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Abstract

This paper is about the famous strong Goldbach�s conjecture which
states that :
every even integer greater than two is a sum of two primes:

To investigate in the validity of this amazing statement, we present
a new approach attack using the contradiction or the reduction ad
absurdum. The idea used here can be summarized as follows: based
on the well ordering of the set of natural numbers N , we consider
for every even integer 2n � 4, with n � 2, the �nite sequence of nat-
ural numbers Sm (n) = (si (n))i2f1;2;:::;mg de�ned by: si (n) = 2n� pi,
where pi is the i-th prime number in the �nite strictly ordered se-
quence of primes

Pm := p1 = 2 < p2 = 3 < p3 = 5 < ::: < pm

where m = � (2n) denotes the number of primes p such that p < 2n.
We prove in �rst that, if the sequence Sm (n) = (si (n))i2f1;2;:::;mg do
not contains a prime number then the largest terms of the sequence
exceeds the number 2n and this is an absurdity because Sm (n) is
strictly decreasing sequence of natural numbers from 2n� 2 to 1, i.e,

s1 (n) = 2n� 2 > s2 (n) > :::: > sm (n) � 1
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Consequently, for any natural number n � 2, there exists at least
one prime number sr (n) = 2n� pr belonging to the sequence Sm (n),
and we obtain then the expected result 2n = sr (n)+pr, where pr and
sr (n) are primes from the set Pm .
Key Words: Well-ordering (N; <), the product order (Nm;�), basic
concepts and theorems on number theory, the indirect and inductive
proofs on natural numbers. AMS 2010: 11PXX, 11p32, 11P05,
11B37.

1 A brief history and some results on the con-
jecture

Historically, from the references [6] and [7], the conjecture dating from 1742
in a letter addressed to Euler from Goldbach expresses the following fact:

Any natural number n > 5 is the sum of three primes.

The mathematician Euler replied that this fact is equivalent to the following
statement:

Every even integer 2n � 4 is the sum of two primes.

Since then, three major approachs attack to this famous conjecture emerged
: "asymptotic study", "almost primes study" and �nally "basis".

The �rst result [4], obtained in the asymptotic case is due to Hardy and
Littlewood in 1923 under the consideration of Riemann hypothesis. In 1937,
Vingradov showed in [12] the same result, without using this assumption.

Theorem 1 (asymptotic theorem). There exists a natural number n0 such
that every odd number n � n0 is the sum of three primes.

A natural number n =
rQ
i=1

peii (where each pi is a prime) is called a k-

almost prime when
rP
i=1

ei = k; the set of k-almost primes is denoted by Pk.

The approach via almost-primes consists in showing that there exist h; k � 1
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such that every su¢ ciently large even integer is in the set Ph+Pk of sums of
integers of Ph and Pk. The �rst result in this line of study [2], was obtained
by Brun in 1919 by showing that: every su¢ ciently large even number is
in P9 + P9. In [8], Rényi proved in 1947 that there exists an integer k � 1
such that every su¢ ciently large even integer is in P1 + P7. In 1950, Selberg
further improved the result in [10], by showing that every su¢ ciently large
even integers is in P2+P3. The best result in this direction is due to Chen [3]
(announcement of results in 1966, proofs in detail in 1973 and 1978) proving
that:

Every su¢ ciently large even integer may be written as 2n = p+m, where p
is a prime and m 2 P2.

The "basis" approach began in 1930 with the theorem of Schnirelmann [9],
proving that:
There exists a positive integer S, such that every su¢ ciently large even

integer is the sum of at most S primes.
The best known result currently stems from the proof of the weak Goldbach
conjecture by Harald Helfgott[13], which directly implies that every even
number n � 4 is the sum of at most 4 primes.
For further history and progress in the Goldbach problem see, for example,
the paper [6] and the book [7] from respectively R. D. James and P. Riben-
boim and the paper "Goldbach�s conjecture" from the wikipedia the free
encyclopidia [14].
The paper is organised as the follows:

