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ON THE SYMPLECTIC FILLINGS OF STANDARD REAL

PROJECTIVE SPACES

PAOLO GHIGGINI AND KLAUS NIEDERKRÜGER-EID

Abstract. We prove, in a geometric way, that the standard contact structure

on RP2n−1 is not Liouville fillable for n ≥ 3 and odd. We also prove that,
for all n, semipositive fillings of those contact structures are simply connected.

Finally we give yet another proof of the Eliashberg–Floer–McDuff theorem on

the diffeomorphism type of the symplectically aspherical fillings of the standard
contact structure on S2n−1.

1. Introduction

The standard contact structure ξ on S2n−1 is described in coordinates by the
equation

ξ = ker

n∑
j=1

xj dyj − yj dxj .

Geometrically, ξp is the unique complex hyperplane in TpS
2n−1 for every p ∈ S2n−1.

The antipodal involution of S2n−1 preserves ξ, and therefore induces a contact
structure on RP2n−1 which we still denote by ξ. The disc bundle of the line bundle
OPn−1(−2) on CPn−1 is a strong symplectic filling of (RP2n−1, ξ). On the other
hand, RP2n−1 cannot be the boundary of a 2n-dimensional manifold with the ho-
motopy type of an n-dimensional CW complex if 2n − 1 ≥ 5; see [2, Section 6.2].
This implies that a real projective space of dimension at least 5 does not admit any
Weinstein fillable contact structure. Our main result is the following.

Theorem 1.1. The standard contact structure on RP2n−1 admits no symplectically
aspherical fillings for n > 1 and odd. In particular, it is not Liouville fillable.

These are the first examples of strongly but not Liouville fillable contact struc-
tures in high dimension. Examples in dimension three were given by the first author
in [3] using Heegaard Floer homology. In contrast with the high dimensional situ-
ation, the standard contact structure on RP3 is the canonical contact structure on
the unit cotangent bundle of S2 and therefore is Weinstein fillable.

After a preliminary version of our result (originally for RP5 only) was announced,
Zhou proved in [10] that (RP2n−1, ξ) is not Liouville fillable if n 6= 2k. He also proves
similar nonfillability results for more general links of cyclic quotient singularities.
Zhou’s proof uses advanced properties of symplectic cohomology; in contrast our
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2 P. GHIGGINI AND K. NIEDERKRÜGER

proof is more direct, as it relies on the analysis of how a certain moduli space of
holomorphic spheres can break, in the spirit of McDuff’s classification of symplectic
fillings of RP3 in [5].

The strategy is the following. The standard contact structure ξ on RP2n−1

admits a contact form whose Reeb orbits are the fibers of the Hopf fibration
RP2n−1 → CPn−1. If (W,ω) is a strong symplectic filling of (RP2n−1, ξ), by a sym-
plectic reduction of ∂W (informally speaking, by replacing ∂W with the quotient by
the Reeb flow) we obtain a closed symplectic manifold (W,ω) with a codimension
two symplectic submanifold W∞ ∼= CPn−1 (corresponding to the quotient of ∂W )
such that W \W∞ is symplectomorphic to int(W ); that is, ω|W\W∞ = ω|int(W ).

The normal bundle of W∞ is isomorphic to OPn−1(2).
We fix a point and a hyperplane in W∞, and we consider the moduli space of

holomorphic spheres in W which are homotopic to a projective line and pass both
through the point and the hypersurface. We prove, by topological considerations,
that the homology class of a projective line in W∞ is an even multiple of a homology
class in W if the compactification of that moduli space contains only nodal curves
with at most two irreducible components each of which intersects W∞ nontrivially.
If n is odd this is a contradiction because the first Chern class of a line is n + 2;
only at this step we use the hypothesis on the parity of n. This implies that there
is either a nodal holomorphic sphere in W in the homology class of a line of W∞
with at least three connected components or a nodal holomorphic sphere with an
irreducible component which is disjoint from W∞. Since a nodal sphere intersects
W∞ in exactly two points, in either case at least one irreducible component must
lie entirely in int(W ), which therefore is not symplectically aspherical.

If (W,ω) is not symplectically aspherical we lose control on the compactification
of the moduli space, which is not surprising, given that (RP2n−1, ξ) admits spherical
fillings. However, if W is semipositive (and maybe even more generally, using some
abstract perturbation scheme) we still have enough control to be able to draw
conclusions about the fundamental group of W .

Theorem 1.2. If (W,ω) is a semipositive symplectic filling of (RP2n−1, ξ), then
W is simply connected.

