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EXISTENCE OF TRAVELING WAVE SOLUTIONS FOR THE
DIFFUSION POISSON COUPLED MODEL: A COMPUTER-ASSISTED

PROOF

MAXIME BREDEN, CLAIRE CHAINAIS-HILLAIRET, AND ANTOINE ZUREK

Abstract. The Diffusion Poisson Coupled Model describes the evolution of a dense ox-
ide layer appearing at the surface of carbon steel canisters in contact with a claystone
formation. It involves drift-diffusion equations on the density of species (electrons, fer-
ric cations and oxygen vacancies), coupled with a Poisson equation on the electrostatic
potential and with moving boundary equations. Traveling wave solutions are defined by
stationary profiles on a fixed size domain with interfaces moving at the same velocity. In
this paper, we present and apply a computer-assisted method in order to prove the exis-
tence of these traveling wave solutions. We also establish a precise and certified description
of the solutions.

1. Introduction

The Diffusion Poisson Coupled Model (DPCM) describes the corrosion processes that
arise at the surface of carbon steel canisters which are in contact with a claystone formation.
It has been proposed by Bataillon et al. in [4] and is part of a general study of the long-term
safety of the geological repository of nuclear wastes.

The model focuses on the development of a dense oxide layer in the region of contact
between the metal and the claystone. It consists in a system of drift-diffusion equations
for the transport of charge carriers (electrons, ferric cations and oxygen vacancies) and
a Poisson equation for the electric potential, set on a moving domain. The boundary
conditions are prescribed by the electrochemical reactions and the potential drops at the
boundaries with the claystone and with the metal; they are of Fourier type. The system
also includes moving boundary equations. It will be introduced in detail in Section 2.

Up to now, no existence result has been established for the DPCM model. Some finite
volume methods have been proposed in [5], which led to the development of the code
CALIPSO; they are justified by a stability analysis and by the study of their numerical
performance. Numerical experiments with real-life data are presented in [4, 5]; they show
the efficiency of the developed methods and the relevance of the model. These numerical
experiments have also highlighted the long-time behavior of the model: after a transient
period, a kind of stationary regime is reached. It can be seen as a traveling wave solution:
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the size of the domain stays constant, both interfaces are moving with the same velocity
while the densities of charge carries and the electric potential have stationary profiles. The
traveling wave solutions can be defined as solutions of a stationary DPCM model, which
will be also detailed in Section 2.

In [14], the existence of traveling waves solutions for the DPCM model has been investi-
gated. An existence result is established for a simplified model, where the electroneutrality
in the oxide layer is assumed, so that the electric field is constant. Numerical methods for
the computation of the traveling waves solutions are also proposed in [14] and numerical
analysis of the simplified model is done.

The main novelty of the current paper is to prove the existence of traveling waves
solution for the general DPCM, and to obtain a precise and certified description of the
solutions (including the width of the oxide layer, and the value of the corrosion velocity).
In order to do so, we use a computer-assisted argument, which allows us to validate a
posteriori a numerically computed approximate solution. More precisely, we construct a
fixed-point map which is based on a numerical solution, and use a combination of analytic
estimates and interval arithmetic computations to prove that this map is contracting in an
explicit neighborhood of the numerical solution. This yields both the existence of a true
solution and guaranteed error bounds. For a broader overview of these computer-assisted
arguments, we refer the reader to the surveys [6, 17, 18, 22] and the books [20, 25]. Our
work follows in particular the techniques introduced in [19, 23] for computer-assisted proofs
using Chebyshev series.

The outline of the paper is the following. In Section 2, we present the evolutive DPCM
model and the associate stationary model which defines the traveling waves. The main
result of the paper is given in this section and settled in Theorem 2.1. For the stationary
model, we develop a spectral method for the computation of numerical solutions. This
method is based on the expansion of the different unknowns into Chebychev series. It
leads to a nonlinear systems of equations which is solved by a Newton method. The
numerical method is introduced in Section 3. Then, the aim is to certify the existence
of a strong solution to the stationary DPCM model in the neighborhood of a numerical
solution. The tools needed for the proof are presented in Section 4. Finally, numerical
experiments are given in Section 5. All the numerical results are computed by the spectral
method and the existence of an exact solution in the neighborhood is certified. Appendix A
is devoted to the presentation of the test case used in Section 5: values of the numerous
physical parameters and definition of the associate scaled parameters.

2. Presentation of the DPCM models

2.1. The evolutive DPCM model. The DPCM model introduced in [4] describes the
evolution of a dense oxide layer at the surface of carbon steel canisters in contact with a
claystone formation under anaerobic conditions. As the size of the oxide layer is very thin
compared to the waste overpack size, it is a one-dimensional model. The unknowns are
the density of charge carriers – C for the oxygen vacancies, N for the electrons and P for
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the ferric cations –, the electric potential Ψ and the position of the interfaces of the oxide
layer: X0, X1.

In this paper, we restrict our attention to the dimensionless model. The scaling process
has been partly described in [13, Section 5]. It will be detailed in Appendix A. When it is
possible, we will use the generic notation U for the carrier densities: U can be either C, N
or P . For instance, we denote by zU the charge of each associated species: zU = 2,−1, 3
for U = C,N, P . We also denote by DU the mobility or diffusion coefficient for the
corresponding species. As the time scale chosen for the scaling is the characteristic time
scale of the ferric cations, the scaled quantities εU = DP/DU appear in the scaled system.

The equations for the carrier densities C, N , P , as the boundary conditions, have the
same form. For U = C, N or P , they write:

εU∂tU + ∂xJU = 0, JU = −∂xU − zU U ∂xψ in (X0(t), X1(t)), ∀t > 0,(1a)

− JU + εU X
′
0(t)U = r0

U(U(X0(t)), ψ(X0(t))), on x = X0(t), ∀t > 0,(1b)

JU − εU X ′1(t)U = r1
U(U(X1(t)), ψ(X1(t)), V ), on x = X1(t), ∀t > 0,(1c)

The functions r0
U and r1

U are prescribed by the kinetics of the electrochemical reactions at
the interfaces. They can be written under the following generic form:

r0
U(s, x) = β0

U(x)s− γ0
U(x),

r1
U(s, x, V ) = β1

U(V − x)s− γ1
U(V − x),

where the functions β0
U , β1

U , γ0
U and γ1

U are smooth and positive functions. We will specify
their definitions in Appendix A.

The electric potential satisfies the following Poisson equation:

− λ2 ∂2
xxψ = zCC + zNN + zPP + ρhl, in (X0(t), X1(t)),(2a)

ψ − α0∂xψ = ∆ψpzc0 , x = X0(t),(2b)

ψ + α1∂xψ = V −∆ψpzc1 , x = X1(t),(2c)

and the moving boundary equations write:

X ′0(t) = v0
d(t) +X ′1(t) (1− Π) , ∀t > 0,(3a)

X ′1(t) = − κ

εC

(
JC(X1(t))− εC C X ′1(t)

)
, ∀t > 0.(3b)

Let us comment on the different parameters arising in the last equations:

• ρhl is the net charge density of the ionic species in the host lattice.
• ∆ψpzc0 , ∆ψpzc1 are respectively the scaled outer and inner voltages of zero charge.
• λ2, α0 and α1 are positive dimensionless parameters coming from the scaling.
• v0

d(t) is the dissolution speed of the layer, given by

(4) v0
d(t) = k0

d e
ρhla

0
d ψ(X0(t))

• Π and κ are positive dimensionless parameters.
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They all will be introduced in Appendix A.
In the system (1)–(3), V is a given dimensionless applied potential. Let us already

mention that it is deduced from a physical value Va (expressed in Volts and evaluated
relatively to the electrode reference NHE) thanks to the scaling detailed in Appendix A.
The system (1)–(3), where V is given, is called “potentiostatic case”. In this case, one
output quantity of interest is the total current of electrons at the inner interface defined
by

(5) Jtot = −3

(
1

4εC
(JC(X1(t))− εCCX ′1(t)) + JP (X1(t))− εPPX ′1(t)

)
+

1

εN

(
JN(X1(t))− εNNX ′1(t)

)
.

Then, it is also interesting to search V such that the electron charge balance at the inner
interface is fixed to a given constant J̃ , which means

(6) Jtot = J̃

The system (1)–(3) with the additional unknown V and the additional equation (6) is
referred as the “galvanostatic case”. If J̃ = 0, we speak of free corrosion and V is called
“free corrosion potential”.

Finally, the system is supplemented with some initial conditions:

P (x, 0) = P 0(x), N(0, x) = N0(x), C(0, x) = C0(x), ∀x ∈ (X0(0), X0(1)),

X0(0) = 0, X1(0) = 1.

2.2. Reformulation of the evolutive DPCM model on a fixed domain. In the one-
dimensional framework, it is always possible to define a change of variables that transform
a system of partial differential equations written on a moving domain into a new system
of partial differential equations defined on a fixed domain. It has been already done for
the evolutive DPCM model in [5], so that the numerical methods for the DPCM model are
defined on a fixed domain, with a fixed mesh. The same change of variables is used in [14]
and in both cases the system is rewritten in [0, 1]× [0,∞).

As we plan to expand the unknowns into Chebychev series in order to use a spectral
numerical method for the pseudo-stationary DPCM model, we rewrite now the system of
equations (1)-(3) in [−1, 1]× [0,∞). Therefore, we use the following change of variable:⋃

t∈[0,∞)

[X0(t), X1(t)]× {t} → [−1, 1]× [0,∞),

(x, t) 7→
(
ξ(x, t) = 2

x−X0(t)

X1(t)−X0(t)
− 1, t

)
.