The �rst section is devoted to giving a brief history on the Goldbach�s con-
jecture and the idea used in this paper to proving the conjecture. We give
in the second section, the theoretical elements from the number theory es-
sential to the paper. The third section, is the main section of the paper,
where the sequences Sm (n) of natural numbers are given, and we prove that
these sequences contains a prime numbers for each natural number n � 1.
And �nally, in the last subsection 3:2, we deduce the validity of the strong
Goldbach�s conjecture

1.1 The idea used in this paper to prove the conjecture

To prove the conjecture, we consider for every even natural number 2n � 4,
with n � 2, the �nite sequence of natural numbers Sm (n) = (si (n))i2f1;2;:::;mg
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de�ned by si (n) = 2n � pi, where pi is the i-th prime number in the �nite
strictly ordered sequence of primes

Pm := p1 = 2 < p2 = 3 < p3 = 5 < ::: < pm

where m = � (2n) denotes the number of primes p such that p < 2n. To
con�rm that, for each natural number n � 2, there exists at least one prime
number sr (n) = 2n � pr belonging to the sequence Sm (n), we prove by
contradiction that, if each term the sequence Sm (n) is a composite number,
then it is impossible to write all the terms of Sm (n) between the numbers 1
and 2n� 2, and this contradict the fact that we have:

2n > s1 (n) = 2n� p1 = 2n� 2 > s2 (n) = 2n� p2 = 2n� 3 > ::: > si (n) =
2n� pi > si+1 (n) = 2n� pi+1 > ::::: > sm (n) = 2n� pm � 1.

i.e, all the terms of sequence Sm (n) are normaly between the natural numbers
1 and 2n.
Consequently, the sequence Sm (n) must contains at least one prime sr (n) =
2n�pr of Pm. We obtain then the long-awaited result 2n = sr (n)+pr, where
pr is the r-th prime number of the sequence Pm; This result will con�rms the
validity of the Goldbach�s statement. It is noted here that any solution on
primes p, q of the equation p + q = 2n, for a given natural number n � 2,
exists if and only if p 2 Pm and q = 2n�p 2 Sm (n)\Pm; and the smallest of
these numbers, suppose that is p, must be between 2 and n, i.e., 2 � p � n
and the other q must be in n � q < 2n. For this reason, the sequence Sm (n)
of natural numbers, as de�ned above, are considered in this paper for proving
the conjecture.

2 Preliminary and theoretical elements es-
sential to the paper

The set of natural numbers N := 1; 2; :::; n; :::, is well ordered using the usual
ordering relation denoted by �, where any subset of N contains a least ele-
ment. Another way to see the well-ordering of N is that any natural number
n can be reached in �nite counting steps by ascent (adding 1) or descent
(subtracting 1) from any other natural number m; there isn�t an in�nite de-
scent on natural numbers. This signi�cant characteristic property of the set
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of naturals numbers N, is the key of almost results of properties of natural
numbers.The concept of well-ordering is of fundamental importance in view
of the mathematical induction to proving, in two steps only, the validity of
a property H (n) depending on natural number n. For the natural numbers
a; b, we say a divides b, if there is a natural number q such that b = aq.
In this case, we also say that b is divisible by a, or that a is divisor of b,
or that a is a factor of b, or that b is a multiple of a. If a is not a divisor
of b, then we write a - b. A natural number p > 1 is called prime if it is
not divisible by any natural number other than 1 and p. Another way of
saying this is that a natural number p > 1 is a prime if it cannot be written
as the product p = t1t2 of two smaller natural numbers t1; t2 not equal to
1. A natural number b > 1 that is not a prime is called composite. The
number 1 is considered neither prime nor composite because the factors of 1
are redundant 1 = 1� 1 = 1� 1� :::::� 1. We shall denote by

p1 = 2 < p2 = 3 < p3 = 5 < p4 = 7 < ::: < pi < :::

