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Abstract

We consider a modification of the one-dimensional Hubbard model by includ-
ing an external pairing potential. Guided by analytic bosonization results,
we quantitatively determine the grand-canonical zero-temperature phase di-
agram using both finite and infinite density matrix renormalization group
algorithm based on the formalism of matrix product states and matrix prod-
uct operator, respectively. By computing various local quantities as well
as the half-system entanglement, we are able to distinguish between Mott,
metallic and superconducting phases. We point out the compressible nature
of the Mott phase and the fully gapped nature of the many-body spectrum of
the superconducting phase, in the presence of explicit U(1)-charge symmetry
breaking.
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1. Introduction

Long-range quantum correlations often fully characterize the nature of a
quantum phase in many-particle systems. An abrupt change of correlations
typically occurs at quantum phase transitions [1]. As a quantitative measure
of quantum correlations, the entanglement entropy plays a central role, po-
tentially able to signal quantum phase transitions or to characterize critical
gapless phases [2].

To define the entanglement entropy [3], one bipartites the quantum sys-
tem into two parts A and B. One then introduces a density matrix ρ =
|Ψ〉〈Ψ| of a pure quantum state |Ψ〉, and obtains the reduced density matrix
ρA = TrBρ by tracing out the subsystem B. The entanglement entropy is
the von Neumann entropy, which is given by SA = −Tr(ρA ln ρA). Since we
will consider zero-temperature properties in the following, we will compute
entanglement properties using the ground-state as wavefunction |Ψ〉.

In order to find the ground state in quantum many-particle systems, the
density matrix renormalization group [4] (DMRG) method is suitable, es-
pecially in one dimension. The connection between DMRG and tensor net-
works was first recognized by the quantum information community [5]. A
detailed reformulation of DMRG in terms of matrix product states (MPS)
was reviewed by Schollwöck [6]. The generalization of MPS to handle two-
dimensional systems was carried out, and the projected entangled pair state
(PEPS) was introduced [7]. For critical systems, the multi-scale entangle-
ment renormalization ansatz (MERA) is useful [8]. When a Hamiltonian has
translational invariance, we can use the so-called infinite DMRG (iDMRG)
[9], in which we assume that the matrices in the MPS are identical. Without
entering into too much details, let us simply mention that we update a few
matrices and environments to converge to the ground-state |Ψ0〉 with the
iDMRG method.

One motivation of introducing a pairing term is to model condensed mat-
ter quasi-1D electronic quantum wires weakly coupled to a thin (3D) super-
cconductor sheet. Such a set-up has been proposed by Kitaev [10] to realize
boundary Majorana fermions by proximity effect with a p-wave supercon-
ductor. Our proposal involves a singlet (s-wave or d-wave) superconductor
that could be realized using e.g. a (quasi-2D) high-Tc superconductor.

Also, since atoms with an odd number of neutrons [11] are fermions and
thus obey the same statistical rules as electrons, some cold atoms [12] in an
optical lattice can mimic the behaviors of electrons in a real solid material.
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In cold atom experiments, quantum gas microscope [13] was used to create
and image an antiferromagnet, a phase in which one atom occupies each
lattice site, and the spins of neighboring atoms point in opposite directions
[14]. This provides us with a motivation to consider the singlet state of
neighboring atoms with the pairing interaction.

Since experimentalists can design ultracold many-fermion systems loaded
on quasi one-dimensional optical lattices [15], the one-dimensional fermion
Hubbard model has become a physical reality. Quite interestingly, the at-
tractive Hubbard model which is the simplest model to describe pairing and
superconductivity in a fermionic system can also be realized [16]. In our case,
the repulsive Hubbard model with an additional pairing potential, providing
a tendency to form nearest-neighbor singlet pairs, could also be realized in
fermionic systems, for instance by proximity effect with a singlet supercon-
ductor.

The purpose of this paper is to compute the ground-state phase diagram
of the one-dimensional Hubbard model with a (singlet) pairing potential.
To do so, guided by analytic bosonization results, we apply two standard
numerical algorithms (finite and infinite DMRG) separately to optimize the
matrices in the MPS. The results obtained by both methods are consistent
with each other. By changing the chemical potential, a quantum phase tran-
sition occurs between gapless and gapped phases, as can be measured from
the scaling of the entanglement entropy.