If we apply the same techniques to a symplectically aspherical filling of the stan-
dard contact structure on S2n−1 we obtain that the filling must be diffeomorphic to
the ball, a result originally due to Eliashberg, Floer and McDuff. This is, at least,
the third proof, after the original one in [6] and the one in [4]. The proof given here
is close to the original one, but uses a different compactification of the filling and
is slightly simpler.

2. The moduli space of lines

2.1. The smooth stratum. by the Weinstein neighborhood theorem, W∞ has
a tubular neighborhood that is symplectomorphic to a neighborhood of the zero
section in the total space of OPn−1(2). Let J be the space of almost complex
structures on W which are compatible with ω and coincide near W∞ with the
natural (integrable) complex structure on OPn−1(2).
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For any almost complex structure J ∈ J , any line ` ⊂ CPn−1 ∼= W∞ is a
J-holomorphic sphere. Moreover,

(1) TW |` ∼= OP1(2)⊕OP1(1)⊕ · · · ⊕ OP1(1)︸ ︷︷ ︸
n−2

⊕OP1(2)

as holomorphic vector bundle, where the first OP1(2) summand is the tangent bun-
dle of `, the (n− 2)-many OP1(1)-summands correspond to the normal bundle of `
in CPn−1 ∼= W∞ and the last OP1(2)-summand is the normal bundle of W∞ in W
restricted to `.

Let M be the moduli space of J-holomorphic spheres in W that are homotopic
to the lines in W∞ ∼= CPn−1. We fix a point p0 ∈ W∞ and a hyperplane H∞ ∼=
CPn−2 ⊂ W∞ such that p0 /∈ H∞ and denote the space of J-holomorphic spheres
of M that intersect both p0 and H∞ by M(p0, H∞). We also consider the moduli
space Mz(p0, H∞) of J-holomorphic spheres as above with an extra free marked
point z. There is a projection

f : Mz(p0, H∞)→M(p0, H∞).

that forgets the marked point.

Lemma 2.1. M(p0, H∞) has expected dimension 2n − 2 and Mz(p0, H∞) has
expected dimension 2n, where dimW = 2n.

Proof. The decomposition (1) gives 〈c1(TW ), [`]〉 = n+ 2. The Riemann-Roch for-
mula gives vir-dimM = 4n−2. Passing through the codimension 4 submanifoldH∞
and through p0 which is of codimension 2n, we obtain, after adding two additional
marked points needed to handle these constraints, that vir-dimM(p0, H∞) = 2n−2.
Adding a free marked point increases the expected dimension by 2, so we finally
obtain vir-dimMz(p0, H∞) = 2n. �

The main reason for keeping the almost complex structure integrable near W∞
is to have positivity of intersection between W∞ and J-holomorphic spheres. This
fact makes our moduli space particularly well behaved, as the following lemma
shows.

Lemma 2.2. All J-holomorphic spheres of M(p0, H∞) are simply covered and are
either lines in W∞ or intersect W∞ transversely in exactly two points.

Proof. Since the algebraic intersection between W∞ and ` is 2, positivity of inter-
section implies that a sphere of M(p0, H∞) is either contained in W∞, in which
case it is a line and therefore simply covered, or it intersect W∞ with total multi-
plicity two. Since the constraints force two distinct intersection points, positivity of
intersection implies that they are the only ones and that they each have multiplicity
one. �

Proposition 2.3. For a generic almost complex structure J ∈ J the moduli spaces
M(p0, H∞) and Mz(p0, H∞) are smooth manifolds of dimension 2n − 2 and 2n
respectively.

Proof. Let M∗ be the subset of M consisting of simply covered J-holomorphic
spheres. By Lemma 2.2, M(p0, H∞) ⊂ M∗. J-holomorphic spheres of M∗ which
are contained in the neighborhood of W∞ where J is integrable correspond to
sections of OPn−1 and therefore admit a decomposition of the restriction of TW
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as in Equation (1). Since the decomposition is into positive line bundles, those
spheres are Fredholm regular for every almost complex structures J ∈ J because
the Cauchy-Riemann operator on a positive line bundle over CP1 is surjective by
Serre duality; see [7, Lemma 3.3.1]

All other J-holomorphic spheres ofM∗ are Fredholm regular for a generic J ∈ J
because they are simply covered and intersect the region where J is generic. Then
for generic J the moduli space M is a smooth manifold. The constraints cut out
M(p0, H∞) transversely for a generic J : for spheres near W∞ this is an explicit
computation, and for all other spheres of M∗ it follows from [7, Theorem 3.4.1]
and [7, Remark 3.4.8]. Therefore M(p0, H∞) is a submanifold of the dimension
predicted by Lemma 2.1. The corresponding statements for Mz(p0, H∞) follow
from those for M(p0, H∞). �

2.2. The compactified moduli space. LetM(p0, H∞) andMz(p0, H∞) be the
Gromov compactifications of M(p0, H∞) and Mz(p0, H∞) respectively, and let

f : Mz(p0, H∞)→M(p0, H∞)

be the forgetful map. We denote Mred(p0, H∞) = M(p0, H∞) \ M(p0, H∞) and
Mred

z (p0, H∞) =Mz(p0, H∞) \Mz(p0, H∞).