It allows us to associate to every function w (w = C,N, P or ψ) defined on ∪t∈R+ [X0(t), X1(t)]×
{t} a function w defined on [−1, 1]× [0,∞) by the relation

w(x, t) = w(ξ(x, t), t).
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We also define the size of the domain by

L(t) = X1(t)−X0(t).

Therefore, we obtain

∂xw(x, t) =
2

L(t)
∂ξw(ξ(x, t), t), ∂2

xxw(x, t) =
4

L(t)2
∂2
ξξw(ξ(x, t), t).

We do not give here the details of the computation as they are classical and similar to
those done in [5]. Moreover, we forget the bars and we come back to the notation x instead
of ξ in the reformulated system. The equations on the carrier densities U = C,N, P then
write:

εUL(t)∂t(L(t)U) + ∂xJU = 0, in (−1, 1), ∀t > 0,(7)

with JU = −4∂xU − 4zU U ∂xψ − εUL(t)

(
2X ′0(t) + (x+ 1)L′(t)

)
U,

and are supplemented with the Fourier boundary conditions:

−JU(−1, t) = 2L(t)r0
U(U(−1, t), ψ(−1, t)), ∀t > 0,(8a)

JU(1, t) = 2L(t)r1
U(U(1, t), ψ(1, t), V ), ∀t > 0.(8b)

The electric potential satisfies the following Poisson equation

− 4λ2

L(t)2
∂2
xxψ = zCC + zNN + zPP + ρhl, in (−1, 1),(9a)

ψ(−1, t)− 2α0

L(t)
∂xψ(−1, t) = ∆ψpzc0 ,(9b)

ψ(1, t) +
2α1

L(t)
∂xψ(1, t) = V −∆ψpzc1 .(9c)

The moving boundary equations are written as:

X ′0(t) = v0
d(t) +X ′1(t) (1− Π) , ∀t > 0,(10a)

X ′1(t) = − κ

εC
r1
C(C(1, t), ψ(1, t), V ), ∀t > 0.(10b)

Finally, in the galvanostatic case, the relation (6) rewrites as

−3

(
1

4εC
JC + JP

)
+

1

εN
JN = 2L(t)Jtot, on x = 1.(11)

2.3. The stationary DPCM model. Numerical experiments show the existence of trav-
eling wave solutions for the DPCM model (1)-(3), see [4]. These solutions have stationary
profiles in a fixed size domain, whose boundaries are moving at the same velocity. There-
fore, they must be solutions of a stationary DPCM model, obtained from (7)-(10) by letting
down the dependency with respect to time. Moreover, we set L(t) = ` the constant size of
the domain and X ′0(t) = X ′1(t) = δ the constant velocity of the interfaces.
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The equations for the charge carrier densities U = C,N, P then write as:

∂xJU = 0, JU = −4∂xU − 4zU U ∂xψ − 2εUδ` U in (−1, 1),(12a)

−JU(−1) = 2`r0
U(U(−1), ψ(−1)),(12b)

JU(1) = 2`r1
U(U(1), ψ(1), V ).(12c)

The equations for the electric potential write as:

−4λ2

`2
∂2
xxψ = zCC + zNN + zPP + ρhl, in (−1, 1),(13a)

ψ(−1)− 2α0

`
∂xψ(−1) = ∆ψpzc0 ,(13b)

ψ(1) +
2α1

`
∂xψ(1) = V −∆ψpzc1 .(13c)

Finally, from the moving boundary equations (10), we deduce the following equations on
the size ` and the velocity δ:

δ =
1

Π
k0
d e

ρhl a
0
dψ(−1),(14a)

` = −κJC(1)

2δεC
.(14b)

Moreover, in the galvanostatic case, the additional equation (11) becomes

−3

(
1

4εC
JC + JP

)
+

1

εN
JN = 2`Jtot, on x = 1.(15)

We stress that the width ` of the oxide layer and the velocity of its interfaces δ are not
input parameters, but part of the unknowns of the system, and that we have to solve for
them. In this paper, we focus on the potentiostatic case (12)-(14). We both prove the
existence of solutions of (12)-(14), and get quantitative, certified information about these
solutions. These results will be presented in more details in Section 5.2, but Theorem 2.1
exhibits our main result for a given set of data.

Theorem 2.1. Let pH = 8.5, Va = 0.5 Volts, and take all the other parameters of the
model as in Appendix A. There exist analytic functions ψ,C,N, P : [−1, 1] → R and
δ, ` > 0 such that (ψ,C,N, P, δ, `) is a solution of (12)-(14). Besides, this solution satisfies

sup
[−1,1]

|ψ − ψ̄| ≤ 1.3× 10−9,

sup
[−1,1]

|C − C̄| ≤ 1.1× 10−10, sup
[−1,1]

|N − N̄ | ≤ 4.9× 10−10, sup
[−1,1]

|P − P̄ | ≤ 1.4× 10−10,

where ψ̄, C̄, N̄ and P̄ are explicitly known functions (in fact polynomials) represented on
Figure 1, and δ and ` fulfill

δ ∈ [33.49472560, 33.49472564], ` ∈ [1.7033525352, 1.7033525356].
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Figure 1. An approximate pseudo-stationary steady state (ψ̄, C̄, N̄ , P̄ ) for
pH = 8.5 and Va = 0.5 Volts.

We emphasize that the parameter values pH = 8.5 and Va = 0.5 Volts play no particular
role in our proof. We get similar results for different values of pH and Va in Section 5.2.
There, we also give the corresponding values of δ and ` in physical units (remember that
all the quantities in (12)-(14) were adimensionalized).

3. Expansion into Chebychev series and computation of a numerical
solution

A numerical scheme, based on finite volumes, was introduced in [14] in order to obtain
approximate solutions of the stationary DPCM model. Here, we adopt a different strat-
egy, which is more easily compatible with computer-assisted proofs: The solutions (both
approximate and rigorous) of (12)-(14) will be built as Chebychev series. We start by
recalling some basics facts about Chebychev series, and we then introduce the numerical
method we use for the computation of an approximate solution to (12)-(14). The extension
to the galvanostatic case is straightforward: we simply need to incorporate the additional
unknown V and the additional equation (15), so we do not discuss it more in this paper.

3.1. Basics about Chebychev series. We introduce few results and notations about
Chebychev polynomials and series, while refering to [24] for a more detailed presentation.

Let Tk be the Chebychev polynomials of the first kind defined by

Tk(cos(θ)) = cos(kθ), ∀θ ∈ R, ∀k ∈ N.

They satisfy

Tk(1) = 1, Tk(−1) = (−1)k, ∀k ∈ N.(16)
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Every Lipschitz continuous function u : [−1, 1]→ R admits a unique Chebychev expan-
sion defined as

u(x) = u0 + 2
∞∑
k=1

uk Tk(x) =
∑
k∈Z

uk Tk(x), ∀x ∈ [−1, 1],(17)

with the conventions

u−k = uk and T−k = Tk, ∀k ∈ N.

Moreover, for every function u : [−1, 1] → R which admits a Chebychev expansion given
by (17), the following integration formula holds for all x ∈ (−1, 1):∫ x

−1

∑
k∈Z

ukTk(s) ds =

(
u0 −

u1

2
− 2

∞∑
k=2

(−1)kuk
k2 − 1

)
T0(x) +

∑
k∈Z∗

uk−1 − uk+1

2k
Tk(x).(18)

Proposition 3.1 gives the relation between the coefficients of the Chebychev series of a
given function u and the coefficients of the Chebychev series of its derivative v = u′.

Proposition 3.1. Let u, v : [−1, 1]→ R be C1 functions such that

u = u0 + 2
∞∑
k=1

ukTk and v = v0 + 2
∞∑
k=1

vkTk.

Let us assume that u′(x) = v(x), for all x ∈ (−1, 1). Then, the Chebyschev coefficients of
u and v satisfy

(19) uk +
1

2k
(vk+1 − vk−1) = 0, k ≥ 1.

Proof. As u′(x) = v(x), for all x ∈ (−1, 1), we deduce that

u(x) = u(−1) +

∫ x

−1

v(s) ds, ∀x ∈ [−1, 1],

so that ∑
k∈Z

ukTk(x) = u(−1) +

∫ x

−1

∑
k∈Z

vkTk(s) ds.

Using formula (18) and identifying the coefficients of the Chebychev expansions yields
(19). �

3.2. Functional analysis framework. In the sequel, we will need some functional anal-
ysis framework for the Chebychev series. We will denote by u any sequence (uk)k∈N in RN

and throughout this note we will identify a function u : [−1, 1] → R, at least Lipschitz
continuous, with the sequence u = (uk)k∈N of its Chebychev coefficients.

Definition 3.1. Let ν > 1. We define the sequence ξ(ν) by

ξk(ν) =

{
1 for k = 0,

2νk for k ≥ 1.
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For any sequence u ∈ RN we define the ν-norm of u as

||u||ν =
∑
k∈N

|uk| ξk(ν) = |u0|+ 2
∑
k≥1

|uk|νk,(20)

We also introduce the following Banach space

`1
ν = {u ∈ RN : ||u||ν <∞}.

Definition 3.2. Let u, v : [−1, 1] → R be Lipschitz continuous functions identified to u
and v. Then, the expansion into Chebychev series of the product uv is given by:

uv = c0 + 2
∞∑
k=1

ckTk, with ck = (u ∗ v)k =
∑

k1+k2=k
k1,k2∈Z

u|k1|v|k2|, ∀k ≥ 0.(21)

Let us notice that for every u, v ∈ `1
ν we define u ∗ v thanks to (21). This definition of

a convolution product on `1
ν induce a natural Banach algebra structure on `1

ν , as stated in
Lemma 3.1.

