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5 ABSTRACT: Owing to the alarming problems of depletion of
6 mineral resources and ever-growing pollution by metallic elements,
7 biosourced catalysts were prepared from Mn-accumulating plant
8 species from a large-scale program of ecological rehabilitation of
9 mining sites. This new generation of catalysts, “Eco-CaMnOx”
10 catalysts, were obtained directly from a controlled thermal treatment
11 of four species of Grevillea genus, a Mn-rich biomass, and without
12 any further chemical treatment. Eco-CaMnOx catalysts were
13 characterized by microwave plasma-atomic emission spectrometer,
14 X-ray powder diffraction spectroscopy, high-resolution transmission
15 electron microscopy, and scanning transmission electron micros-
16 copy-energy-dispersive X-ray spectroscopy. These analyses revealed
17 a natural richness in two unusual and valuable mixed calcium−
18 manganese oxides: Ca2Mn3O8 and CaMnO3. The high efficiency of Eco-CaMnOx catalysts was demonstrated via the epoxidation of
19 various biosourced terpenes and lipids, using the mixture H2O2/NaHCO3 as a green co-oxidant. This study demonstrated not only
20 the high potential of Eco-CaMnOx catalysts as alternatives to oxidative reagents prohibited by REACH regulation but also the
21 efficient synthesis of biosourced epoxides, which can be used as monomers for the preparation of biodegradable polymers. Finally,
22 the original composition of Eco-CaMnOx catalysts led to distinctive catalytic behaviors compared to previously studied Eco-Mn and
23 Pyr-Mn, allowing the preparation of sensitive epoxides such as linalool epoxide.
24 KEYWORDS: rehabilitation of mining sites: phytoextraction, biosourced Mn catalyst, Ca−Mn cluster, sustainable oxidation, eco-catalysis

25 ■ INTRODUCTION

26 Along with the increase of the world’s population, which keeps
27 demanding a higher standard of living, the claim for mineral
28 resources is also rising. While several concerns have been
29 raised over the elemental sustainability, the depletion of “trace
30 metallic elements” (or “TEs”) is intensifying.1 Growing
31 exploitation of mineral resources is one of the main causes
32 for the serious dissemination of TEs throughout the environ-
33 ment. TEs are among the most harmful pollutants. As they are
34 not biodegradable, their wide dispersion into different
35 ecosystems has raised concerns over their potential risks on
36 human health and the environment.2

37 New Caledonia provides a demonstrative case of this
38 situation. The New Caledonian lagoon is the largest in the
39 world, being classified as one of the UNESCO World Heritage
40 Sites. New Caledonia is one of the highest biodiversity
41 “hotspots” in the world.3 This high biodiversity results from
42 the unusual composition of its soil, which is rich in heavy
43 metals, particularly in nickel. However, nickel in soils also
44 implies intensive mining activities.4 Nickel mines are opencast.
45 Excavations to access deep nickel lodes require the removal of
46 topsoil, upper soil horizons, and vegetation. The removal of the

47plant cover leads to the destruction of biodiversity, which
48promotes soil erosion.5,6 The leaching of bare soils drags the
49sediments away into the streams near mining sites and then
50into the lagoon, threatening the New Caledonian coral reef.7,8

51This erosion also leads to dramatic events in the neighbor-
52hood, such as landslides.
53The rehabilitation of mining sites is becoming a major
54priority. Over the last decade, our laboratory has led a large-
55scale program of ecological restoration of mining sites by the
56reintroduction of a vegetal cover, based on the rich endemic
57biodiversity of New Caledonia. Depending on the location of
58the mining site, pioneer species adapted to local constraints
59were selected. Among these species, many have the capacity to
60concentrate heavy metals from the soils into their aerial
61parts.9−11 Manganese accumulators are the most widespread
62and the most adapted to the restoration of mining sites. In
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63 particular, species of the genus Grevillea (Proteaceae) are
64 considered as the leading species for restoration, representing

f1 65 about 58% of the species reintroduced by our group (Figure
f1 66 1).12,13

67 As such ecological programs could represent an economic
68 cost for mining operators, our group has combined restoration
69 with economic outlets. Taking advantage of the adaptive
70 capacity of these particular plants to accumulate heavy metals,
71 it is possible to directly turn metal-rich leaves into green and
72 efficient catalysts used in organic chemistry. This original
73 valorization of biomass has opened a new perspective in
74 sustainable chemistry: “eco-catalysis” (Figure 1).14,15 The
75 catalysts coming from biomass, named eco-catalysts (Eco-
76 M), associate the phytoextracted metal with many physio-
77 logical elements essential for plant metabolism. These
78 polymetallic systems create original chemical species and
79 generate synergetic catalytic effects between their components.
80 A wide range of eco-catalysts has been prepared and used in
81 many revisited mechanisms of chemistry, such as green
82 oxidation,16−19 green reduction,20,21 Lewis acid catalysis,22−28

83 and cross-coupling reactions.15,29−31

84 Concerning manganese, two generations of Eco-Mn catalysts
85 were prepared from Mn-accumulating plant species belonging

f2 86 to the genus of Grevillea (Figure 2). In each case, the first step
87 was the preparation of an intermediate Eco-Mn1. It was based
88 on a controlled thermal treatment of Mn-rich biomass,
89 followed by a chemical activation by HCl.16 From Eco-Mn1,
90 two oxidative eco-catalysts were formed by a sequential
91 addition of either NaOH/O2/HCl (Eco-Mn2)

16 or H2O2/
92 NaOH (Eco-MnOx).

