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Abstract—The decrease of the performance gain dictated by
Moore’s Law boosted the development of manycore architectures
to replace single-core architectures. These new architectures must
employ parallel applications and distribute its workload over a
multitude of cores to reach the desired performance. Parallel
applications are harder to develop than sequential ones since the
developer must guarantee data integrity using synchronization
primitives. While multiple novel solutions have been proposed
to speed up parallel applications through handling one type of
data synchronization primitive, exceptionally few works support
multiple types of synchronization primitives and legacy code.
This work proposes Subutai, a hardware/software co-design
solution for accelerating multiple synchronization primitives
without modifying the application source code. By providing
a new user library, while retaining an existing synchronization
API, legacy and novel applications can benefit from our solution.
Our experimental evaluation, which provides a POSIX Threads
implementation, demonstrates Subutai speeds up to 2.71× and
4.61× the execution of single- and multiple-application execu-
tions, respectively.

Index Terms—Legacy Parallel Applications, PThreads,
Network-on-Chip, Distributed Scheduler

I. INTRODUCTION

Since the end of the last century, a significant shift has
occurred in the industry, transitioning the processor chips from
a single- to a multicore design using a dozen cores. This
paradigm has evolved to incorporate hundreds and soon thou-
sands of simple cores, performing a manycore architecture, to
continue to deliver higher performance.

Unfortunately, only increasing the number of cores does not
imply increasing the performance, as the applications must be
parallel-compatible to exploit the hardware parallelism. Where
once a single sequential thread could do the execution, now the
developer has to partition the workload into multiple execution

threads and synchronize their execution [1], dealing with dead-
lock, livelock, race condition, and non-deterministic events [2].
Decisions regarding both partitioning and synchronization of
the workload are crucial to determine the achievable perfor-
mance of the application on manycore systems since even
small sequential portions of execution can have a significant
performance impact, as observed in Amdahl’s law. Because
of this impact, parallelization is primarily done manually,
allowing fine-grained performance optimizations.

Synchronization, namely the access and update of the appli-
cation data, is a vital concern in any parallel application. The
typical limitation to novel synchronization solutions is that de-
velopers have to refactor the source code. The redesign applies
even to already parallel-compatible code, as the Application
Programming Interface (API) of different solutions are not the
same. The refactoring of source code due to API changes has
substantial limitations; we highlight these three: (i) software
redevelopment cost, (ii) challenge of parallel code refactoring,
and (iii) lost legacy source code.

Software development cost already dominates new System-
on-Chip (SoC) designs, as the manycore architecture and its
counterpart, the parallel applications, are common elements
of such designs [3]. Besides, the Read-Copy-Update (RCU)
synchronization primitive used by the Linux kernel, for in-
stance, influences over 16 million Lines of Code (LoC) across
15 kernel subsystems [4]; thus, even experienced developers
do not easily achieve a refactoring of it.

Source code modification is always an error-prone task.
McConnell estimates that up to 100 bugs can be present per
thousand LoC [5]. Refactoring parallel code is even more
susceptible than sequential code because often the developers
are befuddled with the use of synchronization techniques. For
instance, while RCU shows impressive results, it demands a
thorough understanding of computer architecture design, pre-
senting the tradeoff of rising performance gains but increasing
code and maintainability complexity [2].

Finally, the essential requirement for refactoring a legacy
application is the source code availability. However, often the
legacy source code is lost, leaving only the binary code. Hence,
the developers need to rewrite the entire code, increasing
the software development cost. Moreover, given the amount
of legacy software, a complete rewrite of the entire code is
unlikely to happen [6].

Therefore, we propose a novel synchronization solution
that accelerates parallel applications without modifying the
application source code. Our solution speeds up even appli-
cations that do not or cannot share their codes; in this case, as
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Fig. 1. Subutai components are highlighted in red (1, 2, 3) in the computing
stack. Subutai only requires changes in the (1) PThreads implementation, (2)
OS NI driver, and (3) on-chip NI. Additionally, (4) a new scheduling policy
(in blue) is explored in this work as an optional optimization.

long as the binary is dynamically linked. Otherwise, static or
dynamic linked binaries are supported. Our hardware/software
solution, called Subutai, tackles the synchronization problem
within a low-level Network-on-Chip (NoC) Interface (NI).

Software-wise (Subutai-SW), we implemented the POSIX
Threads (PThreads) according to the IEEE Std 1003.1 stan-
dard [7]1. Thus, any application employing the PThreads API
(i.e., pthread.h) is compatible with Subutai. The PThreads
compatibility restricts a multitude of optimizations since we
cannot inject the source code with extra synchronization
metadata or change the application communication model. In
addition to interfacing with the application, our software must
work with new functionalities on the hardware-side; hence, we
provide an Operating System (OS) driver responsible for the
latter activity.

Hardware-wise (Subutai-HW), we extended an existing on-
chip NI to support, in a distributed way, the following synchro-
nization primitives: mutex, barrier, and condition. NI handles
new types of packets and requires access to a small (less
or equal to 1KiB) memory to record synchronization events
and metadata. Fig. 1 depicts the Subutai solution with a
general-purpose computing stack, highlighting the components
required for its operation.

We demonstrate that our solution speeds up single parallel
applications ranging from 1.05× up to 2.71× for 64-thread
executions. Moreover, in a competitive scheduling scenario,
Subutai speeds up multiple parallel applications ranging from
1.58× up to 4.61×. For these results, the hardware require-
ment for Subutai increases the area of the NI in, approximately,
46%; however, the overhead is insignificant compared to the

1Includes mutex, barrier, and conditions. Besides, we provide the
PThreads software implementation for supporting the options provided by
the attribute parameter.

total chip area (less than 1% for a 400mm2 chip). The key
contributions of this paper are listed next:

1) This work proposes a novel synchronization technique
that avoids modifying parallel applications while acceler-
ating their execution. The work supports both legacy and
novel applications designed using the PThreads API.

2) We designed all the components of Subutai and provided
a detailed analysis of its performance in accelerating stan-
dard synchronization primitives. Moreover, we evaluate it
with state-of-the-art related work.

3) We conducted experiments using parallel applications
provided by PARSEC, a well-known benchmark for this
domain. The experiments were analyzed for both single-
and multiple parallel executions. Besides, we evaluated
scheduling policies for executing parallel applications.
Such experiments are essential to evaluate the perfor-
mance of Subutai on several execution scenarios.

This paper extends a conference version [8] by (i) evaluating
Subutai with state-of-the-art related work, (ii) providing new
estimations of the Subutai-HW design including memory,
(iii) presenting details of the Subutai-SW implementation
(userspace library and OS driver), (iv) evaluating an addi-
tional application (x264), (v) evaluating a scheduler policy
proposal, (vi) evaluating concurrent application execution, and
(vii) presenting the synchronization model of the analyzed
applications.

II. RELATED WORK

A program can be comprised of many computational units
like threads, processes, coroutines, and interrupt handlers. We
employ the term thread as a generic word to encompass these
computational units. We organize the related work in software-
oriented and hardware-oriented/mixed solutions. Table I sum-
marizes the essential characteristics of these solutions and
compares our work to the state-of-the-art.

A. Software-oriented Solutions

PThreads, Open MultiProcessing (OpenMP), and Intel
Threading Blocks Building (TBB) are established solutions
that use software to synchronize parallel applications. These
solutions provide analogous implementations of a similar set
of synchronization primitives, but with different abstraction
levels. In contrast, PThreads provides a low-level interface
for developers, OpenMP and TBB offer abstract programming
models (fork-join and task-based models, respectively) [20].

DeLozier et al. [1] propose SOFRITAS, a software-only
robust memory consistency model that can detect and prevent
atomic violations on parallel applications at the cost of execu-
tion overhead (roughly 59%). Unfortunately, the applications
must be annotated with a novel API when using library calls.

