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This paper is about the famous strong Goldbach's conjecture which states that : every even integer greater than two is a sum of two primes: To investigate in the validity of this amazing statement, we present a new approach attack using the contradiction or the reduction ad absurdum. The idea used here can be summarized as follows: based on the well ordering of the set of natural numbers N , we consider for every even integer 2n 4, with n 2, the …nite sequence of natural numbers S m (n) = (s i (n)) i2f1;2;:::;mg de…ned by: s i (n) = 2n p i , where p i is the i-th prime number in the …nite strictly ordered sequence of primes

where m = (2n) denotes the number of primes p such that p < 2n. We prove in …rst that, if the sequence S m (n) = (s i (n)) i2f1;2;:::;mg do not contains a prime number then the largest terms of the sequence exceeds the number 2n and this is an absurdity because S m (n) is strictly decreasing sequence of natural numbers from 2n 2 to 1, i.e,

Consequently, for any natural number n 2, there exists at least one prime number s r (n) = 2n p r belonging to the sequence S m (n), and we obtain then the expected result 2n = s r (n) + p r , where p r and s r (n) are primes from the set P m . Key Words: Well-ordering (N; <), the product order (N m ; ), basic concepts and theorems on number theory, the indirect and inductive proofs on natural numbers. AMS 2010:

such that every su¢ ciently large even integer is in the set P h + P k of sums of integers of P h and P k . The …rst result in this line of study [START_REF] Brun | le crible d'Eratosthène et le théoreme de Goldbach[END_REF], was obtained by Brun in 1919 by showing that: every su¢ ciently large even number is in P 9 + P 9 . In [START_REF] Rényi | on the representation of even numbers as the sum of a prime and almost prime[END_REF], Rényi proved in 1947 that there exists an integer k 1 such that every su¢ ciently large even integer is in P 1 + P 7 . In 1950, Selberg further improved the result in [START_REF]Selberg The general sieve method and its place in prime number theory[END_REF], by showing that every su¢ ciently large even integers is in P 2 + P 3 . The best result in this direction is due to Chen [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II[END_REF] (announcement of results in 1966, proofs in detail in 1973 and 1978) proving that:

Every su¢ ciently large even integer may be written as 2n = p + m, where p is a prime and m 2 P 2 .

The "basis" approach began in 1930 with the theorem of Schnirelmann [START_REF] Schnirelmann | Uber additive eigenschaften von zahlen[END_REF], proving that: There exists a positive integer S, such that every su¢ ciently large even integer is the sum of at most S primes. The best known result currently stems from the proof of the weak Goldbach conjecture by Harald Helfgott [START_REF] Helfgott | The ternary Goldbach conjecture is true[END_REF], which directly implies that every even number n 4 is the sum of at most 4 primes. For further history and progress in the Goldbach problem see, for example, the paper [START_REF] James | Recent progress in the Goldbach Problem[END_REF] and the book [START_REF] Ribenboim | The little Book of Big Primes[END_REF] from respectively R. D. James and P. Ribenboim and the paper "Goldbach's conjecture" from the wikipedia the free encyclopidia [START_REF]Goldbach's conjecture, from Wikipedia, the free encyclopedia[END_REF].

The paper is organised as the follows: The …rst section is devoted to giving a brief history on the Goldbach's conjecture and the idea used in this paper to proving the conjecture. We give in the second section, the theoretical elements from the number theory essential to the paper. The third section, is the main section of the paper, where the sequences S m (n) of natural numbers are given, and we prove that these sequences contains a prime numbers for each natural number n 1. And …nally, in the last subsection 3:2, we deduce the validity of the strong Goldbach's conjecture

The idea used in this paper to prove the conjecture

To prove the conjecture, we consider for every even natural number 2n 4, with n 2, the …nite sequence of natural numbers S m (n) = (s i (n)) i2f1;2;:::;mg de…ned by s i (n) = 2n p i , where p i is the i-th prime number in the …nite strictly ordered sequence of primes P m := p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p m where m = (2n) denotes the number of primes p such that p < 2n. To con…rm that, for each natural number n 2, there exists at least one prime number s r (n) = 2n p r belonging to the sequence S m (n), we prove by contradiction that, if each term the sequence S m (n) is a composite number, then it is impossible to write all the terms of S m (n) between the numbers 1 and 2n 2, and this contradict the fact that we have:

2n > s 1 (n) = 2n p 1 = 2n 2 > s 2 (n) = 2n p 2 = 2n 3 > ::: > s i (n) =
2n p i > s i+1 (n) = 2n p i+1 > ::::: > s m (n) = 2n p m 1.

i.e, all the terms of sequence S m (n) are normaly between the natural numbers 1 and 2n.

Consequently, the sequence S m (n) must contains at least one prime s r (n) = 2n p r of P m . We obtain then the long-awaited result 2n = s r (n)+p r , where p r is the r-th prime number of the sequence P m ; This result will con…rms the validity of the Goldbach's statement. It is noted here that any solution on primes p, q of the equation p + q = 2n, for a given natural number n 2, exists if and only if p 2 P m and q = 2n p 2 S m (n) \ P m ; and the smallest of these numbers, suppose that is p, must be between 2 and n, i.e., 2 p n and the other q must be in n q < 2n. For this reason, the sequence S m (n) of natural numbers, as de…ned above, are considered in this paper for proving the conjecture.

