if and only if there exists a sequence of integers (b n ) n≥0 such that, for every positive integer n, b n is a multiple of d n := lcm{1, 2, . . . , n} (with d 0 := 1) and we have

a n = ∞ k=0 b k P k (n). (1.1) 
(For each given n ≥ 0, the sum is finite, more precisely it runs from k = 0 to k = n.) Given a sequence (a n ) n≥0 ∈ C N , we define its binomial transform

(b n ) n≥0 ∈ C N as ∀n ≥ 0, b n := n k=0 (-1) n-k n k a k . (1.2)
It is well-known that (a n ) n≥0 can be recovered from (b n ) n≥0 by ∀n ≥ 0,

a n = n k=0 n k b k , (1.3) 
i.e. the binomial transform is "almost" involutive. Hence Hall proved that a sequence (a n ) n≥0 is a pseudo-polynomial if and only if its binomial transform (b n ) n≥0 satisfies

∀n ≥ 0, d n | b n . (1.4) 
Because of (1.2) and (1.3), observe that in (1.1) the sequence (b n ) n≥0 is uniquely determined by the sequence (a n ) n≥0 , so that as claimed above 1 2 X(X + 1) = P 1 (X) + P 2 (X) is not a pseudo-polynomial because d 2 = 2.

An important property of the binomial transform is that they also lead to a characterization of polynomials. Let (a n ) n≥0 be a complex sequence and (b n ) n≥0 its binomial transform. Then the following assertions are equivalent:

• there exists P (X) ∈ C[X] such that a n = P (n) for all integers n ≥ 0;

• b n = 0 for all n large enough.

(We can replace C[X] by Q[X] when the sequences take values in Q.)

In the sequel, we shall often say that an integer valued sequence (a n ) n≥0 is "a polynomial" when there exists a polynomial P (X) ∈ Q[X] such that a n = P (n) for all nonnegative integers n.

We recall that, for all non-negative integers n, we have

d n = p≤n p ⌊log p (n)⌋ ≤ 3 n and d 1/n n -→ n→+∞ e,
by the Prime Number Theorem. Taking b n := n! in (1.4), we see from (1.3) that the resulting pseudo-polynomial a n is simply equal to ⌊n!e⌋ for n ≥ 1, which is obviously not a polynomial. With b n := d n in (1.4), we obtain from (1.3) another pseudo-polynomial of slower growth a n := n k=0 n k d k ≤ 4 n ; since a n ≥ 2 n for all n ≥ 0, this is not a polynomial either.

Following Hall, we say that a non-polynomial pseudo-polynomial is a genuine pseudopolynomial. The search of minimal growth conditions that can be attained by genuine pseudo-polynomials has been the subject of many papers. Hall [START_REF] Hall | On pseudo-polynomials[END_REF] and Ruzsa [START_REF] Ruzsa | On congruence preserving functions[END_REF] independently proved that if lim sup

n→+∞ |a n | 1/n < e -1, (1.5) 
then (a n ) n≥0 is a polynomial. Using his characterization (1.4), Hall [6,p. 76] sketched an inductive construction of a genuine pseudo-polynomial (a n ) n≥0 such that lim sup

n→+∞ |a n | 1/n ≤ e.
Ruzsa proposed the following conjecture.

Conjecture 1 (Ruzsa). Let (a n ) n≥0 ∈ Z N be a pseudo-polynomial such that lim sup

n→+∞ |a n | 1/n < e. (1.6) 
Then (a n ) n≥0 is a polynomial.

In fact, many results towards Ruzsa's conjecture have been proven for sequences we shall call primary pseudo-polynomial (for lack of better terminology). Definition 1. A sequence (a n ) n≥0 ∈ Z N is said to be a primary pseudo-polynomial when the following property holds: for any integer n ≥ 0 and any prime number p, a n+p ≡ a n mod p.

The set of primary pseudo-polynomials is a ring for the term-wise sum and product of sequences in Z N , with the null and unit sequences defined with all terms equal to 0 and all terms equal to 1 respectively. A pseudo-polynomial is a primary pseudo-polynomial but the converse is false (see the comments following Theorem 1 below). Many authors delt with the following conjecture, the truth of which would imply that of Ruzsa.

Conjecture 2. Let (a n ) n≥0 ∈ Z N be a primary pseudo-polynomial such that lim sup

n→+∞ |a n | 1/n < e.
(1.7)

Then (a n ) n≥0 is a polynomial.
As in the case of pseudo-polynomials, < e cannot be replaced by ≤ e, and we refer again to the comments following Theorem 1 for a proof of this.

Perelli and Zannier [START_REF] Perelli | On recurrent mod p sequences[END_REF] proved a highly non-trivial property: under the growth condition (1.6) in Conjecture 2, the primary pseudo-polynomial sequence (a n ) n≥0 satisfies a linear recurrence with polynomials coefficients; see (1.10) below. In other words, the generating function

f a (x) := ∞ n=0 a n x n ∈ Z[[x]] satisfies a linear differential equation with coefficients in Z[x]. Hence, f a is a G-function ( 1 )
. Perelli and Zannier also proved a form of Conjecture 2 under a stronger assumption than (1.6), i.e. with e replaced by e 0.66 . Zannier [START_REF] Zannier | On periodic mod p sequences and G-functions (On a conjecture of Ruzsa)[END_REF] was even able to replace e 0.66 by e 0.75 .

Zannier [21, p. 398] also proved that we can omit the growth condition if we further assume that f a (x) is algebraic. That is, if (a n ) n≥0 is a primary pseudo-polynomial such that f a (x) is algebraic then (a n ) n≥0 is a polynomial. Diagonals of rational fractions form an intermediate class between algebraic series and G-functions. By definition, the diagonal of a multivariate power series n [START_REF] Furstenberg | Algebraic functions over finite fields[END_REF] says that algebraic series over a field coincide with diagonals of rational functions in two variables. It would be very interesting to know whether the following conjecture holds true. Conjecture 3. Let (a n ) n≥0 ∈ Z N be a primary pseudo-polynomial such that its generating series is the diagonal of a rational fraction. Then (a n ) n≥0 is a polynomial.

1 ,...,n k ≥0 u n 1 ,...,n k z n 1 1 • • • z n k k is defined by ∞ n=0 u n,n,...,n z n . A classical result of Furstenberg
Moreover, diagonals of rational functions are globally bounded G-functions in the sense of Christol, who conjectured that the converse holds (see [START_REF] Christol | Fonctions hypergéométriques bornées[END_REF]). In particular, G-functions with integer coefficients are globally bounded. Therefore given the theorem of Perelli and Zannier (recalled below), Christol's Conjecture and Conjecture 3 would together imply Conjecture 2 and Ruzsa's Conjecture 1. See also related comments in [21, pp. 392-393].