2. Model and analytical treatments

2.1. Model and some exact transformations

We consider a simple generalization of the Hubbard model on a one-
dimensional (1D) lattice :

H = −t
∑

〈ij〉
(c†i↑cj↑ + c†j↑ci↑ + c†i↓cj↓ + c†j↓ci↓)

+U
∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
)− µ

∑

i

(ni↑ + ni↓)

−∆
∑

〈ij〉
(c†i↑c

†
j↓ + c†j↑c

†
i↓ + ci↓cj↑ + cj↓ci↑), (1)

where c and c† are the usual spin-1/2 fermion annihilation and creation op-
erators, niσ = c†iσciσ is the local spin-resolved density and 〈ij〉 stands for

3



nearest neighboring sites on the 1D chain. We fix the hopping strength t = 1
(as unit of energy) and vary the other three parameters: the on-site Coulomb
repulsion U , the chemical potential µ, and the pairing strength ∆. The role
of the chemical potential is to control the average number of fermions in the
system. Note that the (bond) singlet pairing potential does not conserve the
particle number so that the model only has SU(2) spin symmetry. Physically,
such a potential may account for the proximity effect of a nearby singlet su-
perconductor. Without pairing potential, i.e. for ∆ = 0, we recover the
standard one-dimensional (repulsive) Hubbard model which will be used for
benchmark calculations as it is exactly solvable [17, 18].

Let us make some additional remarks about the symmetries of this model.
Half-filling will correspond to µ = 0 obviously and the phase diagram will be
symmetric under µ ↔ −µ. Moreover, when µ = 0, applying a particle-hole
symmetry only on odd sites (d2i,σ = c2i,σ and d2i+1,σ = c†2i+1,−σ) amounts to
exchanging the hamiltonian parameters as (t, U, µ = 0,∆)↔ (∆, U, µ = 0, t),
i.e. exchanging the role of t and ∆.

In the non-interacting case (U = 0), the model is quadratic so that it can
be diagonalized in Fourier space using a Bogoliubov transformation to get

H0 =
∑

k

Ek(α
†
kαk + β†kβk) (2)

with a dispersion Ek = ±
√

(εk − µ)2 + (∆ cos k)2 where εk = −2t cos k is the
tight-binding dispersion. In particular, for a generic filling (i.e. a generic µ
value), we have a one-dimensional superconductor with a finite gap 1. Indeed,
there is no U(1) symmetry breaking in this model (since the particle num-
ber conservation is explicitly broken) and, hence, no emergent zero-energy
Goldstone modes. On general grounds, we expect that this superconducting
phase will persists in some range of the phase diagram, even in the presence
of a finite repulsive U . Note also that, in this gapped superconducting phase,
the compressibility is finite though.

We now transform the Hamiltonian in a convenient form. Using the
Bogoliubov rotation

cj↑ = cos
θ

2
fj↑ − sin

θ

2
f †j↓,

1In the many-body spectrum, the ground-state is unique and there is a finite gap 2|µ|
for the first excitation.
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c†j↓ = sin
θ

2
fj↑ + cos

θ

2
f †j↓, (3)

where t+ i∆ =
√
t2 + ∆2e−iθ we can rewrite Eq. (1) in the form

H = −
√
t2 + ∆2

∑

j,σ

(f †j+1σfjσ + f †jσfj+1σ)

+U
∑

j

(
f †j↑fj↑ −

1

2

)(
f †j↓fj↓ −

1

2

)

− µt√
t2 + ∆2

∑

j

(f †j↑fj↑ + f †j↓fj↓)

− µ∆√
t2 + ∆2

∑

j

(f †j↑f
†
j↓ + fj↓fj↑), (4)

showing that µ is giving both a chemical potential and an s-wave pairing
interaction for the f fermions. Eq. (4) is SU(2) symmetric, and since the
Bogoliubov rotation, Eq. (3), leaves the expression of the spin operators in
fermions invariant, this rules out all non-SU(2) singlet ground states for the
Hamiltonian of Eq. (1) such as spin-density wave or triplet superconductivity.