Preliminary and theoretical elements essential to the paper

The set of natural numbers N := 1; 2; :::; n; :::, is well ordered using the usual ordering relation denoted by , where any subset of N contains a least element. Another way to see the well-ordering of N is that any natural number n can be reached in …nite counting steps by ascent (adding 1) or descent (subtracting 1) from any other natural number m; there isn't an in…nite descent on natural numbers. This signi…cant characteristic property of the set of naturals numbers N, is the key of almost results of properties of natural numbers.The concept of well-ordering is of fundamental importance in view of the mathematical induction to proving, in two steps only, the validity of a property H (n) depending on natural number n. For the natural numbers a; b, we say a divides b, if there is a natural number q such that b = aq.

In this case, we also say that b is divisible by a, or that a is divisor of b, or that a is a factor of b, or that b is a multiple of a. If a is not a divisor of b, then we write a -b. A natural number p > 1 is called prime if it is not divisible by any natural number other than 1 and p. Another way of saying this is that a natural number p > 1 is a prime if it cannot be written as the product p = t 1 t 2 of two smaller natural numbers t 1 ; t 2 not equal to 1. A natural number b > 1 that is not a prime is called composite. The number 1 is considered neither prime nor composite because the factors of 1 are redundant 1 = 1 1 = 1 1 ::::: 1. We shall denote by p 1 = 2 < p 2 = 3 < p 3 = 5 < p 4 = 7 < ::: < p i < :::

the in…nite increasing sequence of primes, where p i is the i-th prime in this sequence. Euclid's theorem ensures that there are in…nitely many primes, without knowing their pattern and indication of how to determine the i-th prime number. There is no regularity in the distribution of these primes on the chain (N; ); in certain situation they are twins, i.e., there exists a positive integer k such p k+1 = p k + 2, like p 2 = 3 and p 3 = 5, p 5 = 11 and p 6 = 13 (it is not known today whether there are in…nitely many twin primes), while at the same time, for any integer k 2, the sequence of successive k 1 natural numbers k!+2; k!+3; k!+4; :::; k!+k, are all composite, for the simple reason that, any term k! + t, for 2 t k; is divisible by t.

The fundamental theorem of arithmetics shows that any natural number n > 1 can be written as the product of primes uniquely up the order. For the natural number n 2, we denote by (n) the number of primes p n, where (n) is called also the prime counting function, for example (4) = 2,

(5) = 3,...etc.). The fundamental theorem of primes (Tcheybeche¤ gave an empirical estimation around 1850, Hadamard and de Vallée-Poussin theoretical proof at the end of 19 th century) shows that, for any large natural number n, we have (n) n ln n and then p n n ln n where ln denotes the natural logarithm of base e = 2; 71:::. The Bertrand's postulate (1845) provides that between any natural number n 2 and its double 2n there exists at least one prime. Equivalently, this may be stated as (2n) (n) 1, for n 2, or also in compact form: p n+1 < 2p n for n 1. Recall that the notation f (x) h (x) for a positive real valued continuous functions f (x) ; h (x) means that lim x!1 f (x) h(x) = c, with a constant positif c, and in this case f (x) ; h (x) are said to be asymptotically equal as x tends to in…nity. The following result from [START_REF] Bach | Algorithmic number theory, vol I: E¢ cient algorithms[END_REF] is useful for this paper to estimate some results for a large natural number n : The prime sums of the …rst n primes, denoted (n) = m P i=1 p i , is asymptotically equivalent to 1 2 n 2 ln n. For the notions in elementary number theory see for example [START_REF] Stillwell | Numbers and geometry[END_REF] and in Algorithmic number theory see [START_REF] Bach | Algorithmic number theory, vol I: E¢ cient algorithms[END_REF]. Recall that the set of natural N is the disjoint union N = f1g [ Even [Oddc [Odd Pr imes where Even is the set of the even natural numbers, Oddc is the set of odd composite natural numbers and Odd Pr imes is the set of odd primes. Evidentally, the number 2 is the only even prime number.

Recall that a sequence of natural number is an ordered set of numbers that most often follows some rule or pattern to determine the next term in the order. formally, a sequence of real numbers is a mapping u : N ! R, we typically write it as n 7 ! u n . A subsequence of the sequence u is a map v = u where : N ! N is a strictly increasing mapping. Then v n = u ( (n)) . For example, the sequence of primes P is a subsequence of the sequence of natural numbers N, with the respect of the usual ordering . An arithmetic sequence u n+1 = u n + d is in which successive terms di¤er by the same amount d called the reason of the sequence. Dirichlet's theorem on arithmetic progression asserts that if gcd (a; d) = 1 then an + d is prime for in…nitely many natural number n. A series is summation of the terms of a sequence. A …nite series are typically written in the following manner: 3 The sequences S m (n) containing a prime numbers

Before giving the sequences S m (n) used to con…rm the conjecture, we begin by these simple lemmas in view of their usefulness for the rest of the paper.

Lemma 2 Any natural number b 6 = 1 admits a prime divisor. If b is not prime, then there exists a prime p divisor of b such that p 2 b.