Furthermore, Conjecture 3 is implied by the following special case of van der Poorten's Conjecture [19, p. 13] : Given f (x) the diagonal of a rational fraction, if for almost all primes p the reduction of f (x) modulo p is a rational fraction, then f (x) is a rational fraction.

Hence Conjecture 3 could be seen as an intermediate step towards the proof of Rusza's conjecture. Note that Christol's Conjecture together with van der Poorten's Conjecture imply Rusza's Conjecture.

1 A power series ∞ n=0 a n x n ∈ Q[[x]
] is said to be a G-function when it is solution of a non-zero linear differential equation over Q(x) (D-finiteness), and the maximum of the modulus of all the Galoisian conjuguates of a 0 , . . . , a n as well as the positive denominator of a 0 , . . . , a n are both bounded for all n ≥ 0 by C n+1 , for some C ≥ 1. For instance, any D-finite series in Z[[x]] with positive radius of convergence is a G-function. A power series [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF][START_REF] Shidlovskii | Transcendental Numbers[END_REF] for the properties satisfied by these functions.

∞ n=0 an n! z x ∈ Q[[x]] is said to be an E-function when ∞ n=0 a n x n is a G-function. See
In this paper, we are interested in the properties of primary pseudo-polynomials and of their generating functions. We now present our four main results, make comments about their significance and mention further open problems.

• A Hall type characterization of primary pseudo-polynomials. We shall first prove an analogue (i.e. Eq. (1.8) below) of Hall's characterization for pseudo-polynomials and deduce some consequences of it. We set P 0 = P 1 := 1 and, for n ≥ 2,

P n := p≤n p,
where the product is over prime numbers. By the Prime Number Theorem, we have P 1/n n → e as n tends to +∞. We also say that a primary pseudo-polynomial which is not a polynomial is a genuine primary pseudo-polynomial.

Theorem 1. We have the following.

(i) A sequence (a n ) n≥0 ∈ Z N is a primary pseudo-polynomial if and only if its binomial transform (b n ) n≥0 ∈ Z N satisfies ∀n ≥ 0, P n | b n . (1.8) 
(ii) Given a genuine primary pseudo-polynomial (a n ) n≥0 , then

lim inf n→+∞ |b n | 1/n ≥ e.
(iii) If a primary pseudo-polynomial (a n ) n≥0 satisfies lim sup n→+∞ |a n | 1/n < e -1, then (a n ) n≥0 is a polynomial.

(iv) Given any function ϕ : N → R with ϕ(0) = 1, there exists a genuine primary pseudopolynomial

(A n ) n≥0 such that ϕ(n) ≤ A n ≤ ϕ(n) + 2P n for all n ∈ N.
We recall that

d n = p≤n p ⌊log p (n)⌋ .
Hence, for all n ≥ 0, P n divides d n , but obviously d n divides P n for no n ≥ 4. Choosing b n := P n in (1.8), the resulting sequence in (1.3) a n := n k=0 n k P k is a primary pseudopolynomial, but not a pseudo-polynomial because it does not satisfy Hall's criterion (1.4). Under the assumption in (ii), if we also assume that b n is eventually of the same sign, then lim inf n→+∞ |a n | 1/n ≥ e + 1 because a n = n k=0 n k b k . Consequently, any putative counter-example (a n ) n≥0 to Conjecture 2 must be such that its binomial transform (b n ) n≥0 changes sign infinitely often. A similar remark applies to Ruzsa's Conjecture 1.

Assertion (iii) is the analogue of the Hall-Ruzsa result recalled at Eq. (1.5). In (iv), given ϕ, the existence of sequence (A n ) n≥0 is proved constructively by an inductive process. An important consequence of (iv) is the existence of a genuine primary pseudo-polynomial of any growth ϕ(n) > 0 provided lim inf n ϕ(n) 1/n ≥ e. In particular, with ϕ(n) = P n , we deduce that < e cannot be replaced by ≤ e on the right-hand side of (1.7) in Conjecture 2.

• Primary pseudo-polynomials with an algebraic generating series. The generating functions f a and f b of the sequences (a n ) n≥0 and its binomial transform (b n ) n≥0 satisfy the relations

f b (x) = 1 1 + x f a x 1 + x and f a (x) = 1 1 -x f b x 1 -x . (1.9) In particular f a (x) is algebraic over Q(x) if and only if f b (x) is algebraic over Q(x).
Theorem 2. Let (a n ) n≥0 ∈ Z N be a primary pseudo-polynomial, and let (b n ) n≥0 ∈ Z N be its binomial transform.

(i) Assume there exists m ≥ 0 such that f (m) a (x) is algebraic over Q(x). Then (a n ) n≥0 is a polynomial, and thus f a (x) ∈ Q(x). (ii) If f b (x) is algebraic over Q(x), then f b (x) is in Z[x].
As said above, the case m = 0 in (i) was proved by Zannier in [21, p. 398]. We shall present a different proof of this case. It implies that if there exists a counter example to Conjecture 2 or to Ruzsa's Conjecture 1, then its generating function f a (x) is transcendental over C(x).

• An effective version of a result of Perelli and Zannier. In [START_REF] Perelli | On recurrent mod p sequences[END_REF], Perelli and Zannier sketched the proof of the following result.

Theorem (Perelli-Zannier). Let (a n ) n≥0 be a primary pseudo-polynomial such that there exist c > 0 and 1 < δ < e such that |a n | ≤ cδ n for all n ≥ 0. Then there exist an integer S ≥ 0 and S + 1 polynomials p 0 (X), . . . , p S (X) ∈ Z[X] not all zero such that, for all n ≥ 0, we have

S j=0 p j (n)a n+j = 0.
(1.10)

In other words, f a (x) is D-finite, and even a G-function.

Perelli and Zannier mentioned that it would be possible to provide upper bounds for S and the degree/height of the p j (X) in terms of δ, but they did not write them down. We make more precise their theorem as follows, where given

Q(X) = j q j X j ∈ C[X], we set H(Q) := max j |q j |.
Theorem 3. Let (a n ) n≥0 be a primary pseudo-polynomial such that there exist c > 0 and 1 < δ < e such that |a n | ≤ cδ n for all n ≥ 0. Then, there exists an effectively computable constant H(c, δ) ≥ 1 such that a non-trivial linear recurrence for (a n ) n≥0 as in (1.10) holds with

       max j deg(p j ) ≤ max 0, 5 log(δ)-1 1-log(δ)
,

max j H(p j ) ≤ H(c, δ), S ≤ log H(c, δ) / log(δ).
(1.11)

Moreover, the Perelli-Zannier Theorem is best possible in the sense that its conclusion does not necessarily hold if e is replaced by any larger number in the assumption 1 < δ < e.