the in�nite increasing sequence of primes, where pi is the i-th prime in this
sequence. Euclid�s theorem ensures that there are in�nitely many primes,
without knowing their pattern and indication of how to determine the i-th
prime number. There is no regularity in the distribution of these primes
on the chain (N;�); in certain situation they are twins, i.e., there exists a
positive integer k such pk+1 = pk + 2, like p2 = 3 and p3 = 5, p5 = 11 and
p6 = 13 (it is not known today whether there are in�nitely many twin primes),
while at the same time, for any integer k � 2, the sequence of successive k�1
natural numbers k!+2; k!+3; k!+4; :::; k!+k, are all composite, for the simple
reason that, any term k! + t, for 2 � t � k; is divisible by t.
The fundamental theorem of arithmetics shows that any natural number

n > 1 can be written as the product of primes uniquely up the order. For
the natural number n � 2, we denote by � (n) the number of primes p � n,
where � (n) is called also the prime counting function, for example � (4) = 2,
� (5) = 3,...etc.). The fundamental theorem of primes (Tcheybeche¤ gave
an empirical estimation around 1850, Hadamard and de Vallée-Poussin the-
oretical proof at the end of 19 th century) shows that, for any large natural
number n, we have � (n) � n

lnn
and then pn � n lnn where ln denotes the

natural logarithm of base e = 2; 71:::. The Bertrand�s postulate (1845) pro-
vides that between any natural number n � 2 and its double 2n there exists
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at least one prime. Equivalently, this may be stated as � (2n) � � (n) � 1,
for n � 2, or also in compact form: pn+1 < 2pn for n � 1. Recall that
the notation f (x) � h (x) for a positive real valued continuous functions
f (x) ; h (x) means that limx!1

f(x)
h(x)

= c, with a constant positif c, and in
this case f (x) ; h (x) are said to be asymptotically equal as x tends to in�n-
ity. The following result from [1] is useful for this paper to estimate some
results for a large natural number n : The prime sums of the �rst n primes,

denoted � (n) =
mP
i=1

pi, is asymptotically equivalent to 1
2
n2 lnn. For the no-

tions in elementary number theory see for example [11] and in Algorithmic
number theory see [1]. Recall that the set of natural N is the disjoint union
N = f1g [ Even [Oddc [OddPr imes where Even is the set of the even
natural numbers, Oddc is the set of odd composite natural numbers and
OddPr imes is the set of odd primes. Evidentally, the number 2 is the only
even prime number.
Recall that a sequence of natural number is an ordered set of numbers

that most often follows some rule or pattern to determine the next term in
the order. formally, a sequence of real numbers is a mapping u : N! R, we
typically write it as n 7! un. A subsequence of the sequence u is a map v =
u�� where � : N! N is a strictly increasing mapping. Then vn = u(�(n)). For
example, the sequence of primes P is a subsequence of the sequence of natural
numbers N, with the respect of the usual ordering �. An arithmetic sequence
un+1 = un+d is in which successive terms di¤er by the same amount d called
the reason of the sequence. Dirichlet�s theorem on arithmetic progression
asserts that if gcd (a; d) = 1 then an+ d is prime for in�nitely many natural
number n. A series is summation of the terms of a sequence. A �nite series

are typically written in the following manner:
nP
i=1

ai. Suppose we have the

following arithmetic serie fa+ (a+ d) + (a+ 2d) + :::+ a+ (m� 1) dg then
m�1P
k=0

(a+ kd) = m (a+ (a+ (m� 1) d)) =2.

3 The sequences Sm (n) containing a prime
numbers

Before giving the sequences Sm (n) used to con�rm the conjecture, we begin
by these simple lemmas in view of their usefulness for the rest of the paper.
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Lemma 2 Any natural number b 6= 1 admits a prime divisor. If b is not
prime, then there exists a prime p divisor of b such that p2 � b.

Proof. By the de�nition of prime number, if the natural number b 6= 1
admits only the number b as proper divisor, then b is a prime number. If b
is not prime, then it can be factored as b = pq such that: 1 < p < b and
1 < q < b with p is the smallest, under the usual ordering �, proper factor
of the number b. Since p is the smallest proper factor of b then p must be a
prime otherwise, it is not then the least factor of b. As p is the least factor
of b then, p � q. Multiplying both sides by p, we obtain: pp = p2 � pq = b.