2.2. Half-filling

Let us first consider the half-filled case. For µ = 0, the Hamiltonian (4)
reduces to:

H = −
√
t2 + ∆2

∑

j,r=±
(f †j+1rfjr + f †jrfj+1r)

+U
∑

j

(
nj+ −

1

2

)(
nj− −

1

2

)
. (5)

For U > 0 the Hamiltonian (5) has a charge gap and a c = 1 gapless spin
mode (Mott insulator), while for U < 0 it has gapped spin modes and a c = 1
gapless charge mode (Luther-Emery liquid). Since nj↑−nj↓ = nj+−nj− and

c†j↑cj↓ = f †j+fj−, the spin density wave correlations of the original c fermions
are the same as the ones of the f fermions. However, if we turn to the density,
since

nj↑ + nj↓ − 1 = cos θ(nj+ + nj− − 1)− sin θ(f †j+f
†
j− + fj−fj+), (6)
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the density-density correlations of the c fermions are a weighted sum of
those of the f fermions and the s-wave superfluid correlations of the same
f fermions. In the Mott insulating state, both of those correlations are de-
caying exponentially, so the density-density correlations show an exponential
decay. In the Luther-Emery liquid, the density-density correlations of the c
fermions decay as a power law with distance. However, the superfluid compo-
nent contributes sin2 θ/j1/Kc to the density-density correlations, where Kc is
the charge Luttinger exponent. Since in the Hubbard model with attractive
interaction, Kc > 1, this contribution dominates the cos2 θ/j2 term coming
from the density-density correlations.

To summarize, at half-filling the ground state is always a phase with
c = 1: A Mott insulator when U > 0, a Luther-Emery liquid when U < 0.
But, the Bogoliubov rotation (3), turns the density-density correlations and
the s-wave superfluid correlation functions into weighted sums of the same
correlation functions in the standard 1D Hubbard model. Now, we turn to
bosonization [19] to consider the effect of the chemical potential µ.

2.3. Bosonization approach

With µ 6= 0, we need to consider Eq. (4). The third term of Eq. (4)
is a chemical potential for the f fermions, while the last term is an s-wave
pairing. To make further progress, it is necessary to use the bosonized rep-
resentation [19] of the Hamitonian (4). We find

H = Hc +Hs +Hcs, (7)

Hc =

∫
dx

2π

[
ucKc(πΠc)

2 +
uc
Kc

(∂xφc)
2

]
+

√
2h

π

∫
dx∂xφc

− 2g3

(2πα)2

∫
dx cos

√
8φc, (8)

Hs =

∫
dx

2π

[
usKs(πΠs)

2 +
us
Ks

(∂xφs)
2

]
+

2g1⊥
(2πα)2

∫
dx cos

√
8φs, (9)

Hcs = −2Ω

πα

∫
dx cos

√
2θc cos

√
2φs, (10)

where [φν(x),Πν′(x
′)] = iδ(x−x′)δν,ν′ and πΠν = ∂xθν , with ν = c for charge

excitations and ν = s for spin excitations. The short distance cutoff, of
the order of the lattice spacing is α, and the parameters in the bosonized
Hamiltonian are given by

ucKc = usKs = vF ,
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uc
Kc

= vF +
Uα

π
,

us
Ks

= vF −
Uα

π
,

g3 = g1⊥ = Uα,

h =
µt√

t2 + ∆2
,

Ω =
µ∆√
t2 + ∆2

, (11)

with vF = 2
√
t2 + ∆2α. The simplest case is U < 0. The spin Hamiltonian

Hs is gapped with 〈φs〉 = 0, while the charge Hamiltonian Hc remains gap-
less. Physically, the fermions are already paired, but there is only quasi-long
range superconducting order. With Ω 6= 0, the pairing term ∼ ei

√
2θc sim-

ply provides the necessary symmetry breaking and gives rise to a long range
superconducting order with c = 0.

The case of U > 0 is more complicated. The Hamiltonian Hc is gapped,
with 〈φc〉 = 0, while Hs is gapless. However, the term proportional to Ω gives
rise to a fully gapped ground state with 〈θc〉 = 0 and 〈φs〉 = 0. Since the
dual fields θc and φc cannot be ordered simultaneously, the g3 and Ω term are
competing with each other and a phase transition is expected. There are two
different scenarios for the transition depending on the ratio ∆/t. First, in
the absence of the chemical potential, the transition is driven by Ω. A weak
chemical potential term (t � ∆), simply drives the charge doping in the
superconducting phase. A more detailed picture of that scenario is discussed
in the Appendix. Second, in the absence of charge-spin coupling (10), the h
term would give rise to a commensurate-incommensurate transition [19–21]
closing the charge gap, yielding a two-component Tomonaga-Luttinger liquid
having two c = 1 modes for spin and charge of different velocities. At the
transition point [19], we would have Kc = 1/2 with Ks = 1 because of SU(2)
spin symmetry. Now, Eq. (10), implies that the scaling dimension of Ω at the
transition point is 2− 1/(2Kc)−Ks/2 = 1/2, so that for 0 < |∆| � t, a gap

M ∼ vF
α

(
Ωα
vF

)2

immediately opens both in the spin and the charge modes.