Lemma 2.4. If W \W∞ is symplectically aspherical, then every nodal sphere of
Mred(p0, H∞) has exactly two irreducible components, one of which intersects W∞
only at p0 and the other one which intersects W∞ only at a point of H∞. Both
components are simply covered and their intersection with W∞ is transverse.

Proof. Irreducible components of nodal spheres belonging to M(p0, H∞) are not
contained in W∞ because the homology class of a line ` is primitive in CPn−1. Then
by positivity of intersection with W∞ a nodal sphere must intersect W∞ in at most
two points. Moreover, if W \ W∞ is symplectically aspherical, every irreducible
component must intersect W∞. This implies that there are exactly two irreducible
components and their intersection with W∞ has multiplicity one, and therefore
both components are simply covered. �

This lemma implies that we have enough topological control on the nodal curves
to show that they have smooth moduli spaces.

Lemma 2.5. The moduli space Mred(p0, H∞) is a smooth manifold of dimension
n− 4. The forgetful map

fred : Mred
z (p0, H∞)→Mred(p0, H∞)

is a locally trivial fibration with fiber S2 ∨ S2.

Proof. By Lemma 2.4 the irreducible components of the nodal spheres of the moduli
space Mred(p0, H∞) are simply covered and intersect the region where the almost
complex structure can be made generic. Then the statement follows from [7, The-
orem 6.2.6]. �

Gluing theory usually produces only topological manifolds; in our situation how-
ever, we obtain slightly more because we have a global gauge fixing for the spheres
we want to glue.

Identify the neighborhood of W∞ in W with a neighborhood of the 0-section
of OPn−1(2) as already discussed above. The hyperplane H∞ is the 0-set of a
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holomorphic section σ in OPn−1(1), and it follows that σ2 is a section of OPn−1(2)
that has a zero of order two along H∞. Multiplying σ2 with a small constant, we
can assume that its image lies in an arbitrarily small neighborhood of the 0-section.

Its graph is a J-holomorphic hypersurface in W that we will call W̃∞. In particular

W̃∞ ∩W∞ = H∞ and TW̃∞|H∞ = TW∞|H∞ . Then every sphere of M(p0, H∞)

which is not contained in W∞ intersects W̃∞ in two points: one in H∞ and one in

W̃∞ \H∞.

Let M̃(p0, H∞) be the open subset of M(p0, H∞) consisting of those sphere
which are not contained in W∞. By the discussion in the previous paragraph, we

can fix a parametrization for every element in M̃(p0, H∞) identifying this moduli
space with the set of J-holomorphic maps u : S2 → W whose image is homotopic

to ` but not contained in W∞, and such that u(0) = p0, u(1) ∈ W̃∞ \ H∞ and
u(∞) ∈ H∞.

We also denote by M̃red(p0, H∞) the set of pairs of J-holomorphic maps (u0, u∞),

with u0, u∞ : S2 → W , such that u0(0) = p0, u0(1) ∈ W̃∞ \ H∞, u0(∞) =
u∞(0), u∞(∞) ∈ H∞, |d∞u∞| = 1 and the image of the “connected sum map”
u0#u∞ : S2#S2 ∼= S2 → W is homotopic to `. The group of complex numbers of

modulus 1, acts on M̃red(p0, H∞) by θ ·(u0, u∞) =
(
u0, u∞(θ−1·)

)
and the quotient

by this action is Mred(p0, H∞).
Let π : S2 × S2 99K S2 be the rational map π(x, y) = y/x, which is not defined

at the points (0, 0) and (∞,∞). If we make S1 act on S2×S2 by θ · (x, y) = (x, θy)
and on S2 by θ ·w = θ−1w, then π is S1-equivariant. Let X be the smooth variety
obtained by blowing up S2×S2 at (0, 0) and (∞,∞). The action of S1 on S2×S2

induces an action on X and π extend to a smooth S1-equivariant map π : X→ S2.
We denote by Dε the disc with center in 0 and radius ε in C ⊂ S2 and Xε =

π−1(Dε). We define Eε = Dε ×S1 M̃red(p0, H∞) and Xε = Xε ×S1 M̃red(p0, H∞).
We have bundle maps

Xε
//

&&

Eε

xx
Mred(p0, H∞).

Let Ėε denote Eε with the zero section removed, and Ẋε the preimage of Ėε.