Lemma 3.1. The space (`1
ν , ∗) is a Banach algebra with

||u ∗ v||ν ≤ ||u||ν ||v||ν , ∀u,v ∈ `1
ν .

Proof. This follows from Definition 3.2 and the triangle inequality. �

Definition 3.3. We define the operator S : u ∈ RN 7→ Su ∈ RN such that

(Su)k =

{
0, for k = 0,

uk+1 − uk−1, for any k ≥ 1.
(22)

Moreover, on the space RN we define a ν-seminorm | · |ν as

|u|ν =
∑
k∈N

|(Su)k|
(
νk + ν−k

)
=
∑
k≥1

|uk+1 − uk−1|
(
νk + ν−k

)
.(23)

If ν ≥ 1 then ν−k ≤ νk for all k ≥ 1 and, for all u ∈ `1
ν , we have |u|ν ≤ ||Su||ν .

3.3. Reformulation of the stationary DPCM model using Chebychev series. We
restrict here the presentation to the potentiostatic case (12)–(14).

The system (12)–(14) is based on second order differential equations on the densities
U = C,N, P and the electric potential ψ. However, considering the currents JU for U =
C,N, P and the electric field E = ∂xΨ as additional unknowns, it can be rewritten as a
system of first order differential equations. More precisely, the inner equations (12a) and
(13a) rewrite as:

(24)



∂xψ = E,

∂xE =
`2

4λ2
(−zCC − zNN − zPP − ρhl) ,

∂xJU = 0, for U = C,N, P,

∂xU = −1

4
JU − zUUE −

εU
2
δ`U, for U = C,N, P,
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while the boundary conditions and the equations for the velocity δ and the thickness ` lead
to:

(25)



JU(−1) + 2`r0
U((U(−1), ψ(−1)) = 0, for U = C,N, P,

− JU(1) + 2`r1
U((U(1), ψ(1), V ) = 0, for U = C,N, P,

ψ(−1)− 2α0

`
E(−1)−∆ψpzc0 = 0,

ψ(1) +
2α1

`
E(1)− V + ∆ψpzc1 = 0,

δ − 1

Π
k0
d exp

(
ρhl a

0
dψ(−1)

)
= 0,

`+
κJC(1)

2δεC
= 0.

Assume that the system (24)–(25) admits a smooth solution (ψ,E, (U, JU)U=C,N,P , δ, `),
so that ψ, E, U and JU for U = C,N, P can be expanded into Chebychev series:

(26)

ψ = ψ0 + 2
∞∑
k=1

ψkTk, E = E0 + 2
∞∑
k=1

EkTk,

U = U0 + 2
∞∑
k=1

UkTk, JU = JU,0 + 2
∞∑
k=1

JU,kTk, for U = C,N, P.

We identify each function ψ, E, U and JU to the sequence of its coefficients in the Cheby-
chev series: ψ, E, U and JU . As the net charge density of the host lattice ρhl is a given
constant, we can introduce the sequence ρhl ∈ RN defined by ρhl = (ρhl, 0, . . .). Then, plug-
ging the series expansions (26) into (24) and using the relation (21) and Proposition 3.1,
we obtain the following infinite dimensional set of algebraic equations
(27)

ψk +
1

2k
(SE)k = 0, ∀k ≥ 1,

Ek +
1

2k

`2

4λ2

(
S
(
− zCC − zNN − zPP − ρhl

))
k

= 0, ∀k ≥ 1,

JU,k = 0, for U = C,N, P, ∀k ≥ 1,

Uk +
1

2k

(
S
(
− 1

4
JU − zUU ∗E −

εU
2
δ`U

))
k

= 0, for U = C,N, P, ∀k ≥ 1.
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It is supplemented by the following relations, obtained by plugging the series expan-
sions (26) into (25) and applying (16):

(28)



JU,0 + 2`r0
U

(
U0 + 2

∞∑
k=1

(−1)kUk, ψ0 + 2
∞∑
k=1

(−1)kψk

)
= 0, for U = C,N, P,

− JU,0 + 2`r1
U

(
U0 + 2

∞∑
k=1

Uk, ψ0 + 2
∞∑
k=1

ψk, V

)
= 0, for U = C,N, P,

ψ0 + 2
∞∑
k=1

(−1)kψk −
2α0

`

(
E0 + 2

∞∑
k=1

(−1)kEk

)
−∆ψpzc0 = 0,

ψ0 + 2
∞∑
k=1

ψk +
2α1

`

(
E0 + 2

∞∑
k=1

Ek

)
− V + ∆ψpzc1 = 0,

δ − 1

Π
k0
d exp

(
ρhl a

0
d

(
ψ0 + 2

∞∑
k=1

(−1)kψk

))
= 0,

`+
κJC,0
2δεC

= 0.

Let us notice that since JU,k = 0 for all k ≥ 1 and U = C,N, P , the Chebychev expansion
of the function JU is given only by the first mode JU,0, i.e., JU = (JU,0, 0, . . .). For better
readability we will forget the subscript 0 and write JU . Moreover, in the sequel we will
identify the real number JU with its natural injection in RN given by the sequence JU =
(JU , 0, . . .). We will also identify δ and ` with their natural injection in RN.

3.4. The formulation F (X) = 0. We now rewrite the infinite system of nonlinear equa-
tions (27)–(28) under the form F (X) = 0 where the unknown is

X = (ψ,E,C,N ,P , JC , JN , JP , δ, `) ∈
(
RN)5 × R3 × (R \ {0})2 ,

and the function F is defined by

F = (F (ψ), F (E), F (C), F (N), F (P ), F (JC), F (JN ), F (JP ), F (δ), F (`)),
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with
(29)

F
(ψ)
0 (X) = ψ0 + 2

∞∑
k=1

(−1)kψk −
2α0

`

(
E0 + 2

∞∑
k=1

(−1)kEk

)
−∆ψpzc0 ,

F
(ψ)
k (X) = ψk +

1

2k
(SE)k, k ≥ 1,

F
(E)
0 (X) = ψ0 + 2

∞∑
k=1

ψk +
2α1

`

(
E0 + 2

∞∑
k=1

Ek

)
− V + ∆ψpzc1 ,

F
(E)
k (X) = Ek +

1

2k

`2

4λ2

(
S
(
− zCC − zNN − zPP − ρhl

))
k
, k ≥ 1,

F
(U)
0 (X) = JU + 2`r0

U

(
U0 + 2

∞∑
k=1

(−1)kUk, ψ0 + 2
∞∑
k=1

(−1)kψk

)
, for U = C,N, P,

F
(U)
k (X) = Uk +

1

2k

(
S
(
− 1

4
JU − zUU ∗E −

εU
2
δ`U

))
k

, k ≥ 1, for U = C,N, P,

F (JU )(X) = −JU + 2`r1
U

(
U0 + 2

∞∑
k=1

Uk, ψ0 + 2
∞∑
k=1

ψk, V

)
, for U = C,N, P,

F (δ)(X) = δ − 1

Π
k0
d exp

(
ρhl a

0
d

(
ψ0 + 2

∞∑
k=1

(−1)kψk

))
,

F (`)(X) = `+
κJC
2δεC

,

we recall that ρhl denotes the sequence given by ρhl = (ρhl, 0, . . .).
We have rewritten the initial system of differential equations (12)–(14) as an infinite

system of nonlinear equations of the form F (X) = 0. It remains now to prove that the
existence of a solution X to the system F (X) = 0 yields the existence of a smooth solution
to the initial system (12)–(14). To this end we introduce an appropriate Banach space Xν
and in the sequel we will consider that the function F given by (29) acts only on this space.

Let us first introduce Ipot and I1
pot the following index sets:

Ipot = {ψ,E,C,N, P, JC , JN , JP , δ, `},(30)

and

I1
pot = {ψ,E,C,N, P} ⊂ Ipot.(31)

Definition 3.4. Let ν > 1 and η ∈ (0,∞)10 be given. We define

Xν =

u ∈ (RN)5 × R3 × (R \ {0})2 :
∑
i∈I1pot

ηi||ui||ν +
∑

i∈Ipot\I1pot

ηi|ui| <∞

 .
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Moreover for u ∈
(
RN
)5 × R3 × (R \ {0})2 we define

||u||Xν ,η =
∑
i∈I1pot

ηi||ui||ν +
∑

i∈Ipot\I1pot

ηi|ui|.(32)

Remark 3.1. The norm || · ||Xν ,η depends on several parameters: ν ∈ (1,+∞) and η ∈
(0,+∞)10, which must be carefully chosen in practice. We refer to Section 5.1 for a more
in-depth discussion.

In the sequel, we will denote every X ∈ Xν as

X = (ψ,E,C,N ,P , JC , JN , JP , δ, `),

and we will consider that F acts on the space (Xν , || · ||Xν ,η). Then, Lemma 3.2 summarizes
and justifies in a precise statement all the formal computations and substitutions made
previously.

Lemma 3.2. Let ν > 1 and η ∈ (0,∞)10. Assume that there exists

X = (ψ,E,C,N ,P , JC , JN , JP , δ, `) ∈ Xν ,
such that F (X) = 0 and consider as in (26) the functions ψ, E, U and JU for U = C,N, P .
Then ψ, E, U and JU for U = C,N, P are smooth functions which, together with ` and δ,
solve (12)-(14).