17

93 Eco-Mn revealed an original polymetallic composition
94 resulting in marked Brønsted and Lewis acidities and displayed
95 superior catalytic performances than conventional Mn
96 catalysts. For example, Eco-Mn1 was successfully employed
97 in the aminoreduction of ketones20 and constitutes the first
98 example of reduction promoted by a Mn-based catalyst. Eco-
99 Mn2 and Eco-MnOx led to a practical and elegant solution to

100the long-standing challenge of oxidative cleavage of 1,2-diols
101into aldehyde or ketones.17,18 Supported Eco-Mn1 provided
102also a huge potential as green catalysts for valuable
103epoxidation.18 Finally, Eco-Mn1 acted as “Janus catalysts” by
104promoting tandem sequences of multicomponent type
105oxidations (synthesis of substituted pyridines) and cyclizations
106(synthesis of p-cymene).16 Comparison of their properties to
107that of commercial salts highlighted the superior catalytic
108activities of Eco-Mn.
109Recently we reported an extensive structural study of Eco-
110Mn1, characterized by inductive coupled plasma-mass spec-
111troscopy, X-ray powder diffraction spectroscopy (XRPD), and
112X-ray absorption spectroscopy (XANES and EXAFS),
113completed with density functional theory calculations.32 In a
114systematic analysis, we also analyzed the thermal residues, from
115New Caledonian Mn-accumulating plant species of Grevillea
116generated before the chemical activation, by XPRD (Figure 2).
117We detected a polymetallic oxide (a mixed manganese−
118calcium oxide, Ca2Mn3O8) instead of polymetallic chlorides as
119for Eco-Mn1 and Eco-Mn2.
120While rare examples have described the use of mixed Mn−
121Ca oxide nanoparticles as oxidants,33,34 no description was
122found for the use of Ca2Mn3O8 in organic synthesis. However,
123mixed Mn−Ca oxides display biomimetic oxidative properties
124of the natural cofactor CaMn4O5 of Photosystem II. Indeed,
125CaMn4O5 performs the oxidation of water during the
126photosynthesis process,35 and the complex Ca2Mn3O8 presents
127similar oxidative activities in the electrochemical oxidation of
128water.36−38

129The above facts prompted us to further structurally
130characterize these new potential oxidative eco-catalysts,
131which we named Eco-CaMnOx. We investigated the mineral
132composition of Eco-CaMnOx by microwave plasma-atomic
133emission spectrometer (MP-AES) and their crystalline
134composition by XRPD. The morphology of Eco-CaMnOx

135was analyzed by high-resolution transmission electron
136microscopy (HRTEM), and the structural distribution of

Figure 1. From the ecological restoration of New Caledonian mining sites to ecocatalysis.

Figure 2. Steps for preparation of the previously studied Eco-Mn catalysts and of the new Eco-CaMnOx from Mn-accumulating plant species.
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137 mineral species was mapped by scanning transmission electron
138 microscopy-energy-dispersive X-ray spectroscopy (STEM-
139 EDX).
140 The oxidative potential of Eco-CaMnOx catalysts was then
141 investigated in the epoxidation of terpenes with new challenges
142 that would meet the principles of green chemistry: (1)
143 developing a “waste-free” process to prepare catalysts, by
144 suppressing the acidic and basic activation steps; (2)
145 generating catalysts with high catalytic oxidative performances;
146 and (3) providing an eco-friendlier synthesis of biosourced
147 epoxides.

148 ■ EXPERIMENTAL SECTION

149 Chemicals. All materials and reagents were purchased from Sigma-
150 Aldrich and were used without further purification.
151 Preparation of Eco-CaMnOx Catalysts. Eco-CaMnOx were
152 prepared from harvested leaves of New Caledonian manganese-
153 accumulating plants: Grevillea exul ssp. exul, Grevillea exul ssp.
154 rubiginosa, Grevillea gillivrayi, and Grevillea meisneri. Plant leaves were
155 coming from the litter of the plants. Harvests are made respecting
156 legal authorizations. Harvested biomass was air-dried at room
157 temperature (rt) and grinded. The obtained powder was thermally
158 treated in an oven under air flow at 300, 550, or 950 °C for 6 h.
159 Preparation of Synthetic Catalysts. Synthetic ashes were
160 obtained by mixing all together well-chosen commercial metallic
161 salts, so that the relative percentage of metallic elements in the
162 starting mixture was exactly the same as in the leaves of Grevillea exul
163 ssp. rubiginosa. The salt mixture was then thermally treated at 550 °C
164 following the same procedure as used for Eco-CaMnOx. The chosen
165 salts were the following: manganese malate trihydrate (MnC4H4O5·
166 3H2O), calcium oxalate (CaC2O4·2H2O), iron phosphate (FePO4·
167 2H2O), magnesium phosphate (Mg3(PO4)2·xH2O), sodium chloride
168 (NaCl), potassium chloride (KCl), and aluminum oxalate (Al2C6O12·
169 xH2O).
170 Ca2Mn3O8 was synthesized by grinding CaCO3 (4 mmol, 400 mg)
171 and MnCO3 (6 mmol, 690 mg) in a mortar until the obtained powder
172 was homogeneous. The powder was then thermally treated in an oven
173 under air flow at 800 °C for 18 h.
174 Epoxidation of Alkenes. In a typical procedure, the alkene (1.6
175 mmol, 1 equiv), the catalyst (8 μmol, 0.005 equiv Mn), and NaHCO3

176 (8 mmol, 5 equiv) were stirred in a mixture of acetone (20 mL) and
177 water (20 mL) at room temperature for 10 min. H2O2 (30% w/w in
178 H2O, 8 mmol, 5 equiv) was added dropwise during 2 h in the mixture
179 while stirring. After 2 h, the catalyst was filtered off and the reaction
180 mixture was extracted with ethyl acetate. The organic phases were
181 gathered and dried with Na2SO4. The solvent was then removed by
182 evaporation.

183■ RESULTS AND DISCUSSION

184Preparation and Characterization of Eco-CaMnOx
185Catalysts. Preparation of Eco-CaMnOx Catalysts. Eco-
186CaMnOx catalysts were prepared from Mn-rich biomass.
187Four species of the Grevillea genus are mainly used to
188rehabilitate mining sites across both provinces in New
189Caledonia: G. gillivrayi, G. meisneri, G. exul ssp. exul, and G.
190exul ssp. rubiginosa. Plant leaves were harvested by hand from
191the plant litter, on the mining sites, which are currently
192rehabilitated by our group.
193In this study, two parameters were studied to investigate
194their influence on Eco-CaMnOx catalytic properties: the plant
195species, from which the catalysts were prepared, and the
196temperature of the thermal treatment. The dried leaves, from
197each of the four species of the Grevillea genus, were thermally
198treated in an oven, under air flow, at 300, 550, or 950 °C for 6
199h, to destroy the organic matter. Indeed, these temperatures
200were chosen according to the literature, as different manganese
201oxides could be formed depending on the corresponding
202heating temperature: MnO2, Mn2O3, or Mn3O4.