We can identify Ėε ∼= [ε−1,+∞) × M̃red(p0, H∞), and therefore standard gluing

theory (see for example [7, Chapter 10]) yields C1-embeddings g : Ėε → M̃(p0, H∞)

and G : Ẋε → M̃(p0, H∞) which are moreover compatible with the forgetful maps.
Combining [7, Theorem 6.2.6] with the discussion above we obtain the following
structural result for the moduli spaces we are interested in.

Proposition 2.6. The moduli spaces M(p0, H∞) and Mz(p0, H∞) are compact
and orientable C1-manifolds and there is a C1-map

f : Mz(p0, H∞)→M(p0, H∞)

which forgets the marked point.

While M(p0, H∞) is not a priori connected, since we have not ruled out that
a J-holomorphic sphere could be homotopic to a line ` ⊂ W∞ but not homo-
topic through J-holomorphic spheres, we can assume without loss of generality that
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M(p0, H∞) is connected by restricting our attention to the connected component
which contains a line ` ⊂W∞.

3. Proof of the main theorem

3.1. Degree of the evaluation map. Let ev : Mz(p0, H∞)→ W be the evalua-
tion map at the free marked point.

Lemma 3.1. There is an open subset U ⊂W such that every J-holomorphic sphere
of M(p0, H∞) passing through a point of U belongs to M(p0, H∞) and its image is
contained in the neighborhood of W∞ on which J is integrable.

Proof. Choose a point q0 ∈W∞ \H∞ such that q0 6= p0. The unique line `0 in W∞
passing through p0 and q0 also intersects H∞, and therefore determines an element
of M(p0, H∞). Moreover, any sphere of M(p0, H∞) passing through q0 intersects
W∞ in three points, and therefore must be contained in it, so it is equal to `0.

Since none of the nodal spheres passes through q0, and since Mred
z (p0, H∞) is

compact, there is a neighborhood U of q0 in W such that ev−1(U) ⊂Mz(p0, H∞).
After possibly reducing the size of U , we can assume that every J-holomorphic

sphere of M(p0, H∞) passing through U is contained in the neighborhood of W∞
on which J is integrable. Suppose on the contrary that there is a sequence [un]
of elements of M(p0, H∞) and a sequence of points qn ∈ W converging to q0 such
that the image of un contains qn, but is not contained in some fixed neighborhood
of W∞. Then by Gromov compactness there is a subsequence of [un] converging to
a (possibly nodal) J-holomorphic sphere ofM(p0, H∞) passing through q0 and not
contained in the fixed neighborhood of W∞. This is a contradiction because the
only element ofM(p0, H∞) passing through q0 is `0, which is contained in W∞. �

Lemma 3.2. The evaluation map ev : Mz(p0, H∞)→W has degree one.

Proof. Let U be the neighborhood defined in Lemma 3.1. We will show that
# ev−1(q) = 1 for every q ∈ U .

Since all J-holomorphic spheres passing through U are contained in the neigh-
borhood where J is integrable, we can pretend we are working in the total space
of OPn−1(2). Given q ∈ U , let q be its projection to CPn−1 ∼= W∞. Any J-
holomorphic sphere ofM(p0, H∞) passing through q projects to the unique line `q
in W∞ passing through p0 and q. The sphere itself corresponds then to a section
of OPn−1(2)|`q ∼= OP1(2) which vanishes at p0 and at p∞ = `q ∩ H∞. The space
of sections of OP1(2) vanishing at p0 and p∞ has complex dimension one, and thus
there is a unique such section for any point q in the fiber of OP1(2) over q.

This shows that # ev−1(q) = 1 for every q ∈ U , and since U is open, by Sard’s
theorem it contains a regular value of the evaluation map. This proves that ev has
degree one. �

It is important to have a degree one map because degree one maps induce sur-
jections in homology. More generally, we have the following lemma.

Lemma 3.3. Let f : X → Y be a smooth map between compact oriented C1-
manifolds of the same dimension. Assume that f has degree d, and let S ⊂ Y
be a compact, oriented submanifold of dimension k which is transverse to f .

Then f−1(S) has an induced orientation and, with that orientation, we have the
equality

f∗
(
[f−1(S)]

)
= d [S]
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in Hk(Y ;Z).

Proof. A submanifold S is transverse to a map f if, for every y ∈ S and x ∈ f−1(y)
we have TyS ⊕ dxf(TxX) = TyY . This property implies that

• S′ = f−1(S) is a compact submanifold of X, and
• df defines an isomorphism between the normal bundle of S′ and the normal

bundle of S.

The orientations of S and Y determine an orientation of the normal bundle of
S. This in turn induces an orientation of the normal bundle of S′ via df which,
combined with the orientation of X induces the orientation of S′.