Boehm [10] and France-Pillois et al. [11] provide optimiza-
tions on the implementations of the PThreads and OpenMP
libraries, respectively. The first work suggests relaxing the
reordering rules for load and store operations, while the last
work identifies an expansive function that was uselessly being
called during the barrier waking process.
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TABLE I
RELATED WORK SUMMARY.

Solution Orientation Requirements Legacy code
compatible* Uses PThreads Target data

synchronization Experimental results

PThreads Software Latency No Yes Barr., cond., mutex Real applications
OpenMP Software Latency, app. model No Yes (libgomp) Atomic, barr., mutex Real applications

TBB Software Latency, app. model No Yes (Linux) Atomic, cond., mutex Real applications
RCU [9] Software Latency No May use Mutex Linux kernel

Boehm [10] Software Latency Maybe Yes Mutex Synthetic
F.-P. et al. [11] Software Latency Yes Indirectlyb Barrier IS and synthetic
SOFRITAS [1] Software Code correctness Limited Yes Barr., cond., mutex PARSEC, . . .

Sivaram et al. [12] Mixed Fault-tolerance Noa No Barrier Synthetic
Abellán et al. [13] Mixed Latency and area Noa Indirectlyb Barrier Synthetic

Stoif et al. [14] Mixed Latency Noa No Barrier, mutex FPGA, synthetic
MCAS [15] Mixed Latency and area No No Atomic Synthetic

CASPAR [16] Hardware Latency Yes No Atomic FFT, IS, . . .
HTM [17] [18] Mixed Latency Maybe May use Mutex, spin lock Indirectlyc

Not. Mem. [19] Hardware Latency, app. model Yes May use Spin lock MPEG-4 decoder
Subutai Mixed Latency and area Yes Yes Barr., cond., mutex PARSEC

Barr. = Barrier; cond. = Condition; app. = Application; Not. = Notifying; Mem. = Memories; F.-P. = France-Pillois;
* This term is defined in Section II-C; a Not addressed in the work;
b The work employs OpenMP, and it employs PThreads internally; c HTM can be used on the PThreads implementation.

Attiya et al. [21] formally proved that deterministic struc-
tures, as employed by the previously discussed libraries, can-
not eliminate the use of expensive synchronization. Therefore,
non-deterministic solutions focusing on relaxing the con-
straints that force the use of such expansive synchronization
have been proposed to tackle this problem. Kirsch et al. [22]
propose k-FIFO, which is a lock-free queue that removes up
to k − 1 out-of-order elements from the queue. Desnoyers
et al. [9] describe a synchronization technique based on the
publish-subscribe mechanism called RCU. Parallel applica-
tions that rely on RCU have to deal with stale data. The
bottleneck of these solutions is that the application code
adaptation is passed on to the developer.

B. Hardware-oriented/Mixed Solutions

Sivaram et al. [12] propose a fault-tolerant hardware-based
barrier synchronization. Their design uses a tree structure to
sum intermediate values, decreasing the number of packets
injected into the network. Their work is complementary to our
solution. Abellán et al. [13] explore three HW barrier architec-
tures and integrate them on the OpenMP programming model.
Unfortunately, they evaluated only synthetic applications. Stoif
et al. [14] implement an arbiter on FPGA that guarantees
mutual exclusion to a portion of the shared memory area
and an HW-based synchronization barrier that speeds up the
application execution; however, their work does not implement
full barriers and conditions, and it is limited to simple test
cases instead of real applications.

CASPAR [16] improves the performance of CAS oper-
ations by breaking the serialization of multiple CAS calls
and executing them in parallel. Patel et al. [15] propose a
special HW instruction, called MCAS, to change multiple
memory positions atomically, optimizing the synchronization

process. Hardware Transactional Memory (HTM)2 provides
an abstraction for executing blocks of code atomically. HTM
guarantees correctness by aborting transactions that conflict
with others [17].

Finally, Martin et al. [19] propose the Notifying Memories
concept to reduce communication latencies introduced in the
NoC by pruning useless memory accesses. This concept uses
spinlocks and is applied to dataflow applications only. Our
work is also based on extending the NI architecture, but
targeting shared-memory systems.

C. Comparison with the state-of-the-art work

A direct comparison of works in the data synchronization
field is unfeasible as they do not employ a common test
scenario that standardizes the experimental evaluation. Espe-
cially hardware and mixed solutions employ a varied set of
target applications. Table I shows that there is no intersection
of applications in the experimental results. Consequently, we
limit the comparison of experimental results to published
results on Section VIII; here, we discuss the support for data
synchronization primitives and legacy code.

Three solutions are generic API specifications (PThreads,
OpenMP, TBB) for cross-platform use. All other works are
optimizations on existing APIs, except for RCU, as it creates
a read-write lock capable of reading and writing at the same
time. Boehm optimizes memory barriers for lock and unlock
PThreads procedures. The approaches proposed by France-
Pillois et al. and Abellán et al. share the same idea of
optimizing the use of barriers in OpenMP applications. The
former achieves this through a software-only approach, while
the latter uses a mixed solution. MCAS and CASPAR optimize
the use of CAS procedures on lock-free applications. The
Notifying Memories solution targets a specific programming

2HTM can be simulated in software, yet the overhead imposed by the
software layer can be prohibitive [23].
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model and synchronization scenario: data-flow and spinlocks,
respectively. HTM allows speculative execution of critical
sections guarded by mutexes or spinlocks. Finally, our solution
accelerates PThreads data synchronization primitives through
hardware execution while keeping legacy-code compatibility.

We define that a solution is legacy code compatible if a
given application can use the set (or a subset) of the solution,
either by (i) recompiling without source code changes, or (ii)
dynamically linking to a library provided by the solution.
Therefore, besides Subutai, the following solutions support
legacy code: Boehm [10], France-Pillois et al. [11], CAS-
PAR [16], Notifying Memories [19], and HTM [17].

The works of Boehm and France-Pillois et al. are entirely
done at the software level; they are not directly related to
our work, as the former does not support reordering I/O
operations (which we use for Subutai-HW communication),
and the latter is an optimization for OpenMP (which we only
support indirectly). CASPAR accelerates a different type of
application (lock-free applications) not supported directly by
PThreads or Subutai. Notifying Memories can benefit from
our work if the spinlocks usage is done through PThreads
(i.e., pthread_spin_lock), which is not the case of the
paper presented in [19]. Besides, Notifying Memories target
the data-flow application model only, while we support any
model that uses the shared-memory paradigm.

HTM has two operation modes, whereas the Hardware
Lock Elision (HLE) is the only mode with legacy support.
HLE extends the parallel library code (e.g., PThreads) to use
a hot/slow path approach. Firstly, the operation is executed
speculatively using HTM; if it fails, then the legacy code is
executed. HTM uses the same approach of Subutai, making
changes in the library synchronization routines only. Besides,
HTM is complementary to our solution, as both can be used
in unison to handle synchronization primitives.

To the best of the authors’ knowledge, Subutai is the
only solution that speeds up various types of synchronization
primitives while keeping unchanged the userspace interface
(i.e., API).

III. SOFTWARE-ONLY AND SUBUTAI SOLUTIONS

Solutions for data synchronization are implemented in
software-only (SW-only) or in a hardware/software compo-
sition. The solutions provide trade-offs according to the con-
straints on the target design (e.g., portability, performance).
This section aims to clarify the target architecture used for
achieving the experimental results, as well as to clarify the
control flows used to synchronize shared data, using an exam-
ple based on the Linux OS.

A. Target Architecture

Fig. 2 shows a schematic representation of the target archi-
tecture. Each core communicates with caches and a local NI.
An NoC with routers using a standard design that includes
buffers, a crossbar switch, and a switch allocator implements
the interprocessor communication.