To prove the final statement in Theorem 3, we take ϕ(n) := P n in Theorem 1(iv): we obtain a genuine primary pseudo-polynomial

A n such that |A n | 1/n → e. Hence (A n ) n≥0
does not satisfy a non-zero linear recurrence with coefficients polynomials over Q.

( 2 )
Lower and upper bounds for the function H(c, δ) are given in (4.8) and (4.10) respectively in §4.3. Our bound for max deg(p j ) in (1.11) is obviously not optimal; in fact, at the cost of more complicated computations, Perelli-Zannier [START_REF] Perelli | On recurrent mod p sequences[END_REF] and then Zannier [START_REF] Zannier | On periodic mod p sequences and G-functions (On a conjecture of Ruzsa)[END_REF] obtained better bounds when δ ≤ e 0.66 and δ ≤ e 0.75 .

The classification of primary pseudo-polynomials with a D-finite generating series is an open problem. As shown by the above example (A n ) n≥0 , Theorem 1 rules out the possibility that every primary pseudo-polynomial satisfies a linear recurrence with coefficients polynomials over Q. Another example is the primary pseudo-polynomial D n := n k=0 n k P k : it cannot satisfy such a linear recurrence because otherwise

P n = n k=0 (-1) n-k n k D k
would satisfy one as well, which is not possible because P 1/n n → e. Since P n ≥ 0 and P n = e n+o(n) , a simple analytic argument shows that D n = (e + 1) n+o(n) . More specifically, it would be interesting to know if there is any genuine primary pseudo-polynomial (a n ) n≥0 such that f a (x) is a G-function. There exist primary pseudo-polynomials (a n ) n≥0 such that f a is D-finite but is not a G-function. For instance,

e n := ⌊(n + 1)!e⌋ = n+1 k=0 n + 1 k k! (n ≥ 0)
is a primary pseudo-polynomial by Theorem 1, and for all n ≥ 0, e n+2 = (n + 4)e n+1 -(n + 2)e n (e 0 = 2, e 1 = 5),

2 Indeed, if a solution (a n ) n≥0 of a linear recurrence with coefficients polynomials over Q is such that |a n | 1/n → α finite, then α is an algebraic number.

Moreover, if a sequence of rational numbers satisfies a non-zero linear recurrence of minimal order with coefficients polynomials over C, then these coefficients are necessarily polynomials over Q, up to a common non-zero multiplicative constant. Hence (d n ) n≥0 and (P n ) n≥0 do not satisfy any non-zero linear recurrence with coefficients polynomials over C. so that ∞ n=0 e n x n is D-finite. A method to obtain further examples is presented at the end of §6.

• A Pólya type result for primary pseudo-polynomials. Perelli and Zannier also proved in [START_REF] Perelli | Su un teorema di Pólya[END_REF] that if a (primary) pseudo-polynomial a n = F (n) for some entire function F such that lim sup

R→∞ 1 R log max |x|=R |F (x)| < log(e + 1),
then (a n ) n≥0 is a polynomial. We prove here a result of a similar flavor with a different analyticity condition.

Theorem 4. Let (a n ) n≥0 ∈ Z N be a primary pseudo-polynomial. Let us assume that there exists F (x) analytic in a right-half plane ℜ(x) > u such that a n = F (n) for all n > u, and c > 0, 0 < ρ < log(2 √ e) such that

F (x) ≤ c • e ρℜ(x) (1.12) for ℜ(x) > u. Then F (x) is in Q[x] and (a n ) n≥0 is a polynomial.
We have log(2 √ e) ≈ 1.193 while log(e + 1) ≈ 1.313. In the proof, we shall obtain that (a n ) n≥0 is a polynomial before proving that F is a polynomial. Because of the Perelli-Zannier Theorem recalled before Theorem 3, the assumptions of Theorem 4 are in fact natural in the context of Ruzsa's Conjecture 1. Indeed, for any given G-function f

(x) := ∞ n=0 v n x n ∈ Q[[x]]
, there exists a function

λ(x) := p j=1 c j (x) • e ρ j x ,
for some functions c j (x) analytic in ℜ(x) > u and of polynomial growth (at most), and such that v n = λ(n) for all n > u; the numbers e -ρ j are the finite singularities of f (x) (see [3, §7.1] for details). Notice that a bound involving e ρ j ℜ(x) is a priori different of a bound involving |e ρ j x | = e ℜ(ρ j x) , but they are the same when ρ j ∈ R. In particular, if all the singularities of f (x) are positive real numbers, then a bound as in (1.12) holds for λ(x) for some ρ ∈ R.

In Theorem 1(iv), take ϕ(n) = δ n with e < δ < 2 √ e. This yields a genuine primary pseudo-polynomial (a n ) n≥0 such that a n = δ n+o(n) as n → +∞. Theorem 4 thus implies that there is no function F (x) analytic in a right-half plane on which (1.12) holds, and such that a n = F (n) for all large n. Perelli-Zannier's result and Theorem 4 are similar to Pólya's celebrated theorem: if an entire function F (x) is such that lim sup

R→+∞ 1 R log max |x|=R |F (x)| < log(2) and F (N) ⊂ Z,
then F (x) is a polynomial. See [START_REF] Waldschmidt | Integer-valued functions, Hurwitz functions and related topics: a survey[END_REF] for a recent survey on Pólya type results, where a connection with Rusza's Conjecture 1 is also mentioned.

Theorems 1, 2, 3 and 4 are proved in §2, §3, §4 and §5 respectively. In §6, we present a method to construct a genuine primary pseudo-polynomial starting from every primary pseudo-polynomial generated by a G-function (Theorem 5).

2 Proof of Theorem 1 (i) Let (a n ) n≥0 be a sequence of integers and consider its binomial transform (b n ) n≥0 .

Assume that for every non-negative integer n, P n divides b n . Let p be a fixed prime number. Hence, for every integer n ≥ p, p divides b n . For every non-negative integer n, it yields

a n+p = n+p k=0 n + p k b k ≡ p-1 k=0 n + p k b k mod p ≡ p-1 k=0 n k b k mod p ≡ a n mod p,
where we used Lucas' congruence for binomial coefficients: for every u, v in {0, . . . , p -1} and every non-negative integers m and ℓ, we have

u + mp v + ℓp ≡ u v m ℓ mod p.
It follows that (a n ) n≥0 is a primary pseudo-polynomial.

Conversely, assume that (a n ) n≥0 is a primary pseudo-polynomial. Let p be a prime number and n ≥ p be an integer. It suffices to show that p divides b n .