Let fS : S′ → S be the restriction of f . The condition on the normal bundles
implies that the regular values of fS are also regular values of f . If y is a regular
value of fS , then

deg(fS) =
∑

x∈f−1
S (y)

sign(dxfS)

deg(f) =
∑

x∈f−1(y)

sign(dxf).

Since f−1S (y) = f−1(y) by the definition of fS and sign(dxfS) = sign(dxf) be-
cause df is an orientation preserving isomorphism between the normal bundles, we
obtain deg(fS) = deg(f) = d.

Now we consider the commutative diagram

Hk(S′;Z)

��

(fS)∗ // Hk(S;Z)

��
Hk(X;Z)

f∗ // Hk(Y ;Z)

where the vertical arrows are induced by the inclusions. The fundamental class of
S′ is mapped by (fS)∗ to deg(fS) times the fundamental class of S. The homology
classes [S′] and [S] are the images of the fundamental classes of S′ and S inHk(X;Z)
and Hk(Y ;Z) respectively, and therefore f∗[S

′] = deg(fS) [S] = d [S]. �

3.2. Decomposition of the line. The following lemma is a warm up which illus-
trates how to derive topological implications from Lemma 3.2.

Lemma 3.4. The moduli space Mz(p0, H∞) is not compact.

Proof. The moduli space Mz(p0, H∞) is an S2-bundle over M(p0, H∞) with two
distinguished sections ev−1(p0) and ev−1(H∞). Then Mz(p0, H∞) \ ev−1(H∞)
retracts onto ev−1(p0). This implies that

ev∗ : Hk

(
Mz(p0, H∞) \ ev−1(H∞);Z

)
→ Hk(W ;Z)

is trivial whenever k > 0.
Take an embedded sphere ` ⊂ W which is homologous to a line in W∞ but

disjoint from H∞. It is possible to find such a sphere because H∞ has codimension
4 in W , but ` will not be holomorphic. We perturb ` to be transverse to the
evaluation map. If Mz(p0, H∞) is compact, ev∗([ev−1(`)]) = [`] by Lemma 3.3.
Since `∩H∞ = ∅, we have ev−1(`) ⊂Mz(p0, H∞) \ ev−1(H∞). Then the previous
paragraph implies that [`] = ev∗([ev−1(`)]) = 0. This is a contradiction because `
is homologous to a symplectic sphere, and therefore is nontrivial in homology. �
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Lemma 3.4 tells us that Mred(p0, H∞) is nonempty. We decompose it into
connected components

Mred(p0, H∞) =M(1)(p0, H∞) t · · · tM(N)(p0, H∞)

and, correspondingly, we decompose the moduli space with a free marked point into
connected components

Mred
z (p0, H∞) =M(1)

z (p0, H∞) t · · · tM(N)
z (p0, H∞).

EachM(i)
z (p0, H∞) is an S2 ∨ S2-bundle overM(i)(p0, H∞) with three distinguish

sections: one, denoted S(i)0 , where the free marked point is mapped to p0, one,

denoted S(i)∞ , where the free marked point is mapped to H∞, and one, denoted

S(i)n , where the free marked point lies on the node.1 Therefore we can see each

M(i)
z (p0, H∞) as the union of two sphere bundles N (i)

0 and N (i)
∞ overM(i)(p0, H∞)

glued together along the section S(i)n . An element of M(i)
z (p0, H∞) belongs to

N (i)
0 when the free marked point is in the domain of the irreducible component

passing through p0, and to N (i)
∞ when the free marked point is in the domain of the

irreducible component passing through H∞.
Given homology classes A and B (in the same manifold) we denote by A ·B their

intersection product. If A and B are represented by closed, oriented submanifolds
which intersect transversely, A ·B is the algebraic count of intersection points.

Lemma 3.5. Let ` be a sphere in W∞ which is disjoint from H∞, transverse to
the evaluation map ev, and homologous to a line.

Then, there exists at least one nodal component M(i)
z (p0, H∞) such that

[ev−1(`)] · [N (i)
∞ ] 6= 0.

Proof. Denote by `′ the oriented submanifold ev−1(`) in Mz(p0, H∞). Due to
Lemma 3.3 we have ev∗([`

′]) = [`].

If [`′] · [N (i)
∞ ] = 0, we can group the points in `′ ∩ N (i)

∞ in pairs of opposite sign,
and we can modify `′ by adding small 1-handles to cancel all intersection points

between `′ and N (i)
∞ . For this, choose for any pair of intersection points that we

want to cancel a path in N (i)
∞ connecting them, and use this path as the core of the

1-handle. We can choose the paths in a way that they do not intersect each other

and that they do not intersect S(i)∞ either.
The resulting manifold is still homologous to `′. Furthermore, if the handles

have a sufficiently small diameter, the resulting manifold is disjoint from ev−1(H∞)

because the cores of the handles avoid S(i)∞ .

