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Abstract—Received Signal Strength Indicator (RSSI)-based
fingerprinting is currently viewed as an important technique
for the positioning capabilities in the Internet of Things (IoT).
However, in the case of practical measurement, the localization
methods based on RSSI are easily affected by the temporal and
spatial variation, which contributes to most of the estimation
errors in current systems. In this paper, the feasibility of
utilizing the Channel State Information (CSI) for localization is
studied, after knowing that the CSI contains information about
the channel between the sender and receiver at the level of
individual data subcarriers. Unlike most of the previous work,
the intended approach is to use the entire subcarrier magnitudes
without averaging or any reduction of the obtained narrowband
CSI. Moreover, the frequency hopping in the LoRa systems
should be a profit for localization by getting access to a wider
band. In order to obtain a reliable basis for this approach, an
outdoor measurement campaign is performed in the area of the
Campus Beaulieu in Rennes to estimate the CSI of transmitted
LoRa signals from different locations. For this, it is necessary
for the individual channels from each different position to be
appropriately different from one another to achieve significant
localization gain. Hence, a comparison is done investigating the
attainable evolution in the CSI at each location based on the
CSI slope versus its average amplitude. In the given results, the
feasibility of using the proposed technique is asserted by the
drastic stability of the CSI slope over time and space, in contrary
to the CSI average amplitude. This manifests the robustness of
the CSI to the signal fluctuations and its more valuable rendering
than the RSSI.

Index Terms—IoT, LoRa, Localization, CSI, RSSI

I. INTRODUCTION

Beyond the traditional voice, video and data services
where data throughput is the main purpose in the context of
the Internet of Things (IoT), the focus here is on low-cost
deployments with large coverage areas [1]. For providing this
connectivity, Low Power Wide Area Networks (LPWAN) are
considered the major technology, especially the LoRaWAN
whose design compromises between low energy consumption
and a large communication range [2].

Localization is one of the essential features of many IoT
modules due to the very nature of the data collected from the
devices [3]. These usages involve location detection of assets
in a warehouse, patient tracking inside the building of the
hospital, and emergency personnel positioning in a disaster

area. Therefore, precise localization is still a critical missing
component and it has been gaining growing interest from a
wide range of applications. Although equipping each sensor
with a global positioning system (GPS) chip is considered
a tempting option, it is not a simple solution because it
requires adding a GPS tracker to a device which will increase
both cost and power consumption [4]. Subsequently, a
great number of researches have been done to address the
domain of GPS-Free localization in IoT. These methods are
investigated based on Received Signal Strength Indicator
(RSSI), Angle of Arrival (AoA), Time of Arrival (ToA), Time
Difference of Arrival (TDoA) and their multiple integrations
[5]. For localization, these measurements are utilized by the
gateways to determine their relative position relations with the
source. However, using the AoA and ToA techniques always
require a precise calibration or an additional hardware [6].
Therefore, these two kinds of techniques are not so practical.
While TDoA is considered the most popular technique for
localization as it does not require the transmitter to be
synchronized with the receivers but only the gateways are
required to have synchronized clocks [7]. Nevertheless, this
accurate time synchronization can only be achieved by adding
a GPS receiver at each gateway which needs an additional cost.

Among all the localization technologies, wireless RSSI
fingerprinting has proven as an effective positioning technique
due to its simplicity and deployment practicability [8].
Fingerprinting based localization avoids hardware deployment
cost and effort by relying on existing network infrastructure.
It just relies on the received signal strength at each gateway
to localize the node. However, RSSI-based fingerprinting
localization methods may have poor positioning performance
as RSSI always vary due to the large signal power fluctuations
both in time and space, moreover, each measured RSSI value
depends on the hardware accuracy as well as the system
calibration for every measurement [9]. Besides, RSSI contains
coarse information so as to not fully utilize the abundant
channel information in each subcarrier. Therefore, some little
work has been published whose aim is to take the average
value of the whole Channel State Information (CSI) subcarrier
amplitudes which is proven to be more temporally stable in
different environments and helps maintain the performance



over time in comparison with RSSI [10].

In this paper, it is favorable to show the possibility to
leverage CSI for improving the performance of positioning
by investigating the profit of using the entire subcarrier
magnitudes without averaging or any reduction. Thus,
an initial measurement campaign is done to compute the
narrowband CSI of transmitted LoRa signals from different
locations. To achieve significant localization gain, it is
necessary for the individual channels from each different
position to be uncorrelated with one another. Thus, the
presented short time data indicate that channel slopes with
even short separated distances will be quite stable and show
weak intercorrelations between them. Furthermore, the CSI in
each position after a while is more correlated with itself which
can achieve a significant diversity gain in comparison with the
mean amplitude of the CSI. This trial allows us also to derive
recommendations for the use of diversity at the receiving
site in short-range outdoor-to-outdoor transmission systems,
asking questions like: ”At what distance must vertically
polarized antennas be placed such that intercorrelation is
low and hence gateway diversity is potentially beneficial for
localization?” or ”Can also the LoRa frequency hopping add
a diversity gain for a static transmitting node scenario?”

