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Swimming of a rigid phoretic particle in an isotropic fluid is studied numerically as a function of the dimen-
sionless solute emission rate (or Péclet number Pe). The particle sets into motion at a critical Pe. Whereas the
particle trajectory is straight at small enough Pe, it is found that it looses its stability at a critical Pe in favor of
a meandering motion. When Pe is increased further the particle meanders at short scale but its trajectory wraps
into a circle at larger scale. Increasing even further Pe causes the swimmer to escape momentarily the circular
trajectory in favor of chaotic motion lasting for a certain time, before regaining a circular trajectory, and so on.
The chaotic bursts become more and more frequent as Pe increases, until the trajectory becomes fully chaotic,
via intermittency scenario. The statistics of the trajectory is found to be of run and tumble-like nature at short
enough time, and of diffusive nature at long time without any source of noise.

Introduction.— The field of microswimmers covers to-
day an extremely wide panel of systems going from prokary-
otic and eukaryotic microorganisms (such as bacteria, algae,
leukocytes, and so on) to artificial microswimmers [1, 2]. A
prototypical example of the later is Janus-like particle, named
after the two-faced Roman god, their motion originates from
the asymmetry of their surface properties. Other popular de-
signs of artificial swimmers consists of active droplets [3–7],
involving a chemical reaction, or a constant local source/sink
of the solute. In these circumstances a spontaneous symmetry
breaking of the solute distribution field on the surface (or in
the bulk) may emerge in the form of a solute polarity giving
rise to hydrodynamical flow (of Marangoni type) leading to
self-propulsion.

Several studies have been devoted to the elucidation of the
mechanisms of such Marangoni driven propulsion [8, 9]. In
particular, the onset of self propulsion has been described in
terms of a coupling between a chemical reaction that produces
a surface tension gradient at the surface of the droplet and a
mechanism of advection that allows to sustain this gradient
against diffusion. The description of the surface activity of the
droplet involves in general advection-diffusion-reaction con-
tributions for each species involved in the system (for a recent
review, see [10]). Combined theoretical and numerical efforts
have allowed elucidating the basic elements at the origin of
the occurence of spontaneous locomotion [3, 4, 6, 9]. The out-
come is that beyond a critical value of a dimensionless solute
emission compared to diffusion (the Péclet number Pe) the
droplet sets into a spontaneous unidirectional motion. How-
ever, not only straight propulsion but also meandering trajec-
tories have been observed in different experiments [11–14].

So far, the explanation of complex motions, such as cir-
cular and helical trajectories, relies on the complexity of the
swimming particle (e.g. chiral shape) [12] or that of the sus-
pending medium, such as viscoelasticty [14]. These various
rich behaviors raise naturally the question of whether or not
this complexity may already be hidden in purely isotropic me-
dia due to the intrinsic nonlinearities of the problem. This is
the main objective of this Letter. We show that circular tra-

jectories appear in the full model without any restriction on
the model symmetry. Moreover, a transition to chaos via in-
termittency scenario is observed and quantified. The chaotic
behavior can lead to a run and tumble-like dynamics of purely
deterministic origin.

The model.— We consider a two-dimensional circular
shaped particle of radius a immersed in a fluid of dynamic vis-
cosity η . The fluid is assumed to be incompressible and obeys
the Stokes equations. Surrounding solute particles are emitted
or adsorbed on the particle with isotropic emission rate A .
The solute interacts with the particle through a short-range
potential with a characteristic length λ that is much smaller
than a. In the so-called sharp interface limit this amounts to
a slip tangential velocity [6] on the particle surface (see be-
low). The concentration of the solute, denoted by c, diffuse
with diffusivity D and is advected by the fluid flow.

As in [6], the length, fluid velocity, the concentration,
and the pressure are scaled by the characteristic values a,
|A M |/D, a|A |/D, and η |A M |/aD respectively. Here
M = ±kBT λ 2/η is the signed mobility (see [15]) defined
with the Boltzmann constant kB and the temperature T . The
model equations in dimensionless form are described in the
following: In a co-moving frame attached to the particle
center the tangential slip velocity on the particle surface is
given, in a polar coordinate system, by u(1,θ) = M∇sc,
where u(r,θ) is the fluid velocity, ∇s = (∂/∂θ)τ (where τ

is the unit tangent vector) is the surface gradient operator and
M = M /|M | = ±1 is the dimensionless mobility. In the far
field (r→ ∞), the velocity field converges to the translational
phoretic velocity −U. The solute concentration c(r,θ , t) is
governed by the following advection-diffusion equation and
the Stokes equation