Proof. By the de…nition of prime number, if the natural number b 6 = 1 admits only the number b as proper divisor, then b is a prime number. If b is not prime, then it can be factored as b = pq such that: 1 < p < b and 1 < q < b with p is the smallest, under the usual ordering , proper factor of the number b. Since p is the smallest proper factor of b then p must be a prime otherwise, it is not then the least factor of b. As p is the least factor of b then, p q. Multiplying both sides by p, we obtain: pp = p 2 pq = b.

Lemma 3 If the odd integer t > 1 is not prime, then it can be factorised only in the form t = t 1 t 2 where t 1 , t 2 are proper factors 6 = 1, and each factor t 1 and t 2 , it is also an odd natural number greater or equal to the number 3.

Proof. If the odd integer t > 1 is not prime, then it is composite. Let t = t 1 t 2 be any possible factorization of t with t 1 , t 2 are proper factors 6 = 1.

If one of these factors (or both) is an even integer, then the product t 1 t 2 = t will be also an even integer, but the number t is odd. Then each of the factors t 1 and t 2 must be odd and then greater or equal to the number 3.

Let m 1 be a natural number. We denote by I m = f1; 2; :::; mg the set of the …rst m consecutive natural numbers from 1 to m. For any non empty set E, we denote by E m the cartesian product of m copies of E. If m 2, then E m = E m 1 E. An element (a 1 ; a 2 ; :::a m 1 ; a m ) = ((a 1 ; :: 

:; a m 1 ) ; a m ) of E m = E m 1 E is called m tuples. It

Proof. By induction on

i 2 I m . For i = 1, if a 1 < b 1 then a 1 < b 1 < b 2 ::: < b m , and we have a 1 = 2 b = (b i ) i2Im , contradiction. For the same reason, if b 1 < a 1 , we obtain b 1 = 2 a = (a i ) i2Im
and then it necessary that a 1 = b 1 . Suppose that we have for some i with m > i

2, a 1 = b 1 , a 2 = b 2 ;...,a i = b i . For i + 1, if a i+1 < b i+1
, then there exists no b j for j i + 1 such that a i+1 = b j and there exists no b j for j i because

a i+1 > a i = b i > a i 1 = b i 1 > ::: > a 1 = b 1 The same argument holds if b i+1 < a i+1 , then it is necessary that we have a i+1 = b i+1 . Consequently, for each i 2 I m : a i = b i .
Note that the condition "a i = b j " for some i; j 2 I m ", in the lemma 3 above, is necessary and su¢ cient condition. It is necessary, because we can exhibit two increasing m sequences

a = (a 1 < a 2 ::: < a m ), b = (b 1 < b 2 < ::: < b m ) with m P i=1 a i = m P i=1 b i and a i 6 = b i for each i 2 I m . For example, a = (2 < 10)
and b = (4 < 8).

The sequences S m (n)

Let n 2 be a natural number. We consider the …nite strictly increasing sequence of the …rst m consecutif prime numbers P m : p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p i ::: < p m where m = (2n) denotes the number of primes p < 2n. Let P m = (p i ) i2Im denotes the …nite successive primes strictly smaller than 2n. The Bertrand postulat asserts that at least the prime p m is between n and its double 2n. For any natural number n > 2, we consider the …nite sequence S m (n) = (s i (n)) i2Im of natural numbers de…ned by: s i (n) = 2n p i , where p i is the i-th prime of P m . Then we have:

s 1 (n) = 2n 2, s 2 (n) = 2n 3, s 3 (n) = 2n 5, . . . s i (n) = 2n p i , . . . s m (n) = 2n p m .
Example 5 For n = 10, the …nite sequence of primes less than 20 are: 

p 1 = 2 < p 2 = 3 < p 3 =
(n) = (s i (n)) i2Im de…ned by s i (n) = 2n p i , with 1 i m, is strictly decreasing from s 1 (n) = 2n 2 = max (S m (n)) to s m (n) = 2n p m = min (S m (n))
1, and each element s i (n) of this sequence is an odd natural number except the …rst term s 1 (n) = 2n 2 that is evidently an even number. The last term s m (n) is equal to 1 only in the case when p m = 2n 1.

Proof. Let n > 2 be a natural number with m = (2n). Since the …nite sequence of primes P m : p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p i ::: < p m is strictly increasing, and each term s i (n) is de…ned by 2n p i , then the sequence S m (n) is strictly decreasing from s 1 (n) to s m (n). In fact, we have p i+1 > p i and then s i (n) = 2n p i > s i+1 (n) = 2n p i+1 for each i with 1 i m 1. this shows that we have:

s 1 (n) = 2n p 1 = 2n 2 > s 2 (n) = 2n p 2 = 2n 3, s 2 (n) > s 3 (n) = 2n p 3 = 2n 5, ., ., ., s i (n) = 2n p i > s i+1 (n) = 2n p i+1 > ::::: > s m (n) = 2n p m 1.
Since for each i, with 2 i m, the prime p i is odd, then the term s i (n) = 2n p i is also an odd natural number. The …rst term s 1 (n) = 2n 2, is the unique even number in the sequence S m (n). The last term s m (n) = 2n p m = min (S m (n)) is equal to the number 1 if and only if p m = 2n 1. In fact, if p m = 2n 1 then s m (n) = 2n p m = 2n (2n 1) = 1. In the reverse case, we have p < 2n, 8p 2 P m , and then 2n p > 0 () 2n p 1; and we have 2n p = 1 only in the case when p = 2n 1 = p m . In the example 4, we have this situation, as p 8 = 19 then s 8 (10) = 20 19 = 1. The strict ordering on N m noted can be also de…ned by: a = (a 1 ; a 2; :::; a m ) b = (b 1 ; b 2; ::