The remainder of this document is organized as follows.
Section II presents the measurement overview and Section III
provides sufficient detail of the proposed post-processing algo-
rithm. The results of the channel correlation analysis are then
presented and commented in Section IV. Finally, Section V is
dedicated for conclusions.

II. SYSTEM AND MEASUREMENT SETUP

The main concept of the proposed experiment is
transmitting repeated up-chirps signal to sense the
channels consecutively at the typical uplink frequency
bands, i.e 9 channels with center frequency fk ∈
{867.1, 867.3, 867.5, 867.7, 867.9, 868.1, 868.3, 868.5, 868.8}
MHz, and 125 kHz bandwidth. This is considered as a
traditional channel sounder with a typical structure which
has the Transmitter (Tx) and Receiver (Rx) placed at two
different locations, as shown in Figure 1. Thus, the Rx
antenna is fixed on the roof of the university building as
shown in Figure 2a. While the Tx has a mobile structure with
a laptop and a Universal Software Radio Peripheral (USRP)
as it is described in Figure 2b. First, the Tx, i.e. located in
specific positions within the area of the Campus Beaulieu in
Rennes, should generate a signal by a laptop and transmit it
using the USRP to sample the channel for a specific time
interval. While the stationary Rx, whose antenna is located
above the building, should receive the signal with its USRP
at the same time interval of transmitting. After the Rx picks
up the signal, the desktop computer stores it to perform an
essential post-processing algorithm on the received signal to
mitigate the imperfections and obtain the channel transfer

function as detailed in the following subsection.

Fig. 1: The locations of the three measured points in the area of
the Campus Beaulieu. Positions of Tx and the Rx are labeled
by black, and red markers respectively. (©by OpenStreetMap
Contributers)

Whereas the aforementioned emulated preamble LoRa sig-
nal is generated using python from the mth cyclic time shift
of the basic chirp such that x[n] is expressed as:

xm[n] =

√
1

2SF
exp(j2π

(((m+ n) mod 2SF )− 2SF−1)2

21−SF ),

(1)
with m = 0 for the basic chirp symbol, while the Spreading

Factor (SF) is chosen to be equal to 7. Where n depicts the
sample index n = 0, 1, 2, ..., 2SF − 1.

III. DATA PROCESSING

On the Rx side, the saved file is imported to be analysed
for each center frequency fk. Thus, the following main signal
processing techniques are carried out with the same order.

A. Frequency synchronization

The frequency and time synchronization is applied at first,
respectively. The objective of frequency synchronization is to
establish the subcarrier orthogonality by correcting the phase
as an initial step before applying any further processing [11].
Let define the Carrier Frequency Offset (CFO) by ∆fk as
being the difference between the up and down conversion
frequencies. This CFO results in a phase offset ∆φk = 2π∆fk

fs
between two samples with the same index in consecutive
upchirps. The residual part of this offset can be estimated by
taking the average across the received entire symbol yk[n] as:



(a) Position of the Rx monopole antenna fixed on the roof.

(b) A trolley shelf with the different parts of the transmission
equipment at Tx location 2.

Fig. 2: Views from the Tx and the Rx sites.

∆̂φk[l] = arg (

2SF−1∑
n=0

yk[l + n]y∗k[l + n+ 2SF ]). (2)

This method of detecting the CFO is described as the
frequency acquisition algorithm and is utilized over the
whole handled signal portion. As shown in Figure 3, the
angles of the differential correlation function indicate that
there are some phase deviations. Hence, the phase error
is compensated and the angles of the corrected differential
correlation function become concentrated around zero.

B. Channel estimation

The up-chirps in the LoRa preamble, i.e. typically consist of
eight symbols, are considered as a channel sounder. Therefore,
the least squares estimate of the raw channel transfer function
Hraw can be estimated for a simple division as [12]:

l

Fig. 3: The angles of differential correlation function ∆̂φk[l]
before and after correction of the whole portion of about 30
symbols.

Hraw =
Y

X
, (3)

where X and Y are the training and the received symbol
in the frequency domain respectively. Hence, the proposed
denoising technique is applied on the raw channel transfer
function Hraw. This imposes doing an incipient step, i.e.
removing the thermal noise from the subcarriers in the channel
transfer function. Thus, the raw channel transfer function
Hraw is low-passed in the frequency domain using FIR filter
to maintain the property of linear phase as:

Hfiltered = Rh ·Hraw, (4)

where Rh is the autocorrelation matrix of the channel and
the filtered channel Hfiltered is also defined as Hl

fk
. Where

fk and l are the center frequency value in MHz and the
location number, respectively. As shown in Figure 4, one can
observe that the obtained CSI is smooth without any noise at
the three different locations. Moreover, it is obvious that the
channels have a different magnitude of attenuation at the same
subcarrier through the different locations.
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Fig. 4: The normalized CSI with 125 kHz bandwidth.



IV. CORRELATION ANALYSIS

To check the plausibility of utilizing the CSI for localization,
the CSI spatial and temporal evolution at each location is
analysed using a proposed method based on the CSI slope.
Furthermore, this technique is also compared to the traditional
method which determines each position from its CSI average
amplitude as detailed in the following subsections.