Lemma 3 If the odd integer t > 1 is not prime, then it can be factorised
only in the form t = t1t2 where t1, t2 are proper factors 6= 1, and each factor
t1 and t2, it is also an odd natural number greater or equal to the number 3.

Proof. If the odd integer t > 1 is not prime, then it is composite. Let
t = t1t2 be any possible factorization of t with t1, t2 are proper factors 6= 1.
If one of these factors (or both) is an even integer, then the product t1t2 = t
will be also an even integer, but the number t is odd. Then each of the
factors t1 and t2 must be odd and then greater or equal to the number 3.

Let m � 1 be a natural number. We denote by Im = f1; 2; :::;mg the set of
the �rst m consecutive natural numbers from 1 to m. For any non empty set
E, we denote by Em the cartesian product of m copies of E. If m � 2, then
Em = Em�1 � E. An element (a1; a2; :::am�1; am) = ((a1; :::; am�1) ; am) of
Em = Em�1 � E is called m�tuples. It follows that two ordered m�tuples
(a1; a2; :::; am), (b1; b2; :::; bm) are equal if and only if a1 = b1; :::; am = bm.

Lemma 4 Let m � 1 be a natural number. Let a = (a1 < a2::: < am),
b = (b1 < b2 < ::: < bm) be two strictly an increasing m-sequences of natural
numbers such that for each i 2 Im there exists j 2 Im such that ai = bj.
Then we have for each i 2 Im : ai = bi.

Proof. By induction on i 2 Im. For i = 1, if a1 < b1 then a1 < b1 <
b2::: < bm, and we have a1 =2 b = (bi)i2Im, contradiction. For the same
reason, if b1 < a1, we obtain b1 =2 a = (ai)i2Im and then it necessary that
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a1 = b1. Suppose that we have for some i with m > i � 2, a1 = b1,
a2 = b2;...,ai = bi. For i + 1, if ai+1 < bi+1, then there exists no bj for
j � i + 1 such that ai+1 = bj and there exists no bj for j � i because
ai+1 > ai = bi > ai�1 = bi�1 > ::: > a1 = b1 The same argument holds if
bi+1 < ai+1, then it is necessary that we have ai+1 = bi+1. Consequently, for
each i 2 Im : ai = bi.

Note that the condition "ai = bj" for some i; j 2 Im", in the lemma 3 above,
is necessary and su¢ cient condition. It is necessary, because we can exhibit
two increasing m�sequences

a = (a1 < a2::: < am), b = (b1 < b2 < ::: < bm)

with
mP
i=1

ai =
mP
i=1

bi and ai 6= bi for each i 2 Im. For example, a = (2 < 10)

and b = (4 < 8).

3.0.1 The sequences Sm (n)

Let n � 2 be a natural number. We consider the �nite strictly increasing
sequence of the �rst m consecutif prime numbers

Pm : p1 = 2 < p2 = 3 < p3 = 5 < ::: < pi::: < pm

where m = � (2n) denotes the number of primes p < 2n. Let Pm = (pi)i2Im
denotes the �nite successive primes strictly smaller than 2n. The Bertrand
postulat asserts that at least the prime pm is between n and its double 2n.
For any natural number n > 2, we consider the �nite sequence Sm (n) =
(si (n))i2Im of natural numbers de�ned by: si (n) = 2n � pi, where pi is the
i-th prime of Pm. Then we have:

s1 (n) = 2n� 2,
s2 (n) = 2n� 3,
s3 (n) = 2n� 5,
.
.
.
si (n) = 2n� pi,
.
.

8



.
sm (n) = 2n� pm.

Example 5 For n = 10, the �nite sequence of primes less than 20 are:
p1 = 2 < p2 = 3 < p3 = 5 < p4 = 7 < p5 = 11 < p6 = 13 <
p7 = 17 < p8 = 19. Consequently, � (20) = 8 and then the sequence
S8 (n) = S8 (10) = (si (10))i2f1;2;:::;8g is :

s1 (10) = 20 � 2 = 18, s2 (10) = 20 � 3 = 17, s3 (10) = 20 � 5 = 15,

s4 (10) = 20� 7 = 13, s5 (10) = 20� 11 = 9, s6 (10) = 20� 13 = 7,
s7 (10) = 20� 17 = 3, s8 (10) = 20� 19 = 1.