:; b m ) if a i < b i for each i 2 I m .
Evidently, the ordering on N m is not a total ordering, for example the sequences (1; 2; 3), (1; 1; 4) of N 3 are not comparable. But (N m ; ) contains the least element (1; 1; :::; 1) (m terms of 1), which satis…es (1; 1; :::; 1) a = (a 1 ; a 2; :::; a m ) for every a 2 N m Notice that for each integer m 1, the set N m equipped the operation of addition of m-sequences de…ned by : For every two m tuples a = (a 1 ; a and this element of N 7 is the smallest element among the set of all the 7-tuples of odd composite natural numbers written in increasing order. Lemma 9 Let (c 1 ; c 2 ; c 3 ; :::; c m 1 ; c m ) be the smallest element of Oddci (m). If m odd composite natural numbers fa 1 ; a 2 ; :::; a m g are such that a 1 < a 2 < ::: < a m with a 1 c 1 then a i c i , for each i with 1 i m. And consequently we have

m P i=1 a i m P i=1 c i .
Proof. The proof is by induction on i 2 I m . For i = 1 we have a 1 c 1 , and then the hypothesis is given true for i = 1 . For i = 2, we have a 2 > a 1 c 1 then a 2 c 2 because c 2 is the …rst odd composite after c 1 i.e., c 2 is the consecutive odd composite of c 1 , and then the hypothesis is true for i = 2 . Suppose that for some i 2, we have a i c i . Since a i+1 > a i and a i c i then a i+1 > a i c i , and since the …rst odd composite after a i is a i+1 then a i+1 c i+1 . We conclude by induction on i that we have, for each i 2 I m , a i c i . Consequently, we have

m P i=1 a i m P i=1 c i .
Unfortunately, we haven't an explicit formula which determines the m-th odd composite natural number, but we can proceed as follows to enumerate them in increasing order. Recall that, the odd composite numbers are the odd positive integers of the form a (i; j) = (2i + 1) (2j + 1) = 4ij + 2 (i + j) + 1 where (i; j) 2 N 2 with 1 i j (because a is a symetric function on i and j).

Equivalently, an odd composite numbers are the integers of the form a (p; s) = 2 (2p + s) + 1 where p = ij and s = i + j with (i; j) 2 N 2 and 1 i j. Then, we can enumerate these numbers according the increasing values of the product p and then the increasing correspondant sum s. In other words for each p, from p = 1; 2; 3; :::, we compute the couple (i; j), solution for the equation p = ij, with the condition 1 i j, and then the correspondant sum s = i + j, and …nally the resulting odd composite number a (p; s). For example, For p = ij = 1 the unique solution is (i; j) = (1; 1) and then s = 2 which gives a 1 = 2 (2 1 + 2) + 1 = 9. For p = ij = 2 the unique solution is (i; j) = (1; 2) and then s = 3 which gives a 2 = 2 (2 2 + 3) + 1 = 15. For p = ij = 3 the unique solution is (i; j) = (1; 3) and then s = 4 which gives a 3 = 2 (2 3 + 4) + 1 = 21. For p = ij = 4 the …rst solution is (i; j) = (2; 2) and then s = 4 which gives a 4 = 2 (2 4 + 4) + 1 = 25. and the second solution is (i; j) = (1; 4) and then s = 5 which gives a 5 = 2 (2 4 + 5) + 1 = 27,..., and so on. Since we haven't a closed formula which determines the m-th odd composite natural number in function of m, we cannot also write, in function of the parametre m, all the terms of the smallest m tuple i.e, T 2m C m T 3m . Or equivalently, in terms of …nite serie, P T 2m < P C m < P T 3m and we have T 3m is an element of Oddci (m) but T 2m is not in Oddci (m). Evidently, we have T 2m T 3m .

It is noted here that the smallest element C of the set Oddci (without a restricted m) contains in increasing order: each element of the sequence T 3 = (3 (2k + 1)) k 1 , and also each element from the sequence T 5 = (5 (2k + 1)) k 2 which are not multiple of the number 3 and each element from the sequence T 7 = (7 (2k + 1)) k 3 which are not multiple of the number 3 or the number 5, ... and each element from the sequence T p i = (p i (2k + 1)) 2k+1 p i , where p i is the i-th prime, which are not multiple of the primes p 1 or p 2 or ...or p i 1 ... and so on. This process of the construction of the smallest element C shows that each element of the sequence T 3 = (3 (2k + 1)) k 1 is also an element of C, i.e, T 3 is a subsequence of the sequence C and the …rst element of C is the …rst element of the sequence T 3 . And since the di¤erence between two consecutive elements of T 3 is exactly 6, then each other element of C, taken from the others sequence T 5 or T 7 or...or T p i ..., is inserted in increasing order between two appropriate consecutif elements of T 3 . Then the gaps d i = c i+1 c i , for each i 2 N, between two consecutive odd composite natural numbers cannot exceed the number 6, and we have d i 2 f2; 4; 6g because the di¤erence between any two odd natural numbers is even, then 2 d i 6. For example, the …rst four gaps are: The above remarks, shows that we have the following result.

d 1 = c 2 c 1 =
Lemma 10 For every natural number m 4, the smallest element Notice that the above result is equivalent to say that the sequence C m is limited between the sequence m = (9 + 2i) i2f0;1;:::;m 1g and the sequence T 3m = (3 (2i + 1)) i2f1;:::;mg , i.e., m C m T 3m in the product order (N m ; ).