Write n = v + mp with v in {0, . . . , p -1} and m ≥ 1. We obtain that

b v+mp = v+mp k=0 (-1) v+mp-k v + mp k a k = p-1 u=0 m-1 ℓ=0 (-1) v-u (-1) (m-ℓ)p v + mp u + ℓp a u+ℓp + v u=0 (-1) v-u v + mp u + mp a u+mp ≡ p-1 u=0 m-1 ℓ=0 (-1) v-u (-1) (m-ℓ)p v u m ℓ a u + v u=0 (-1) v-u v u a u mod p ≡ v u=0 (-1) v-u v u a u m ℓ=0 (-1) (m-ℓ)p m ℓ mod p ( v u = 0 for u = v + 1, . . . , p -1) 
≡ v u=0 (-1) v-u v u a u (1 + (-1) p ) m mod p ≡ 0 mod p (m ≥ 1).
Hence p divides b n as expected. It follows that, for every non-negative integer n, P n divides b n . The first equivalence in Theorem 1 is proved.

(ii) The binomial transform (b n ) n≥0 is eventually 0 if, and only if there exists a polynomial Q(X) in Q[X] such that a n = Q(n) for every non-negative integer n. Hence, if the latter is false, then (b n ) n≥0 is not eventually 0 and, since P n divides b n , it follows that lim inf

n→+∞ |b n | 1/n ≥ e because P 1/n n → e as n → +∞. (iii) If the primary pseudo-polynomial (a n ) n≥0 is not a polynomial, then by (ii) above, lim inf n→+∞ |b n | 1/n ≥ e. But since b n = n k=0 (-1) n-k n k a k ,
the assumption lim sup n→+∞ |a n | 1/n < e -1 implies that lim sup

n→+∞ |b n | 1/n ≤ lim sup n→+∞ n k=0 n k |a k | 1/n < e.
This proves that (a n ) n≥0 is a polynomial.

(iv) The following argument generalizes Hall's (sketchy) construction of a genuine pseudo-polynomial with growth ≤ e n+o(n) in [6, p. 76]. By (i), we know that any sequence of integers (B n ) n≥0 such that P n divides B n defines a primary pseudo-polynomial d -1, and some polynomials A d (x), A j 1 (x), . . . , A j δ (x) ∈ Z[x] all not identically zero such that

A d f d b = δ ℓ=1 A j ℓ f j ℓ b (3.1) in Z[[x]].
We fix p ∈ P such that p > H where H is the maximum of the modulus of the coefficients of A d (x), A j 1 (x), . . . , A j δ (x). It follows that

deg(A d|p ) = deg(A d ), deg(A j 1 |p ) = deg(A j 1 ), . . . , deg(A j δ |p ) = deg(A j δ ). (3.2)
We deduce from the reduction of (3.1) mod p that

A d|p Q d p = δ ℓ=1 A j ℓ |p Q j ℓ p (3.3) in F p [[x]]
, and in fact in

F p [x] because Q p (x) ∈ F p [x].
Case 1). If Q p is identically zero, this means that p divides the coefficients b n for all n ≥ 0. Case 2). If Q p is not identically zero, we deduce from (3.2) and (3.3) that deg(A d ) + dq p ≤ max deg(A j 1 ) + j 1 q p , deg(A j 2 ) + j 2 q p , . . . , deg(A j δ ) + j δ q p ≤ max deg(A j 1 ), deg(A j 2 ), . . . , deg(A j δ ) + (d -1)q p . Hence q p ≤ max deg(A j 1 ), deg(A j 2 ), . . . , deg(A j δ )deg(A d ) =: N.

It follows that for any n > N, p divides b n , where N is independent of p. Since p ∈ P was simply assumed larger than a quantity H depending only on f b , the conclusion of Case 1 and Case 2 is that for any p ∈ P such that p > H and any n > N, p divides b n . Since P is infinite, b n is divisible by infinitely many primes when n > N.

Hence b n = 0 for all n > N and

f b (x) = N n=0 b n x n ∈ Z[x]
, as expected. Let us now prove (i) in the case m = 0. If f a (x) is algebraic over Q(x), then f b (x) as well by (1.9). Hence f b (x) ∈ Z[x] by (ii) just proven, i.e. there exists an integer M such that b n = 0 if n > M. Since, for all n ≥ 0, we have

a n = n k=0 n k b k = min(n,M ) k=0 n k b k ,
it follows that for all n ≥ M, we have

a n = Q(n) with Q(X) = M k=0 X k b k ∈ Q[X].
We now prove (i) for any integer m ≥ 0. We need the following simple lemma.

Lemma 1. Let R(X) ∈ Q(X) be such that R(n) ∈ Z for infinitely many integers. Then, R(X) ∈ Q[X].
Proof. We write R = A/B with A, B ∈ Q[X]. We assume that deg(B) ≥ 1 otherwise there is nothing to prove. There exist U, V ∈ Q[X] such that A = UB +V and deg(V ) < deg(B). Let w ∈ Z \ {0} be such that wU, wV ∈ Z[X]. Let N be the infinite set of integers n such that R(n) ∈ Z; without loss of generality, we can assume that N contains infinitely many positive integers. For every n ∈ N , we have wV (n)/B(n) = wR(n) -wU(n) ∈ Z. But lim x→+∞ wV (x)/B(x) = 0. Hence there exists M such that n ∈ N and n ≥ M imply that wV (n)/B(n) = 0. Therefore, wV has infinitely many roots: it must be the null polynomial, so that

R = U ∈ Q[X].
Now, we have

f (m) a (x) = ∞ n=0 (n + m)(n + m -1) • • • (n + 1)a n+m x n .
Since (a n ) n≥0 is a primary pseudo-polynomial, this is also the case of

((n + m)(n + m -1) • • • (n + 1)a n+m ) n≥0
because it is a product of two primary pseudo-polynomials. Since f

(m) a (x) is algebraic over Q(x), ((n + m)(n + m -1) • • • (n + 1)a n+m ) n≥0
is a polynomial by the already proven case m = 0 of Theorem 2(i). Hence (a n+m ) n≥0 is a rational fraction, so that by Lemma 1, (a n+m ) n≥0 is a polynomial. This completes the proof of Case (i).

Proof of Theorem 3

The proof of the Perelli-Zannier Theorem is based on the following lemma proved in [START_REF] Perelli | On recurrent mod p sequences[END_REF]. We shall also use it.