If the intersection product [`′] · [N (i)
∞ ] is trivial for all i = 1, . . . , N , the end result

of these modifications is a surface ˜̀⊂Mz(p0, H∞) \ ev−1(H∞) such that [˜̀] = [`′].

On the one hand, this yields ev∗([˜̀]) = [`] by Lemma 3.3, but on the other hand,

sinceMz(p0, H∞) \ ev−1(H∞) retracts to ev−1(p0), we have that ev∗([˜̀]) = 0 as in
Lemma 3.4. This is a contradiction because [`] 6= 0 �

1Strictly speaking ghost bubbles appear in these three cases and we tacitly contract them. We
ignore this technical complication as it has no topological consequence.
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Lemma 3.6. Let ev
(i)
∞ : S(i)∞ → H∞ denote the restriction of the evaluation map

ev : Mz(p0, H∞) → W to S(i)∞ . Representing the homology class of a line by an
embedded surface ` in W that is transverse to the evaluation map ev, we obtain

[N (i)
∞ )] · [ev−1(`)] = deg(ev(i)

∞ ).

Proof. Let y ∈ H∞ be a regular value of ev
(i)
∞ for all i = 1, . . . , N , and let `0 be

a line in W∞ intersecting H∞ transversely at y. It follows that `0 is transverse to

ev |N (i)
∞

at y, that is, for every x ∈ ev−1(y) ∩N (i)
∞ we have

(2) dx ev(TxN (i)
∞ )⊕ Ty`0 = TyW,

because the nodal J-holomorphic spheres in M(p0, H∞) are all transverse to W∞.

By construction
(
ev

(i)
∞
)−1

(y) =
(
ev |N (i)

∞

)−1
(`0). If x ∈

(
ev |N (i)

∞

)−1
(`0), we

define sign(x) = +1 if the equality of Equation (2) preserves the orientation, and

sign(x) = −1 otherwise. Then sign(x) = sign(dx ev
(i)
∞ ) because dx ev is complex

linear in the extra direction TxN (i)
∞ /TxS(i)∞ .

Now let ` be a small perturbation of `0 which is transverse to ev. By Equation
(2) we can assume that the perturbation is supported away from y and that no new

intersection points between ev−1(`) and N (i)
∞ are created. Then

[N (i)
∞ ]·[ev−1(`)] =

∑
x∈
(
ev |
N(i)
∞

)−1
(`0)

sign(x) =
∑

x∈
(
ev

(i)
∞

)−1
(y)

sign(dx ev(i)
∞ ) = deg(ev(i)

∞ ).

�

The pull-back of the symplectic form ω is nontrivial on the fibers of N (i)
∗ for

any i = 1, . . . , N and ∗ ∈ {0,∞}. Therefore, by the Leray-Hirsch Theorem (see [1,
Theorem 5.11] for its cohomological form),

(3) H2(N (i)
∗ ;Z) ∼= H2(S(i)∗ ;Z)⊕H2(S2;Z) ∼= H2(S(i)n ;Z)⊕H2(S2;Z),

where the summand H2(S2;Z) is generated by a fiber of N (i)
∗ .

For every i we denote by A
(i)
0 and by A

(i)
∞ the homology classes representing

the fibers of N (i)
0 and of N (i)

∞ respectively. Then for each i we have the condition

ev∗
(
A

(i)
0

)
+ ev∗

(
A

(i)
∞
)

= [`] in H2(W ;Z).
Let ` be now a sphere in H∞ which is homologous to a line and transverse

to ev
(i)
∞ : S(i)∞ → H∞ for all i = 1, . . . , N . Then `′i := (ev

(i)
∞ )−1(`) is a smooth

submanifold of S(i)∞ which, by Lemma 3.3, satisfies ev∗([`
′
i]) =

(
ev

(i)
∞
)
∗([`
′
i]) = κi [`],

where κi := deg
(
ev

(i)
∞ ).

By Equation (3), there is some di ∈ Z and c ∈ H2(S(i)n ;Z) such that

(4) [`′i] = diA
(i)
∞ + c.

Lemma 3.7. The map

(ev |S(i)
n

)∗ : H2(S(i)n ;Z)→ H2(W ;Z)

is trivial for every i = 1, . . . , N .