C m = (c 1 < c 2 < ::: < c m ) of the subset Oddci (m), is limited between m C m T 3m ,
Example 11 For example, the …rst ten successive odd composite numbers

9 +6 ! 15 +6 ! 21 +4 ! 25 +2 ! 27 +6 ! 33 +6 ! 35 +6 ! 39 +6 ! 45 +4 ! 49
are limited in the top by the …rst ten odd composite numbers multiple of 3 :

9 +6 ! 15 +6 ! 21 +6 ! 27 +6 ! 33 +6 ! 35 +6 ! 39 +6 ! 45 6 ! 51 +6 ! 57
or equivalently in the product order (N 10 ; ), we have: and this example shows that the sequence of the multiple of 3 grow faster than the sequence the odd composite natural numbers since the sequence of the multiple of 3 is a sub-sequence of the sequence of odd composite natural numbers.

(
The following lemmas gives some lower bounds of the m-th odd composite natural number c m .

Lemma 12

The m-th odd composite natural number c m is greater than 2m with m = (2n).

Proof. The proof is by induction on the natural m 1. For m = 1, we have and c 1 = 9 > 2 1, consequently, the hypothesis is true for m = 1. Suppose that for some natural m 1, we have c m > 2m with m = (2n). For m + 1, we have the gabs d = c m+1 c m 2 f2; 4; 6g, and then c m+1 c m 2, or equivalently c m+1 c m + 2. Since c m > 2m by the hypothesis for m 1, we obtain then c m+1 c m + 2 > 2m + 2 = 2 (m + 1), consequently c m+1 > 2 (m + 1). We conclude by induction on m that we have c m > 2m, for each m 1.

Even better, we have: Lemma 13 For each natural n 1, we have c m > 2n with m = (2n) and c m is the m-th odd composite number.

Proof. The proof is by induction on the natural n 1. For n = 1, we have m = (2 1) = 1 and c 1 = 9 > 2 1 = 2, consequently, the hypothesis is true for n = 1. For n = 2, we have m = (4) = 2. And the assertion c 2 = 15 > 2 2 = 4 is also true for n = 2. Suppose that for some natural n 1, we have c m > 2n with m = (2n). For n + 1, we have m 0 = (2 (n + 1)) = m + 1 in the case when p m+1 = 2n + 1, and (2 (n + 1)) = m in the case when p m+1 6 = 2n+1. In the case p m+1 = 2n+1 then c m+1 > 2n+1 since c m > 2n by the hypothesis for n. And in the case p m+1 6 = 2n + 1, we have also c m+1 > 2n + 1 since c m is at least equal to 2n + 1. In either cases, we have c m+1 > 2 (n + 1) since d = c m+1 c m 2 f2; 4; 6g. We conclude by induction on n that we have, for each n 1, c m > 2n with m = (2n).

Given the importance of above lemma for the paper, we give an other proof by contradiction and we con…rm the validity of the lemma for a large n. Proof. The proof is by contradiction. Suppose that, in the contrary, we have for certain n 1, c m 2n. Then, the interval f1; 2; ::::; 2ng contains m primes + m composites +n even numbers. Since the di¤erence between two consecutif odd numbers is 2. And last odd number in the interval is 2n 1, which it is a prime or an odd composite number, in either cases we have then : 1 + 2m = 2n 1 =) m = n 1: Then we have (n 1) + (n 1) + n = 2n; and this is an absurdity. Consequently, we have for each n 1; c m > 2n.. For a large n;we can con…rm also that we have the following:

The fundamental theorem of primes lim n log n=p n = 1 is equivalent to: the n th prime p n is about n log n , for large n. And this may be interpreted as asserting that, if there are n primes in an interval, then the length of the interval is roughly n log n. Since we have m primes, with m = (2n) , then 2n m log m Suppose that c m 2n., then we have m + m = n (m primes+m composites= n odd numbers between 1 and 2n). Then 2m = n =) 2m = (m log m) =2 and this implies that log m=4 which is absurd for a large n. The following lemma asserts that, if each terms of the sequence S m (n) = (s i (n)) i2Im , is a composite natural number, then the largest term of the sequence will exceed the number 2n, and this will contradict the fact that the greatest element of the sequence S m (n) is equal to 2n 2.

Lemma 14 If each term of the sequence S m (n) is a composite natural number then at least the maximal element of this sequence will be exceeds the number 2n.