Proof. First notice that since X ∈ Xν with ν > 1, the Chebychev coefficients are decaying
geometrically fast to 0, and thus the functions ψ, E, U and JU for U = C,N, P are well
defined and smooth (in fact analytic), see [24, Section 8]. Then, having F (X) = 0 means
exactly that the sequences ψ = (ψk)k≥0, E = (Ek)k≥0, U = (Uk)k≥0, JU for U = C,N, P ,
δ and ` solve (27)-(28), which in turn implies that the functions ψ, E, U and JU for
U = C,N, P , δ and ` solve (24)-(25). All the derivatives needed in (24)-(25) are legitimate
thanks to the geometrical decay of the coefficients. �

3.5. Computation of a numerical solution. From the infinite system of equations
F (X) = 0, where F is given by (29), we can easily deduce a finite nonlinear system of
equations, just by truncating the Chebychev modes of order K ≥ 1 and higher, for a given
K. The unknowns of this new system are (ψk, Ek, Ck, Nk, Pk)0≤k≤K−1, JC , JN , JP , `, δ and
the size of the system is 5K + 5.

Let us denote by πK : `1
ν → RK the finite dimensional projection obtained by truncating

the Chebychev modes of order K ≥ 1 and higher, i.e. πK(u) = (u0, . . . , uK−1) for u ∈ `1
ν .

Then, we extend the definition of πK to πK : Xν → R5K × R5 by

πK(X) = (πK(ψ), πK(E), πK(C), πK(N ), πK(P ), JC , JN , JP , δ, `).

We also denote by ıK the natural injection from R5K+5 to Xν . We may now define

F [K] = (πK ◦ F ◦ ıK).

We can compute an approximate solution, X ∈ R5K+5 to F = 0 by solving numerically
the finite dimensional problem F [K] = 0. We refer again to Section 5.1 for more details on
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the resolution of this finite dimensional problem. In the sequel, we use the same notation
to denote X ∈ R5K+5 an approximate solution to F [K] = 0 and its injection into Xν .

4. Towards a computer-assisted proof of the existence of solutions

4.1. Presentation of the general strategy. We present in this section the strategy that
will be used in order to prove the existence of a solution to (12)-(14). In Section 3, we
have reformulated the problem as a zero finding problem F (X) = 0 for a suitable operator
F defined on a Banach space. We are now going to introduce a Newton-like operator T
(see (38)) whose fixed points are in one-to-one correspondence with the zeros of F . The
existence and enclosure of the solution then follow by the Banach fixed point theorem, once
the operator T is proven to be a contraction on some complete set. The following theorem,
very reminiscent of the Newton-Kantorovich theorem, provides us with an efficient way of
finding an explicit neighborhood of the numerical solution X on which the operator is a
contraction. Many similar versions of this theorem have been used in the last decades in
computer-assisted proofs (see e.g. [2, 15, 20, 27] and the references therein).

Theorem 4.1. Let (X , || · ||X ), (Y , || · ||Y) be Banach spaces and F : X → Y a C2 function.
Let A : Y → X and A† : X → Y be linear operators, with A injective. Let r∗ > 0, X ∈ X
and assume that there exist positive constants Y , Z0, Z1 and Z2 such that∣∣∣∣AF (X)

∣∣∣∣
X ≤ Y,(33) ∣∣∣∣∣∣I − AA†∣∣∣∣∣∣X ≤ Z0,(34) ∣∣∣∣∣∣A(DF (X)− A†)

∣∣∣∣∣∣
X ≤ Z1,(35) ∣∣∣∣∣∣AD2F (X)

∣∣∣∣∣∣
X ≤ Z2, ∀

∥∥X −X∥∥X ≤ r∗,(36)

where ||| · |||X denotes the operator norm on X . Define the radii polynomial P as

P (r) =
Z2

2
r2 − (1− (Z1 + Z0))r + Y.(37)

Assume that there exists r > 0 such that P (r) < 0 and let r and r denote the two non-
negative roots of P , with r < r. Then, provided r < r∗, the operator T : X → X defined
as

T = I − AF,(38)

has a unique fixed point in BX (X, r) the closed ball of X , centered at X and of radius r
for all r in [rmin, rmax) where

rmin = r and rmax = min

(
r + r

2
, r∗
)
.

Moreover since we assume that A is an injective operator, then F has a unique zero in
BX (X, r) for all r ∈ [rmin, rmax) .

The proof simply consists in checking that T is a contraction on BX (X, r) for all r ∈
[rmin, rmax). We refer to the above-mentioned references for a detailed proof.
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Remark 4.1. Let us make a few comments about Theorem 4.1.

• Since P is simply a quadratic polynomial, the existence of an r > 0 such that
P (r) < 0 is equivalent to having

Z1 + Z0 < 1 and 2Z2Y < (1− (Z1 + Z0))2,(39)

and so these two conditions are sufficient conditions for T to be a contraction on
BX (X, r).
• We are going to take for A an approximate inverse of DF (X), and for A† an

approximation of DF (X) itself (which will in fact be used to construct A). If

we could take A =
(
DF (X)

)−1
we would get DT (X) = 0, i.e. a very strong

contraction near X. However, getting explicit estimates on
(
DF (X)

)−1
can be

very hard, which is why we introduce these approximations instead. The condition
Z0 + Z1 < 1 tells us how good these approximations have to be.
• Finally, if this condition Z0 +Z1 < 1 is satisfied, we only have to get good enough

numerical approximation X, or more precisely a small enough residual error Y , for
the second condition 2Z2Y < (1− (Z1 + Z0))2 to hold.
• In the sequel, we derive formula for Y , Z0, Z1 and Z2 satisfying (33)-(36), which

are explicit but cannot easily be evaluated by hand, since they depend on numerical
data (and in particular on X). Therefore, we evaluate them with a computer, but
using interval arithmetic (in our case with Intlab [21]) to ensure that the rounding
errors are controlled.

Theorem 4.1 is the cornerstone of our computer-assisted proof. In Section 3.4, we have
already introduced the function F defined on the Banach space (Xν , || · ||Xν,η) such that the
solutions of F = 0 correspond to the solutions of (12)-(14). Moreover in Section 3.5, we
have defined X ∈ R5K×R5 (identified with its injection in Xν) as an approximate solution
of the finite dimensional problem F [K] = 0. It remains:

• to define the linear operators A and A†,
• to define and compute the bounds Y , Zi satisfying (33)-(36),
• to check that P (r) given in (37) is negative for some r > 0.

In what follows, we detail each of these steps.

4.2. Definition of the operators A and A†. Recalling that we want A† to be an ap-
proximation of DF (X), we define for every X ∈ Xν the operator A† as{

A†πK(X) = DF [K]
(
X
)
πK(X),

A†Xk = Xk = (ψ,E,C,N ,P )k, ∀k ≥ K,
(40)

where πK denotes the finite dimensional projection introduced in Section 3.5.
Then, we consider the operator A as an approximate inverse of A†. To do so, we define

A[K] as a numerically computed inverse of DF [K](X), and we define for every X ∈ Xν the
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operator A as {
AπK(X) = A[K] πK(X),

AXk = Xk = (ψ,E,C,N ,P )k, ∀k ≥ K.
(41)

4.3. Operator norms. In order to compute the bounds Z0, Z1 and Z2 in Theorem 4.1 we
need to introduce some operator norms. First, let us consider a linear operator B : `1

ν → `1
ν .

We denote by |||B|||ν the operator norm of B, i.e.

|||B|||ν = sup
||u||ν=1

||Bu||ν .

It will be convenient to think of B as an “infinite dimensional matrix”, written in the
canonical Schauder basis of `1. That is, B is characterized by the coefficients (Bk,n)k,n∈N
such that, for all u ∈ `1

ν and all k ∈ N,

(Bu)k =
∑
n∈N

Bk,nun.

Similarly to the well know formula for matrix norms, we can express the operator norm of
B in terms of these coefficients.

Lemma 4.1. Let B : `1
ν → `1

ν be a linear operator. Then

|||B|||ν = sup
n≥0

1

ξn(ν)

∑
k∈N

∣∣Bk,n

∣∣ξk(ν),(42)

where (Bk,n)k,n≥0 is the matrix representation of the operator B.

In particular, we deduce that if the matrix B has a finite number of non zero coefficients,
then |||B|||ν can be evaluated on a computer (and using interval arithmetic we can get
a rigorous upper bound of this norm). It will be convenient to introduce the notation
B·,n = (Bk,n)k≥0 for every n ≥ 0. Notice that we can then rewrite (42) as

|||B|||ν = sup
n≥0

1

ξn(ν)

∑
k∈N

∣∣Bk,n

∣∣ξk(ν) = sup
n≥0

1

ξn(ν)
||B·,n||ν .(43)

Now, let B : Xν → Xν be a linear operator and let us consider the following block-
representation of B

B =
(
B(i,j)

)
i,j∈Ipot

,

where the set Ipot is given by (30). Due to the definition of Xν , let us notice that for
instance B(JU ,JU ) : R → R, B(ψ,JU ) : `1

ν → `1
ν for U = C,N, P and B(ψ,δ) : R → `1

ν .
However, post-composing some blocks of B by ı1, the natural injection from R to `1

ν , we
can see every of these blocks as some linear operators from `1

ν or R to `1
ν . Moreover, this

slight modification does not change the value of the operator norm of the blocks. For
instance, for U = C,N, P we have |B(JU ,JU )| =

∣∣∣∣∣∣ı1 ◦B(JU ,JU )
∣∣∣∣∣∣

ν
and we omit to write the

composition by ı1 in the sequel.
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Now, still considering B : Xν → Xν , we slightly abuse the notation by applying the `1
ν

operator norm component wise to B, i.e. we define

|||B|||ν =
(∣∣∣∣∣∣B(i,j)

∣∣∣∣∣∣
ν

)
i,j∈Ipot

,

where for each block B(i,j) =
(
B

(i,j)
k,n

)
k,n≥0

for i, j ∈ Ipot, we use formula (43) to evaluate

its operator norm. Let us now introduce for η ∈ (0,∞)10 the following weighted operator
norm∣∣|||B|||ν∣∣η = max

j∈Ipot

1

ηj

∑
i∈Ipot

ηi
∣∣∣∣∣∣B(i,j)

∣∣∣∣∣∣
ν

= max
j∈Ipot

1

ηj

∑
i∈Ipot

ηi sup
n≥0

1

ξn(ν)

∑
k∈N

∣∣∣B(i,j)
k,n

∣∣∣ ξk(ν).