39,40 Eco-
203CaMnOx catalysts were then characterized by MP-AES, XRPD,
204HRTEM, and STEM-EDX mapping.
205MP-AES Analysis of Eco-CaMnOx Catalysts. Metallic
206composition of intact Mn-accumulating plant leaves and of
207Eco-CaMnOx catalysts, resulting from different plant species
208and thermal treatments, was studied by MP-AES analyses.
209Analyses were performed in triplicate for each sample to
210determine the standard deviation of the measurement (Table
211S1).
212The results showed that Mn was the major transition metal
213in all eco-catalysts (1 to 16.1 wt %), except for Eco-CaMnOx
214 f3(G. exul ssp. exul 300 °C) (Figure 3). As Ca, Mg, Na, K, and
215Fe are essential mineral components of plants, they were found
216in Eco-CaMnOx catalysts, Ca being the major mineral element
217for every eco-catalyst. Interestingly, the composition of Eco-
218CaMnOx catalysts derived from different plants of the same
219species was quite similar, as shown by low RSD (Table S1).
220This reproducibility of composition within species could be
221explained by the harvest timing.13 Indeed, leaves were
222harvested when they became a vegetal litter: they have the
223highest Mn concentration for each species. As a result of the
224accumulating specificity of each plant species, the chemical
225composition appeared different between Eco-CaMnOx cata-
226lysts.
227Within a species the heating temperature at 550 and 950 °C
228did not have much influence on the chemical composition. But
229at 300 °C the elements were less concentrated. This might be

Figure 3. Histogram representing the relative weight percentages of elements in Eco-CaMnOx catalysts, prepared from different plant species of
Grevillea and thermal treatments, determined by MP-AES analyses.
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230 due to a partial degradation of the organic matter at 300 °C
231 and a total degradation above 550 °C.
232 For further characterizations and experimentations, G.
233 gillivrayi was chosen as the model species because the Eco-
234 CaMnOx catalysts from G. gillivrayi present an average
235 composition of minerals among the other species.
236 XRPD Analysis of Eco-CaMnOx Catalysts. XRPD was
237 performed to deliver insights on the crystalline species present
238 in Eco-CaMnOx catalysts and to compare with a reconstituted
239 control of synthetic ashes. The synthetic ash control was
240 obtained by mixing commercial metallic salts chosen so that
241 the relative percentage of metallic elements in the starting
242 mixture was exactly the same as in the leaves of G. exul ssp.
243 rubiginosa, and was followed by a thermal treatment at 550 °C.

t1 244 The identified crystalline phases are summarized in Table 1.
245 Mn was not present in a crystalline form in the eco-catalysts
246 prepared at 300 °C.
247 Interestingly, for the other temperatures, Mn was present as
248 mixed calcium−manganese oxides. Ca2Mn3O8 was identified in
249 all Eco-CaMnOx prepared at 550 °C, except for G. exul ssp.
250 exul in which crystalline species of manganese was not
251 observed. The absence of crystalline manganese species in G.
252 exul ssp. exul could be linked to a low ratio of Mn/Ca (Table
253 S1) preventing the crystallization process. CaMnO3 was
254 identified in all Eco-CaMnOx prepared at 950 °C. CaMnO3
255 could result from the degradation of Ca2Mn3O8 at high
256 temperature, which was consistent with the calcination
257 temperatures used by Han et al. to prepare these two
258 complexes.41

259 No crystalline mixed manganese−calcium oxide was
260 observed in the synthetic ash control. It suggested that a
261 crystallization mechanism is specific to plant-derived eco-
262 catalysts and that it cannot be reproduced in a simple mixture
263 of ashes. This difference in crystallization pathways illustrates
264 the vegetal footprint of Eco-CaMnOx, which is in accordance
265 with what we reported for Eco-Mn1.

32

266 The structure of Ca2Mn3O8 has been reported as infinite
267 sheets of Mn3O8

4− held together by calcium ions. Mn ions are
268 octahedrally coordinated by oxygen atoms and occupy three-
269 fourths of the octahedral layer sites. The other one-fourth is
270 vacant.37,42 The negative charge is further compensated by the
271 presence of Ca ions in trigonal prismatic sites located above
272 and below layer vacancies.38

273 CaMnO3 has a perovskite structure based on corner-shared
274 MnO6-octahedra. Mn ions, present in the oxidation state IV,
275 are located at the center of the octahedron, while each Ca ion
276 occupies the interoctahedral sites.38,41

277 The layered structure of Ca2Mn3O8 shares similarities with
278 the cofactor CaMn4O5, the oxygen-evolving complex present in
279 Photosystem II, which performs the photo-oxidation of water
280 during photosynthesis. The incorporation of calcium into

281manganese oxides greatly improves water oxidation capaci-
282ties.43,44 Research on a series of manganese−calcium oxides
283showed that Ca2Mn3O8 and CaMnO3 were efficient catalysts
284for the oxygen evolution reaction and oxygen reduction
285reaction. Indeed, manganese ions in Ca2Mn3O8 and CaMnO3
286are in the oxidation state IV and they may present interesting
287oxidative properties similar to MnO2.
288HRTEM Analysis of Eco-CaMnOx Catalysts (G. gillivrayi,
289550 °C). HRTEM images of Eco-CaMnOx (G. gillivrayi, 550
290 f4°C) revealed different particles with various shapes (Figure 4).