Lemma 6 For the natural number n � 2 with m = � (2n), the �nite se-
quence of natural numbers Sm (n) = (si (n))i2Im de�ned by si (n) = 2n � pi,
with 1 � i � m, is strictly decreasing from s1 (n) = 2n � 2 = max (Sm (n))
to sm (n) = 2n � pm = min (Sm (n)) � 1, and each element si (n) of this
sequence is an odd natural number except the �rst term s1 (n) = 2n� 2 that
is evidently an even number. The last term sm (n) is equal to 1 only in the
case when pm = 2n� 1.

Proof. Let n > 2 be a natural number with m = � (2n). Since the �nite
sequence of primes

Pm : p1 = 2 < p2 = 3 < p3 = 5 < ::: < pi::: < pm

is strictly increasing, and each term si (n) is de�ned by 2n � pi, then the
sequence Sm (n) is strictly decreasing from s1 (n) to sm (n). In fact, we have
pi+1 > pi and then si (n) = 2n � pi > si+1 (n) = 2n � pi+1 for each i with
1 � i � m� 1. this shows that we have:
s1 (n) = 2n� p1 = 2n� 2 > s2 (n) = 2n� p2 = 2n� 3,
s2 (n) > s3 (n) = 2n� p3 = 2n� 5,
.,
.,
.,
si (n) = 2n� pi > si+1 (n) = 2n� pi+1 > ::::: > sm (n) = 2n� pm � 1.
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Since for each i, with 2 � i � m, the prime pi is odd, then the term si (n) =
2n � pi is also an odd natural number. The �rst term s1 (n) = 2n � 2, is
the unique even number in the sequence Sm (n). The last term sm (n) =
2n� pm = min (Sm (n)) is equal to the number 1 if and only if pm = 2n� 1.
In fact, if pm = 2n � 1 then sm (n) = 2n � pm = 2n � (2n � 1) = 1. In the
reverse case, we have p < 2n, 8p 2 Pm, and then 2n� p > 0() 2n� p � 1;
and we have 2n � p = 1 only in the case when p = 2n � 1 = pm. In the
example 4, we have this situation, as p8 = 19 then s8 (10) = 20� 19 = 1.

3.1 The smallest m-tuples of the set of the strictly
increasing m-sequences of odd composite natural
numbers

We denote by Odd = f1; 3; 5; :::g = f2k + 1=k 2 N [ f0gg the set of odd
natural numbers and by Oddc the set of odd composite natural numbers,
i.e.,

Oddc = fa 2 N=a = (2i+ 1) (2j + 1) with i; j 2 N and 1 � i � jg
= f9; 15; 21; 25; :::g.

Evidently, we have Oddc � Odd � N.
Let Nm = N � N � ::: � N be the cartesian product of m copies of the set
of natural numbers N. The usual ordering � on N can be extended to the
ordering � on Nm, called the product order, in the following natural way:
For every twom�tuples a = (a1; a2;:::; am), b = (b1; b2;:::; bm) of Nm, we de�ne

a = (a1; a2;:::; am) � b = (b1; b2;:::; bm) if ai � bi for each i 2 Im.

The strict ordering on Nm noted � can be also de�ned by:

a = (a1; a2;:::; am) � b = (b1; b2;:::; bm) if ai < bi for each i 2 Im.

Evidently, the ordering � on Nm is not a total ordering, for example the
sequences (1; 2; 3), (1; 1; 4) of N3 are not comparable. But (Nm;�) contains
the least element (1; 1; :::; 1) (m terms of 1), which satis�es

(1; 1; :::; 1) � a = (a1; a2;:::; am) for every a 2 Nm
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Notice that for each integer m � 1, the set Nm equipped the operation of
addition of m-sequences de�ned by :
For every two m�tuples a = (a1; a2;:::; am), b = (b1; b2;:::; bm) of Nm, then
a + b = (a1 + b1; a2 + b2:::; am + bm) 2 Nm is a semigroup with the neutral
element 0m = (0; 0; :::; 0) (m-zeros).