Lemma 2. For k = (k j ) j≥0 ∈ (R + ) N , an integer N ≥ 1, set A(N, k) := {(x 1 , . . . , x N ) ∈ Z N : |x j | ≤ k j and ∀p, ∀n ≤ N -p, x n+p ≡ x n mod p}. Then #A(N, k) ≤ N j=1 1 + 2k j P j-1 .
Let R ≥ 1, H ≥ 0, D ≥ 1 be integers. Let q 0 , . . . , q R ∈ Z[X] with max j H(q j ) ≤ H and max j deg(q j ) ≤ D -1. Considering the coefficients of the q j 's as indeterminates, there are (2H + 1) RD functions F of the form

F (n) := R-1 j=0 q j (n)a n+j . (4.1)
Such a function satisfies |F (n)| ≤ cRDH(n + 1) D δ n+R for all n ≥ 0 and F (n + p) ≡ F (n) mod p for all prime number p and all n ≥ 0. Hence for all N ≥ 1, (F (0), . . . , F (N -1)) ∈ A(N, K) where K j := cRDHj D δ j+R-1 . Therefore, given N, if

N j=1 1 + 2K j P j-1 < (2H + 1) RD , (4.2) 
there exists two different functions F 1 and F 2 of the form (4.1) such that

F 1 (n) = F 2 (n) for all n ∈ {0, 1, . . . , N -1}. Hence the function G N := F 1 -F 2 is of the form (4.1) G N (n) = R-1 j=0 q j (n)a n+j ,
with q 0 (X), . . . , q R-1 (X) ∈ Z[X] not all identically zero, with G N (n) = 0 for every integer n in {0, 1, . . . , N -1} and |G N (n)| ≤ 2cRDH(n + 1) D δ n+R for all n ≥ 0. Note that G N depends on N which is fixed but can be as large as desired in this construction. Eq. ( 4.2) holds if we assume the stronger condition

∞ j=1 1 + 2K j P j-1 ≤ H RD , (4.3) 
because the assumption δ < e implies the convergence of the product

Φ(D, x) := ∞ j=1 1 + x j D δ j P j-1
for all x ≥ 0 and all D ≥ 0, and obviously 1 + x j D δ j P j-1 ≥ 1. We shall provide an upper bound for Φ(D, x) in §4.2, from which we shall deduce values of H, R and D such that (4.3) holds. It is important to observe here that (4.3) does not depend on N.

4.1 Proof that G N (n) = 0 for all n ≥ 0 Following the Perelli-Zannier method, we now want to prove that, provided N is large enough, G N (n) vanishes for all n ≥ 0. Assume this is not the case. Then for every N, let

M N ≥ N denote the largest integer such that G N (0) = G N (1) = . . . = G N (M N ) = 0 but G N (M N + 1) = 0. We fix α in 0, 2 log(δ) -2 . We shall first prove that G N (m) = 0 for m in I := [2M N , (2 + α)M N ]. Let m ∈ I.
First assume that p is a prime and p < M N : since

G N (0) = • • • = G N (p) = 0 and G N (n + p) ≡ G N (n) mod p, p divides G N (m). Assume now that M N ≤ p ≤ m/2, so that 0 ≤ m -2p ≤ m -2M N ≤ αM N ≤ M N , hence G N (m) ≡ G N (m -2p) = 0 mod p. Assume to finish that m -M N < p ≤ m (such primes have not yet been considered) so that 0 ≤ m-p < M N and G N (m) ≡ G N (m-p) ≡ 0 mod p. It follows that G N (m) si divisible by P m/2 P m /P m-M N .
Therefore, if G N (m) = 0 for some m ∈ I, then

|G N (m)| ≥ e m/2+M N +o(M N ) ≥ e 2M N +o(M N ) ,
where o(M N ) denotes a term such that o(M N )/M N becomes arbitrarily small when N is taken arbitrarily large. But on the other hand, we know that, for any m ∈ I,

|G N (m)| ≤ 2cRDH(m + 1) D δ m+R ≤ 2cRDH(2M N + αM N + 1) D δ R δ (2+α)M N .
We recall that we assume that H, R and D are such that (4.3) holds, which is independent of N. Hence we can let N → +∞, hence a fortiori M N → +∞ so the above lower and upper bounds for G N (m) = 0 imply that e 2 ≤ δ 2+α , i.e. that

α ≥ 2 log(δ) -2,
which is contrary to the assumption on α. Hence, provided N is large enough, we have G N (m) = 0 for all m in I.

We thus have

G N (m) = 0 for all integers m in [0, . . . , M N ] or [2M N , (2 + α)M N ]. It follows that for any p ≤ (1 + α)M N -1, p divides G N (M N + 1). Indeed, if p ≤ M N , we write M N + 1 = n + p for some n ≤ M N -2 so that G N (M N + 1) ≡ G(n) = 0 mod p, while if M N < p ≤ (1 + α)M N -1, we have 0 = G N (M N + 1 + p) ≡ G(M N + 1) mod p because M N + 1 + p ∈ [2M N , (2 + α)M N ]. Hence, because G N (M N + 1) = 0, we have |G N (M N + 1)| ≥ P (1+α)M N -1 ≥ e (1+α)M N +o(M N ) .
On the other hand,

|G N (M N + 1)| ≤ c2RDH(M N + 2) D δ M N +1+R .
As above, we take N large enough so that these two bounds imply that α ≤ log(δ) -1, which is impossible because log(δ) -1 < 0 while α was chosen positive.

Therefore, there is no such M N such that G(M N + 1) = 0, so that G(n) = 0 for all integer n ≥ 0.

Upper bound for Φ(D, x)

In this section, x > 0 is a fixed real parameter and D ≥ 1 is a fixed integer. We fix ε > 0 such that δ < eε, and we let ω = δ/(eε) < 1. By the Prime Number Theorem, we have P j-1 ≥ (eε) j for all j > J = J(ε) so that

Φ(D, x) := ∞ j=1 1 + xj D δ j P j-1 ≤ J j=1 1 + xj D δ j P j-1 ∞ j=J+1 1 + xj D ω j .
We have

J j=1 1 + xj D δ j P j-1 ≤ J j=1 1 + xj D δ j ≤ J j=1 1 + (1 + x)j D δ j ≤ J j=1 2(1 + x)j D δ j ,
since (1 + x)j D δ j ≥ 1 for every j in {1, . . . , J}. Hence,

J j=1 2(1 + x)j D δ j = 2 J (1 + x) J J! D δ J(J+1)/2 ≤ 2 J (1 + x) J J! D δ J 2 .
In addition, we have

∞ j=J+1 1 + xj D ω j ≤ ∞ j=1 1 + xj D ω j , which yields Φ(D, x) ≤ 2 J (1 + x) J J! D δ J 2 ∞ j=1 1 + xj D ω j .
We now bound the infinite product Ψ(D, x)

:= ∞ j=1 1 + xj D ω j . The maximum of the function t → t D ω t/2 is m(D) := (2D/(e log(1/ω))) D , attained at j 0 := 2D/ log(1/ω).
Hence, for all j ≥ j 0 , we have j D ≤ m(D)ω -j/2 . Moreover, t → t D ω t/2 is increasing on [0, j 0 ] and m(D) ≤ j D 0 . Hence,

Ψ(D, x) ≤ 1≤j<j 0 1 + xj D ω j ∞ j≥j 0 1 + xm(D)ω j/2 ≤ 1 + (1 + x)j D 0 ⌊j 0 ⌋ ∞ j=1 1 + xm(D)ω j/2 ≤ 2(1 + x)j D 0 ⌊j 0 ⌋ ∞ j=1 1 + xj D 0 ω j/2 .