291Small round particles of about 10−50 nm in diameter, lamellar
292particles of about 10 nm width over 100 nm length, as well as
293thin layer-shape particles seemed blended together into a
294matrix.
295STEM-EDX Mapping of Eco-CaMnOx (G. gillivrayi, 550 °C).
296The STEM-EDX analysis was used to establish the chemical
297composition mapping of Eco-CaMnOx catalysts (G. gillivrayi,
298 f5550 °C) (Figure 5). Manganese, calcium, magnesium, and
299potassium were expectedly present, as shown by MP-AES
300analyses. The polymetallic structure of Eco-CaMnOx catalysts
301was supported by the aggregation of manganese, oxygen, and
302all of the other elements in the round particles, the layer-shape
303particles, and the matrix. However, it should be noticed that
304the lamellar particles were exclusively composed of manganese,
305oxygen, and calcium. The association of these only three
306elements in a single well-defined shape of particles confirmed
307the presence of the Ca2Mn3O8 complex, and that this complex
308is organized in lamellar sheets.
309Extensive structural analyses of the different Eco-CaMnOx
310catalysts showed the presence of two unusual and valuable
311mixed calcium−manganese complexes: Ca2Mn3O8 and
312CaMnO3. The oxidative potential of the Eco-CaMnOx
313catalysts was studied in the epoxidation of alkenes and
314especially terpenes, as biosourced substrates.

Table 1. Crystalline Species Identified in Eco-CaMnOx Catalysts and in Synthetic Ash Control

CaCO3 CaSO4 KCl Ca2Mn3O8 CaMnO3 Mn2O3 K2SO4 K3Na(SO4)2

Eco-CaMnOx (G. gillivrayi 300 °C)a x
Eco-CaMnOx (G. gillivrayi 550 °C) x x x x
Eco-CaMnOx (G. gillivrayi 950 °C) x x x
Eco-CaMnOx (G. exul ssp. exul 550 °C)a x x x
Eco-CaMnOx (G. exul ssp. rubiginosa 550 °C) x x x x
Eco-CaMnOx (G. meisneri 550 °C) x x x x
synthetic ash control (550 °C) x x

aMn was not present in a crystalline form.

Figure 4. HRTEM image of Eco-CaMnOx catalysts (G. gillivrayi 550
°C).
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315 Use of Eco-CaMnOx Catalysts in Synthesis. The
316 standard methods used in fine chemical industries can access
317 epoxidation of substitute alkenes by the use of stoichiometric
318 amounts of organic peroxides or percarboxylic acids, such as
319 meta-chloroperoxybenzoic acid.45 Other methods include the
320 use of dimethyldioxirane (also known as Murray’s reagent),
321 formed in situ from the reaction between acetone and oxone,46

322 or electrophilic halide source in the presence of a base.47

323 Owing to safety concerns and/or the issue of large production
324 of wastes by these processes, there is a strong need to develop
325 new safer and eco-friendlier methods.
326 Hydrogen peroxide is considered as an ideal alternative
327 oxidant on both environmental and economic grounds.48 Not
328 only is it relatively cheap, easily available, and stable at the
329 usual concentration (typically <60 wt %), but it is also a clean
330 oxidizing reagent, as it only forms water as a byproduct.
331 However, it requires an activation to catalyze the oxygen-
332 transfer process. Many catalytic systems using H2O2 as the
333 oxidant for epoxidation of alkenes were based on transition-
334 metal catalysts.49−51 However, the use of economically and
335 environmentally unsustainable metals, such as rhenium,52−55

336 vanadium,56,57 molybdenum,58−60 or tungsten,61−64 prompted
337 the research toward inexpensive, abundant, and innocuous
338 transition metals. In particular, iron or manganese revealed to
339 be one of the more promising elements thanks to their
340 relatively low toxicity and their abundance in Earth’s crust.65,66

341 Porphyrin−Mn have been extensively investigated as a mimic
342 of cytochrome P450,67−70 but suffer from difficulties in
343 synthesis and purification. As they offer synthetical advantages
344 over porphyrin systems, considerable attention was given to
345 Salen−Mn,71,72 in particular to the Jacobsen asymmetric

346epoxidation reaction.73−75 However, the homogeneous nature
347of such metalloporphyrin and Schiff base complexes leads not
348only to deactivation due to oxidative degradation of the
349ligand76 but also to environmental costs concerning their
350nonrecyclability. To rectify both problems, heterogenization of
351these Mn-based catalysts was demonstrated, by grafting on a
352solid support or immobilization into porous solids, such as
353silica, polymers, nanoparticles, and zeolites.77−80 For example,
354heterogeneous Ti silicates are nowadays used at an industrial
355scale with H2O2 for conducting epoxidation reactions with very
356high catalytic and environmental performances.81

357In our previous works, we showed that montmorillonite-
358supported Eco-Mn1 catalyzed the epoxidation of styrene. Eco-
359Mn1 contained only 0.31 mol % of manganese, a much lower
360content of manganese than that reported in previously
361described Mn-derived heterogeneous catalysts.82,83 Compar-
362ison of Eco-Mn1 properties to those of heterogeneous catalysts
363made by incorporation of commercial MnCl2·4H2O and FeCl3·
3646H2O highlighted the superior catalytic activity of polymetallic
365species present in Eco-Mn1. These promising results prompted
366us to investigate the utilization of Eco-CaMnOx as an
367epoxidizing agent and to study the possible cooperative
368catalytic effect between Ca and Mn.
369Optimization of the Conditions for the Epoxidation of α-
370pinene. The epoxidation of α-pinene was chosen as a probe
371reaction to optimize the reaction conditions. α-pinene is a
372monoterpene mostly found in pine trees, an abundant natural
373resource. The pinene oxide represents an inexpensive
374biosourced starting material for the synthesis of flavors,
375fragrances, and agrochemical and therapeutic substances.84−86

376However, α-pinene oxide is a sensitive and reactive substrate,
377which rearranges easily in acid conditions.87,88 The rearrange-
378ment of α-pinene oxide leads to the formation of a wide range
379of products, which depends largely on the acid−base
380properties of the catalytic system. Over 200 compounds were
381reported when the isomerization−reaction temperature was
382above 100 °C.87 It is well described that Lewis acid sites favor
383the formation of campholenic aldehyde, pinocarveol, and iso-
384pinocamphone, whereas Brønsted acid sites result in the
385formation of trans-carveol, trans-sobrerol, and p-cymene.89−91