An important subset of Nm, which concern this paper, is the subset of Nm
of the strictly increasing m�tuples (or m�sequences) of m odd composite
natural numbers, which we denote, for the brevity, by Oddci (m).
Then, the set Oddci (m) is de�ned by:
Oddci (m) =8<:

a = (a1 < a2 < ::: < am) 2 Nm=
ai is an odd composite natural number, for each i 2 Im

and ai < ai+1 for every 1 � i � m� 1

9=;
Evidently, we have Oddci (m) � (Oddc)m � Nm. Since we have Oddci (m) �
Nm, then the subset Oddci (m) is also partially ordered with the induced
ordering � of Nm. For example, the 4-tuples a = (9 < 15 < 21 < 25), b =
(21 < 35 < 39 < 63) 2 Oddci (4) with a � b. In this paper, the phrases "in-
creasing m-sequence" and "increasing m-tuples" have the same signi�cance
and are used equally. For further notions of ordering see [5].

Lemma 7 For any natural number m � 1, the set Oddci (m) � Nm contains
a smallest element..

Proof. Based on the well ordering of the set N, the smallest element

Cm = minOddci (m) = (c1 < c2 < ::: < cm�1 < cm)

of the set Oddci (m) is equal to the m�tuples of the �rst m consecutif odd
composite natural numbers, which can be computed recursively from i = 1
to i = m, in the following manner:
For i = 1, the smallest element of the set Oddc is the number
c1 = min fOddcg = min f9; 15; 21; 25; :::; g = 9, and then C1 = (c1) = (9).
For i = 2, The second element c2 of set Oddc is the number
c2 = 15 = min fOddc� f9gg,
consequently, we have C2 = ((C1) ; c2) = ((C1) ; 15) = ((c1) ; 15) = (9; 15).
Suppose that for i = m� 1, we have:
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Cm�1 = minOddci (m� 1) = (c1; c2; c3; :::; cm�1) = (9; 15; 21; :::; cm�1),
with cm�1 is the (m� 1)-th odd composite natural number of the set Oddc
then, the m-th odd composite natural number of the set Oddc is
cm = min fOddc� fc1; c2; c3; :::; cm�1gg, and consequently we obtain:

Cm = (Cm�1; cm) = ((c1; c2; c3; :::; cm�1) ; cm) = (c1; c2; c3; :::; cm�1; cm)

Example 8 For example, for m = 7 we have:

minOddci (7) = (9 < 15 < 21 < 25 < 27 < 33 < 35)

and this element of N7 is the smallest element among the set of all the 7-tuples
of odd composite natural numbers written in increasing order.

Lemma 9 Let (c1; c2; c3; :::; cm�1; cm) be the smallest element of Oddci (m).
If m odd composite natural numbers fa1; a2; :::; amg are such that a1 < a2 <
::: < am with a1 � c1 then ai � ci, for each i with 1 � i � m. And

consequently we have
mP
i=1

ai �
mP
i=1

ci.

Proof. The proof is by induction on i 2 Im. For i = 1 we have a1 � c1, and
then the hypothesis is given true for i = 1 . For i = 2, we have a2 > a1 � c1
then a2 � c2 because c2 is the �rst odd composite after c1 i.e., c2 is the
consecutive odd composite of c1, and then the hypothesis is true for i = 2 .
Suppose that for some i � 2, we have ai � ci. Since ai+1 > ai and ai � ci
then ai+1 > ai � ci, and since the �rst odd composite after ai is ai+1 then
ai+1 � ci+1. We conclude by induction on i that we have, for each i 2 Im,
ai � ci. Consequently, we have

mP
i=1

ai �
mP
i=1

ci.