Modern multiprocessors consist of double digits of process-
ing core units [24]. Thus, we target an NoC-based manycore

architecture composed of 64 processing cores. Each core has
access to instruction and data caches. The Level 1 cache is
private and is divided into instruction and data caches. The
Level 2 cache is shared among the cores, and banks are dis-
tributed on the system. Therefore, our target architecture uses
a Non-Uniform Cache Memory Access (NUCA) architecture
with faster L2 accesses for nearby banks. We explore syn-
chronization solutions for Symmetric Multiprocessing (SMP),
because it facilitates the development of parallel applications,
as developers do not need to concern themselves with data
placement [25]. Hence, cache coherence is required and used.

The SW-only uses a single instance of Linux, while Subutai
employs a decentralized approach, where each core has its
self-governing OS. The decentralized OS design enables the
scheduler to be decentralized as well. A decentralized sched-
uler provides a faster thread switching, which benefits parallel
applications. Additionally, for dozens or more cores, message
passing can be much faster than memory sharing [26].

B. Target Parallel Library

Subutai transforms software events (e.g., mutex lock, condi-
tion wait) in hardware events (e.g., NoC packets). As such, we
can target any number of available library interfaces. We chose
the PThreads interface because (i) it is widely employed as a
de facto standard to parallel application implementation, and
(ii) it is used internally as the base of multiple synchroniza-
tion solutions, as shown in Table I. Consequently, PThreads
provides Subutai a broad range of applicability.

We focused on three of the four main groups of the
PThreads standard operations: mutex, barrier, and condition
handling. Thread events (create, exit, join) are not on the
critical path, and so are left to be handled at the OS level.
An extensive description of PThreads operations is out of our
scope. We limit the discussion to the essentials of the three
focused groups.

The mutex group contains locking and unlocking functions.
Locking is a blocking function that exclusively locks a vari-
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able. If the variable is already locked, the calling thread is
blocked. Otherwise, this operation returns the variable locked
by the calling thread. Unlocking is a non-blocking function
that changes the variable state and wakes up blocked functions
if there are any waiting threads.

The barrier group contains a single blocking function,
called wait, which synchronizes participating threads at a
user-specified code point. A barrier has a fixed number of
threads decided at allocation time; participating threads are
only woken up when they all hit the barrier.

The condition group contains wait, signal and broadcast
functions. Wait is an unconditionally blocking function that
inserts threads on a waiting list for a condition event. The op-
eration of the wait function requires locking a mutex variable,
which is passed as a reference to the function; this mutex
is unlocked once the wait function concludes its work. The
signal and broadcast are non-blocking functions that wake up
one and all threads, respectively, waiting for a condition event.
In these cases, the mutex is optional.

For all groups, one or more queues are required to record
blocked threads. Condition functions need to handle two
queues due to the associated mutex. Barrier and mutex func-
tions deal with only one queue. Besides, the three groups have
non-blocking functions that allocate and deallocate variables.
This work replaces the handling of these operations from an
entire software solution to a hardware/software approach.

C. Software-only Solution
Fig. 3 exemplifies the synchronization flow for the SW-only

solution deployed on Linux. The example starts with the user
application requesting a synchronization operation through a
function call, such as a mutex lock. The function is associated
with a PThreads interface that acquires the requested lock for
the thread using a memory shared among application threads.

The SW-only implementation tries to acquire the mutex
atomically multiple times. The first moment occurs within
the PThread library, which, on success, immediately returns
to the application (delay marked with t1). Otherwise, the
PThread library calls the Linux Kernel (specifically the Futex
subsystem), which has another codepoint for obtaining the
mutex; the last codepoint is the most time-critical point, as
it implies that the current thread goes to the sleeping state,
waiting for a mutex unlock event originated by the owner
thread to be awakened for requesting the mutex again. t2 and
t3 reference the delays associated with these two accesses to
the shared memory, respectively. Additionally, if the thread
cannot acquire the mutex lock after being awakened (due to
another thread executing on t1), then the SW-only solution
implements a loop to re-execute its code. At each loop, the
basic delays referenced by t2 and t3 may be increased by
∆ta, or ∆ta + ∆tb, depending on where the mutex lock is
obtained [27].

Throughout the timing of the synchronization flow, extra
delays may occur due to access to the shared cache memory,
as well as possible cache misses in the shared data that would
imply a much more significant delay. Also, since Futex is
potentially distributed into the manycore caches, these two
last codepoints imply communication costs through the NoC.
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Fig. 3. Synchronization control flow employed on Linux-only based solution.

D. Subutai Solution

Subutai is a synchronization solution for legacy and novel
parallel applications comprised of a software/hardware co-
design to perform fast synchronization operations. This section
describes the high-level interaction of the Subutai’s compo-
nents, which are illustrated in Fig. 1, together with a general-
purpose computing stack.

Subutai encompasses a userspace library, a kernelspace
driver, a hardware module, and an optional scheduler policy
(discussed in Section VII). The userspace library mimics an
existing synchronization solution intended for parallel appli-
cations. Therefore, the Subutai library procedures provide the
same interfaces (i.e., API) with different implementations.
The ability to mimic existing synchronization libraries is an
essential feature of Subutai to speed up parallel applications.

Each core in the system has a Subutai-HW module that
extends the NI and is responsible for accelerating synchro-
nization operations. Subutai-HW is a Finite State Machine
(FSM) coupled with a small dedicated memory (details in
Section V). Once the user application calls a procedure, the
Subutai library employs kernel services through system calls,
providing the link between the hardware and software parts.
Thus, the userspace library abstracts the hardware protocol
(Subutai-SW - details in Section IV).

Fig. 4 depicts the Subutai communicating flow. A unique
identifier (ID) on the entire system addresses each synchro-
nization variable. An incremental counter determines the NI
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that hosts the synchronization primitive: NI0 hosts the first
primitive; NI1 hosts the second one, and so on, following a
fairness method. Other dynamic allocation strategies can be
further studied, but this is out of the scope of this work.

The communication flow of Subutai starts with the applica-
tion making a PThreads interface request through any function
described in this section; the Subutai library identifies the
unique ID for this primitive and passes it to the driver along
with the interface request. Then, the driver writes to either
registers or a memory that the NI has access to; this decision
is made at the driver level with the capabilities available in the
system. Next, the driver writes in a control register to inform
the command to the NI and waits for an interrupt to receive
the remote response.

In case the local Subutai-HW hosts the lock, the NI can
respond immediately, performing a prompt request from the
driver. Thus, the driver does not use the router, avoiding the
injection of packets in the NoC; the delay of this procedure
is marked with τ1. Therefore, situations where the local
Subutai-HW hosts the synchronization primitive implies a
quick response as the request does not propagate across the
NoC.

If the local Subutai does not host the lock, then the local
NI injects a packet into the NoC targeting the remote Subutai-
HW, which handles the request and responds to the local NI
with a new packet. The address of the remote Subutai-HW is
embedded into the ID packet field (discussed in Section V-A).
This procedure implies an additional delay of packet traffic on
the network, being noted by τ2.

E. Subutai vs SW-only Solutions

The comparison of Fig. 4 with Fig. 3 allows us to understand
the differences between Subutai and SW-only approaches.
Synchronous flows marked by t1 and τ1 exemplify situations
where the local processing manages the lock. Thus, regardless
of the approach used, the response latency is lower compared
to the latencies of the decentralized processing flows.

Subutai offers a more efficient hardware-level solution for
a decentralized decision; thus, the flows marked with t2 and
t3 have higher latencies than the one marked with τ2.