386For instance, one of the most desired products resulting from
387the α-pinene oxide is campholenic aldehyde because it is an
388intermediate for the manufacture of sandalwood fragrances.
389The epoxidation of α-pinene into α-pinene oxide remains a
390challenge because of its isomerization into many different
391byproducts.
392In a typical procedure, α-pinene, Eco-CaMnOx (G. gillivrayi
393550 °C), and NaHCO3 were stirred in a mixture of
394acetone:water (1:1) at room temperature for 10 min. H2O2
395(30% w/w in H2O) was added dropwise during 2 h in the
396mixture while stirring. After 2 h, the catalyst was filtered off and
397the reaction mixture was extracted with ethyl acetate. The
398organic layers were gathered and dried with Na2SO4. The
399solvent was then removed by evaporation and the reaction
400products analyzed by gas chromatography−mass spectrometry
401(GC−MS)/flame ionization detector (FID).
402Effect of H2O2 Amount. The effect of the quantity of H2O2
403added into the reaction mixture was studied, as an excessive
404amount of H2O2 could lead to a decrease in epoxide selectivity
405by overoxidation.92 The conversion, yield, and selectivity
406 t2followed the same trend (Table 2). Increasing the quantity of
407H2O2 increased the conversion, yield, and selectivity before
408reaching a threshold. Almost total conversion of α-pinene 1a

Figure 5. STEM-EDX mapping of Eco-CaMnOx catalysts (G.
gillivrayi, 550 °C).
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409 and a yield of 64% in epoxide 2a were reached with 5 equiv of
410 H2O2 (Table 2, entry 5). The addition time of H2O2 in the
411 reaction mixture was also investigated. Although the selectivity
412 in epoxide remained similar by decreasing the addition time,
413 the conversion dropped from 98% in 1−2 h (Table 2, entries 6,
414 7) to 63% in 30 min (Table 2, entry 8). These results
415 supported the importance of a slow addition of H2O2 in
416 oxidative reactions. Indeed, it was reported that a gradual
417 addition of H2O2 decreased its self-decomposition.93,94

418 The selectivity in α-pinene oxide gave some information
419 about Eco-CaMnOx. The oxygenated byproducts observed,
420 such as campholenic aldehyde, carveol, and iso-pinocamphone,
421 could be explained by the easy opening and rearrangement of
422 the epoxide by Lewis acid sites. This could reveal the presence
423 of many metallic species in our catalysts, like Fe, Ca, and Mg,
424 which could confer Lewis acid properties to Eco-CaMnOx
425 catalysts. As it was reported that α-pinene oxide could also
426 rearrange spontaneously in acid or neutral aqueous phase
427 media,90 the epoxide was directly engaged in the reaction with
428 and without any catalyst, to test its stability. In the presence of
429 Eco-CaMnOx catalysts a conversion of 45% was observed,
430 whereas it was fully recovered without any catalyst. This result
431 indicated that the epoxide was stable in our conditions, even in
432 the presence of water, and that its rearrangement only occurred
433 in the presence of Eco-CaMnOx. This supports the presence of
434 Lewis acid sites in Eco-CaMnOx. Allylic oxidation is often a
435 competitive process of epoxidation in the oxidation of cyclic
436 olefins.95,96 As both processes could occur simultaneously, it
437 could explain the formation of verbenone, identified among the
438 different byproducts.
439 For the following reactions, 5 equiv of H2O2 was employed
440 as it represented the smallest amount affording total
441 conversion and high yield in epoxide. The addition time was
442 kept at 2 h.
443 Effect of NaHCO3 Amount. The effect of the quantity of
444 NaHCO3 added into the reaction mixture was investigated

t3 445 (Table 3). No conversion of α-pinene was observed in the
446 absence of sodium hydrogen carbonate (Table 3, entry 1).
447 This result supported the essential presence of sodium
448 hydrogen carbonate allowing the epoxidation. It is assumed

449that NaHCO3 and H2O2 could produce in situ peroxymono-
450carbonate ions (HCO4

−),97,98 which would react with the Mn-
451eco-catalyst to form the active epoxidizing reagent. Indeed, a
452neutral or slightly basic pH (range from 7 to 9) is optimal for
453this bicarbonate-activated peroxide system, which corresponds
454to the pH values of the aqueous phase that ranged from 8.2 to
4558.8 in our system.
456An attempt to reduce NaHCO3 quantity resulted in
457decreasing conversion, yield, and selectivity in epoxide.
458Therefore, 5 equiv of NaHCO3 seemed to be the lowest
459quantity giving high conversion and yield (Table 3, entry 5).
460Effect of Catalyst Loading. The effect of the quantity of
461Eco-CaMnOx catalysts was then studied using α-pinene as the
462 t4substrate (Table 4). A low quantity of manganese gave high
463conversion rates. Almost total conversion and 64% yield were
464obtained with only 0.005 equiv in manganese (Table 4, entry
4654). This result is remarkable compared to standard manganese-
466based catalysts, which usually require to be used in excess.99

467As a control, the reaction was carried out in the absence of
468Eco-CaMnOx catalysts. The reaction could not occur in the
469corresponding reaction time, in 2 h (Table 4, entry 1).
470The oxidative capacity of Eco-CaMnOx was also compared
471to synthetic catalysts (Table 4, entries 7−9). The synthetic
472Ca2Mn3O8 catalyst was prepared following the procedure
473described by Najafpour et al.,38 and commercial manganese
474dioxide was activated.
475As expected, conversion of α-pinene catalyzed by calcium
476oxide was negligible (Table 4, entry 9). Calcium oxide species
477alone cannot catalyze the epoxidation of α-pinene, since
478calcium is not electroactive. However, conversion was
479increased by the addition of calcium to manganese oxide
480species; yields of 15 and 32% were obtained with commercial
481activated MnO2 and synthetic Ca2Mn3O8 catalysts, respectively
482(Table 4, entries 7 and 8). A comparison of these three
483experiments shows that calcium enhances the reactivity of
484manganese, suggesting a synergistic effect of mixed calcium−
485manganese oxides toward epoxidation. These findings suggest
486that the addition of calcium does not change the oxidation
487potential of manganese, but might change the dispersion and/
488or exposition of manganese, enhancing its reactivity as
489suggested by the works of Han et al. on mixed calcium−
490manganese oxides.41