We recall that the practical choice of η will be discussed in Section 5.1. If all the blocks of B
have a finite number of non zero coefficients, then the quantity

∣∣|||B|||Xν ∣∣η can be evaluated

on a computer (and rigorously upper-bounded using interval arithmetic). Moreover, we
notice that

|||B|||Xν ,η = max
j∈Ipot

1

ηj

∣∣∣∣∣∣B(·,j)∣∣∣∣∣∣
Xν ,η

= max
j∈Ipot

1

ηj
sup
n≥0

1

ξn(ν)

∑
i∈Ipot

∑
k∈N

∣∣∣B(i,j)
k,n

∣∣∣ ξk(ν) ηi

≤ max
j∈Ipot

1

ηj

∑
i∈Ipot

ηi sup
n≥0

1

ξn(ν)

∑
k∈N

∣∣∣B(i,j)
k,n

∣∣∣ ξk(ν),

that is

|||B|||Xν ,η ≤
∣∣|||B|||ν∣∣η.(44)

Therefore, as soon as we can rigorously compute
∣∣|||B|||ν∣∣η, we get a computable and

rigorous upper bound for |||B|||Xν ,η.

4.4. Definition of the bounds Y and Zi. In this section, for K ≥ 1 fixed we derive some
computable bounds Y , Z0, Z1 and Z2 satisfying the assumptions (33)-(36) of Theorem 4.1.
We assume that X ∈ R5K+5 is given (in practice we should chose it so that F [K](X) =
(πK ◦ F ◦ ıK)(X) ≈ 0). In the sequel we identify X with its injection in Xν , with Xk =
(0, 0, 0, 0, 0) for all k ≥ K.

4.4.1. The bound Y . We simply define Y as

Y =
∣∣∣∣AF (X)

∣∣∣∣
Xν ,η

.

Since the vector X has only a finite number of non zero coefficients, i.e. Xk = (0, 0, 0, 0, 0)
for every k ≥ K, we have

F
(ψ)
k (X) = 0, ∀k ≥ K + 1,

F
(E)
k (X) = 0, ∀k ≥ K + 1,
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F
(U)
k (X) = 0, ∀k ≥ 2K, for U = C,N, P,

which implies that F (X) has only a finite number of non zero coefficients. Moreover, since
A acts only diagonally on the tail of the elements of F (X), AF (X) also has only a finite
number of non zero coefficients. Thus, the bound Y can be evaluated on a computer (using
interval arithmetic).

4.4.2. The bound Z0. Using the notations and definitions introduced in Section 4.3 we
obtain the following result:

Proposition 4.1. Let ν > 1 and η ∈ (0,∞)10. Consider A† and A defined in (40)
and (41), the index set Ipot given by (30) and the linear operator B = I − AA†. Then

Z0 = ||||B|||ν |η(45)

= max
j∈Ipot

1

ηj

∑
i∈Ipot

ηi sup
n≥0

1

ξn(ν)

∑
k∈N

∣∣∣B(i,j)
k,n

∣∣∣ ξk(ν).(46)

satisfies ∣∣∣∣∣∣(I − AA†)∣∣∣∣∣∣Xν ,η ≤ Z0.(47)

We point out that, by construction of A† and A, each block B(i,j) for i, j ∈ Ipot has only
a finite number of non zero coefficients (recall that the “tail” parts of A† and A act as the
identity), and hence the `1

ν operator norms
∣∣∣∣∣∣B(i,j)

∣∣∣∣∣∣
ν

can all be evaluated on a computer
(using interval arithmetic).

Proof. The proof of the result follows directly from (44). �

4.4.3. The bound Z1. We now explain how to define a constant Z1 such that∣∣∣∣∣∣A(DF (X)− A†)
∣∣∣∣∣∣
Xν ,η
≤ Z1.(48)

First, we consider the linear operator G = A(DF (X) − A†) and we denote G(i,j) for i,
j ∈ Ipot (recall definition (30) of Ipot) the block-representation of G. Then, applying (44)
we have

|||G|||Xν ,η ≤ ||||G|||ν |η = max
j∈Ipot

1

ηj

∑
i∈Ipot

∣∣∣∣∣∣G(i,j)
∣∣∣∣∣∣

ν
ηi.

We are going to bound the `1
ν operator norm of eachG(i,j) independently, using the following

splitting:∣∣∣∣∣∣G(i,j)
∣∣∣∣∣∣

ν
= max

[
max

0≤l≤2K−1

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν), sup
l≥2K

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν)

]
.(49)

Then, we define for all i, j ∈ Ipot

Γ
(i,j)
finite = max

0≤l≤2K−1

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν), i, j ∈ Ipot,(50)



EXISTENCE OF TRAVELING WAVE SOLUTIONS FOR THE DPCM MODEL 19

where Γ
(i,j)
finite reduces to

Γ
(i,j)
finite =

∑
k∈N

∣∣∣G(i,j)
k,0

∣∣∣ ξk(ν),

in the case where the block G(i,j) admits only one column. Let us notice, due to the

structure of DF (X), A† and A, that G
(i,j)
·,l has a finite number of non zero coefficients, for

0 ≤ l ≤ 2K−1, and in particular the constant Γ
(i,j)
finite can be evaluated on a computer (using

interval arithmetic). Moreover, following the splitting used in (49), we are also going to

introduce some constants Γ
(i,j)
tail for i, j ∈ I1

pot = {ψ,E,C,N, P}, such that

sup
l≥2K

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν) ≤ Γ
(i,j)
tail .(51)

We set those constants to zero if the block G(i,j) admits only one column.

Introducing Γ(i,j) = max
(

Γ
(i,j)
finite,Γ

(i,j)
tail

)
, we end up with

|||G|||Xν ,η ≤ max
j∈Ipot

1

ηj

∑
i∈Ipot

Γ(i,j) ηi.

Finally, we can define the constant Z1 as

Z1 = max
j∈Ipot

1

ηj

∑
i∈Ipot

Γ(i,j) ηi,

which implies that Z1 satisfies (48). The following result summarizes this approach and

gives a precise definition of the constants Γ
(i,j)
tail for i, j ∈ Ipot.

Proposition 4.2. Let ν > 1, η ∈ (0,∞)10 and X ∈ R5K+5 (identified with its injection in
Xν). Consider F , A† and A defined by (29), (40) and (41). Define G = A(DF (X)− A†)
and

Γ
(i,j)
finite = max

0≤l≤2K−1

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν), ∀i, j ∈ Ipot,

with

Γ
(i,j)
finite =

∑
k∈N

∣∣∣G(i,j)
k,0

∣∣∣ ξk(ν),

if the block G(i,j) admits only one column. Moreover, let us introduce

Γ
(i,j)
tail = Γ

(i,j)
tail,1 + Γ

(i,j)
tail,2, ∀i, j ∈ Ipot,

where

Γ
(i,j)
tail,1 =

χI1pot(j)

ξ2K(ν)
max
l=1,2

K−1∑
k=0

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 DF (X)

(m,j)
0,l

∣∣∣∣∣∣ ξk(ν)

 ,(52)
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with I1
pot ⊂ Ipot defined in (31) and χI1pot the characteristic function of I1

pot. Moreover, the

values of Γ
(i,j)
tail,2 are given in Table 1 for i, j ∈ I1

pot and Γ
(i,j)
tail,2 = 0 in all other cases. Finally,

introducing

Γ(i,j) = max
(

Γ
(i,j)
finite,Γ

(i,j)
tail

)
, ∀i, j ∈ Ipot,

and

Z1 = max
j∈Ipot

1

ηj

∑
i∈Ipot

Γ(i,j) ηi,(53)

we have ∣∣∣∣∣∣A(DF (X)− A†)
∣∣∣∣∣∣
Xν ,η
≤ Z1.

(i, j) ψ E C N P

ψ 0 1
2

[
ν−1

2K−1 + ν
2K+1

]
0 0 0

E 0 0 |zC |¯̀2
8λ2

[
ν−1

2K−1 + ν
2K+1

]
|zN |¯̀2

8λ2

[
ν−1

2K−1 + ν
2K+1

]
|zP |¯̀2
8λ2

[
ν−1

2K−1 + ν
2K+1

]
C 0

|zC | |C|ν
2K

|−zCE−εCδ `e/2|ν
2K 0 0

N 0
|zN | |N|ν

2K 0
|−zNE−εN δ `e/2|ν

2K 0

P 0
|zP | |P |ν

2K 0 0
|−zPE−εP δ `e/2|ν

2K

Table 1. Definition of the constants Γ
(i,j)
tail,2 for i, j ∈ I1

pot in the potentio-
static case, where | · |ν is given by (23) and e = (1, 0, 0, . . .).