The superconducting state with 〈θc〉 = 0 and 〈φs〉 = 0 is then formed.
These two scenarios can be distinguished by considering the evolution

of the charge density with µ. In both cases, there is according to Eq. (6)
a contribution proportional to 〈cos

√
2θc cos

√
2φs〉. That contribution is
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non-singular since the charge modes are always gapped, and can be ob-
tained from linear response. However, in the vicinity of the commensurate-
incommensurate transition [20, 21], the particle density 〈n+ + n− − 1〉 ∼
(h − hc)

1/2 giving rise to a kink in the density at the transition between
the Mott insulator and the superfluid. Summing the two contributions, the
fermion density varies as

〈nj↑ + nj↓ − 1〉 = A(∆, t, U)µ+B(∆, t, U)
√
µ− µcΘ(µ− µc), (12)

when ∆ � t. By contrast, when ∆ � t, a large gap is present on both
sides of the transition, and the density varies smoothly with the chemical
potential.

〈nj↑ + nj↓ − 1〉 = C(∆, t, U)µ+D(∆, t, U)f(µ), (13)

In the Appendix, we show that at the transition, f(µ) ∼ (µ− µc) ln |µ− µc|,
i.e. there is only a vertical tangent instead of a slope discontinuity.

2.4. Friedel oscillations

So far, we have considered an infinite chain. With a finite chain of N
sites, we have to introduce two fictitious sites 0 and N + 1 such that

c0σ = cN+1σ = 0. (14)

Using Eq. (3) this translates into f0+ = f †0− = 0 and fN+1+ = f †N+1− = 0.
Thus, the f fermions obey the same open boundary conditions as the original
fermions. In bosonization, the boson fields [19, 23] in Eqs. (8)–(9) have to
satisfy

φν(0) = φν(N + 1) = 0, (15)

for ν = c, s. In the MI phase, the conditions (15) are already satisfied in
the bulk by the charge modes. As the edge does not perturb the order-
ing of the charge modes, only its effect the spin modes needs to be ana-
lyzed. In facts [24–26], the boundary conditions being SU(2) symmetric,
only 〈cos

√
2φs〉(j) ∼ j−1/2 6= 0 (near the left edge). Taking into account

the ordering of the charge modes, only the Bond Order Wave (BOW) order
parameter 〈cos

√
2φc cos

√
2φs〉 ∼ j−1/2 expectation value shows power law

oscillations. This translates into

〈
∑

σ

(c†j+1σcjσ + c†jσcj+1σ)〉 ∼ (−)j√
N+1
π

sin
(

πj
N+1

) . (16)
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In the SC phase, the conditions (15) are already satisfied in the bulk
by the spin modes. For the charge modes, however, the boundary condi-
tions (15) impose that the superconducting order parameter vanishes at the
edge and make the BOW order parameter nonzero. Moving into the bulk, the
BOW operator expectation value decays exponentially, while the SC order
parameter recovers its bulk expectation value.

3. Numerical methods

3.1. MPO formalism

We shall now focus exclusively on the (more complicated) U > 0 case and
use both finite and infinite size DMRG. Since the Hamiltonian has translation
symmetry, we construct the corresponding matrix product operator (MPO),
which acts on matrix product state (MPS). By performing the usual matrix
multiplication, we can check that the following MPO does represent our
Hamiltonian:




1 c†i↑ c†i↓ ci↑ ci↓ U(ni↑ − 1
2
)(ni↓ − 1

2
)− µ(ni↑ + ni↓)

0 0 0 0 0 −tci↑ −∆c†i↓
0 0 0 0 0 −tci↓ + ∆c†i↑
0 0 0 0 0 tc†i↑ + ∆ci↓
0 0 0 0 0 tc†i↓ −∆ci↑
0 0 0 0 0 1




(17)

where we omit the boundary operators. Obviously, we need to take care of
ordering for fermions when we carry out iDMRG by acting with the MPO
on the MPS.