The reasons for the lower latency of Subutai are: (i) locking
for the mutex queue (marked with * in Fig. 3) is required only
in the SW-only approach, as Subutai-HW has access to private
memory area to handle the concurrent threads (Section V-A);
(ii) susceptibility to data conflicts in distributed shared caches,
which does not occur in Subutai that implements this function-
ality using dedicated queues in Subutai-HW (Section V-A);
(iii) the efficiency of a lock event when another thread is
using it. The Subutai implementation returns this information
to the local tile as soon as it is available, while the SW-only
implementation is delayed by the OS scaling (Fig. 4 – HW
events can occur concurrently to the execution of the thread);
(iv) the use of dedicated control packets allows to employ
Quality-of-Service (QoS) techniques, providing differentiated
priority for the traffic of control packets (Section V-A). The
consequence is that control packets are propagated with lower
average latency and that the variability between latencies is
also lower compared to data packet latencies.

As a conclusion, either because of cache conflicts or packet
latency variability in the NoC, Subutai ensures more pre-
dictability than the SW-only solution.

IV. SUBUTAI-SOFTWARE (SUBUTAI-SW)
Subutai provides a new PThreads library for parallel appli-

cations to use our solution. Every time the user application
requests an operation on a mutex, barrier, or condition, the
library passes on the request through a system call for the
OS driver (items (i) and (ii) from Fig. 4). The request is
changed in terms of structure, as the user application handles
these synchronization variables by variable names, which are
memory positions, while the hardware tracks these variables
with a unique ID unrelated to the memory and name of the
variable. The driver receives the unique ID for the variable,
which is known by the library (not known by the application)
and decodes the packet destination through reserved fields in
this ID (Section V-A) (item (iii) from Fig. 4). The request
is processed in hardware, and, eventually, the response is
received in the local NI. Then, the local NI interrupts the
software to notify it of a packet arrival event; the OS driver
reads it and is able to finish the user application request
(last four steps of Fig. 4). Finally, other types of PThreads
operations (i.e., thread management) are kept unchanged.

Because most operations of PThreads are offloaded to be
handled on the hardware, valuable cache space can be saved
(up to 91.7% compared to x86 64) for the respective structures
of the synchronization variables, as shown in Table II. All
synchronization primitives have the same size in Subutai since
they only contain the 4-byte unique ID (refer to Section V-A).
The on-chip NI driver implementation was based on an ex-
isting driver that performs basic procedures for sending and
receiving packets. We reuse these procedures for the requests
from the PThreads library. Additional logic is introduced in the
driver to understand the packets sent and received, as Subutai
makes the driver an active component to change thread states
on its own (e.g., wake up a thread when it owns a mutex).
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TABLE II
MEMORY SPACE REDUCTION OF SYNCHRONIZATION PRIMITIVES.

Primitive
(name)

GNU LibC x86 64
(bytes)

Subutai
(bytes)

Reduction
(Percentage)

mutex 40 4 90.0%
barrier 32 4 87.5%

condition 48 4 91.7%

V. SUBUTAI-HARDWARE (SUBUTAI-HW)

A. Architecture and Implementation Choices

Subutai-HW extends a standard NI architecture for handling
synchronization operations fastly. Fig. 5 shows the schematic
representation of Subutai-HW and its location on the target
architecture. The main components of Subutai-HW are (i) an
FSM, (ii) a set of registers; and (iii) a local ScratchPad Mem-
ory (SPM), which is entirely controlled in HW by the FSM,
except for memory initialization. Initialization is done through
the OS driver and requires the creation of a free double-
linked queue. We validated and implemented the Subutai-HW
architecture by Register-Transfer Level (RTL) simulation [28]
and synthesis [29]. Besides, we developed an analytical model
to demonstrate its operation latencies and scalability.

The left-hand side of Fig. 5 shows that Subutai-HW employs
double-linked queues to record events. As an alternative to
statically allocating for the worst case, the double-linked
queues allow Subutai-HW to employ a dynamic allocator
for reducing memory consumption to the minimum, at the
cost of additional pointer arithmetic logic. Besides, condition
variables are dealt more efficiently with such structure, as
it avoids the thundering herd problem [30]. We based the
queue manipulation on the futex implementation of the Linux
kernel [31].

Subutai-HW operates using two structures for recording
information. Fig. 6 shows the first one, which records the
metadata of the synchronization primitives. Software only
knows the first 32-bit field, which is employed as an ID of
this primitive. However, for Subutai-HW, the first bit “F” is
used to allocate/deallocate this structure. The next 7-bit field is
the unique ID for the NI on the system. Lastly, the furthest 24-
bit field is used as a pointer to itself; we employ this technique
to avoid the cost of searching for an element of the structure
every time a new request has arrived. The second 32-bit field
encompasses the head and tail of the double-linked queue. The
last 32-bit field records values used for some of the primitives.
The first 16-bit field is employed to (i) record the thread and
core that owns a mutex, and (ii) store the current number
of threads waiting on a barrier. The barrier primitive uses the
furthest 16-bit field to record the maximum number of threads
allowed in a barrier.

Fig. 7 shows the second structure – a double-linked queue
element composed of six fields. The first bit is employed to
allocate/deallocate the element. The “prev” and “next” fields
are pointers to the previous and next elements, respectively,
or nil if they do not exist. The 16th bit “R” is reserved and
used for memory alignment. The last 32-bit field identifies the
requesting thread. The “Core ID” field is padded with zeroes
because the NoC packet uses only 8-bit to identify the core.

TABLE III
LATENCIES FOR SUBUTAI-HW FSM STATES. c = CYCLE LATENCY, m =

MEMORY LATENCY, n = NUMBER OF SYNCHRONIZATION VARIABLES
HANDLED BY SUBUTAI-HW, ρ = NUMBER OF THREADS ON A BARRIER.

State Best response
time

Worst
response time Packet Injection

Allocation 4m+ c
(n×m) +
(3m+ c)

(n×m) + (m+ c)

Deallocation 3m 3m None
Mutex Lock 2m+ c 11m 2m+ c

Mutex Unlock 2m 10m+ c 2m+ c

Barrier Wait 7m
(m+ c) + ρ×
(11m+ 3c)

(m+ c) + (12m+
4c) + (23m+ 7c)...
= (m+ c) + ρ×

(11m+ 3c)

Condition Wait 5m+ c+
Mutex Unlock

10m+ c+
Mutex Unlock None

Condition
Broadcast m 18m+ c 11m+ c

Condition Signal m 29m+ 2c 11m+ c

The minimum memory requirement for the SPM is one
control element and 63 queue positions, regarding a target 64
core architecture. Since we have to record up to p− 1 cores,
the minimum SPM size is 1×96+63×64

8 = 516 bytes. Note
that Subutai-HW is incorporated into every NI; consequently,
we handle up to 64 primitive variables even with minimum
sizing. The target architecture employs an SPM of 1 KiB (4
control elements and 122 queue elements) that handles up to
256 primitive variables in hardware. A double-linked queue
allocates elements dynamically, allowing Subutai to consume
memory on demand. A static allocator, on the other hand,
cannot handle more than one control element with only 122
positions available (< 2×63) – since the worst-case scenario is
63 positions per element3, as explained earlier. Thus, a static
solution would be either too limited or a waste of memory
resources.

Although the number of primitives used in the experimental
results is far from the SPM memory limit, there are two
scenarios where the SPM cannot handle a request. In one
scenario, the system does not have more primitive space
available in any SPM; thus, Subutai rolls back to provide
the SW-only implementation of the primitive. In the other
scenario, there are no more queue elements available in a given
primitive; therefore, we respect the POSIX standard and set
errno to EAGAIN [7], hinting to the developer that it should
try again later.

B. Response Time

Table III shows the latencies of the states as dependent
on the Subutai-HW cycle c, the SPM write/read latency m,
the number of synchronization primitives handled n, and the
maximum number of threads on a barrier ρ. Each memory
operation can either be a write or read operation in a given
m cycle. The first column identifies the Subutai-HW state.
The second and third columns identify the fastest and slowest

3We assume for the sake of size estimation that the number of threads
does not exceed the number of cores. However, the queue is capable of
handling such a scenario.
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latencies for the state, respectively. Finally, the last column
shows when the packet is ready to be injected into the
NoC – as, for some states, packets can be injected before
finalizing the request processing. Additionally, some states
(e.g., Deallocation) do not need to generate packets at all.