∂c
∂ t

+u ·∇c =
1
Pe

∆c, ∆u−∇p = 0, ∇ ·u = 0, (1)

where the Péclet number is defined by Pe = |A M |a/D2.
The associated boundary condition of surface activity reads
∂c
∂ r (1,θ , t) =−A, where A = A /|A |=±1 is the dimension-
less emission rate (A > 0: emission, A < 0: adsorption). One
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should note that, in most previous studies that considered the
three-dimensional cases, the fluid domain is unbounded and
the concentration is assumed to attenuate in the far-field limit
(c→ 0 as r→ ∞). However, such an assumption is not ap-
propriate in 2D. Indeed, it is known that, in 2D the solute
transport equation (1) for Pe = 0 with the far-field attenua-
tion condition does not support steady-state solutions due to
the logarithm divergence [16]. In order to cure this problem,
we assume that the size of the fluid domain is a finite number
R and the attenuation condition is thus replaced by the outer
Dirichlet boundary condition c(R,θ , t) = 0. A preliminary 3D
study recovers the occurence of complex motion, presented
below.

The force-free constraint on the solid particle (using the re-
ciprocal theorem) to relate the phoretic velocity U(t) to the
slip velocity (and thus to concentration from the above slip
condition) [17]:

U(t) =− 1
2π

∫ 2π

0
M∇sc(1,θ , t) dθ . (2)

Since the concentration c is periodic in θ -direction, it can be
expressed by Fourier series as

c(r,θ , t) =
∞

∑
k=−∞

ĉk(r, t)eikθ ,

where ĉk are the Fourier modes. Substituting this representa-
tion into Eq. (2), one finds (in Cartesian components):

U(t) = M [−Re(ĉ1(1, t)), Im(ĉ1(1, t))] , (3)

where Re and Im denote real and imaginary parts, respec-
tively. The velocity field can be expressed as u= ( 1

r
∂ψ

∂θ
,− ∂ψ

∂ r )
(in polar components), where ψ is the stream function and has
the following analytical form [18, 19]

ψ(r,θ , t) =
∞

∑
k=−∞

1− r2

2r|k|
ikMĉk(1, t)eikθ . (4)

where we have used the boundary condition u(1,θ) = M∇sc
to express the series coefficients in terms of c. Thus, the ve-
locity u (as well as are U) is given in terms of c, and when
injected into (1) yields a closed nonlinear equation for c.
Solution (4) is valid for infinite system, but for a finite size
R = 200 the residual errors are of order 0.005 (see [20]). In
the following we will see how the full model, not restricted to
symmetric solutions, leads to the emergence of rich dynamics,
turning into chaos at large Péclet numbers.

Stationary solution and linear stability analysis.— A sta-
tionary solution where there is no net flow and zero phoretic
velocity U(t) ≡ 0 exists at all Péclet numbers with the solute
concentration c0(r) = A ln(R/r). We perform a linear stability
analysis of this solution by introducing an infinitesimal pertur-
bation φ(r,θ , t) = ∑

∞
k=−∞

φ̂k(r, t)eikθ with φ � c0. Neglecting
higher order terms, the following relation for the Fourier mode
φ̂k is obtained:

∂ φ̂k

∂ t
=−AMk2 1− r2

2r|k|+2 φ̂k(1, t)+
1
Pe

(
∂ 2

∂ r2 +
1
r

∂

∂ r
− k2

r2

)
φ̂k.

(5)

Since r > 1, the coefficient of the first term on the right hand
side of the equation is positive/negative when A and M have
the same/opposite sign, respectively. That is, the first term
may be stabilizing or destabilizing, while the second term rep-
resents diffusion that is always stabilizing. Whether or not a
small perturbation of the concentration is able to trigger the
spontaneous symmetry-breaking swimming motion depends
on the competition between these two mechanisms. In the
case when A and M have opposite signs any fluctuation acting
on the stationary solution should die out and hence for any
Péclet number there is only one observable solution that is
stationary. Henceforth, we will concentrate on the nontrivial
case where A and M have the same sign. For definitness we
set A = M = 1.

We first perform the linear stability of the stationary solu-
tion. The eigenvalue problem reads σkφ̂k = Lkφ̂k, where σk is
the eigenvalue (we look for perturbations in the form eσkt ) and
Lk is the linear operator on the right hand side of Eq. (5). The
eigenvalue problem is solved numerically using a Chebyshev-
spectral method. In all simulations, we set the size of the outer
domain R = 200. It is found that, for k = 1, one of the eigen-
values becomes positive at Pe ≈ 0.466 so that the stationary
solution loses its stability at this Pe value. This marks the
transition between a nonmotile to motile particle. The mode
k = 1 corresponds to polarity of the concentration field.