Proof. By Equation (3) every class c ∈ H2(S(i)n ;Z) can be written as the sum of a

class in H2(S(i)0 ;Z) and a multiple of the class of the fiber. Since S(i)0 is mapped
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to p0, we obtain (ev |S(i)
0

)∗ = 0, and thus ev∗(c) = k ev∗
(
A

(i)
0

)
. By Lemma 2.4

ev
(
S(i)n

)
∩W∞ = ∅ while ev∗

(
A

(i)
0

)
· [W∞] = 1 so that

0 = ev∗
(
[S(i)n ]

)
· [W∞] = k ev∗

(
A

(i)
0

)
· [W∞] = k. �

By Equation (4) and Lemma 3.7 we obtain that di ev∗
(
A

(i)
∞
)

= κi [`]. Intersect-
ing with W∞ we obtain that di = 2κi. Now we restrict our attention to an index
i for which κi 6= 0, which exists by Lemma 3.5. In this case we can simplify the
equality

〈c1(TW ), κi[`]〉 = 〈c1(TW ), di ev
(
A(i)
∞
)
〉

and obtain
〈c1(TW ), [`]〉 = 2 〈c1(TW ), ev∗

(
A(i)
∞
)
〉.

When n is odd this is not possible because

〈c1(TW ), [`]〉 = n+ 2,

and therefore (W,ω) is not symplectically aspherical. This proves Theorem 1.1.

4. Fundamental group of semipositive fillings

In this section let (W,ω) be a semipositive filling of (RP2n−1, ξ). We recall that
(W,ω) is semipositive if every class A in the image of the Hurewicz homomorphism
π2(W )→ H2(W ;Z) satisfying the conditions 〈ω,A〉 > 0 and 〈c1(TW ), A〉 ≥ 3− n
also satisfies 〈c1(TW ), A〉 ≥ 0. See [7, Definition 6.4.1].

We use the same compactification (W,ω) and the same set of almost complex
structures J as in the previous sections, but now that (W,ω) does not need to be
symplectically aspherical we cannot assume anymore that M(p0, H∞) is a mani-
fold or that its elements have no irreducible component contained completely inside
W \W∞. The irreducible components which intersect W∞ must be simply cov-
ered because the intersections are simple, and therefore are Fredholm regular for a
generic almost complex structure J ∈ J , but the irreducible components which are
contained in W \W∞ can be multiply covered. However according to [7, Theorem
6.6.1] the image of Mred(p0, H∞) under the evaluation map is contained in the
union of images of finitely many compact codimension two smooth manifolds for a
generic J ∈ J because the irreducible components intersecting W∞ are Fredholm
regular and the irreducible components contained in W \ W∞ are controlled by
semipositivity. In particular W \ ev(Mred(p0, H∞)) is open, dense and connected.
Moreover the restriction of the evaluation map

ev : M(p0, H∞) \ ev−1(ev(Mred(p0, H∞)))→W \ ev(Mred(p0, H∞))

is proper by Gromov compactness, and therefore its degree is well defined. Then
Lemma 3.2 can rephrased as follows.

Lemma 4.1. If (W,ω) is semipositive and y ∈W \ ev(Mred(p0, H∞)) is a regular
value of ev, then ∑

x∈ev−1

sign(dx ev) = 1.

In particular, ev : Mz(p0, H∞)→W is surjective.

If we apply the argument of Lemma 3.4 to a one-dimensional submanifold of W
we obtain the following result.
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Lemma 4.2. If (W,ω) is a semipositive symplectic filling of (RP2n−1, ξ), then W
is simply connected.

Proof. First we prove that the map

(5) ev∗ : π1
(
Mz(p0, H∞) \ ev−1(H∞)

)
→ π1(W )

is surjective. We choose a base point b for π1(W ) in the neighborhood U of

Lemma 3.2 and a base point b̃ for π1(Mz(p0, H∞)) such that ev(̃b) = b. By a
codimension argument we can represent every element of π1(W ) by a smooth em-
bedding

γ : S1 ↪→W \
(
W∞ ∪ ev(Mred(p0, H∞))

)
which is transverse to the evaluation map. Using the fact that ev is a diffeomor-
phism of U onto its image and arguing as in point (i) of the proof of [4, Lemma

2.3] we obtain a loop Γ: S1 →Mz(p0, H∞) such that Γ(1) = b̃ and ev∗([Γ]) = [γ]
in π1(W ). This proves that the map (5) is surjective.

The retraction ofMz(p0, H∞)\ev−1(H∞) onto ev−1(p0) shows that the map (5)
is trivial, since it factors through π1(p0). This implies that π1(W ) is trivial. �

Combining this with the argument found in [2, Section 6.2] we obtain the main
result of this section.

Theorem 4.3. Any semipositive symplectic filling of (RP2n−1, ξ) is simply con-
nected.