Let us assume that the physical index σi labels the state on the i-th site.
For the Hubbard model, σi = (αi, βi), where αi(βi) = 0 or 1 means that
there is a vacancy or occupation of the spin-up (down) fermion at the i-th
site, respectively. The state of the Fock space for a L-lattice system is thus
written in terms of the creation operators c†i↑ and c†i↓ as follows:

|σ0 · · · σL−1〉 = (c†0↑)
α0(c†0↓)

β0 · · · (c†L−1↑)
αL−1(c†L−1↓)

βL−1|0〉 . (18)

It is important to maintain the order of the fermions in the state of the Fock
space to handle the minus sign caused by the exchange of fermion. We adopt
the order of spin-up first and spin-down next as above.
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For iDMRG with a two-site unit cell, two tensors, A and B, in the MPS
are repeated as · · ·ABABAB · · · with the usual matrix multiplication. The
tensors, Aσab and Bρ

cd, have three indices, among which the physical index σ
and ρ takes a value from 0 to 3 for our model. For the degree of freedom
of the internal bond, the indices a (left) and b (right) for A range from
0 to χ − 1, where χ is the dimension of the internal bond. The Schmidt
coefficients between A and B, and between B and A, are denoted by λAB

and λBA, respectively. Thus, a state in the space of matrix product states is
written as

|Ψ〉 =
∑

···σρνη···
Tr(· · ·AσabλABb Bρ

bcλ
BA
c Aνcdλ

AB
d Bη

de · · ·)| · · ·σρνη · · ·〉, (19)

where Tr means that the indices of the internal bonds a, b, c, d, · · · are summed
up. Scaling properties will be sought by increasing χ

Regardless of the t, U , µ, and ∆ values used in our calculations, we have
observed a smooth convergence. Our numerical DMRG results show that
the ground-state solutions fall into two classes: MPS are either of the form
· · ·ABABAB · · · (i.e. unit cell of two sites that we will identify as a Mott
phase) near half filling (µ = 0), or uniform · · ·AAAAAA · · · further away
from half-filling, that we will identify as metallic or superconducting phases,
for ∆ = 0 or non-zero, respectively.

3.2. Phase diagram

We will present data obtained using the infinite DMRG (with a two-site
unit cell) as well as the finite-size algorithm for chain length up to L = 512.
After computing the ground state |Ψ〉, we compute local quantities such
as the bond energy and the local densities and we also use the half-chain
entanglement entropy to determine if the system is critical and, if so, what
is its central charge.

By contraction of the Hamiltonian bond operator with the ground-state
MPS, we obtain the bond energy. Close to half-filling, since the MPS has an
ABAB form, we obtain alternating bond energies on even and odd bonds.
We have observed however that the modulation seems to vanish for χ→∞.
To be more quantitative, we determine the half-chain entanglement entropy
S, which is related to the Schmidt coefficients λa as

S = −
χ−1∑

a=0

λ2
a lnλ2

a. (20)
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Figure 1: The entanglement entropy difference ∆S versus the bond energy difference ∆E
for three cases by setting t = 1 and U = 4. The different colors of the data points are
corresponding to the difference values of χ. We note the particular order of the data points
for the case of ∆ = 4, µ = 0. The linear fits are compatible with a zero intercept, i.e. ∆S
and ∆E are proportional.

The Schmidt coefficients λa are obtained when we perform a singular value
decomposition (SVD) to find the matrices A and B in the MPS. Normal-
ization of

∑χ−1
a=0 λ

2
a = 1 guarantees 〈Ψ|Ψ〉 = 1. For the · · ·ABABAB · · ·

solution, we obtain two different values of the entanglement entropy: So
with λAB on the odd bonds and Se with λBA on the even ones.

The calculation shows that, close to half-filling, both the bond energy
and the entanglement entropy have a finite modulation. In such a case, the
energy difference ∆E = Ee − Eo and the entropy difference ∆S = So − Se
are proportional to each other [22]. In Fig. 1, we present the χ-dependence
of ∆E versus ∆S. The numerical results confirm that ∆S is proportional to
∆E to a very high accuracy of 10−6. We conclude that ∆S = 0 and ∆E = 0
for the infinite bond dimension of χ =∞, as expected.

In order to determine the Mott transition, characterized by a change
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Figure 2: Ground state energy (shifted by µ) versus µ showing a level crossing between
the Mott-insulating and the metallic iDMRG solutions, at a finite χ value. We have set
t = 1, U = 4 and ∆ = 0. Inset: the scaling of the crossing points with 1/χ agrees with
the exact transition point at µ+ ' 0.643364.

12



in the compressibility, we compute the (average) ground state energy E =
(Ee + Eo)/2 vs the chemical potential µ starting from µ = 0. On the other
hand, we can also compute the ground-state energy in the uniform solution
by decreasing µ (starting from large values). In each iDMRG calculation,
the tensors of the initial environment are given by the previous solution of
the different µ. First, as a benchmark, we plot in Fig. 2 the evolution
of the ground state energy for ∆ = 0, where we find a level-crossing at a
critical µc. In full care of the entanglement, corresponding to χ → ∞, our
extrapolation of µc is quite close to the exact value µ+ found using the Lieb-
Wu method [17, 18] and it corresponds to the well-known second-order phase
transition between an incompressible Mott phase and a metallic one.