Table 2. Effect of the Amount of H2O2 and of the Adding
Time on the Epoxidation of α-pinenea

entry
H2O2
(equiv)

addition time
(min)

conversion
(%)b

yield
(%)b

selectivity
(%)b,c

1 0 120 0 0 0
2 1 120 62 21 34
3 3 120 80 44 55
4 4 120 77 47 61
5 5 120 98 64 65
6 10 120 99 62 63
7 10 60 98 65 66
8 10 30 63 41 65

aReaction conditions: α-pinene (1.6 mmol, 1 equiv), catalyst (8 μmol,
0.005 equiv Mn), NaHCO3 (8 mmol, 5 equiv), H2O2 (30 wt %), and
H2O (20 mL): acetone (20 mL), rt, 2 h. bConversion, yield, and
selectivity were established by FID using biphenyl as internal
standard. cSelectivity was calculated as the ratio of yield over
conversion.

Table 3. Effect of the Amount of NaHCO3 on the
Epoxidation of α-pinenea

entry NaHCO3 (equiv) conversion (%)b yield (%)b selectivity (%)b,c

1 0 0 0 0
2 0.5 36 2 6
3 1 47 7 15
4 3 82 38 46
5 5 98 64 65

aReaction conditions: α-pinene (1.6 mmol, 1 equiv), catalyst (8 μmol,
0.005 equiv Mn), NaHCO3, H2O2 (30 wt %; 8 mmol, 5 equiv), and
H2O (20 mL): acetone (20 mL), rt, 2 h. bConversion, yield, and
selectivity were established by FID using biphenyl as internal
standard. cSelectivity was calculated as the ratio of yield over
conversion.
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491 Interestingly, Eco-CaMnOx catalysts gave a twice-higher
492 yield compared to synthetic Ca2Mn3O8 (Table 4, entries 4 and
493 7). The enhanced reactivity of our catalyst might be due to a
494 different structural organization of manganese linked to its
495 vegetal footprint and/or due to the presence of traces of other
496 electroactive metal species.
497 Effect of the Plant Species and the Temperature of the
498 Thermal Treatment Used to Prepare Eco-CaMnOx. The
499 different Eco-CaMnOx catalysts prepared from the four species
500 of Grevillea were tested in the epoxidation of α-pinene by
501 using the optimized reaction conditions. The influence of the
502 heating temperature during the thermal treatment of biomass

f6 503 was also investigated (Figure 6). For each plant species, each
504 corresponding Eco-CaMnOx catalyst showed a potent catalytic
505 activity. These results guarantee that every manganese-
506 accumulating plant species used in rehabilitation could be
507 valorized afterward by this process.

508Within a species, the temperature of the thermal treatment
509did not seem to have much influence on the Eco-CaMnOx
510activities. Surprisingly, no loss of activity was observed for the
511eco-catalysts formed at 300 °C despite the residual organic
512matter. The Eco-CaMnOx catalysts of G. gillivrayi and G.
513meisneri prepared at 950 °C revealed similar activities as the
514corresponding Eco-CaMnOx catalysts prepared at lower
515temperatures (300 and 550 °C). The best catalyst in terms
516of activity and energy required for its preparation remained the
517one prepared at 550 °C.
518The reaction conditions to perform the epoxidation of α-
519pinene were optimized to reach a good compromise of the
520high efficiency of the reaction with sustainable and eco-
521responsible use of chemical products and solvents. In these
522conditions, almost total conversion was accessed with 65%
523selectivity in pinene oxide. Longer reaction times were tested,
524but it only resulted in a decrease in selectivity, the conversion
525remaining total. This result was in accordance with the high
526reactivity of pinene oxide and thus its conversion into isomeric
527products.100,101

528Our system can be advantageously compared to other
529bicarbonate-activated peroxide systems based on Mn catalysts.
530For instance, Lane et al. obtained 89% yield but only in the
531presence of additives.82 Qi et al. reached 40% selectivity using
532Mn2+-exchanged zeolites.92

533Substrate Scope for the Epoxidation of Terpenes and
534Lipids by Eco-CaMnOx Catalysts. The epoxidation of diverse
535terpenes and lipids was carried out to evaluate the scope of our
536 t5process (Table 5).
537High conversions and yields were obtained with a large
538variety of terpenes, from cyclic to terminal substrates, which
539confirmed the efficiency of the method. In some cases, a longer
540reaction time was needed to reach higher conversions.
541The chemoselectivity of Eco-CaMnOx catalysts was
542illustrated through the selective epoxidation of terpenes
543(Table 5, entries 2−8) bearing various functional groups,
544such as alcohol, ester, or enone, that remained unmodified.
545The epoxidation of monoterpenes like terpineol, isopulegol,
546and citronellyl acetate (Table 4, entries 2, 3 and 5) gave total
547conversion and selectivity. The epoxidation of (R)-(+)-limo-
548nene, linalool, geranyl acetate, α-ionone, and β-ionone gave

Table 4. Effect of the Catalyst Loading on the Epoxidation of α-pinenea

entry catalyst equiv Mn conversion (%)b yield (%)b selectivity (%)b,c TONf TOFg (h−1)

1 Eco-CaMnOx 0 0 0 0 0 0
2 Eco-CaMnOx 0.001 89 49 55 490 245
3 Eco-CaMnOx 0.0025 97 48 49 192 96
4 Eco-CaMnOx 0.005 97 62 64 124 62
5 Eco-CaMnOx 0.01 94 55 59 55 28
6 Eco-CaMnOx 0.1 91 61 67 6 3
7 Ca2Mn3O8 0.005 51 32 63 64 32
8 activated MnO2 0.005 55 15 27 30 15
9 CaO d 7e 0 0

aReaction conditions: α-pinene (1.6 mmol, 1 equiv), the catalyst, NaHCO3 (8 mmol, 5 equiv), H2O2 (30 wt %; 8 mmol, 5 equiv), and H2O (20
mL): acetone (20 mL), rt, 2 h. bConversion, yield, and selectivity were established by FID using biphenyl as the internal standard. cSelectivity was
calculated as the ratio of yield over conversion. d0.02 equiv Ca was used, corresponding to the quantity of Ca engaged by 0.005 equiv Mn with Eco-
CaMnOx.

eTraces of verbenol, carveol, and campholenic aldehyde were detected by GC−MS. fTON = number of mol of the product formed per
mol of catalyst. gTOF = number of mol of the product formed per mol of catalyst and per unit of time.