Spontaneous symmetry-breaking autophoretic motion, Pe>
Pe1.— Once the instability threshold is reached (Pe1 ∼
2/ ln(R); see the full expression in [20]) nonlinear terms are
necessary in order to fix the amplitude of the swimming speed.
This task is handled numerically. We employ the second-order
Runge-Kutta time-marching scheme while spatial derivatives
in r-direction are performed either by second-order finite dif-
ference method or Chebyshev spectral differentiation, deriva-
tives in θ -direction are achieved through Fourier spectral dif-
ferentiation. In the present time-stepping method, the nonlin-
ear advection term is treated in an explicit manner while the
diffusion term is solved implicitly (see [21] for more detail
about the fast solver of the present scheme).

A symmetry-breaking solution occurs when Pe ≥ Pe1 '
0.466. We find that in the range 0.466.Pe. 4.65 the particle
swims in a given direction (fixed by initial conditions) with
constant velocity. The concentration distribution at Pe = 3,
exhibiting a comet-like pattern. In this case, there exists a
nonzero concentration gradient on the particle surface and the
particle propels itself in a straight direction with the constant
phoretic velocity ‖U‖ ≈ 0.148.

Figure 1 shows the phoretic velocity as a function of the
Péclet number. The particle sets into a directed motion in the
form of a supecritical bifurcation. Note that a non-monotonic
variation of the phoretic velocity is observed in the range
0.466 . Pe . 4.65 and the particle attains the highest swim-
ming speed at the optimal value of Pe ≈ 2.1. This result
is in qualitative agreement with that found in [6] for three-
dimensional axisymmetric phoretic particles.

Meandering motion, Pe > Pe2.— The directed swimming
solution looses its stability (a secondary instability) at Pe2 ≈
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FIG. 1. The bifurcation diagram of the phoretic velocity ‖U‖ as a
function of Pe. The empty circle indicates the bifurcation point Pe1 =
0.466 and the filled-square indicates the bifurcation point Pe2 = 4.65.
The dashed line corresponds to a steady-state but unstable straight
motion and the red line to non straight motions (see below).

FIG. 2. Snapshots of the bead and distribution of the solute con-
centration for Pe = 6 undergoing meandering motion, white arrow
showing the direction of the motion. The color coding shows the
magnitude of the concentration and the arrow indicates the swim-
ming direction.

4.65 in favor of a meandering motion: the particle follows
a meandering path as shown in Fig. 3 (a). In this regime
the swimming velocity is no longer a constant but periodi-
cally oscillates in time. As an example, we show in Fig. 2
the time-periodic concentration distribution at Pe = 6. These
solutions are shown as the red solid line in Fig. 1. For
such time-periodic solution the swimming speed is defined by
‖U‖= T−1 ∫ T

0 ‖U(t)‖dt, which is measured over one time pe-
riod, T . This transverse instability is the first initial stage for a
more complex dynamics, as discussed below. The meandering
period scales as aD/(AM), which is a compromise between
diffusion, flow mobility along the surface and the emission
rate. An interesting feature has emerged: the meandering
swimmer exhibits a higher velocity than the directed one. Al-
though the directed motion is unstable, we can still follow this
branch by solving the steady-state problem (a steady directed
motion always exist, though it becomes unstable) by impos-
ing to the particle to set at the same rectilinear direction. By
this manner, we could determine its velocity. The dashed line
shown in Fig. 1 indicates the unstable equilibrium solution
corresponding to a directional movement. The meandering

solution swims faster than the directed one, presumably due
to subtle nonlinear effects.For Pe ' Pe2 the period of mean-
dering diverges as (Pe−Pe2)

1/2, which is symptomatic of a
supercritical bifurcation (see [20]) .
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FIG. 3. Different trajectories: meander, circular motion with short
scale meander, intermittency and chaos.

Circular motion, Pe > Pe3.— By increasing the Péclet
number above Pe3 ' 12.5145 we find that the above meander-
ing solution becomes unstable in a somewhat remarkable way
(in fact, a period doubling bifurcation occurs at Pe3). Figure 2
shows the bead with an asymmetric concentration field lead-
ing to trajectory deviation. As seen in Fig. 3(b) for the case of
Pe = 12.86291, although the local movement is again zigzag-
like (or meander) at short scale, the velocity direction continu-
ously varies with time, and the global dynamics of swimming
pattern converges to a circle for the long time behavior (radius
is insensitive to system size [20]). The particle short scale
meandering is maintained, whereas a longer scale dynamics
drives the particle trajectory to wrap around a circular trajec-
tory. Note that here the studied system is fully isotropic in a
marked contrast with the observed complex trajectories (like
meander, circles, and so on) for chiral particles [12]. Here,
the present complex motion emerges from the inherent non-
linear advection-diffusion coupling. This coupling leads to an
axial symmetry-breaking bifurcation of the comet (Fig. 1), so
that in the bead frame the comet drift sideways along the bead
surface leading to a circular trajectory. The radius of the cir-
cle diverges at Pe3 (and so does the period of revolution) like
(Pe−Pe3)

−α , with α ' 0.2, acting as a macroscopic length
scale (a coherence-like length) much larger than the swimmer
size. Further development would be needed in order to explain
the numerical exponent (α ∼ 0.2; see Fig. S1 in [20]).