To illustrate the best and worst response time of Ta-
ble III, we describe the Mutex Lock state, which models
the pthread_mutex_lock operation. The fastest scenario,
whose latency is 2m + c, happens when the mutex is un-
locked. It requires two memory operations: (i) fetch the
control structure (field “Value” from Fig. 6) to check the
owner of the mutex (latency = m); and (ii) rewrite this field
with the requesting thread (latency = m). Finally, the NI is
notified that a new packet can be injected (latency = c). The
injected packet is the same as the requesting packet except
for the header. The worst scenario takes more time (latency
= 11m) because the state deals with two queues entries. It
starts with the same memory operation that reads the control
structure for this primitive. Thus, the circuit realizes there is
already an owner, which demands to queue up the request.
First, Subutai-HW allocates a free queue entry and updates
its queue pointers (takes up to 4 memory operations); then,
it writes the requesting thread information into it and the
tail information in the primitive metadata (6 more memory
operations), performing 11 memory operations in total. The

0 1 7 8 15 16 31

F NI ID Self Pointer

Queue head Queue tail

Value
(Owner/Number of threads) Max Value

Fig. 6. Subutai-HW control structure.

0 1 15 16 17 31

F Prev R Next

Thread ID Core ID

Fig. 7. Subutai-HW queue structure.

TABLE IV
SUBUTAI-HW STATES LATENCY WITH c = 1ns, m = 2ns, n = 4, ρ = 63,

FSMentry = 4ns, FSMexit = 1ns.

State Best response time
(empty queue)

Worst response
time (queued)

Packet Injection
Best Worst

Allocation 14 ns 20 ns 10 ns 15 ns

Deallocation 11 ns 11 ns None
Mutex Lock 10 ns 27 ns None 10 ns

Mutex Unlock 9 ns 26 ns None 12 ns

Barrier Wait 19 ns 1583 ns None 7, 32, 57,
. . .ns

Condition Wait 20 ns 47 ns None
Condition Broadcast 7 ns 42 ns None 27 ns

Condition Signal 7 ns 65 ns None 27 ns

latency for the other states follows a similar procedure.
Table IV shows the latencies used in the experimental

results. We clocked Subutai-HW at the same frequency as the
NI (1 GHz). SPM employs the previously discussed 1 KiB
single-port SRAM-based implementation with uniform access
of 2 cycles, 4 control structures, and 122 queue entries. Besides
the Subutai-HW state latencies of Table III, Table IV includes
the values of the NI used in this work; let FSMentry and
FSMexit be the entry and exit latencies for Subutai-HW, then
FSMentry = 4 ns (3 cycles for 3 flits of 32 bits and 1 cycle
to decide the next state) and FSMexit = 1 ns (1 cycle to set
a flag) to reach any state. A detailed report of equations and
values described in Tables III and IV, and the pseudo-code
implementation of Subutai-HW can be found in [32].

The latency required to release threads on a barrier exceeds
one thousand nanoseconds due to the queue size of threads
waiting on the barrier – it does not represent the packet
injection latency. Thus, some threads execute much earlier than
the total value. As shown in the last column, the packets are
injected periodically at every 25 ns, except for the first packet,
which is injected in 7 ns. Thus, the total number of cycles
is 1583 ns, which is composed of the following parameters:
FSMentry + FSMexit+m+ c+ ρ× (11m+ 3c).

The Condition Broadcast and Condition Signal states show
interesting latency results. At first glance, it would seem more
plausible that releasing one thread (signal) would be faster than
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releasing all threads (broadcast). However, this conjecture is
not valid due to the following reasons. First, by releasing all
threads, the state has to deal with only one queue (mutex)
instead of two queues (mutex and condition). Second, due
to the way condition works, only a single thread is indeed
released since a mutex is associated with it. Consequently, the
broadcast state avoids the scenario previously described for the
barrier state – only the owner of the mutex will be released.

Subutai-HW also includes six 32-bit and three 1-bit reg-
isters; three are used for the packet fields (Fig. 8), and six
more to (i) handle the free queue; (ii) memory swapping
operations; and (iii) control flags to receive and send packets.
For receiving/sending packets, Subutai-HW reuses the already
available registers of the NI. The packet structure is combined
with the recorded information in the two control structures
(Figs. 6 and 7) to handle any request.

0 7 8 15 16 31

Synchronization ID

Request Type Core ID Thread ID

Value (integer or pointer to mutex synchronization ID)

Fig. 8. Subutai’s packet format.

VI. APPLICATION SYNCHRONIZATION MODEL

The performance of Subutai is evaluated through the widely
used PARSEC benchmark, as it provides a wide range of
application domains, parallelization models and data sharing.
From their application set, we employ Bodytrack, Streamclus-
ter, and x264; we limit our discussion to the synchronization
model used by these applications. An extensive overview of
these applications is outside the scope of this paper (more
information can be obtained in [33]).

Bodytrack is a computer-vision application that tracks a 3D
pose of a mark-less body. It uses mutexes for data sharing,
and conditions and barriers to make sure all threads are syn-
chronized and able to handle more requests. The workflow of
Bodytrack starts with a single ‘master’ thread (T0) responsible
for creating synchronization primitives, creating Tn - 1 threads,
and sending computation requests for them. Then, the threads
T1, . . . , Tn - 2 do the actual computation through the requests
from T0. Finally, the last thread (Tn - 1) performs asynchronous
I/O operations (e.g., loading images from disk to memory).

Fig. 9 depicts the workflow of Bodytrack. Initialization is
done exclusively by T0, where the synchronization variables
and threads are created. Then, T0 divides the computational
work among the worker threads and sends a condition broad-
cast for all worker threads. Meanwhile, each worker thread
checks if its work is available - if so, the thread skips the
condition and moves on to the next phase; otherwise, the
thread waits for the condition variable.

Each thread uses mutexes to access shared memory while
performing the computational work. Meanwhile, T0 uses a
barrier to wait for all worker threads to conclude their jobs.
The barrier guarantees that all worker threads are ready to
handle the next work request. As the worker threads finish
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Fig. 9. Bodytrack’s synchronization scheme. Tn - 1 is not shown as it does
not participate in the Bodytrack workflow.

their work, they join the barrier as well. Only when all threads
have joined the barrier, they are released to execute the next
phase, which loops back to the generation of more work to
the worker threads. This loop is executed until no more work
is available.

The workflow plotted in Fig. 9 simplifies three aspects of
the work of the Bodytrack application. Firstly, after the worker
threads have received a request through the condition, they
acknowledge it using another barrier (not shown in Fig. 9),
and the associated mutex of the condition. Secondly, Fig. 9
does not show the thread responsible for asynchronous I/O
(Tn - 1) because it communicates only with T0 and the number
of requests is at most 10 events, which is tiny compared to
the core workflow. Thirdly, Fig. 9 abstracts the application
process conclusion because this process does not use data
synchronization.

Streamcluster is a data-mining application that solves the
online clustering problem for a stream of input points; it
computes an approximation for the optimal clustering of them.
This application has a simpler communication model than
Bodytrack, using a single instance of mutex, barrier, and
condition. Nonetheless, Streamcluster shares the same barrier-
based synchronization scheme as Bodytrack.

x264 is a lossy video encoder for high-quality streams
that do not employ barrier synchronization primitives, and
all mutexes variables are associated with condition variables.
This application uses a sliding pipeline model, whose number
of pipeline stages equals the number of video frames, while
the sliding window is determined at runtime by the number
of thread requested. The total number of stages created is
1 + 2 × videoframes [34].