Figure 6. Effect of the plant species and of the temperature of the
thermal treatment used to prepare Eco-CaMnOx on the epoxidation
of α-pinene. Reaction conditions: α -pinene (1.6 mmol, 1 equiv),
catalyst (8 mmol, 0.005 equiv Mn), NaHCO3 (8 mmol, 5 equiv),
H2O2 (30 wt %; 8 mmol, 5 equiv), and H2O (20 mL): acetone (20
mL), rt, 2 h. Conversion, yield, and selectivity were established by
FID using biphenyl as internal standard. Selectivity was calculated as
the ratio of yield over conversion.
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Table 5. Substrate Scope for the Epoxidation of Natural Substrates by Ecocatalysts (Eco-CaMnOx
a, Eco-Mn1,

18 and Pyr-
Mn120)

H

https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf


549 mono- (Table 5, entries 7 and 8) or diepoxides (Table 5,
550 entries 1, 4, and 6) when the double bonds were electron-rich.
551 In the case of limonene, 84% of selectivity of diepoxides was
552 observed with very high conversion in 2 h (Table 4, entry 1).
553 In comparison, Eco-Mn1 led to 86% of monoepoxides, with
554 only 50% of conversion.18 This result highlighted the high
555 reactivity of Eco-CaMnOx, which was close to Pyr-Mn. Both
556 mono- and diepoxides are of high interest in the field of
557 biosourced polymers as they both could be used as monomers
558 for the synthesis of polycarbonates, polyethers, polyesters, or
559 poly(hydro)urethanes.102−106 Thus, they could represent
560 substitutes for polymers synthesized from bisphenol A or
561 epichlorhydrin, two toxic molecules classified as CMR.
562 In 4 h, the epoxidation of geranyl acetate gave a
563 stoichiometric mixture of mono- and diepoxides (Table 5,
564 entry 6). In consequence, the ester moiety did not deactivate
565 Eco-CaMnOx in spite of its basic Lewis properties. The same
566 reaction with 10 equiv of H2O2 favored the formation of the
567 diepoxide, reaching 79% of selectivity. It was thus possible to
568 control the ratio monoepoxides/diepoxides by tuning the
569 amount of H2O2.
570 Unlike Eco-Mn and conventional catalysts, the epoxidation
571 of linalool led mainly to the monoepoxide, with 64% of
572 selectivity (Table 5, entry 4). This result is unusual as the

573resulting epoxide is highly reactive and acid-sensitive. It easily
574rearranges by cyclization into hydroxyfuranes or hydroxypyr-
575anes.107 In this case, only 2% of hydroxyfuranes was observed.
576This indicated that our catalyst was not acidic, avoiding the
577intramolecular reaction. However, the rearrangement of the
578epoxide into the hydroxyfurane was easily observed when
579CDCl3 was used for NMR assessments. As an example, only
580the hydroxyfurane was obtained with a 63% yield with the
581previous Eco-Mn,18 whereas Pyr-Mn yielded hydroxypyran.108

582Therefore, Eco-CaMnOx allowed the preparation of very
583sensitive epoxides. The higher chemoselectivity of Eco-
584CaMnOx is the direct consequence of its preparation by a
585sole thermal treatment. This result is of interest, as linalool
586epoxide is an important molecule in the communication of
587pollinating insects.109 Thirty-four percent of diepoxides were
588also obtained. This proved the strong oxidizing properties of
589Eco-CaMnOx as it succeeded in epoxidizing a terminal double
590bond.
591The monoepoxide was the only one identified with α- and β-
592ionones. The only other byproduct formed during the reaction
593on both ionones was the product of allylic oxidation, with 12
594and 30% of selectivity, respectively (Table 5, entries 7, 8).
595The other particularly noteworthy example was the
596epoxidation of oleic acid (Table 5, entry 9). Indeed, epoxides

Table 5. continued

aReaction conditions: substrate (1.6 mmol, 1 equiv), catalyst (8 μmol, 0.005 equiv Mn), NaHCO3 (8 mmol, 5 equiv), H2O2 (30 wt %; 8 mmol, 5
equiv), and H2O (20 mL): acetone (20 mL), rt. bConversion, yield, and selectivity were established by FID, using biphenyl as internal standard,
and then confirmed by 1H NMR from the isolated product. cSelectivity was calculated as the ratio of yield over conversion. dCatalyst: 0.5 equiv Mn.
eTerpene (0.25 mmol, 1 equiv), supported catalyst (0.0031 equiv Mn), NaHCO3 (0.05 mmol, 5 equiv), H2O2 (30 wt %; 0.8 mmol, 3.2 equiv), and
H2O/dimethylformamide (DMF) (2 mL), 0 °C, 4 h. fTerpene (0.18 mmol, 1 equiv), catalyst (0.00006 equiv Mn), NaHCO3 (0.88 mmol, 5 equiv),
H2O2 (30 wt %; 1.75 mmol, 9.7 equiv), and H2O/acetone (2.6 mL), 30 °C, 2 h.
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597 of fatty acids from vegetal oils are very interesting as platform
598 molecules for organic chemistry, but also as biodegradable
599 lubricants, plasticizers, and stabilizers of polymers.110−112

600 Sixty-six percent of conversion with a total selectivity in
601 epoxide was reached in 4 h with Eco-CaMnOx (0.5 equiv Mn),
602 while Eco-Mn was not able to catalyze this reaction. Pyr-Mn
603 seemed more efficient than Eco-CaMnOx but required twice as
604 much H2O2.
605 In addition to the higher reactivity of Eco-CaMnOx