A. CSI slope

Based on the LoRa narrow-band characteristic, i.e. have a
bandwidth W = 125 kHz in Europe, a linear variation of the
channel transfer function is assumed over frequency bandwidth
centered on fk. This condition is generally valid under the
considered reality of such a very narrow bandwidth, thus,
all the obtained channel transfer functions are almost flat as
shown in Figure 4. Nevertheless, it is clear that each CSI has
a unique slope. In this paper, the CSI slopes are estimated to
analyse the CSI evolution from each location i as:

sifk =
| Hi

fk
[0] | − | Hi

fk
[2SF − 1] |

W
, (5)

Then the Normalized Slope Distance (NSD) between any
two positions for the whole K uplink frequency bands is
defined as:

Si,j =
1

2K

K−1∑
k=0

| s̃ifk − s̃
j
fk
| (6)

with

s̃ifk =
sifk
Smax

, (7)

where Smax is equivalent to the absolute value of the
maximum observed slope in the measured dataset. This is
chosen to be the scaling factor for the slope normalization.
Consequently,

0 ≤ Si,j ≤ 1. (8)

The magnitudes of the aforementioned normalized slope
s̃ifk are given in Figure 5a for each different location i and
center frequency fk. Thus, the full scale is normalized and
lies in [−1, 1], whereas every amplitude can vary on a several
order of magnitude levels. Each frequency of the K uplink
frequency bands is labeled with a specific color. In order to
analyse the time variation of the CSI slope at each position,
over a time duration τ of about 10 minutes, an arrow is
drawn for every center frequency from the first time instant
to the second one. This measurement dataset demonstrates
the slow alteration of the CSI slope with respect to time.

Moving to the NSD Si,j values in Figure 6a, one can
observe the high level of NSD values in the three location
combinations, which are S1,2, S1,3 and S2,3. This indicates
that CSI models from different positions are distinctly differ-
ent. While the CSI for each location significantly underlines

a low NSD value with itself after a τ time interval. This
is obvious in S1,1τ , S2,2τ and S3,3τ whose values are near
zero as well as they are far away from the other NSD values,
i.e. labeled by circles. So the environment of the propagation
paths for each specific position is stable with only marginal
modification during this duration.

B. CSI average magnitude

On the other hand, the channel evolution at each location is
investigated by the mechanism, which depends on calculating
the CSI mean magnitude. This method is considered as an
alternative way rather than estimating the RSSI value. Thus,
the CSI average amplitude is estimated for each location i as:

rifk =
1

2SF

2SF−1∑
n=0

| Hi
fk

[n] |, (9)

Hence, the Amplitude Distance (AD) between any two
positions for the entire K uplink frequency bands is computed
as:

Ri,j =
1

K

K−1∑
k=0

| rifk − r
j
fk
| . (10)

For the whole evaluated locations and frequency bands,
the measured values of the CSI average amplitude rifk are
given in Figure 5b. It is foremost supposed that the CSI slope
variability from one sub-band to another is more informative
than in the CSI average magnitude whose amplitudes at
various bands are evaluating roughly at near levels. Moreover,
it seems that the CSI average amplitude has more alternation
in time than the CSI slope, which is particularly clear at
location 2 when considering the shift between the values of
2 and 2τ .

As depicted in Figure 6b, the AD Ri,j values obtained for
all the location combinations preserve proper values. However,
the AD values, i.e. labeled by triangles, for each location with
itself after the time interval τ are near to the AD values of
different location combinations, i.e. labeled by circles. This
could be observed explicitly in the high AD value of R2,2τ .
This confirms the proposed hypothesis which asserts that the
CSI is more robust to the signal fluctuations than the RSSI,
because, the CSI average magnitude values don’t have the
same temporal stability as the CSI slopes.

V. CONCLUSIONS

Rather than using RSSI fingerprinting, in this article, the
feasibility of utilizing the CSI for localization is presented.
This hypothesis intends to improve the accuracy of positioning
by utilizing the rich channel information in each subcarrier as
well as the frequency hopping in the LoRa systems. To allow
a dynamic study of this approach, an outdoor measurement
campaign is carried out in the area of the Campus Beaulieu
in Rennes to estimate the CSI of transmitted LoRa signals
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(a) The normalized slope s̃ifk values.
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(b) The CSI average amplitude rifk values.

Fig. 5: A comparison between the two families of the distinct
observables.
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Fig. 6: The distance values.

from different locations. Hence, the individual channels from
each different location have to be appropriately different with
one another to achieve significant localization gain. This
difference in the CSI for every two locations is done based on
two aspects, i.e. CSI slope and its average amplitude. Thus,
the presented data indicate that CSI slopes are more stable
and robust to the signal imperfections than the CSI average
amplitudes. This result demonstrates the high performance
of the CSI-based fingerprinting for positioning than RSSI, as
well as its temporal stability.

In future work, CSI-based fingerprinting could be more
efficient by using more than one gateway i.e., a realistic value
in the near future, to obtain more than one CSI for the instant
singular center frequency. Moreover, it could be improved with
classical machine learning techniques for merging other radio
observables such as RSSI, angle of arrival estimates or the
propagation model.
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