Proof. Let l ≥ 2K > 1 be fixed. First, by construction of A†, (DF (X) − A†)(m,j)
p,l = 0 for

every p ≥ 0 if j ∈ Ipot \ I1
pot = {JC , JN , JP , δ, `}, therefore

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν) =
χI1pot(j)

ξl(ν)

∑
k∈N

∣∣∣∣∣∣
∑
m∈Ipot

∑
p≥0

A
(i,m)
k,p (DF (X)− A†)(m,j)

p,l ξk(ν)

∣∣∣∣∣∣ ,
where we recall that I1

pot = {ψ,E,C,N, P} ⊂ Ipot and χI1pot denotes the characteristic

function of I1
pot. Using the definition of DF (X) and A† we obtain (DF (X)−A†)(m,j)

p,l = 0
for any 0 < p < 2l − K and any m, j ∈ Ipot. In particular, since we only consider here

l ≥ 2K, (DF (X)− A†)(m,j)
p,l = 0 for any 0 < p < K, which yields

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν) ≤
χI1pot(j)

ξl(ν)

∑
k∈N

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 (DF (X)− A†)(m,j)

0,l ξk(ν)

∣∣∣∣∣∣
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+
χI1pot(j)

ξl(ν)

∑
k∈N

∣∣∣∣∣∣
∑
m∈Ipot

∑
p≥K

A
(i,m)
k,p (DF (X)− A†)(m,j)

p,l ξk(ν)

∣∣∣∣∣∣ .
Besides, by construction of A, if i 6= m then A

(i,m)
k,p = 0 as soon as k ≥ K or p ≥ K, and if

i = m then A
(i,i)
k,p = χI1pot(i)δk,p as soon as k ≥ K or p ≥ K. Therefore, we get

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν) ≤
χI1pot(j)

ξ2K(ν)

K−1∑
k=0

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 (DF (X)− A†)(m,j)

0,l ξk(ν)

∣∣∣∣∣∣
+
χI1pot(j)

ξl(ν)

∑
k∈N

∣∣∣∣∣∣
∑
m∈Ipot

∑
p≥K

A
(i,m)
k,p (DF (X)− A†)(m,j)

p,l ξk(ν)

∣∣∣∣∣∣
≤
χI1pot(j)

ξ2K(ν)

K−1∑
k=0

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 (DF (X)− A†)(m,j)

0,l ξk(ν)

∣∣∣∣∣∣
+
χI1pot×I1pot(i, j)

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(i,j)
p,l ξp(ν)

∣∣∣∣∣ .
Moreover, still by construction of DF (X) and A†, we notice that (DF (X) − A†)(m,j)

0,l =

DF (X)
(m,j)
0,l for all l ≥ 2K and m ∈ Ipot and j ∈ I1

pot, which implies

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν) ≤
χI1pot(j)

ξ2K(ν)

K−1∑
k=0

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 DF (X)

(m,j)
0,l ξk(ν)

∣∣∣∣∣∣
+
χI1pot×I1pot(i, j)

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(i,j)
p,l ξp(ν)

∣∣∣∣∣ .
Let us now give the explicite value of the first term in the right hand side in the case where
i = C and j = E for instance. Then, we have

K−1∑
k=0

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 DF (X)

(m,j)
0,l ξk(ν)

∣∣∣∣∣∣ =
K−1∑
k=0

∣∣∣∣(−1)l+1 4α0

`
A

(C,ψ)
k,0 +

4α1

`
A

(C,E)
k,0

∣∣∣∣ ξk(ν)

≤ max
l=1,2

[
K−1∑
k=0

∣∣∣∣(−1)l+1 4α0

`
A

(C,ψ)
k,0 +

4α1

`
A

(C,E)
k,0

∣∣∣∣ ξk(ν)

]
.
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Writing down the explicite value of the other terms, we observe, as in the former example,
that this value only depends on the parity of `. Thus, we obtain

1

ξl(ν)

∑
k∈N

∣∣∣G(i,j)
k,l

∣∣∣ ξk(ν) ≤
χI1pot(j)

ξ2K(ν)
max
l=1,2

K−1∑
k=0

∣∣∣∣∣∣
∑
m∈Ipot

A
(i,m)
k,0 DF (X)

(m,j)
0,l

∣∣∣∣∣∣ ξk(ν)


+
χI1pot×I1pot(i, j)

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(i,j)
p,l ξp(ν)

∣∣∣∣∣ .
Now, let us explain how we derive the bounds Γ

(i,j)
tail,2 given in Table 1. To this end we need

to estimate the second term in the right hand side of the previous inequality. We consider
first the case i = ψ and j = E. Then, we notice that

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(ψ,E)
p,l ξp(ν)

∣∣∣∣∣ =
1

ξl(ν)

∣∣∣∣∣∑
p≥K

∂F
(ψ)
p

∂El
(X) ξp(ν)

∣∣∣∣∣ .
Thus, remembering that we only consider here l ≥ 2K,

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(ψ,E)
p,l ξp(ν)

∣∣∣∣∣ =
1

ξl(ν)

∣∣∣∣ ξl−1(ν)

2(l − 1)
− ξl+1(ν)

2(l + 1)

∣∣∣∣
≤ 1

2

(
ν−1

2K − 1
+

ν

2K + 1

)
= Γ

(ψ,E)
tail,2 .

Using similar arguments we obtain the different values of Γ
(E,U)
tail,2 for U = C,N, P . Let us

then consider the case i = C and j = E. We have

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(C,E)
p,l ξp(ν)

∣∣∣∣∣ =
1

ξl(ν)

∣∣∣∣∣∑
p≥K

∂F
(C)
p

∂El
(X) ξp(ν)

∣∣∣∣∣ ,
and a meticulous but rather straightforward analysis of the terms in

∂F
(C)
p

∂El
leads to

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(C,E)
p,l ξp(ν)

∣∣∣∣∣ =
|zC |

2ξl(ν)

∣∣∣∣∣∑
p≥K

[
−
C |p+1−l| + C |p+1+l|

p

+
C |p−1−l| + C |p−1+l|

p

]
ξp(ν)

∣∣∣∣∣ .
Then, we recall that Ck = 0 for all k ≥ K, which allows us to rewrite the above sum as
follows

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(C,E)
p,l ξp(ν)

∣∣∣∣∣ ≤ |zC |
2ξl(ν)

1

K

l+K∑
p=l−K

∣∣C |p+1−l| − C |p−1−l|
∣∣ ξp(ν)
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=
|zC |

2ξl(ν)

1

K

K∑
p=−K

∣∣C |p+1| − C |p−1|
∣∣ ξp+l(ν)

≤ |zC |
2K

K∑
p=1

∣∣(SC)p
∣∣ (νp + ν−p

)
≤
|zC |

∣∣C∣∣
ν

2K
= Γ

(C,E)
tail,2 .

Applying similar arguments we obtain the values Γ
(N,E)
tail,2 and Γ

(P,E)
tail,2 given in Table 1.

Eventually, let us derive the bound Γ
(U,U)
tail,2 for U = C,N, P . To this aim, we notice that

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(U,U)
p,l ξp(ν)

∣∣∣∣∣ =
1

ξl(ν)

∣∣∣∣∣∑
p≥K

∂F
(U)
p

∂Ul
(X) ξp(ν)

∣∣∣∣∣ .
Then, a similar analysis that the one done to derive the bound Γ

(C,E)
tail,2 leads to

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(U,U)
p,l ξp(ν)

∣∣∣∣∣ =
1

2ξl(ν)

∣∣∣∣∣−
l+K∑
p=l−K

zU

[
E|p+1−l| − E|p−1−l|

p

]
ξp(ν)

−εU δ `
2

(
ξl−1(ν)

l − 1
− ξl+1(ν)

l + 1

)∣∣∣∣ .
Using l ≥ 2K > K and reordering the terms we deduce

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(U,U)
p,l ξp(ν)

∣∣∣∣∣ ≤ 1

2K

∣∣∣∣∣−
K∑
p=1

zU
(
SE
)
p

(
νp + ν−p

)
+
εU δ `

2

(
ν − ν−1

)∣∣∣∣ .
Thus

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(U,U)
p,l ξp(ν)

∣∣∣∣∣ ≤ 1

2K

∣∣∣∣∣−
K∑
p=1

zU
(
SE
)
p

(
νp + ν−p

)
+
εU δ `

2

(
ν + ν−1

)∣∣∣∣ .
It remains to notice that we can rewrite the previous sum as

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(U,U)
p,l ξp(ν)

∣∣∣∣∣ ≤ 1

2K

∣∣∣∣∣
K∑
p=1

(
S
(
−zUE −

εU δ `

2
e

))
p

(
νp + ν−p

)∣∣∣∣∣ ,
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where e denotes the first element of the Schauder basis of `1, i.e., e = (1, 0, 0, . . .) so that
Se = (0,−1, 0, . . .). Applying the triangular inequality and recalling definition (23) of the
seminorm | · |ν yields

1

ξl(ν)

∣∣∣∣∣∑
p≥K

(DF (X)− A†)(U,U)
p,l ξp(ν)

∣∣∣∣∣ ≤ 1

2K

∣∣∣∣−zUE − εU δ ` e

2

∣∣∣∣
ν

= Γ
(U,U)
tail,2 ,

which concludes the proof of Proposition 4.2. �

4.4.4. The bound Z2.

Proposition 4.3. Let ν > 1, η ∈ (0,∞)10, r∗ > 0 and X ∈ R5K+5 (identified with its
injection in Xν). Consider F , A† and A defined by (29), (40) and (41) and the index set
Ipot given by (30) and define

Z2 = max
j1,j2∈I2pot

∑
i1∈Ipot

ηi1
ηj1 ηj2

∑
i2∈Ipot

∣∣∣∣∣∣A(i1,i2)
∣∣∣∣∣∣

ν
sup

‖X−X‖Xν,η≤r∗
∣∣∣∣∣∣D2

(j1,j2)F
(i2)(X)

∣∣∣∣∣∣
ν
.(54)

Then, ∣∣∣∣∣∣AD2F (X)
∣∣∣∣∣∣
Xν ,η
≤ Z2, ∀

∥∥X −X∥∥Xν,η ≤ r∗.