606 compared to Eco-Mn, the experimental conditions were also
607 improved; epoxidations were conducted with acetone/H2O
608 instead of DMF. In a context of growing environmental
609 consciousness, it is motivating to be able to propose novel
610 catalysts, which combine efficiency, use of renewable resources,
611 and eco-friendly processes.
612 Recycling and Leaching Studies of Eco-CaMnOx Cata-
613 lysts. Recycling of Eco-CaMnOx catalysts was investigated by

t6 614 conducting the epoxidation of isopulegol (Table 6). Eco-
615 CaMnOx catalysts were recycled by separation after
616 centrifugation of the crude, washing, drying, and reuse for an
617 identical experiment. Up to four successive reactions were
618 conducted. Conversion and yield remained quantitative for the
619 second run (Table 6, entries 1, 2), while a slight decrease was
620 observed after the third run (Table 6, entries 3, 4), suggesting a
621 small loss of activity of Eco-CaMnOx catalysts.
622 The small loss of activity was investigated by analyzing the
623 composition and structure of Eco-CaMnOx catalysts after each
624 run. No significant change of Mn and Ca contents was
625 observed by MP-AES (Table S2), and the structure
626 characterized by XRPD remained the same. Both results

627indicated the high stability of Eco-CaMnOx catalysts, even in
628the oxidizing conditions of the reaction.
629Considering that the composition and structure of Eco-
630CaMnOx remained similar after four runs, leaching of Eco-
631CaMnOx was unlikely to occur but was still verified. Using
632isopulegol as substrate, a specific experiment was conducted as
633described by Sheldon et al.113 After 30 min of reaction, Eco-
634CaMnOx was removed from the reaction mixture by filtration;
635conversion of isopulegol was analyzed after this time at 35%.
636The reaction mixture was stirred for another 4 h without Eco-
637CaMnOx; conversion of isopulegol remained at 35%,
638indicating that the reaction did not occur after removing
639Eco-CaMnOx. As expected, the elemental composition of the
640reaction mixture was analyzed by MP-AES and no trace of
641metal was detected. These two results showed that the Eco-
642CaMnOx catalyst was a heterogeneous catalyst, in which
643leaching of Mn can be excluded in the reported conditions.

644■ CONCLUSIONS

645In this study, a new generation of ecocatalysts was easily
646prepared from Mn-accumulating plant species, which are used
647in ecological restoration. A controlled thermal treatment of
648Mn-rich biomass led directly to green oxidative catalysts, Eco-
649CaMnOx, thus avoiding any further chemical activation.
650Characterization by MP-AES, XRPD, HRTEM, and STEM-
651EDX revealed an original polymetallic system. Unusual mixed
652manganese−calcium oxides, Ca2Mn3O8 and CaMnO3, were
653identified. All Eco-CaMnOx catalysts prepared from different
654plant species demonstrated an excellent catalytic potential in
655the epoxidation of terpenes and lipids, with only 0.005 equiv

Table 6. Recycling Studies of Eco-CaMnOx Catalysts

entry run conversion (%) yield (%) selectivity (%) post-run Mn content (wt % (±sd)) post-run Ca content (wt % (±sd))

1 no 1 >99 >99 100 11.22 (0.40) 16.02 (0.61)
2 no 2 >99 >99 100 11.82 (2.20) 16.78 (0.79)
3 no 3 79 79 100 8.93 (1.80) 13.63 (0.76)
4 no 4 73 73 100 10.80 (0.81) 14.78 (0.86)

Figure 7. Qualitative environmental impact assessment of the catalyst preparation.
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656 Mn, in short reaction times, at room temperature, using green
657 solvents and without any ligand or activation phase. Eco-
658 CaMnOx catalysts afforded much higher conversions and
659 yields than conventional activated manganese dioxide or
660 synthetic Ca2Mn3O8. Not only did these results demonstrate
661 the vegetal footprint of Eco-CaMnOx catalysts but also they
662 proved that these catalysts could represent potential substitutes
663 to oxidative reagents inconsistent with the requirements of
664 REACH regulation. A wide range of mono- and diepoxides
665 were efficiently synthesized from terpenes, many of them
666 coming from abundant natural resources. Eco-CaMnOx opens
667 a new perspective for the valorization of Mn-rich biomass
668 through the preparation of biosourced monomers for new-
669 biodegradable polymers.105,106,114 This new generation of
670 ecocatalysts exhibits environmental and scientific benefits,

f7 671 suggesting a promising life-cycle analysis (Figure 7). It can
672 drive a new approach of green chemistry with ecological,
673 economic, and social advantages.
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(40) 855Büchel, K. H.; Moretto, H.-H.; Werner, D. Manganese
856Compounds and Manganese. In Industrial Inorganic Chemistry, 2nd
857ed.; John Wiley & Sons, 2000; pp 282−293.

(41) 858Han, X.; Zhang, T.; Du, J.; Cheng, F.; Chen, J. Porous
859Calcium−Manganese Oxide Microspheres for Electrocatalytic Oxygen
860Reduction with High Activity. Chem. Sci. 2012, 4, 368−376.

(42) 861Ansell, G. B.; Modrick, M. A.; Longo, J. M.; Poeppeimeler, K.
862R.; Horowitz, H. S. Structure of Calcium Manganese Oxide
863Ca2Mn3O8. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.
864Chem. 1982, 38, 1795−1797.

(43) 865Brudvig, G. W. Water Oxidation Chemistry of Photosystem II.
866Philos. Trans. R. Soc., B 2008, 363, 1211−1219.

(44) 867Najafpour, M. M.; Ghobadi, M. Z.; Haghighi, B.; Eaton-Rye, J.
868J.; Tomo, T.; Shen, J.-R.; Allakhverdiev, S. I. Nano-Sized Manganese-
869Calcium Cluster in Photosystem II. Biochemistry 2014, 79, 324−336.

(45) 870Sienel, G.; Rieth, R.; Rowbottom, K. T. Epoxides. In Ullmann’s
871Encyclopedia of Industrial Chemistry; American Cancer Society, 2000.
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