We now bound

∞ j=1 1 + xj D 0 ω j/2 . We set y := xj D 0 . Since t → ω t is decreasing on [0, ∞), we have log ∞ j=1 1 + yω j/2 ≤ +∞ 0 log(1 + yω t/2 )dt ≤ 2 log(1/ω) y 0 log(1 + u) u du, (u := yω t/2 ) ≤ - 2Li 2 (-y) log(1/ω) .
Here, we use the dilogarithm Li 2 (z) := -z 0 log(1x)/xdx defined for z ∈ C \ (1, +∞) using the principal branch of log in the integral; see [11, p. 1, (1.4)]. Here, we want to use it for large negative values -y. For this, we use the identity (see [11, p. 4

, (1.7)]) Li 2 (-y) = - 1 2 log(y) 2 -Li 2 (-1/y) -ζ(2), y > 0 which yields -2Li 2 (-y) ≤ log(y) 2 + 4ζ(2), y ≥ 1, because Li 2 (-1/y) + ζ(2) ≤ 2ζ(2) when y ≥ 1. We obtain that for y ≥ 1, ∞ j=1 1 + yω j/2 ≤ c 0 e log(y) 2 / log(1/ω) , with c 0 := exp(4ζ(2)/ log(1/ω)) ≥ 1.
Putting all the pieces together, we finally obtain the bound

1 ≤ Φ(D, x) ≤ 2 J (1 + x) J J! D δ J 2 (2(1 + x)j D 0 ) ⌊j 0 ⌋ c 0 e log(xj D 0 ) 2 / log(1/ω) , (4.4) 
where we recall that ω = δ/(eε) where ε > 0 is such that δ < eε.

Conclusion of the proof

For ease of reading, we set d, r, h for D, R, H. We want to find conditions on d, r and h such that Φ(d, x) ≤ h rd when x = 2crdhδ r-1 (which corresponds to (4.3)). It will be enough to find conditions on d, r, h and ε such that the right-hand side of (4.4) is ≤ h rd . From now on, we set ℓ := log(δ) < 1. We assume that d and ρ depend on ℓ but are independent of h, and we let r := ⌊ρ log(h)⌋ + 1. Since J and j 0 are also fixed, when h → +∞, we have

log c 0 2 J (1 + x) J J! d δ J 2 (2(1 + x)j d 0 ) ⌊j 0 ⌋ e log(xj d 0 ) 2 / log(1/ω) ∼ (1 + ρℓ) 2 log(1/ω) log(h) 2 , while log(h rd ) ∼ dρ log(h) 2 .
Hence for our goal, it suffices to choose d, ρ and ε such that

(1 + ρℓ) 2 log(1/ω) < dρ. (4.5) 
Recall that ω = δ/(eε) so that log(1/ω) → 1ℓ as ε → 0. So, by choosing d and ρ such that

(1 + ρℓ) 2 1 -ℓ ≤ dρ, (4.6) 
we can choose ε > 0 such that Eq. (4.5) holds true. Eq. (4.6) is equivalent to

ℓ 2 ρ 2 + (2ℓ -d(1 -ℓ))ρ + 1 ≤ 0,
which defines a polynomial in ρ whose discriminant is ∆ := d(1ℓ)(d(1ℓ) -4ℓ). Taking d := max(1, ⌈ 4ℓ 1-ℓ ⌉) ensures that (4.6) holds true for any choice of ρ > 0 in

d(1 -ℓ) -2ℓ - √ ∆ 2ℓ 2 , d(1 -ℓ) -2ℓ + √ ∆ 2ℓ 2 .
For simplicity, we also restrict ρ to be ≤ 1/ℓ which is possible because the product of those roots is 1/ℓ 2 and, since d(1ℓ) ≥ 4ℓ, we have

d(1 -ℓ) -2ℓ + √ ∆ 2ℓ 2 ≥ 1 ℓ and d(1 -ℓ) -2ℓ - √ ∆ 2ℓ 2 ≤ 1 ℓ .
With such choices of ε, d and ρ, we now define H(c, δ) as the smallest integer h ≥ 1 such that

c 0 2 J (1 + x) J J! d δ J 2 (2(1 + x)j d 0 ) ⌊j 0 ⌋ e log(xj d 0 ) 2 / log(1/ω) ≤ h rd , (4.7) 
where x = 2crdhδ r-1 . We then obtain (1.11) with max deg(p j ) ≤ d-1 = max(0, ⌈ 5 log(δ)-1 1-log(δ) ⌉) and S ≤ r-1 ≤ ⌊ρ log(h)⌋ ≤ log(H(c, δ))/ℓ. Notice that H(c, δ) also depends on the choice of ρ and we now explain how to bound it.

The left-hand side of (4.7) is an increasing function of h ≥ 1, which appears in the expressions of r := ⌊ρ log(h)⌋ + 1 and x := 2crdhδ r-1 . Hence,

H(c, δ) d(1+⌊ρ log(H(c,δ))⌋)
is larger than the value A (which is ≥ 1) of the left-hand side of (4.7) at h = 1, in which case r = 1 and x = 2cd. It follows that log(A) ≤ d log(H(c, δ)) + dρ log(H(c, δ)) 2 , so that

H(c, δ) ≥ exp d 2 + 4dρ log(A) -d dρ . (4.8) 
Since A → +∞ when δ → e and ε → 0 (because of the term 1/ log(ω)), H(c, δ) can be very large. We now explain how to bound Y := H(c, δ) from above. We assume that H(c, δ) ≥ 2 otherwise there is nothing else to do. The left-hand side of (4.7) is greater than or equal to 1, so that we can take the logarithms of both sides. After some transformations, we obtain a function S(h) ≥ 0 for all h ≥ 1 (which could be explicited) such that Y is the smallest integer h ≥ 1 such that

S(h) ≤ ρd - (1 + ρℓ) 2 log(1/ω) log(h) 2 . (4.9)
Recall that

γ := ρd - (1 + ρℓ) 2 log(1/ω) > 0.
Moreover, there exist α and β that depend on ρ, d, δ and ε (and could be explicited as well) such that S(h) ≤ α log(h) + β for all h ≥ 1. Since Y ≥ 2 is the smallest integer such that (4.9) holds, we have