Proof. We first notice that AD2F (X) is a bilinear operator. Its operator norm, still de-
noted |||AD2F (X)|||Xν ,η is defined by∣∣∣∣∣∣AD2F (X)

∣∣∣∣∣∣
Xν ,η

= sup
||Xm||Xν ,η=1,

m=1,2

∣∣∣∣∣∣AD2F (X)(X1,X2)
∣∣∣∣∣∣
Xν ,η

,

and the following inequality hold∣∣∣∣∣∣AD2F (X)
∣∣∣∣∣∣
Xν ,η
≤ max

j1,j2∈I2pot

1

ηj1 ηj2

∑
i1∈Ipot

∣∣∣∣∣∣∣∣∣[AD2F (X)
](i1,j1,j2)

∣∣∣∣∣∣∣∣∣
ν
ηi1 .

Then we notice that for i1, j1, j2 ∈ Ipot we have[
AD2F (X)

](i1,j1,j2)
=
∑
i2∈Ipot

A(i1,i2)D2
(j1,j2)F

(i2)(X).

Applying the triangle inequality we obtain∣∣∣∣∣∣AD2F (X)
∣∣∣∣∣∣
Xν ,η
≤ max

j1,j2∈I2pot

∑
i1∈Ipot

ηi1
ηj1 ηj2

∑
i2∈Ipot

∣∣∣∣∣∣A(i1,i2)D2
(j1,j2)F

(i2)(X)
∣∣∣∣∣∣

ν
.

Finally, we conclude the proof of Proposition 4.3 using the fact that the ν-norm is an
algebra norm. �

Let us notice that the computation of
∣∣∣∣∣∣A(i1,i2)

∣∣∣∣∣∣
ν

for i1, i2 ∈ Ipot requires to take into

account the tail part of A(i1,i2) for i1 = i2 ∈ {ψ,E, P,N,C} (recall that by construction
the tail part of the other blocks have all entries equal to zero). However, since it has
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a diagonal structure we can explicitly compute the operator norm of these blocks (using

interval arithmetic). For instance, using A
(ψ,ψ)
k,j = δkj for j ≥ K and k ∈ N, we have∣∣∣∣∣∣A(ψ,ψ)

∣∣∣∣∣∣ = sup
j≥0

1

ξj(ν)

∑
k∈N

∣∣∣A(ψ,ψ)
k,j

∣∣∣ ξk(ν)

= max

[
sup

0≤j≤K−1

1

ξj(ν)

K−1∑
k=0

∣∣∣A(ψ,ψ)
k,j

∣∣∣ ξk(ν), sup
j≥K

1

ξj(ν)

∑
k∈N

∣∣∣A(ψ,ψ)
k,j

∣∣∣ ξk(ν)

]

= max

[
sup

0≤j≤K−1

1

ξj(ν)

K−1∑
k=0

∣∣∣A(ψ,ψ)
k,j

∣∣∣ ξk(ν), 1

]
.

5. Implementation, results and comments

5.1. Implementation details. The starting point of our theorem is an approximate so-
lution X to the stationary DPCM model. As mentioned previously, we obtain such an
approximate solution by applying Newton’s method to the finite dimensional projection
F [K] of F .

Of course, the initialization of Newton’s method has to be done carefully. In order to
get a suitable initial condition, we use a code from [14] which computes a solution of a
simplified version of the stationary DPCM model, where the coupling between the electric
potential and the charge carriers is removed in the Poisson equation, i.e. with 0 in the
r.h.s. of (13a). Starting from such an approximation, we use numerical continuation to
gradually put the coupling back, until we get an approximate solution of (12)-(14). This
is not the only option, and one could for instance integrate the time-dependent model for
long enough, until we are close to the pseudo-stationary state, since it seems to be globally
attracting.

One of the difficulty in the numerical study of this model, which is exacerbated when one
tries to get rigorous results based on numerical simulations, is the presence of vastly dif-
ferent scales, which leads in particular to parameters having different orders of magnitude.
In practice, this means DF [K](X) is rather ill-conditioned. These characteristics of the
model have two main consequences for us. First, it makes it hard to obtain a very accurate
approximate solution of F = 0 using Newton’s method, and thus to get a small enough Y
bound for Theorem 4.1. Second, the norm of A[K] (and thus of A) becomes rather large,
which has a negative impact on all the bounds needed in Theorem 4.1. In practice, this
leads to (39) not being satisfied and therefore we cannot rigorously validate the numerical
solution X. In order to soften this issue, we manually preconditioned F by factoring out

the worst constants. That is, instead of working directly with F as in (29), we divide F
(C)
0

by k0
C , F

(P )
0 by k0

P , and F (JP ) by k1
P , where k0

C , k0
P and k1

P are rather large parameters
appearing in the boundary conditions (see Appendix A for more details). Obviously this
modified F has the same zeros as the original one, but this new version allows us (together
with well chosen weights, see the discussion below) to rigorously validate the solutions,
whereas the initial one did not.
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The only thing that remains to be discussed before we present the results of the computer-
assisted proofs is the important choice of the weights in the norm || · ||Xν ,η we use on the
space Xν . Actually, the crucial part for this problem is the careful choice of η ∈ (0,∞)10,
while ν can be chosen a bit more carelessly. Indeed, ν must be strictly larger than 1
because we need terms like (52) to be small, and not too large because we do not want the
various ‖ · ‖ν norms appearing in the bounds to explode (this is related to the domain of
analyticity of the functions Ψ, P , N and C), but we did not have to carefully select it in
order for the proof to succeed: for all the results presented below ν = 1.1 is good enough.
On the other hand, a naive choice for η like η = (1, 1, . . . , 1) never leads to a successful
proof, because Z1 ends up being way larger than 1 (remember (39)), so a deliberate choice
of η is needed. This is again linked to the fact that the different components of F still
have rather different orders of magnitude, even if the worst of it was taken care of by our
preconditioning. The key point to notice is that most of the computations required for the
proof, and in particular the most expensive ones like inverting DF [K](X) to get A[K] or

computing Γ
(i,j)
finite (see Proposition 4.2), are independent of η. Therefore, considering Y , Z0,

Z1 and Z2 as function of η, where the dependency in η is explicit (see (45), (53) or (54))
it is cheap to numerically optimize for η according to our needs. A possible optimization
criteria, which has been successfully used in the past [10] and amounts to the computation
of a Perron-Frobenius eigenvector, is to take η such that Z1 is minimal. However, for our
current problem such a choice often leads to Z2 being too large, and thus to the second
condition in (39) no longer being satisfied. Therefore, we instead try to optimize for η such
that the two roots of P (see (37)) are the furthest apart, under the constraints that the
discriminant of P is positive and that Z0 + Z1 < 1. The optimization is done using an
algorithm from Matlab’s optimization toolbox. We emphasize that we do not actually care
whether the η we obtain is close to a global minimizer or not, as long as it is good enough
for the conditions (39) to be satisfied. A slightly different approach to optimize the choice
of the norm is discussed in [9].

5.2. Results. The set of parameters we use as test case is given in Appendix A. For
three different values of pH, namely 7, 8.5 and 10, we numerically compute approximate
solutions of (12)-(14) for 50 different values of the applied potential Va regularly spaced
between Va = 0 Volts and Va = 0.7 Volts. All these solutions are then rigorously validated
using the procedure described in the paper, that is by evaluating the estimates derived in
Section 4.4, and checking that the assumptions of Theorem 4.1 are satisfied. In Figure 2,
we show the validated values of the width ` of the oxide layer, the velocity δ at which
both interfaces move, and the total current Jtot (recall definition (11)), all scaled back to
physical units. While we can (and did) compute and validate solutions up to Va = 0 Volts
also when the pH is equal to 7 or 8.5, but the physical meaning of the obtained solutions
is unclear, since the width of the oxide layer becomes smaller than 1 nanometer, and this
is why the curves are truncated in these cases.

In Figures 3 and 4, we show some of the corresponding densities ψ, C, N and P (see
also Figure 1). Notice that, while the qualitative behavior of the profiles does not change
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Figure 2. We display here the evolution of the width ` of the oxide layer,
of the corrosion speed δ and of the total current Jtot (all rescaled back to
physical units) in terms of the potential Va (expressed in Volts and evaluated
relatively to the electrode reference NHE), for several values of pH.

much with Va, the interfaces get sharper when Va increases. We point out that our results
match those obtained via the code CALIPSO [3].

The Matlab code used for this paper, including the implementation of all the bounds
needed for the validation, can be found at [12].

Remark 5.1. While the setup presented in this paper only allows for the validation of
solutions for a given set of parameters, we mention that a slight generalization of these
techniques could be used to rigorously validate curves of solutions, when for instance all
but one parameter is fixed (say all but Va), and Va is varying, see e.g. [7, 11, 16, 26, 8, 1].
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Figure 3. A pseudo-stationary steady state for pH = 7 and Va = 0.3 Volts
(top) and Va = 0.7 Volts (bottom).

could compare our results to. M. Breden and C. Chainais-Hillairet have been supported
by the program NEEDS, via the project POCO.