We also compute the density, i.e. the expectation value of the occupation
number n = 〈ni,↑ + ni,↓〉, as a function of µ as shown in Fig. 3 for several
values of the pairing strength ∆ and U = 4. For ∆ = 0, we do observe an
incompressible phase around µ = 0 and a transition point identical to the
previous one, see Fig. 2. For ∆ > 0, the compressibility (which is the slope of
n vs µ) is always finite but we do observe a sudden change for some critical µc,
which we identify as the phase transition between Mott and superconducting
phases. The finite compressibility is a consequence of Eq. (3). The fermion
density is a weighted sum of the density of the Bogoliubov quasiparticles and
of their superconducting order parameter. The latter responds linearly to µ
according to Eq. (4) resulting in a nonzero compressibility even in the Mott
phase.

As a concluding remark about this section, we have observed that the
critical µc varies with the pairing strength ∆ so that we can summarize
the numerical results in the phase diagram shown in Fig. 4. On top of our
numerical data, we provide a qualitative sketch of the full phase diagram
but it is difficult numerically to determine what happens for large ∆ at
µ = 0. In this region, we can use the partial particle-hole transformation
that was discussed in Sec. 2. Indeed, for µ = 0, the model with parameters
(t = 1, U,∆) at large ∆, which is difficult to analyze, is equivalent to the
one at (t = ∆, U,∆ = 1) which is simply a tight-binding chain with small
perturbation. In this case, we do expect a Mott phase with a very small
gap [18], hence a very small Mott region.

3.3. Local observables and exponents

In order to confirm that there is no breaking of the translation symmetry
in the thermodynamic limit, we also plot in Fig. 5 several local quantities
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Figure 3: Density n versus chemical potential µ for U = 4, t = 1 and χ = 120. For
different values ∆, we observe an abrupt change of the slope ∂n/∂µ.
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Figure 4: Numerical phase diagram of the one-dimensional Hubbard model at t = 1 and
U = 4, as a function of the chemical potential µ and the singlet pairing potential ∆,
obtained from iDMRG (magenta squares) and DMRG (purple circles, L = 128). The red
line is a guide to the eyes. The region of the Mott-insulating phase shrinks for smaller U .
Star symbols correspond to the points where local quantities are plotted in Fig. 5.

measured by finite-size DMRG (with open boundary conditions) in several
points of the phase diagram. Panels (a-b) correspond to the pure Hubbard
model respectively in the Mott and metallic phase. In the Mott phase, the
density is locked to n↑ = n↓ = n/2 = 0.5 per site since the chemical po-
tential is smaller than the gap and we do observe Friedel oscillations in the
bond kinetic energy, similar to the well-known oscillations in Heisenberg spin
chains [22], which can be fitted as 1/x0.55 in good agreement with the pre-
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dicted 1/
√
x knowing that logarithmic corrections are present [19]. In the

metallic phase for a generic filling, oscillations are incommensurate and can
provide accurate information about Luttinger exponents etc [23, 27]. For
finite ∆ and small |µ|, see Fig. 5c, this is the generalized Mott phase with
very small density fluctuations (non-zero since there is a finite compressibil-
ity) and power-law Friedel oscillations both in the bond kinetic energy and in
the bond pairing energy: we have attempted to fit the pairing modulations
with a power-law from the edge, which leads to an exponent 0.71; however,
fitting the modulation measured in the center of the chain as a function of
1/L leads to an exponent 0.51 in perfect agreement with analytic prediction,
see Eq. (16). Last, in the superconducting phase, see Fig. 5d, the Friedel
oscillations in all local quantities are short-range and can be fitted with an
exponential form, as expected for a fully gapped phase.

Note that the physics of our model is rather different from the extended
Hubbard model which is known to host long-range ordered BOW [28].

3.4. Entanglement entropy scaling

It is well-established that block entanglement entropy scaling can be used
to determine if the ground-state is gapped or critical. In the later case, the
central charge of the underlying Conformal Field Theory (CFT) can also be
computed [29]. In Fig. 6, we present the half-chain entanglement entropy
S = (So + Se)/2, which is obtained from iDMRG. In agreement with our
local measurements from the previous section, we do observe a rather flat
plateau region around µ = 0, at least for ∆ not too large, corresponding to
the Mott phase obtained from the compressibility data. Note that the size
of the plateau is decreasing with ∆ so that it is still difficult to determine
the physics for large ∆ at µ = 0.