Table V displays the number of synchronization primitives
used by each PARSEC application. Additionally, Table VI
depicts the number of synchronization events for the same set
of applications. On the one hand, neither the number of threads
nor the input size affects the number of synchronization
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TABLE V
NUMBER OF SYNCHRONIZATION PRIMITIVES FOR PARSEC (SIMMEDIUM

INPUT).

Application Mutex Condition Barrier
Bodytrack 3 1 4

Streamcluster 1 1 1
x264 95 95 0

TABLE VI
NUMBER OF EVENTS OF SYNCHRONIZATION PRIMITIVES DURING THE

EXECUTION OF PARSEC APPLICATIONS (SIMMEDIUM INPUT).

Application Type Events per number of threads
16 32 64

Bodytrack
Barrier1 2101 4293 13416

Condition 447 750 1529
Mutex 9000 10472 8677

Streamcluster
Barrier1 208048 364480 728960

Condition 381 802 1274
Mutex 510 1054 2142

x264
Barrier 0 0 0

Condition 86 310 354
Mutex 4154 4340 4344

(1) Every packet is counted as an event. Thus, in a 64-thread barrier, for instance, 64
events are generated for waiting on a barrier, and other 64 events are generated for
releasing them, as the NoC does not support broadcast messages.

variables, except for x264, where the number of frames (i.e.,
input size) affects the number of primitives. On the other hand,
Table VI displays that both affect the number of calls of these
primitives.

VII. SCHEDULING

We employ multiple parallel applications that share comput-
ing resources to minimize the global idle time and maximize
the rate of application instances. This work proposes a new
scheduling policy to accelerate the critical sections of parallel
codes. Additionally, we evaluate its performance impact on
parallel applications against the Round-Robin (RR) scheduler,
which does not differentiate the sections of parallel applica-
tions. We do not propose a new scheduler, instead, a scheduler
policy that any scheduler can adopt in its decisions.

We target the scheduler rather than the application, as it does
not require modifying the application code. Thus, we intend to
further speed up applications by aggregating multiple parallel
applications with a critical section-aware policy. Running
multiple applications makes every application slower (i.e.,
increases the execution time), as they have to contend for
computational resources. However, the scheduling impact on
execution time can be mitigated by the policies employed on
the scheduler.

The fair scheduler employs equal-priority for all appli-
cations making them have the same slowdown to enforce
fairness. Eq. 1 shows the lower-is-better unfairness metric [35]
that can be used to evaluate the fairness of the scheduler.

Unfairness =
MAX(Slowdown1, . . . Slowdownn)

MIN(Slowdown1, . . . , Slowdownn)
(1)

Where n is the number of applications in the workload
and Slowdowni = ETschedi

ETalonei
, where ETschedi denotes the
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Fig. 10. Comparison of three application sets for the distribution of time
spent in critical section on a RR scheduler with a timeslot of 1ms.

execution time of application i under a given scheduler, and
ETalonei is the execution time of the application i when
executing alone.

The baseline scheduler employs the RR policy that avoids
starvation by running the application set in a deterministic
order and uses a fixed share of execution time (timeslot). These
features provide a fair distribution of execution runtime as all
applications have the same number of timeslots regardless of
the application type (i.e., low unfairness)4. The experimental
unfairness values obtained will be discussed in the experimen-
tal results section.

Parallel applications can be roughly divided into sequen-
tial and parallel execution modes. Every parallel application
contains at least a small sequential part for initialization,
such as thread creation and parsing of application parameters.
Mutual exclusion data access is another sequential execution
commonly used among parallel portions. By using a mutex,
either independently or associated with a condition, a thread
is exclusively executing a given portion of code (i.e., a
critical section) and potentially limiting all other threads.
Consequently, delaying the execution of critical section code
should be avoided to decrease the overall sequential time of
an application.

Fig. 10 compares the critical section latency for three sets
of the Bodytrack application: (i) standalone (×1), with four
(×4), and with eight instances of Bodytrack (×8). The Y-
axis is the percentage of overall critical section time on a
given time interval (X-axis). The X-axis comprises the last
value until the current value, except for the first case, where
it starts at zero and goes until 211 ns. For instance, the X
value equals to 212 comprises the time spent on a critical
section of [211, 212) ns. As discussed previously in Section VI,
all threads of Bodytrack, except the last one, participate in
the synchronization scheme; since this example employs 64
threads, up to 63 threads share the same critical section.

We compare the same application on these three scenarios;
consequently, the number of accesses into the critical section
is approximately the same. However, the time spent into a
critical section by a thread is not the same, as the scheduler

4Assuming the scheduler shares the same timeslot for all threads of a
given application.
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Fig. 11. Overall time spent in critical section for the sum of the work-related
mutexes of Bodytrack on RR and CSA-enabled schedulers.

can interrupt the application execution. Fig. 10 shows that as
the number of applications increases, the time each thread
spent into a critical section also tends to increase since the
scheduler does not differentiate execution on a sequential or
parallel mode. The figure shows two situations where the time
spent in critical sections spikes upward: from 211 to 212 ns
and 218 to 219 ns. The first spike results from the application
synchronization usage: this interval has the most number of
cases for Bodytrack, as shown by the standalone case. The
second spike happens only when multiple applications are
introduced (Bodytrack×4 and Bodytrack×8). As we use a
timeslot of 1 ms, the time spent in the critical section revolves
around half this value (i.e., 219). The threads do not necessarily
use the entire timeslot, as they can request to be scheduled
out to wait for an event, for instance. Bodytrack has shown
significant enough cases of such scenarios that the spike
happens around half of the total timeslot. Nonetheless, this
experiment shows that a scheduler based on the RR policy
affects the synchronization latency and execution time.

Fig. 11 (legend RR) shows the total time spent in the critical
section for the same set of applications. As expected, the
time spent increases as more applications content for core
usage. The behavior shown here by not taking note of the
critical sections of parallel applications motivates the proposal
of introducing the context of critical sections into the scheduler
decisions. Therefore, the gains of utilizing Subutai can be
maintained in a massive scheduler contention scenario. We call
this proposal the critical section-aware policy (CSA), whose
results are depicted in Fig. 11 (legend CSA). The critical
section execution time is kept as close as possible to the single
application execution by applying the CSA policy.

A. Critical Section-Aware Policy (CSA)

We introduce CSA into the scheduler policies for executing
critical section code as fast as possible. The policy works as
follows. Every time a given thread has CSA enabled and is
currently inside a critical section (i.e., holding a mutex), it
has priority over the execution of all other threads that are
not in the same scenario. In case another thread also has CSA
enabled and is inside another critical section, an RR policy
is applied to switch between them until either one finishes.

Finally, if there are no threads that meet those requirements, an
RR policy is applied to switch between the entire application
set. We use RR as the baseline scheduler policy, yet more
complex policies can also be applied.

Unfortunately, increasing the priority of a given thread over
all others without any limitations generates two issues: (i) the
scheduler deadlocks if the application also deadlocks; and (ii)
it affects negatively on the performance of all other threads
(i.e., high unfairness). Therefore, a time limit, defined in Eq. 2,
was implemented in the CSA to deal with both issues.