Appendix A. About the test case: scaling, definition of the boundary
conditions and values of the parameters

A.1. Scaling leading to the Poisson equation (2). The DPCM system in physical
variables has been introduced in [4]. The original densities of electrons, Fe3+ cations and
oxygen vacancies can be denoted Ce, CFe and Cox. The associate current densities will be
denoted by Je, JFe and Jox. The last unknowns are the electric potential Φ and the position
of the interfaces X0(t) and X1(t).

Table 2 gives the universal constants involved in the model, while Table 3 gives param-

eters describing the oxide. Let us note that ∆Φpzc
0 depends on the pH and on γ =

F

RT
.
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Figure 4. A pseudo-stationary steady state for pH = 10 and Va = 0.3
Volts (top) and Va = 0.7 Volts (bottom).

R (J ·K ·mol) F (C ·mol−1) kB (J ·K−1) χ0 (F ·m−2)

8.314 9.6485 · 104 1.38 · 10−23 8.854 · 10−12

Table 2. Universal constants.

T (K) Ωox (m3 ·mol−1) χ Γ0,Γ1 (F ·m−2) ∆Φpzc
0 (V ) ∆Φpzc

1 (V )

298 4.474 · 10−5 10 0.5, 1.0 0.190302 -ln(10)
pH

γ
-0.105302

Table 3. Parameters of the oxide.

The factor γ =
F

RT
(in V −1) is used for the scaling of the potentials Φ, ∆Φpzc

0 , ∆Φpzc
1

and Va, leading to the scaled quantities ψ, ∆ψpzc0 , ∆ψpzc1 and V . The scale factor for the
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different densities is Ωox and the reference length is set to L0 = 1 nm. It is the scale
factor for x, X0, X1. This scaling leads to the Poisson equation (2) with the dimensionless
parameters given in Table 4.

λ2 ρhl α0 α1

χχ0RTΩox

F 2L2
0

-5
χχ0

Γ0L0

χχ0

Γ1L0

Table 4. Dimensionless parameters involved in the Poisson equation.

A.2. Scaling leading to the drift-diffusion equations (1). We give in Table 5 the
diffusion coefficients of the different species in the oxide. As the current densities in the
original variables have the generic form

Js = −Ds(∂xCs − zsγCs∂xΦ) for s = e,Fe, ox,

the scaling on the densities and the potential implies that

JC =
L0Ωox

DC

Jox, JN =
L0Ωox

DN

Je, JP =
L0Ωox

DP

JFe.

For the time, we use the scaling relative to the characteristic time of the cations. It means

Oxygen vacancies: DC Electrons: DN Cations: DP

10−20 10−6 10−23

Table 5. Diffusion coefficients of the species in the oxide, in m2 · s−1.

that the scale factor for the time is L2
0/DP . This yields finally the convection-diffusion

equations (1a) for the scaled densities U = C,N, P .
Let us now focus on the boundary conditions for the densities equations in order to

define the boundary functions (r0
U , r

1
U) for U = C,P,N involved in (8). These boundary

conditions are prescribed by the kinetics of the electrochemical reactions at the interfaces.
At the interface oxide/solution, x = X0, the electrochemical reactions are the ferric release
for the cations, the ferrous release and the proton reduction for the electrons and the
oxygen exchange for the oxygen vacancies. At the interface oxide/metal, x = X1, they are
the iron oxydation for the cations, the electron exchange for the electrons and oxide host
lattice growth for the oxygen vacancies. These boundary conditions can be written under
the generic form, for s = e,Fe, ox,

− Js(X0) + Cs(X0)X ′0 = β0
s (γΦ(X0))Cs(X0)− γ0

s (γΦ(X0)),

Js(X1) + Cs(X1)X ′1 = β1
s (γ(Va − Φ(X1)))Cs(X1)− γ1

s (γ(Va − Φ(X1))).
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For the oxygen vacancies, we have:

β0
ox(x) = (m0

ox10−nox pHe−2b0Cx + k0
oxe

2a0Cx)
Ωox

4
, γ0

ox(x) = m0
ox10−nox pHe−2b0Cx,

β1
ox(x) = (m1

oxe
−3b1Cx + k1

oxe
3a1Cx)

Ωox

4
, γ1

ox(x) = 4k1
oxe

3b1Cx.

The kinetics of the interface reactions for the cations are given by Butler-Volmer laws,
which lead to:

β0
Fe(x) = (m0

FeaFe3+e
−3b0P x + k0

Fee
3a0P γx), γ0

Fe(x) = m0
FeaFe3+e

−3b0P xCm
Fe,

β1
Fe(x) = (m1

Fee
−3b1P x + k1

Fee
3a1P x), γ1

Fe(x) = k1
Fee

3a1P xCm
Fe.

Let us mention here that aFe3+ is the activity of the ferric cations and Cm
Fe is the maximum

occupancy for octahedral iron in cations in the oxide layer.
For the electrons, the kinetics of the interface reactions yields:

β0
e (x) = k0

e10−ne pHe−a
0
Nx + k0

raFe3+e
−b0rx,

γ0
e (x) = m0

e10−ne pHe−γEredoxeb
0
Nx +m0

raFe2+e
a0rx,

β1
e (x) = m1

e,

γ1
e (x) = k1

e(kBTnDOS) log(1 + e−x),

with aFe2+ the activity of the ferrous cations, Eredox the redox potential in the solution,
nDOS the density of state of electrons in the metal.

Applying the scaling, we obtain that the functions β0
U , β1

U , γ0
U and γ1

U are defined by

β0
C(x) =

1

4

(
m0
Ce
−2b0Cx + k0

Ce
2a0Cx

)
, β1

C(y) =
1

4

(
m1
Ce
−3b1Cy + k1

Ce
3a1Cy

)
,

γ0
C(x) = m0

Ce
−2b0Cx, γ1

C(y) = k1
Ce

3a1Cy,

β0
N(x) = k0

Ne
−a0Nx + p0

Ne
−b0rx, β1

N(y) = m1
N ,

γ0
N(x) = m0

Ne
b0Nx + n0

Ne
a0rx, γ1

N(y) = k1
NNmetal log(1 + e−y),

β0
P (x) = m0

P e
−3b0P x + k0

P e
3a0P x, β1

P (y) = m1
P e
−3b1P y + k1

P e
3a1P y,

γ0
P (x) = m0

PP
me−3b0P x, γ1

P (y) = k1
PP

me3a1P y,

with the scaled kinetics coefficients defined in Table 6.

A.3. Scaling of the moving boundary equations. Let us now finish with the param-
eters involved in the moving boundary equations (10). The Pilling-Bedworth ratio Π and
the parameter κ depend on the molar volume of the metal ΩFe. The dissolution kinet-
ics contant k0

d involved in the dissolution speed v0
d is obtained after the scaling of the

corresponding physical value k̄0
d10−nd pH . These parameters are presented in Table 7.
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m0
C k0

C m1
C k1

C

L0Ωox

DC

m0
ox10−nox pH

L0Ωox

DC

k0
ox 4

L0Ωox

DC

m1
ox 4

L0Ωox

DC

k1
ox

m0
N k0

N p0
N n0

N

L0Ωox

DN

m0
e10−ne pHe−γEredox

L0

DN

k0
e10−ne pH

L0

DN

k0
raFe3+

L0Ωox

DN

m0
raFe2+

m1
N k1

N Nmetal Pm

L0

DN

m1
e

L0

DN

k1
e ΩoxkBTnDOS ΩoxC

m
Fe

m0
P k0

P m1
P k1

P

L0

DP

m0
FeaFe3+

L0

DP

k0
Fe

L0

DP

m1
Fe

L0

DP

k1
Fe

Table 6. Scaling of the kinetics coefficients.

Π κ k0
d

Ωox

ΩFe

ΩFe

4Ωox

ΩoxL0

DP

k̄0
d10−nd pH

Table 7. Parameters involved in the moving boundary equations.

A.4. Definition of the test case. All the numerical simulations have been done with the
set of parameters already presented in Tables 2, 3, 5 and the last ones given now in Table 8.
These parameters values are the ones currently used in the code CALIPSO [3]. The only
parameters that we let vary for the moment are the pH (which influences the parameters
∆ψpzc0 , k0

d, m
0
N , m0

C and k0
N appearing in the model) and the potential Va (which influences

the non-dimensional potential V appearing in the model).
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m0
ox (mol ·m2 · s−1) k0

ox (mol ·m2 · s−1) m1
ox (mol ·m2 · s−1) k1

ox (mol ·m2 · s−1)

2.71838 · 101 10−2 2.73855 · 10−8 6 · 10−6

m0
e (mol ·m2 · s−1) k0

e (m · s−1) k0
r (m · s−1) m0

r (mol ·m2 · s−1)

0 1.3 · 10−5 2.54255 · 106 10−4

m1
e (m · s−1) k1

e (m · s−1) nDOS (mol · J ·m−3) Cm
Fe (mol ·m−3)

2.6804 · 104 2.6804 · 104 0.135 · 1025 2.005

Ωox

m0
Fe (m · s−1) k0

Fe (m · s−1) m1
Fe (m · s−1) k1

Fe (m · s−1)

1.32927 10−4 10−9 10−3

(aFe3+ , aFe2+) (a0,1
U , b0,1

U ), (a0
r, b

0
r) k̄0

d (mol ·m2 · s−1), a0
d ΩFe (m3 ·mol−1)

(0,0) (0.5, 0.5) 2.854 · 10−9, 0.257 7.105 · 10−6

Eredox (V ) nox ne nd

−0.3 2 1 0.5

Table 8. Values of the parameters used for the numerical experiments.
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