Proof. From the lemma 6, all the terms of sequence S m (n) are an odd numbers except the …rst s 1 (n) = (2n 2). Since each term s i (n) 6 = 1 it is supposed to be a composite number, we consider then the possible factorization of each odd term s i (n) as the following form:

s i (n) = p 0 i (n) q i (n)
such that p 0 i (n) is the smallest prime number dividing s i (n), (the existence of this prime factor is assured by the fundamental theorem of arithmetic or it su¢ ces to see the Lemma 2, and q i (n) is the other proper factor). According to the lemmas 3 and 6, the factors p 0 i (n), q i (n) are odd 3, for all i 2 f2; :::; mg in the case when p m 6 = 2n 1, and for all i 2 f2; :::; m 1g in the case when p m = 2n 1 (because in this case, we have s m = 2n p m = 2n (2n 1) = 1). The term s 1 (n) = 2n 2 = 2(n 1) is the only natural even number of the sequence S m (n), which it is evidently a composite number.

Since s i (n) = 2n p i > 2n p i+1 = s i+1 (n), we have also,

s i (n) = p 0 i (n) q i (n) > p 0 i+1 (n) q i+1 (n) = s i+1 (n), for each i 2 f1; :::; m 1g. Consequently, s 1 (n) = p 0 1 (n) q 1 (n) > s 2 (n) = p 0 2 (n) q 2 (n) > ::: > s m (n) = p 0 m (n) q m (n) 1.
Two cases will be considered, depending on whether p m 6 = 2n 1 (in this case s m (n) = 2n p m 3 it is also a composite number) or, p m = 2n 1 (in this case s m (n) = 2n p m = 1 it is neither prime nor a composite number).

1 st case: if p m 6 = 2n 1, then each term s i (n) is to be considered a composite number, and we have:

s 1 (n) = 2n p 1 = p 0 1 (n) q 1 (n) with p 0 1 (n) 2 and q 1 (n) 3, then s 1 (n) 9, s 2 (n) = 2n p 2 = p 0 2 (n) q 2 (n) with p 0 2 (n) 3 and q 2 (n) 3, then s 2 (n) 9, ., ., ., s m (n) = 2n p m = p 0 m (n) q m (n) with p 0 m (n) 3 and q m (n) 3, then s m (n) 9. But, since s 1 (n) > s 2 (n) > :::: > s m (n) c 1 = 9,
is strictly decreasing sequence of odd composite numbers, then certainely, s m 1 (n) c 2 = 15, s m 2 (n) c 3 = 21, ..., and s 1 (n) c m (the m-th odd composite number). According with the lemma 13 we have the c m > 2n. Consequently, we have s 1 (n) c m > 2n. For the second case, i.e., if p m = 2n 1 then s m (n) = 2n p m = 2n (2n 1) = 1, and in this case we have:

s 1 (n) > s 2 (n) > :::: > s m 1 (n) 9 = c 1 , and consequently, s 1 (n) c m 1 .
But we have c m 1 2 (n 1)(from the lemma 13) and since c m 1 is an odd composite and the prime p m is equal to 2n 1, in this case, certainly c m 1 > 2n + 1 and then s 1 (n) c m 1 > 2n + 1. Consequently, from the cases 1 and 2 we have s 1 (n) > 2n , if each term of the sequence S m (n) is to be considered a composite natural number.

Existence of prime in the sequence

S m (n) = (s i (n)) i2I m ,
for any natural number n 2 with m = (2n)

Theorem 15 For any natural number n 2 with m = (2n), the …nite sequence of natural numbers S m (n) = (s i (n)) i2Im de…ned by s i (n) = 2n p i , with 1 i m, contains at least one prime s r 2 P m \ S m (n).

Proof. For each natural number n 2, let S m (n) = (s i (n)) i2Im be the …nite sequence of natural numbers as de…ned in the section 3 above with m = (2n). The proof is by contradiction, and so we begin by assuming that the following hypothesis H (n 0 ) is true for some natural number n 0 2.

The hypothesis H (n 0 ):

"There exists a natural number n 0 2, such that each term s i (n 0 ) 2 S m (n 0 ), for each i 2 I m , is not a prime number". This is equivalent to say : "there exists a natural number n 0 2, such that each term s i (n 0 ) 2 S m (n 0 ), for each i 2 I m , is a composite number or equal to the natural number 1". Symbolically the hypothsis H (n 0 ) can be written as "9 (n 0 > 2) 2 N; 8 i 2 f1; 2; 3; :::mg: the term s i (n 0 ) is not a prime number" We recall that, the unique term s i (n 0 ) of S m (n 0 ), which can be equal to the number 1 is the last term s m (n 0 ) = 2n 0 p m , in the case when p m = 2n 0 1 (see Lemma 6). The last term s m (n 0 ) = 2n 0 p m is the unique term of the sequence S m (n 0 ), which is neither prime nor a composite number in the case when p m = 2n 0 1, i.e., in the case when s m (n 0 ) = 1.