γ log(Y -1) 2 < S(Y -1) ≤ α log(Y -1) + β.
Hence, log(Y -1) is smaller than the largest solution of the quadratic equation

γX 2 -αX -β = 0,
so that finally

H(c, δ) ≤ 1 + exp α + α 2 + 4βγ 2γ . (4.10)
5 Proof of Theorem 4

Let F (z) be as in the theorem such that F (n) = a n for all n > u. Notice that a n := a n+⌈u⌉+2 , n ≥ 0, is a primary peudo-polynomial; it is a polynomial if and only if (a n ) n≥0 is a polynomial. The function

F (z) := F (z + ⌈u⌉ + 2) is analytic in ℜ(z) > -2, satisfies | F (z)| ≤ c • exp(ρℜ(z)) in ℜ(z) > -2
for some constant c > 0, and a n = F (n) for all n ≥ 0. Moreover,

F (z) is in Q[z] if and only if F (z) is in Q[z].
Therefore, without loss of generality, we can and will assume that F (z) is analytic in ℜ(z) > -2 and that F (n) = a n for all integers n ≥ 0. Let C n denote the circle of center n and radius n oriented in the direct sense. The function F (z -1) being analytic in ℜ(z) > -1, the residue theorem yields

(n -1)! 2iπ Cn F (z -1) (z -1) • • • (z -n) dz = n-1 k=0 (-1) n-k-1 n -1 k a k := b n-1 ∈ Z.
We parametrize the circle

C n as n + ne 2ix = 2n cos(x)e ix for x ∈ [-π/2, π/2]. Nörlund [12, p. 387] proved that (n -1)! (z -1) • • • (z -n) ≤ c 1 (n)e -2n cos(x)ψ(x) , z = 2n cos(x)e ix ∈ C n ,
where c 1 (n) > 0 is bounded above by some polynomial in n and ψ(x) := cos(x) log(2 cos(x)) + x sin(x).

(See also the proof given in [START_REF] Rivoal | Sur les fonctions arithmétiques non entières[END_REF].) The minimum on [-π/2, π/2] of ψ(x) is log(2) at x = 0.

We have

|F (z -1)| ≤ c • e ρℜ(z-1) = ce -ρ • e 2nρ cos(x) 2 , z = 2n cos(x)e ix ∈ C n . Hence |b n-1 | ≤ c 2 (n) max x∈[-π/2,π/2]
e 2n cos(x)(ρ cos(x)-ψ(x))

where c 2 (n) > 0 is bounded above by some polynomial in n. Notice that 0 ≤ cos

(x) ≤ 1 on [-π/2, π/2]. Recall also that ρ > 0. Hence if x is such that ρ cos(x) -ψ(x) ≥ 0, then cos(x)(ρ cos(x) -ψ(x)) ≤ ρ -ψ(x) ≤ ρ -log(2), whereas if x is such that ρ cos(x) -ψ(x) ≤ 0, then cos(x)(ρ cos(x) -ψ(x)) ≤ 0. Therefore, for all x ∈ [-π/2, π/2],
e 2 cos(x)(ρ cos(x)-ψ(x)) ≤ max(1, e 2(ρ-log(2)) )

and

|b n-1 | ≤ c 2 (n) max(1, e 2(ρ-log(2)) ) n . Since 2(ρ -log(2)) < 1, it follows that lim sup n→+∞ |b n | 1/n < e.
But because (a n ) n≥0 is a primary pseudo-polynomial, we know by Theorem 1(ii) that if b n is not eventually equal to 0 then lim inf

n→+∞ |b n | 1/n ≥ e.
This implies that b n is indeed eventually equal to 0, thus that there exist P (X) ∈ Q[X] and an integer N ≥ 0 such that a n = P (n) for all n ≥ 0. Consider now the function g(z) := F (z) -P (z) which is analytic in ℜ(z) > -2 (at least), and such that g(n) = 0 for every integer n ≥ 0. Moreover, since ρ > 0, there exists a constant d > 0 such that |g(z)| ≤ d • exp(ρ|z|) for any z such that ℜ(z) > 0. Since ρ < 1 2 + log(2) < π, we can then apply a classical result of Carlson (see Hardy [7, p. 328]) and deduce that g(z) = 0 identically. Hence F (z) reduces to a polynomial function in Q[z]. This completes the proof of Theorem 4.

Construction of genuine primary pseudo-polynomials

We conclude this paper by presenting a method to construct a non-polynomial primary pseudo-polynomial starting from a given primary pseudo-polynomial (a n ) n≥0 such that a 0 = 1. The justification of the method uses a non-trivial property satisfied by E-functions.

Let as usual (b n ) n≥0 be the binomial transform (1.2) of (a n ) n≥0 . Let

F b (x) := ∞ n=0 b n n! x n .
It follows that, for all n ≥ 0, c n is an integer.

Let n be a positive integer such that, for every positive integer m < n and every prime number p ≤ m, p divides c m . Consider a prime number p ≤ n and an integer k in {1, . . . , n}.

If p ≤ k then p divides b k . If p ≤ n-k, then p divides c n-k . If p > max(k, n-k), then p divides n k because p divides n! but neither k! nor (n -k)!.
In all cases, p divides n k b k c n-k , so that p divides c n . By strong induction on n, it follows that, for every integer n ≥ 0 and every prime p ≤ n, p divides c n (this property holds trivially if n = 0 or 1). By Theorem 1(i), the sequence (u n ) n≥0 ∈ Z N is a primary pseudo-polynomial. Notice that so far we had no need to assume that f a is a G-function.

We now complete the proof of Theorem 5 when f a is also a G-function. We first observe that 717] (see also Footnote 4). Therefore, b n = βα n for all n ≥ 0, with the usual convention that α 0 = 1 if α = 0. Since all primes p ≤ n divide b n , we deduce that α = 0 is the only possibility. Hence 1 = b 0 = β and b n = 0 for all n ≥ 0, so that a n = 1 for all n ≥ 0. It now remains to observe the following facts: "a n = 1 for all n ≥ 0" is equivalent to "b 0 = 1 and b n = 0 for all n ≥ 1" which is equivalent to "c 0 = 1 and c n = 0 for all n ≥ 1", which in turn is equivalent to "u n = 1 for all n ≥ 0".