CSALimit = (ThrReady+ ThrRun− 1)× (2× TS) (2)

where ThrReady and ThrRun are the numbers of threads
currently in the ready and running states, respectively. For both
cases, the idle thread is ignored. TS is the chosen timeslot
for the RR policy, generally in milliseconds. For instance, for
a scheduler with a sum of 8 threads on the ThrReady and
ThrRun states and a TS of 1ms, when one of these threads
gains CSA priority, its time limit is 14ms.
CSALimit has a direct proportionality between a parallel

application execution time and the scheduler’s unfairness. In
other words, a high CSALimit value will produce a fast
parallel application execution for an unfair scheduler, and
the opposite is also true. As we aim to keep the scheduler’s
fairness, we chose a limit that accelerates parallel application
without increasing the scheduler’s unfairness. Eq. 2 is a
first empirical proposal, but a dynamic limit can be used to
rebalance the CSA policy according to the scheduler profile.
We chose the limits defined in Eq. 2 as it restricts the delay on
other threads at most three times compared to the RR policy.
When all threads are running on the RR policy, the maximum
delay is (ThrReady+ThrRun−1)×TS. Thus, the scheduler
changes to the RR policy to maintain a fair scheduling, if the
execution of the critical section reduces the priority of the
other threads. The time limit deals with deadlock situations;
however, to avoid livelocks, the scheduler requires a system-
specified limit on the use of CSA policy for a given timeframe.
Such methodology has been used effectively against other
types of scheduler livelocks [36].

The fairness restriction of CSALimit allows accelerating
only a subset of critical sections; this is the reason why
the critical section time is lower with Bodytrack ×8 than
with Bodytrack ×4 (Fig. 11 - legend CSA). Table VII shows
the impact of CSALimit on the Bodytrack application set.
The second, fourth, and fifth columns show the number of
scheduling requests made outside of any critical section, inside
a critical section with CSA enabled, and inside a critical
section where RR has been enabled due to CSALimit, re-
spectively. The third column shows that all scheduling requests
for a critical section are either using CSA or RR policy.
Approximately 10% and 8% of the total critical sections had
CSA disabled as their time surpassed the CSALimit time
on Bodytrack ×4 and ×8, respectively. Even though we are
analyzing the same Bodytrack, while running in a set of
4 and 8 applications, there are some discrepancies in the
total number of requests for scheduling due to the use of
synchronization primitives. Streamcluster and x264 presented
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TABLE VII
IMPACT OF CSALimit ON THE BODYTRACK APPLICATION SET

EMPLOYING A TIMESLOT OF 1ms. CS = CRITICAL SECTION.

Application set Schedule requests
(not CS)

Schedule
requests (CS)

CSA
(CS)

RR
(CS)

Bodytrack ×4 305517 CSA (CS) +
CSA (RR)

15267 1558
Bodytrack ×8 323379 15274 1274

TABLE VIII
NI, SUBUTAI-HW AND SPM SYNTHESIS WITH 28 NM SOI.

Components Area (µm2) Overhead
Basic NI 13539.23 –

Subutai FSM 2626.21 19 %

SPM 3702.00 27 %

Basic NI + Subutai-HW* 19867.44 46 %

*Subutai FSM + SPM

shorter critical sections on our experimental results, and they
never triggered the CSALimit.

VIII. EXPERIMENTAL RESULTS

We demonstrate our solution results using a two-fold ap-
proach. Firstly, the system area and scalability of our solution
are evaluated through an RTL implementation of Subutai-HW.
Secondly, the system performance and scheduler are evaluated
through architecture simulation and parallel applications from
the PARSEC benchmark. Like Butko et al. [37], we employ
the Gem5 simulator [38] to produce synchronization points
of the applications; next, we feed this information into an in-
house SystemC simulator [32], which enables us to collect
experimental results. We run applications with and without
Subutai: the former will henceforth be called Subutai, and the
latter SW-only (i.e., Linux Kernel).

A. Area

Subutai-HW comprises a register-based NI, an FSM for
synchronization control and linked pointer manipulation, and a
1 KiB SPM to store metadata and events. We use a very basic
NI with 32-bit links, packing and unpacking logic, no virtual
channel and 2 I/O buffers of 16 × 32 bits. It is worth noting
that using HW synchronization operations releases valuable
memory and cache space that would otherwise be required.
Besides, the memory requirement is negligible if compared to
a typical processor cache (less than 10%, if the cache size is
16 KiB). Table 8 summarizes the synthesis results showing
our solution increases by 46% the basic NI area, including
the local SPM; however, the overhead is amortized when the
entire chip area is considered. For instance, using the Patel
et al. [15] chip area of 400mm2, the percentage of total area
consumption of Subutai-HW is 64×0.00632821

400 = 0.101%, while
the enhanced NI is 64×0.01986744

400 = 0.317% for 64 cores. We
synthesized all hardware elements using Synopsis DC [29]
with 28 nm Silicon on Insulator (SOI) technology and 1 GHz
clock frequency. Additionally, the SPM was synthesized with
Cut Explorer [39].

B. State-of-the-Art Area Comparison

We compare our solution to those related work that provide
enough data about the absolute area consumption (i.e., not in
percentages) and technology used. Table IX depicts the area
consumption of five hardware-based solutions. For a fairer
analysis of the area consumption of each solution, we divided
the total area consumed by the estimated number of cores in
the system (i.e., area per core).

Subutai is second-to-last in terms of area consumed per core
in the system. Additionally, Subutai and HTM have an addi-
tional area requirement per core; i.e., HTM needs to change
the first cache level of the system for its functionality, and
Subutai needs an SPM memory for synchronization handling.
Even so, Subutai is third-to-last in terms of area consumption
when both areas are combined. The hardware of Abellán et
al. [13] has the overall smallest consumption as it is mainly
comprised of wires and controllers. The last line of Table IX
shows the estimation of area consumption for a 400mm2 chip
[15] for the same set of related work. Subutai only consumes
approximately 0.1% of the total chip. Once again, it is third-
to-last in overall area consumption.

C. Acceleration of Single Parallel Application

Fig. 12 shows the results obtained for the three PARSEC
applications analyzed in this work. We analyze the entire
application execution but plot the results for two threads for
each application: the master thread (T0), responsible for global
synchronization, and a worker thread instance (T7). Besides,
the results are divided into two: synchronization operations
and processing. The former aggregates all calls to PThreads
(e.g., mutex lock), while the latter collects the processing
needed by the application. NoC communication and Subutai-
HW latencies did not contribute significantly for the execution
time; thus, they are not visually perceivable on the figure,
although they are present. Nonetheless, the figure shows that
our solution reduces the application total time by handling
synchronization faster.

From the designer point-of-view, the master thread (T0)
shows the effective speedup, as it is responsible for initializing
and finalizing the application. Bodytrack achieved a speedup
of 1.78×, and 1.77× for 32 and 64 cores, respectively.
Streamcluster achieved a speedup of 2.71×, and 2.20× for the

TABLE IX
STATE-OF-THE-ART AREA CONSUMPTION.

HTM [18] MCAS [15] Abellán et
al. [13]

Notifying
Memories [19] Subutai

Area per core
(mm2) 0.32800 0.01824 0.00022 0.00534 0.00262

Additional area per
core (mm2) 0.01560 No No No 0.00370

Target Frequency
(GHz)

Not
addressed 3.40 0.62 0.50 1.00

Target System 8-core 32-core 64-core 12-core 64-core
Technology (nm) 65 14 (scaled) 45 65 28

Technique Estimation Synthesis Synthesis Synthesis Synthesis
Overhead for a

64-core 400mm2

chip
5.497 % 0.291 % 0.003 % 0.008 % 0.101 %
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Fig. 12. Experimental results showing acceleration for a single parallel
application. Values are in seconds of execution; the dotted red color is the
sum of synchronization operations; the flat blue color is processing time.

same core set. Finally, x264 achieved a speedup of 1.11× and
1.05× for the same core set. Therefore, our solution achieved a
speedup of 1.77×, on average. Table VI displays the number
of synchronization calls, explaining the speedup difference;
for instance, Streamcluster requires, roughly, 18, 23, and 31
times the equivalent of Bodytrack for 16, 32, and 64 cores,
respectively. Thus, we can better optimize worker threads,
as they are the ones using these primitives. The results also
show that Bodytrack and Streamcluster are not scalable to 64
cores. Southern et al. [40] have independently corroborated
this limitation as well. Our solution works the same regardless
of the application scaling – as will be shown with a producer-
consumer application on Section VIII-E.