To contradict or reject the hypothesis H (n 0 ) for all n 0 > 2, (in symbolic terms this contradiction is written: 8 (n > 2) 2 N; 9i 2 f1; 2; 3; :::mg such that s i (n) is a prime number). Using the lemma 13, if the hypothesis H (n 0 ) is true for some natural number n 0 2, then s 1 (n 0 ) = max S m (n 0 ) c m > 2n 0 and this is an absurdity because s 1 (n 0 ) = 2n 0 2 = max S m (n 0 ) < 2n 0 and s m (n 0 ) = 2n 0 p m 1. Consequently, it is impossible to write all the elements of sequence S m (n 0 ) = (s 1 (n 0 ) > s 2 (n 0 ) > ::: > s m (n 0 )) between the numbers 1 and 2n 0 2 if each term of sequence it is assumed to be an odd composite number except the …rst term, which is evidently an even composite term. Consequently, the refutation of the argument H (n 0 ) for all n 0 > 2. Then, it is impossible to write each term of sequence S m (n) = (s i (n)) i2Im as an odd composite number between the numbers 1 and 2n 0 2, if each term of this sequence it is assumed to be a composite natural number, and consequently, there must be at least one term s r (n) = 2n p r = p 0 r (n) q r (n), which is not a composite number, then necessarily that the factor q r (n) is strictly inferior to the number 3, and because q r (n) is an odd number, it can not be equal to the number 2 and then we have certainely q r (n) = 1 and then s r (n) = 2n p r = p 0 r (n) q r (n) = p 0 r (n) 1, i.e, the prime p 0 r (n) is equal to the term s r (n) = 2n p r = p 0 r (n) with p 0 r (n) 2 P m ( where P m is the set of primes inferior strictly to the number 2n). Therefore, for each (n 2) 2 N, the sequence S m (n) = (s i (n)) i2Im contains at least one term s r (n), with r 2 I m , which it is a prime number, i.e, s r (n) 2 P m \ S m (n).

Theorem 16 Every even integer 2n 4, with n 2, is a sum of two primes.
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Proof. If n = 2 then, 4 = 2 + 2. If n > 2, we consider the …nite sequence of primes P m := (p 1 = 2 < p 2 = 3 < :::: < p m ) with m = (2n) and let S m (n) = (s i (n)) i2Im be the …nite sequence of natural numbers de…ned by s i (n) = 2n p i , where p i is i-th prime of P m . From the theorem 15, there exists at least one prime number s r (n) 2 S m (n). Since we have s r (n) = 2n p r , with p r is the r-th prime number of sequence P m , we obtain the result 2n = p r + s r (n). It follows that the Goldbach's conjecture is e¤ectively a theorem of number theory.

As a consequence of this result, given an even natural number 2n 4 with n 2, to …nd the pair of primes numbers (p; s) such that 2n = p+s, it su¢ ces that the algorithm runs through the …nite sequence S m (n) = (s i (n)) i2Im , which contains, at least one solution of this equation for each natural number n 2.

  Suppose we have the following arithmetic serie fa + (a + d) + (a + 2d) + ::: + a + (m 1) dg then

  kd) = m (a + (a + (m 1) d)) =2.

Lemma 4

 4 follows that two ordered m tuples (a 1 ; a 2 ; :::; a m ), (b 1 ; b 2 ; :::; b m ) are equal if and only if a 1 = b 1 ; :::; a m = b m . Let m 1 be a natural number. Let a = (a 1 < a 2 ::: < a m ), b = (b 1 < b 2 < ::: < b m ) be two strictly an increasing m-sequences of natural numbers such that for each i 2 I m there exists j 2 I m such that a i = b j . Then we have for each i 2 I m : a i = b i .

Lemma 6

 6 5 < p 4 = 7 < p 5 = 11 < p 6 = 13 < p 7 = 17 < p 8 = 19. Consequently, (20) = 8 and then the sequence S 8 (n) = S 8 (10) = (s i (10)) i2f1;2;:::;8g is : s 1 (10) = 20 2 = 18, s 2 (10) = 20 3 = 17, s 3 (10) = 20 5 = 15, s 4 (10) = 20 7 = 13, s 5 (10) = 20 11 = 9, s 6 (10) = 20 13 = 7, s 7 (10) = 20 17 = 3, s 8 (10) = 20 19 = 1. For the natural number n 2 with m = (2n), the …nite sequence of natural numbers S m

3. 1

 1 The smallest m-tuples of the set of the strictly increasing m-sequences of odd composite natural numbersWe denote by Odd = f1; 3; 5; :::g = f2k + 1=k 2 N [ f0gg the set of odd natural numbers and by Oddc the set of odd composite natural numbers, i.e., Oddc = fa 2 N=a = (2i + 1) (2j + 1) with i; j 2 N and 1 i jg = f9; 15; 21; 25; :::g.Evidently, we have Oddc Odd N.Let N m = N N ::: N be the cartesian product of m copies of the set of natural numbers N. The usual ordering on N can be extended to the ordering on N m , called the product order, in the following natural way: For every two m tuples a = (a 1 ; a 2; :::; a m ), b = (b 1 ; b 2; :::; b m ) of N m , we de…ne a = (a 1 ; a 2; :::; a m ) b = (b 1 ; b 2; :::; b m ) if a i b i for each i 2 I m .