Chaotic swimming motion, Pe > Pe4' 12.86293.— In-
creasing the Péclet number even further reveals another insta-
bility: the particle quits the circular trajectory and enters into
an apparently chaotic regime, where it exhibits few runs and
tumbles during some time, before it regains a circular trajec-
tory (Fig. 3(c)). This type of chaotic bursts appears in a non-
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regular manner, as also shown in Fig. 4 which represents the
swimming speed of the particle close to the transition towards
chaos. This nonregularity is due to the subcritical nature of the
bifurcation towards chaos. Indeed, during a certain time the
motion is regular, and the degree of natural intrinsic fluctua-
tions can cause the system to jump from the regular solution to
the apparently chaotic one. As the Péclet number is increased
further and further the chaotic bursts become more and more
frequent, until a critical value Pe4 ' 13 where the whole tra-
jectory becomes erratic in time. In Fig. 1 we shows the mag-
nitude of the averaged velocity as a function of Pe. This is
symptomatic of the intermittency scenario [22]. Its particular-
ity is that the limit cycle (in our case the meandering-circular
regular solution) looses its stability at a given critical value of
Pe in a subcritical fashion (the analogue of a first order transi-
tion for systems at equilibrium). That is, the regular solution
may coexist with new solutions and the particle can jump back
and forth from one solution to the other, when higher modes
(k > 1) approaches the instability conditions. This manifests
itself in temporary chaotic bursts until coexisting solutions
(the analogue of metastability in equilibrium systems) is fully
lost and the regime becomes fully chaotic.

In the chaotic regime, the particle exhibits an apparently
random motion (of purely deterministic origin), see Fig. 3(d).
To quantify this specific random walk, we measure the mean
square displacement

MSD(τ) =< ‖r(t + τ)− r(t)‖2 >,

where r(t) is the location of the particle at time t and < ·> de-
notes the average along the entire trajectory. Figure 5 reports
the mean square displacement (msd) corresponding to the tra-
jectory at Pe = 13. At short times the particle produces a per-
sistent swimming motion and msd is then quadratic in time.
At longer times, a de-correlation process due to chaotic turns
takes place with msd proportional to t, typical of a classical
random walk. Actually, it is not obvious that a chaotic mo-
tion is equivalent (at long time) to normal diffusion. There are
several chaotic maps yielding anomalous diffusion [23]. This
is attributed to the topology of the Poincaré map, in which
the trajectory may spend long time periods in some regions of
phase space. Despite that chaos via intermittency favors long
period stay in specific regions of phase space [22], a diffusion-
like behavior still persists here.

Discussion.— We have identified the emergence of com-
plex dynamics going from straight swimming to chaotic tra-
jectories for a rigid particle in a purely isotropic fluid medium.
Chaos is also found in our preliminary 3D study[20]). This
highlights the fact that the complexity can arise from a min-
imal version. The chaotic regime can be quantified as run-
and-tumble-like events. The first unstable mode is k = 1, that
provides directed swimming. As Pe increases higher harmon-
ics becomes unstable, first k = 2 and k = 3, and so on. The
activity of these three modes is sufficient to generate chaos.
Interestingly, Pek(k > 1) are independent of system size R.

The time over which the diffusion-like behavior is reached
(as well as the duration of the circulation trajectory) are much
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FIG. 4. The swimming speed ‖U(t)‖ from regular meander to chaos.
Chaotic bursts are more and more frequent as Pe increases.

10
-1

10
1

10
3

10
5

10
-5

10
0

10
5

FIG. 5. Mean square displacement of a particle in the chaotic regime
at Pe = 13.

larger than the typical time for the growth of the linear modes
∼ 1/σ1. This feature may be attributed to the very nature
of chaos via intermittency. Indeed, in this regime it is known
that trajectory in phase space alternates intermittently between
slow regular motion close to the marginally stable fixed point
(the regular solution), and chaotic bursts. As a consequence,
the correlation decay may exhibit long range behavior. From
physical point of view, the longtime behavior may be related
to the persistence of circular orbits (albeit transients) having a
radius much larger than the particle radius

Non trivial motions have been observed so far with complex
shapes or in complex media [12, 14]. The main message of
this Letter is the demonstration that a complex motion is pos-
sible in an isotopic, nonviscoelastic phoretic system. Experi-
ments on non colloidal systems (autophoretic drops)[7] have
provided some evidence of complex trajectories without dig-
ing further into their properties. The present results may serve
as a guide for future systematic analyses.
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