The x264 application does not employ barriers because it
uses hundreds of synchronization variables instead of dozens
(Table V), and it does not have a logical dependency that
involves all threads; therefore, x264 has less contented syn-
chronization primitives. While Bodytrack and Streamcluster
utilize synchronization in all worker threads, some of the
worker threads of x264 have almost no synchronization; in
turn, the application is not penalized with significant syn-
chronization overhead. Another application like x264 from
PARSEC, named Facesim, is available in [32], and it shows
similar speed up results: 1.10× and 1.27× for 32 and 64 cores.

Our solution provides less direct benefit to x264 compared
to the other two applications since it is designed to accelerate
synchronization overhead. In other words, when synchroniza-
tion primitives are not used to control most threads, their
acceleration may not affect significantly the execution time
since the synchronization may not be in the critical path.

Since we aim for legacy code compatibility, no changes
have been made to any applications, either to increase the use
of PThreads or to insert metadata for Subutai. Therefore, we
target scenarios of running multiple applications to improve
the speedup of our solution further.

D. Accelerating Multiple Parallel Applications

Fig. 13 displays the experimental results organized into sets
of eight applications each: (a) eight instances of Bodytrack, (b)
eight instances of Streamcluster, (c) eight instances of x264,
and (d) a combination of 3, 2 and 3 instances of Bodytrack,
x264, and Streamcluster, respectively. All applications have
been set to use 64 threads and cores without restriction
regarding mapping threads to cores.

Figs. 13a to 13d illustrate the entire execution time in
seconds of an application set (i.e., from initialization to
termination of all applications), comparing RR, CSA, and
a One Application at a Time (OAT) scheduler. The latter
scheduler is used for representing a mono application system
(i.e., OAT can only execute one application). Lines a in
Figs. 13a through 13d show that Bodytracks, Streamclusters,
x264s, and mixed application sets have accelerations of 1.86×,
2.13×, 1.07×, and 1.91×, respectively, when running with
Subutai compared to SW-only implementations with an OAT
scheduler.

Additionally, lines b and c of Figs. 13a to 13d show
that placing these applications in a competitive scheduling
scenario increases the gains further because the idle time for
a given application can be used as working time for another
application; i.e., comparing CSA with OAT the speedups for
Bodytracks, Streamclusters, x264s, and mixed applications are
1.58×, 2.69×, 4.61×, and 2.09×, respectively. The SW-only
implementation has also presented gains, but the execution
time of it is always higher compared to Subutai for the set of
applications analyzed here. For the Streamcluster and mixed
applications (Fig. 13b and 13d), executing them on Subutai
with an OAT scheduler is faster than executing them on SW-
only with either scheduler policies used in this work.

Table VII shows the impact of a scheduling policy restricted
to critical sections is limited, as for an application such
as Bodytrack, this section is approximately 5.12% of the
total execution time. For Streamcluster and x264 application
sets, not shown in Table VII, the critical section scheduling
requests are 0.26% and 9.29% of the total number of requests,
respectively. The set of Streamclusters with the CSA-enabled
scheduler presented the highest speedup when compared to the
same set of applications with an RR scheduler. Bodytrack and
x264 presented a less significant speedup of less than 1.01×.

Table VI shows that Streamcluster has by far the most
significant number of synchronization events of the application
set. The number of synchronization events is a crucial factor
for both Subutai and CSA in terms of their capacity to ac-
celerate applications. For Subutai, these events are accelerated
through the HW/SW co-design proposed by our work. For
CSA, the same set of events are the only moments where it
can apply its policy. Additionally, CSA relies on the premise
that accelerating critical sections will decrease the overall
execution time. This premise works well on barrier-based
workloads, such as Streamcluster and Bodytrack, where the
application is always working on the worst-case scenario (i.e.,
all worker threads blocked waiting for the slowest thread to
join the barrier). However, pipeline applications, such as x264,
can start working on new data as soon as the first thread
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TABLE X
UNFAIRNESS METRIC FOR CSA AND RR SCHEDULERS (LOWER IS

BETTER).

Application set
SW-only Subutai

RR CSA RR CSA
Bodytrack ×8 1.04 1.04 1.16 1.15

Streamcluster ×8 1.11 1.11 1.19 1.19
x264 ×8 1.27 1.24 1.12 1.20
mix ×8 2.00 1.71 1.88 1.83

has finished; therefore, CSA has a lesser impact on such
applications.

Table X presents the unfairness metric. For all cases, CSA
either maintains or decreases the unfairness of the scheduler
for the application set, except for x264. Nonetheless, Fig. 13c
shows that x264 has the same overall execution time in both
cases. Consequently, these results indicate that the use of the
CSA policy keeps the fairness of the baseline scheduler.

E. Synthetic Benchmark

The results presented in the previous sections provide a sys-
temic view of Subutai, but they do not convey the optimization
in the synchronization itself. The lack of a microcosm view
happens because the applications use at least thousands of syn-
chronization primitives during their execution. Consequently,
we employ a one producer many consumers synthetic appli-
cation encompassing a few calls to the three synchronization
primitives (mutex, barrier, and condition) using six threads.

Table XI shows the average absolute time of Subutai and SW-
only for these primitives.

Subutai speeds up significantly every synchronization prim-
itive compared to the SW-only implementation. The compar-
ison is made from the application perspective; for instance,
the condition broadcast and mutex unlock operations have
no response packet; consequently, Subutai can return to the
application immediately after the request packet is sent. Thus,
the processing is offloaded to the HW, and the primitive
is handled faster from the caller perspective. The SW-only
implementation depends on the following costs to handle
synchronization primitives (Fig. 3): (i) context switching; (ii)
synchronization for queue operations; and (iii) kernelspace
switching. Item (i) is reduced in Subutai by using a distributed
OS. As stated in Section III-A, we can use a faster context
switch with a distributed OS. The faster OS is useful for
functions that are blocking, and every group handled by
Subutai has these functions. Item (ii) is reduced by offloading

TABLE XI
RESULTS FOR PRODUCER-CONSUMER APPLICATION.

Primitive Type Avg. SW Avg. Subutai

Mutex
Lock empty 1537 ns 127 ns

Lock queued 64178 ns 916 ns

Unlock 4400 ns 60 ns

Barrier Wait (released) 102467 ns 1183 ns

Condition
Broadcast 25209 ns 60 ns

Queued 42844 ns 1022 ns
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all queue operations to hardware. Finally, item (iii) is not
present in our OS. Subutai adds the cost of I/O operations
to deal with Subutai-HW (Fig. 4), which is not present in the
SW-only solution. Nonetheless, these factors explain the gains
shown in Table XI.

IX. CONCLUSION

This paper presents Subutai, an HW/SW co-design solu-
tion for accelerating legacy and novel parallel applications
through data synchronization. Unlike other synchronization
solutions [1] [9] [15], our approach does not require any
user-level modification, such as source code changes. Subutai
overrides the shared library of PThreads while maintaining its
functionality and API. Ergo, any binary using PThreads for
data synchronization can benefit from the proposed solution.

Subutai relies on hardware-handled operations to accelerate
common synchronization techniques found on parallel appli-
cations. By doing so, the overall execution time speeds up
to 1.77×, on average. Besides, we show that our solution is
efficient in the general case of multiple applications sharing
computing resources as we propose the CSA scheduling policy
to accelerate applications further on a resource-contention
scenario by providing priority to threads that are currently
running in a critical section. We have implemented this policy
using an approach that improves the balance of the scheduler
(i.e., low unfairness), making the policy highly portable across
different scheduling techniques. Even with such limitations,
we achieved a speedup of up to 4.61× for shared-memory
parallel applications.
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