Proof. Let (W,ω) be a semipositive symplectic filling of (RP2n−1, ξ). By Lemma 4.2
the compactification W is simply connected. The Seifert–van Kampen theorem
implies then that the map π1(∂W )→ π1(W ) induced by the inclusion ι : ∂W ↪→W
is surjective because W∞ ∼= CPn−1 is simply connected. In particular, π1(W ) is
either trivial or isomorphic to Z/2Z.

In the latter case ι induces an isomorphism between the fundamental groups,
and thus

ι∗ : H1(W ;Z/2Z)→ H1
(
∂W ;Z/2Z

)
is also an isomorphism. Let α ∈ H1(W ;Z/2Z) be the nontrivial element. Then
ι∗α ∈ H1

(
∂W ;Z/2Z

)
is also nontrivial and, since H∗(RP2n−1;Z/2Z) is generated

as an algebra by the nontrivial element of degree one, (ι∗α)2n−1 is the nontrivial
element of H2n−1(∂W ;Z/2Z

)
.

By the naturality of the cup product (ι∗α)2n−1 = ι∗(α2n−1). However

ι∗ : H2n−1
(
∂W ;Z/2Z

)
→ H2n−1(W ;Z/2Z)

is trivial, and consequently ι∗ : H2n−1(W ;Z/2Z)→ H2n−1
(
∂W ;Z/2Z

)
is by duality

also trivial because we are working over a field. This contradicts ι∗(α2n−1) 6= 0 and
therefore shows that W is simply connected. �

5. Yet another proof of the Eliashberg-Floer-McDuff theorem

In this section we apply the constructions of this article to the symplectic fillings
of the standard contact structure ξ on S2n−1. This will lead to small changes in
the meaning of the notation. If (W,ω) is a symplectic filling of (S2n−1, ξ) and
we perform symplectic reduction of its boundary, we obtain a closed symplectic
manifold (W,ω) with a codimension two symplectic submanifold W∞ ∼= CPn−1
whose normal bundle is isomorphic to OPn−1(1). We choose an almost complex
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structure J on W which is integrable near W∞ and generic elsewhere. Let p0 ∈W∞
be a point; we denote by M(p0) the moduli space of J-holomorphic spheres in W
that are homotopic to a line in W∞ and pass through p0. If ` is a line in W∞, then

TW |` ∼= OP1(2)⊕OP1(1)⊕ · · · ⊕ OP1(1)︸ ︷︷ ︸
n−1

.

Since [`] · [W∞] = 1 all elements ofM(p0) are simply covered, and thereforeM(p0)
is a smooth manifold by the analog of Proposition 2.3. Let Mz(p∞) is the mod-
uli space obtained by adding a free marked point to the elements of M(p∞). A
Riemann-Roch calculation gives dimM(p∞) = 2n− 2 and dimMz(p∞) = 2n.

Lemma 5.1. If (W,ω) is symplectically aspherical, then Mz(p∞) is compact.

Proof. As the algebraic intersection between a line with W∞ is one, any nodal J-
holomorphic curve representing the homology class of a line must have an irreducible
component in W \W∞ ∼= W . �

Lemma 3.2 still holds with the minimal necessary modifications, and therefore
the evaluation map ev : Mz(p0)→W has degree one.

Lemma 5.2. If (W,ω) is a symplectically aspherical filling of (S2n−1, ξ), then
H∗(W ;Z) = 0 for ∗ > 0.

Proof. The moduli space Mz(p0) is an S2-bundle over M(p0) and ev−1(p0) is a

section. Let W̃∞ be a J-holomorphic hypersurface of W contained in the neigh-
borhood of W∞ where J is integrable and obtained as the graph of a section of

OPn−1(1). We choose W̃∞ such that p0 6∈ W̃∞: then ev−1(W̃∞) is a section of
Mz(p0) which is disjoint from ev−1(p0). The map

(6) ev∗ : H∗(Mz(p0) \ ev−1(W̃∞);Z)→ H∗(W \ W̃∞;Z) ∼= H∗(W ;Z)

is surjective by Lemma 3.3. That lemma, strictly speaking, is about homology
classes represented by submanifolds, but there are several ways to extend it to
general homology classes.

On the other hand Mz(p0) \ ev−1(W̃∞) retracts onto ev−1(W̃∞), and therefore
the map (6) is trivial for ∗ > 0. �

The proof of Theorem 4.3 works more or less unchanged for fillings of (S2n−1, ξ),
and therefore W is simply connected. Then the h-cobordism theorem implies the
following corollary.

Corollary 5.3 (Eliashberg–Floer–McDuff). If (W,ω) is a symplectically aspherical
filling of (S2n−1, ξ), then W is diffeomorphic to the ball D2n.
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