To conclude, let us explain how to obtain the asymptotic behavior of u n as n → +∞. Since

F u (x) := ∞ n=0 u n n!
x n = e x F c (x) = e x /F b (x), the asymptotic behavior of u n /n! is determined by the zeroes of smallest modulus of F b (x), when it has at least one. Notice that an E-function F (x) with no zero in C must be of the form βe αx with α ∈ Q and β ∈ Q * . Indeed, an E-function is an entire function satisfying |F (x)| ≪ e ρ|x| for some ρ > 0, so that Hadamard's factorization theorem yields F (x) = βx m e αx j≥1 (1 -x x j )e x/x j where the x j 's are the zeroes of F (x), m ∈ N and α, β ∈ C. (4 ) Therefore, a "no zero" assumption implies that F (x) = βe αx with β = 0, and since F (x) ∈ Q[[x]], α, β must be in Q. Coming back to F b (x), we have seen during the proof of Theorem 5 that this case implies that α = 0, β = 1, hence that f a (x) = (1x) -1 . Therefore, assuming that f a (x) is a G-function different of (1x) -1 , the E-function F b (x) has at least one zero. Let x 1 , . . . , x m denote the zeroes of F b (x) of the same modulus which is the smallest amongst all modulus of the zeroes. Classical transfer theorems in [4, Chapter VI] enable to deduce the asymptotic behavior of u n . For instance, if the x j 's are simple zeroes of F b (x), then

u n = n! m j=1 e x j F ′ b (x j ) 1 + o(1) x n j .
This is coherent with (6.1) above (where F b (x) = 1 + x) because we can rewrite it as 1) n e n!, n → +∞.

u n = (-1) n n! n k=0 (-1) n-k (n -k)! ∼ (-
Because of the different arguments of the x j 's, oscillations can occur. In presence of zeroes of F b (x) of higher multiplicities, similar but more complicated expressions can be given. Finally, even though F b (x)/e x is an E-function, we don't expect e x /F b (x) to be D-finite in general, (5 ) but this is obviously the case if F b (x) is a polynomial.

  F b (x) is an E-function: indeed, f b (x) is a G-function because f b (x) := ∞ n=0 b n x n = 1 1 + x f a x 1 + x and f a (x) is a G-function. ( 3 ) Let us assume that lim sup n |u n | 1/n < e. By the Perelli-Zannier Theorem quoted in the Introduction, f u (x) := ∞ n=0 u n x n is a G-function. From the equation c n := n k=0 (-1) n-k n k u k (∀n ≥ 0),we deduce that f c (x) := is also a G-function. Hence F c (x) := 1/F b (z) is also an E-function. Therefore, F b (x) is a unit of the ring of E-functions, i.e. it is of the form βe αz with α ∈ Q and β ∈ Q * by [1, p.

Given a G-function f (x) and α(x) an algebraic function over Q(x) regular at x = 0, f (xα(x)) is a G-function.

This argument also explains the characterization of the units of the ring of E-functions: we simply have to observe that if an E-function F (x) is a unit, i.e. that 1/F (x) is an E-function, then it does not vanish anywhere on C because an E-function is an entire function.

A classical result of Harris-Sibuya[START_REF] Harris | The reciprocals of solutions of linear ordinary differential equations[END_REF] ensures that if y and 1/y are both holonomic, then y ′ /y is an algebraic function.
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A n := n k=0 n k B k , which is not a polynomial if (and only if) B n = 0 for infinitely many n. Since A n-1 depends only on B 0 , B 1 , . . . , B n-1 , we will recursively construct B n = 0 and thus A n . We have A 0 = B 0 : choosing B 0 = 1, we have ϕ(0) = A 0 = ϕ(0) + 2P 0 . Let n ≥ 0 and let us assume that we have constructed B 0 , B 1 , . . . , B n-1 all non-zero and such that

We want to construct an integer B n = 0 such that

To do this, we first set C n := n-1 k=0 n k B k , so that we will have A n = B n + C n . We now perform the euclidean division of C n by P n : we have C n = u n P n + v n with u n ∈ Z, v n ∈ N and 0 ≤ v n < P n . We set B n := w n P n = 0 where the non-zero integer w n is defined as follows: if ⌈ ϕ(n)-vn Pn ⌉ = u n , we take

in the latter case. This finishes the recursive construction of a genuine primary pseudo-polynomial

Proof of Theorem 2

From the proof of Theorem 1(i), we see that for any given prime number p, the assertions "for all n ≥ 0, a n+p ≡ a n mod p" and "for all n ≥ p, p divides b n " are equivalent. It follows that the assertions "for all p ∈ P and all n ≥ 0, a n+p ≡ a n mod p" and "for all p ∈ P and all n ≥ p, p divides b n " are equivalent, where P is a same set of prime numbers, and this generalizes Theorem 1(i). We shall in fact prove Theorem 2 under the weaker assumption that there exists an infinite set P of prime numbers such that for all p ∈ P and all n ≥ 0, a n+p ≡ a n mod p.

Given u ∈ Z and a prime number p, we set u |p := u mod p. Given a power series F (x) := ∞ n=0 u n x n with integer coefficients, we set

We shall first prove (ii) for the series f b (x) := ∞ n=0 b n x n . Let P denote an infinite set of prime numbers such that for all n ≥ 0 and all p ∈ P, we have a n+p ≡ a n mod p. As already said, this is equivalent to the fact that for all p ∈ P and all n ≥ p, p divides b n . It follows in particular that for any p ∈ P, f b|p (x) is a polynomial in F p [x] of degree at most p -1. For simplicity, we denote by Q p (x) this polynomial, and by q p its degree.

Let us now assume that f b (x) is algebraic over Q(x). If f b (x) is a constant, there is nothing else to prove. We now assume that f b (x) is not a constant so that it has degree d ≥ 1. There exist an integer δ ∈ {1, . . . , d -1}, some integers 0 ≤ j 1 < j 2 < . . . < j δ ≤ We assume that a 0 = 1, so that b 0 = 1 as well. We define the sequence (c n ) n≥0 formally by

.

Let us now define (u n ) n≥0 as the inverse binomial transform (1.3) of (c n ) n≥0 , i.e.

Then we have the following.

Theorem 5. Let (a n ) n≥0 ∈ Z N be a primary pseudo-polynomial such that a 0 = 1. Then, (u n ) n≥0 ∈ Z N is a primary pseudo-polynomial. Moreover, assuming also that

is a primary pseudo-polynomial such that lim sup n |u n | 1/n ≥ e (hence not a polynomial). We explain after the proof of the theorem why u n grows like n! in this case.

So far, the assumption that f a (x) is a G-function is known to be satisfied only when lim sup n |a n | 1/n < e (when the Perelli-Zannier Theorem can be applied), which in turn implies that (a n ) n≥0 should be a polynomial by Conjecture 2. Hence, in practice the second assertion of Theorem 5 is useful only when (a n ) n≥0 is already known to be a polynomial in which case