In addition, using a conformal scaling with χ,

S =
1√

12
c

+ 1
lnχ+ s̃,

one can determine the central charge c [30] in all critical phases [31] with
a constant s̃. In Fig. 7, we present the finite-χ scaling of the half-chain
entanglement entropy for several ∆ and µ. For parameters U = 4, ∆ = 2 and
µ = 0.6, we observe the saturation of S at large χ, a behavior characteristic
of a fully gapped phase as expected for the superconducting one. In contrast,
for the model with U = 4, ∆ = 2 and µ = 0, the above conformal scaling is
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Figure 5: Local quantities of the one-dimensional Hubbard model at t = 1 and U = 4,
obtained from DMRG on chains of length L = 128 at various points in the phase diagram
(star symbols in Fig. 4). From top to bottom, parameters (µ,∆) are: (a) (0.2,0) in the
Mott phase of the pure Hubbard model; (b) (1,0) in the metallic phase of the pure Hubbard
model; (c) (0.2,2) in the Mott phase of our model; (d) (1,2) in the superconducting phase.
Inset of panel (c) shows the pairing modulation measured in the center of the chain as a
function of 1/L in logarithmic scale, fitted with an exponent 1/L0.51.

well realized providing the central charge is set to c = 1, as expected for a
Mott phase with a single gapless spin mode.
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Figure 6: Half-chain entanglement entropy versus µ for several values of the pairing ∆.
We have set the parameters to t = 1, U = 4 and χ = 100.
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Figure 7: Entanglement entropy versus ln(χ) for two values of µ, fixing U = 4 and ∆ = 2.
For µ = 0.6, S saturates at large χ, in agreement with a gapped superconducting behavior.
At µ = 0, the data can be fitted as S = 0.22 ln(χ) + s̃, in agreement with the conformal
scaling with central charge c = 1 (see text).
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In order to provide a complementary quantitative analysis, we have used
finite-size DMRG algorithm [32] keeping up to m = 4000 states and with
a discarded weight below 10−8. For a finite-system with open boundary
conditions, conformal field theory [29] predicts that, in a critical region, the
block entanglement entropy S should follow the universal scaling behavior:

S =
c

6
ln d(x|L) + s̃. (21)

where c is the central charge, d(x|L) = π/L sin(xπ/L) is the conformal block
size of size x, and s̃ is a non-universal constant.

In Fig. 8, we present the finite-size scaling of the entanglement entropy
for U = 4 in all different regions. In the metallic phase (∆ = 0, µ = 2), we
measure a large central charge c ' 2 corresponding to two gapless modes (one
in the charge channel, one in the spin channel) as expected. For ∆ = 2 and
µ = 2, we are in the fully gapped superconducting phase. Last, in the Mott
phase at or close to half-filling (for instance ∆ = 2 and µ = 0), we observe
a smooth crossover from a large central charge c ' 2 at small distance to a
proper c = 1 at large distance, as expected from a single gapless spin mode,
as found for instance in the pure Hubbard model with ∆ = 0. Indeed, it is
well-known that, for the pure Hubbard model at half-filling, the charge gap
is exponentially small (∼ exp(−t/U)) while it becomes of order U at large
U [18]. Similarly, there is a corresponding length scale (proportional to the
inverse of the gap) that governs this crossover.

In conclusion on this section, our finite-size DMRG calculations have
confirmed that the charge channel is always gapped for finite ∆. However,
we have distinguished the Mott phase from the fully gapped superconducting
one by its gapless c = 1 spin mode. Also, we have not seen any clear sign of an
intermediate BOW phase with spontaneous translation symmetry breaking,
which in principle is allowed as discussed in the Appendix.