Lemma 7 Example 8

 78 2; :::; a m ), b = (b 1 ; b 2; :::; b m ) of N m , then a + b = (a 1 + b 1 ; a 2 + b 2 :::; a m + b m ) 2 N m is a semigroup with the neutral element 0 m = (0; 0; :::; 0) (m-zeros).An important subset of N m , which concern this paper, is the subset of N m of the strictly increasing m tuples (or m sequences) of m odd composite natural numbers, which we denote, for the brevity, by Oddci (m). Then, the set Oddci (m) is de…ned by: Oddci (m) = 8 < : a = (a 1 < a 2 < ::: < a m ) 2 N m = a i is an odd composite natural number, for each i 2 I m and a i < a i+1 for every 1 i m 19 =; Evidently, we have Oddci (m) (Oddc) m N m . Since we have Oddci (m) N m , then the subset Oddci (m) is also partially ordered with the induced ordering of N m . For example, the 4-tuples a = (9 < 15 < 21 < 25), b = (21 < 35 < 39 < 63) 2 Oddci (4) with a b. In this paper, the phrases "increasing m-sequence" and "increasing m-tuples" have the same signi…cance and are used equally. For further notions of ordering see[START_REF] Hrbacek | Introduction to set theory[END_REF]. For any natural number m 1, the set Oddci (m) N m contains a smallest element.. Proof. Based on the well ordering of the set N, the smallest elementC m = min Oddci (m) = (c 1 < c 2 < ::: < c m 1 < c m )of the set Oddci (m) is equal to the m tuples of the …rst m consecutif odd composite natural numbers, which can be computed recursively from i = 1 to i = m, in the following manner: For i = 1, the smallest element of the set Oddc is the number c 1 = min fOddcg = min f9; 15; 21; 25; :::; g = 9, and then C 1 = (c 1 ) =[START_REF] Schnirelmann | Uber additive eigenschaften von zahlen[END_REF]. For i = 2, The second element c 2 of set Oddc is the number c 2 = 15 = min fOddc f9gg, consequently, we have C 2 = ((C 1 ) ; c 2 ) = ((C 1 ) ; 15) = ((c 1 ) ; 15) = (9; 15). Suppose that for i = m 1, we have: C m 1 = min Oddci (m 1) = (c 1 ; c 2 ; c 3 ; :::; c m 1 ) = (9; 15; 21; :::; c m 1 ), with c m 1 is the (m 1)-th odd composite natural number of the set Oddc then, the m-th odd composite natural number of the set Oddc is c m = min fOddc fc 1 ; c 2 ; c 3 ; :::; c m 1 gg, and consequently we obtain: C m = (C m 1 ; c m ) = ((c 1 ; c 2 ; c 3 ; :::; c m 1 ) ; c m ) = (c 1 ; c 2 ; c 3 ; :::; c m 1 ; c m ) For example, for m = 7 we have: min Oddci (7) = (9 < 15 < 21 < 25 < 27 < 33 < 35)

C

  m = (9; 15; 21; 25; :::; c m ) = (3 3; 3 5; 3 7; 5 5; :::; c m ), but we can assert in the following lemma 7, for each m 1, the smallest element C m is between the m tuple T 2m = (2 3; 2 5; :::; 2 (2m + 1)) = 2 (3; 5; :::; (2m + 1)) 2 N m and the m tuple T 3m = (3 3; 3 5; :::; 3 (2m + 1)) = 3 (3; 5; :::; (2m + 1)) 2 N m

2 N

 2 15 9 = 6, d 2 = c 3 c 2 = 21 15 = 6, d 3 = c 4 c 3 = 25 21 = 4, d 4 = c 5 c 4 = 27 25 = 2.In general manner, we have: c 1 = 9; and c i+1 = c i + d i , with d i 2 f2; 4; 6g, for each i 2 N. The …rst m consecutive odd composite natural numbers satisfy the following pseudo-recurrence equations:c 1 = 9, c 2 = c 1 + d 1 = 9 + d 1 , with d 1 2 f2; 4; 6g, but of cours d 1 = 6 in this case. c 3 = c 2 + d 2 = 9 + d 1 + d 2 ,with d 1 , d 2 2 f2; 4; 6g, but we have exactly d 1 = 6 and d 2 = 6 in this case. . . . c m = c m 1 + d m 1 = c m 2 + d m 2 + d m 1 = 9 + d 1 + d 2 + ::: + d m 1 , with d i 2 f2; 4; 6g for each i 2 f1; 2; :::; m 1g. We conclude that: for each m 2 N, the m-th odd composite natural c m is limited between the natural numbers N m = 9 + (2 + 2 + ::: + 2) = 9 + 2 (m 1) (the sum of 2 is taken (m 1) times), and the natural number N 0 m = 9 + (6 + 6 + ::: + 6) = 9 + 6 (m 1) i.e., 9 + 2 (m 1) c m 9 + 6 (m 1) for m Since the …rst four gaps are exactly d 1 = d 2 = 6, d 3 = 4 and d 4 = 2, we obtain then the strict inequality : for any natural number m 4. 9 + 2 (m 1) < c m < 9 + 6 (m 1)

  where m = (9 + 2i) i2f0;1;:::;m 1g and T 3m = (3 (2i + 1)) i2f1;:::;mg . Or equivalently, the sum m P i=1 c i of the …rst m consecutif odd composite natural numbers is limited between m (m + 8) < m P i=1 c i < 3m (m + 2). Proof. The sequence C m = (c 1 < c 2 <; :::; < c m ) of the …rst m consecutif odd composite natural numbers can be de…ned recursively by: c 1 = 9 and c i+1 = c i + d i , for each i 2 f1; 2; :::; m 1g, with d i 2 f2; 4; 6g. Then: m P i=1 c i = c 1 + c 2 + ::: + c m = 9 + (9 + d 1 ) + ::: + (9 + d 1 + ::: + d m 1 ). Since for each 1 i m 1, we have d i 2 f2; 4; 6g then m 2i) = m (m + 8) is a lower integer bound of m
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