4. Conclusion

In summary, we have used both the finite-size and infinite DMRG to ob-
tain the ground-state of the one-dimensional Hubbard model with an addi-
tional singlet pairing potential. Such a model would be relevant for a strongly
correlated chain with some proximity coupling to a singlet superconductor.
We have computed local quantities as well as entanglement properties in
order to establish the full phase diagram, including Mott, metallic and su-
perconducting phases.
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Figure 8: Entanglement entropy scaling versus the conformal size of the block for U = 4
and various parameters ∆ and µ, obtained from DMRG on chains of length L. (a) ∆ = 0
and µ = 2 in the metallic phase; (b) ∆ = 2 and µ = 0 in the Mott phase; (c) ∆ = 2 and
µ = 2 in the superconducting phase.
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Our study has revealed a particularly interesting feature of the Mott and
superconducting phases, connected to the existence of a potential break-
ing explicitly particle number conservation. In that case, the inverse of the
compressibility κ is no longer related to the many-body charge gap ∆C , as
κ−1 ∼ L∆C , so that ∆C and κ could be simultaneously non zero in the ther-
modynamic limit L → ∞. Such a remarkable feature is examplified by the
Mott and the superconducting phases which are both simultaneously gapped
(in the charge sector) and compressible. The Mott phase can however be
characterized by the existence of a gapless spin mode (described by a c = 1
CFT) while the superconducting phase is fully gapped.

It would be an interesting prospect to extend this study to two-dimensional
systems, using for instance PEPS formulation that does not suffer from the
negative sign problem.
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Appendix: Mott Insulator to superconductor transition

In the present appendix, we give a more detailed discussion of the case
µ 6= 0 where the g3 and Ω terms of (8)–(10) are computed. A similar com-
petition was discussed in the case of the ionic Hubbard model [33, 34] where
three phases were found, a Mott insulator, a Band insulator and a narrow [34]
intermediate bond order wave phase. Analogously, in our model, an interme-
diate c = 0 bond order wave (BOW) phase with 〈φc〉 = 0 and 〈φs〉 = 0 could
exist between the Mott insulator (MI) and the superconductor (SC). The
MI-BOW transition is a Berezinskii-Kosterlitz-Thouless transition where a
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gap in the spin modes opens, leading to 〈φs〉 = 0. The BOW-SC transi-
tion only affects the charge sector. Thus, to discuss that transition, we can
replace cos

√
2φs by its expectation value in Eq. (10). At the special point

Kc = 1/2, using the rescaling φ =
√

2φc and θ = θc/
√

2 we can rewrite the
low-energy Hamiltonian (8)–(10)

Hc +Hcs =

∫
dx

2π

[
uc(πΠ)2 + uc(∂xφ)2

]
+
h

π

∫
dx∂xφ

− 2g3

(2πα)2

∫
dx cos 2φ

+
2Ω〈cos

√
2φs〉

πα

∫
dx cos 2θ, (22)

and introduce the fermion operators

ψR =
ei(θ−φ)

√
2πα

, (23)

ψL =
ei(θ+φ)

√
2πα

, (24)

to obtain [19]

Hc +Hcs = −iuc
∫
dx(ψ†R∂xψR − ψ†L∂xψL)− iU

2

∫
dx(ψ†RψL − ψ†LψR)

−h
∫
dx(ψ†RψR + ψ†LψL)

−i2µ∆〈cos
√

2φs〉√
t2 + ∆2

∫
dx(ψ†Rψ

†
L − ψ†Lψ†R). (25)

The ground state of the Hamiltonian (25) has been studied in [35]. It has a
phase transition point in the Ising universality class, whose order parameter
is the BOW order parameter. When h 6= 0, a disorder point [36, 37] where
charge density wave and BOW correlation functions remain short ranged but
display incommensuration [35] exists inside the superconducting phase. The
Fourier transforms of these correlation functions present a Lifshitz point [38]
where a double peak structure develops. In physical terms, the origin of
the disorder point is simply that the doping induced by the chemical po-
tential moves the Fermi wavevector away from π

2
giving rise to incommen-

surate modulation of the density wave and bond order wave order parame-
ters. While the fermion density displays no singularity at the disorder point,
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since h can drive the Ising transition [35], it coupled to the Ising energy
density operator. This implies that the fermion density has the same singu-
larity at the Ising critical point as the energy density of the Ising model, i.e.
〈n+ + n−〉 ∼ (h− hc) ln |h− hc|.
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Research Highlights
Research Highlights: 

 

1. Using both the finite and infinite DMRG, we find the ground state in 

the one-dimensional Hubbard model with pairing potential.  

2. The bosonization method provides us with theoretical predictions and a 

useful guide for numerical results.   

2. For a given ground state, we calculate the entanglement entropy, which 

shows the quantum phase transition depending on the chemical potential. 

3. We show that the occupation number density also indicates the 

transition in a consistent way. 

4. We determine the central charge at the Mott-insulating phase using the 

block size dependence of entanglement entropy. 

5. We find an example of the Mott and the superconducting phases which 

are both simultaneously gapped and compressible. 
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