Unfortunately, we haven�t an explicit formula which determines the m-th
odd composite natural number, but we can proceed as follows to enumerate
them in increasing order. Recall that, the odd composite numbers are the
odd positive integers of the form

a (i; j) = (2i+ 1) (2j + 1) = 4ij + 2 (i+ j) + 1

where (i; j) 2 N2 with 1 � i � j (because a is a symetric function on i and
j).
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Equivalently, an odd composite numbers are the integers of the form

a (p; s) = 2 (2p+ s) + 1

where p = ij and s = i+ j with (i; j) 2 N2and 1 � i � j.
Then, we can enumerate these numbers according the increasing values of
the product p and then the increasing correspondant sum s. In other words
for each p, from p = 1; 2; 3; :::, we compute the couple (i; j), solution for the
equation p = ij, with the condition 1 � i � j, and then the correspondant
sum s = i+ j, and �nally the resulting odd composite number a (p; s).
For example,
For p = ij = 1 the unique solution is (i; j) = (1; 1) and then s = 2 which
gives a1 = 2 (2� 1 + 2) + 1 = 9.
For p = ij = 2 the unique solution is (i; j) = (1; 2) and then s = 3 which
gives a2 = 2 (2� 2 + 3) + 1 = 15.
For p = ij = 3 the unique solution is (i; j) = (1; 3) and then s = 4 which
gives a3 = 2 (2� 3 + 4) + 1 = 21.
For p = ij = 4 the �rst solution is (i; j) = (2; 2) and then s = 4 which gives
a4 = 2 (2� 4 + 4) + 1 = 25.
and the second solution is (i; j) = (1; 4) and then s = 5 which gives a5 =
2 (2� 4 + 5) + 1 = 27,..., and so on.
Since we haven�t a closed formula which determines the m-th odd composite
natural number in function of m, we cannot also write, in function of the
parametre m, all the terms of the smallest m�tuple

Cm = (9; 15; 21; 25; :::; cm) = (3� 3; 3� 5; 3� 7; 5� 5; :::; cm),

but we can assert in the following lemma 7, for each m � 1, the smallest
element Cm is between the m�tuple

T2m = (2� 3; 2� 5; :::; 2� (2m+ 1)) = 2� (3; 5; :::; (2m+ 1)) 2 Nm

and the m�tuple

T3m = (3� 3; 3� 5; :::; 3� (2m+ 1)) = 3� (3; 5; :::; (2m+ 1)) 2 Nm

i.e, T2m � Cm � T3m.
Or equivalently, in terms of �nite serie,

P
T2m <

P
Cm <

P
T3m and we

have T3m is an element of Oddci (m) but T2m is not in Oddci (m). Evidently,
we have T2m � T3m.

13



It is noted here that the smallest element C of the set Oddci (without a
restricted m) contains in increasing order: each element of the sequence
T3 = (3� (2k + 1))k�1, and also each element from the sequence T5 =
(5� (2k + 1))k�2 which are not multiple of the number 3 and each ele-
ment from the sequence T7 = (7� (2k + 1))k�3 which are not multiple of
the number 3 or the number 5, ... and each element from the sequence
Tpi = (pi � (2k + 1))2k+1�pi, where pi is the i-th prime, which are not mul-
tiple of the primes p1 or p2 or ...or pi�1... and so on. This process of the
construction of the smallest element C shows that each element of the se-
quence T3 = (3� (2k + 1))k�1 is also an element of C, i.e, T3 is a subsequence
of the sequence C and the �rst element of C is the �rst element of the se-
quence T3. And since the di¤erence between two consecutive elements of T3
is exactly 6, then each other element of C, taken from the others sequence
T5 or T7 or...or Tpi..., is inserted in increasing order between two appropriate
consecutif elements of T3. Then the gaps di = ci+1 � ci , for each i 2 N,
between two consecutive odd composite natural numbers cannot exceed the
number 6, and we have di 2 f2; 4; 6g because the di¤erence between any two
odd natural numbers is even, then 2 � di � 6.
For example, the �rst four gaps are:
d1 = c2�c1 = 15�9 = 6, d2 = c3�c2 = 21�15 = 6, d3 = c4�c3 = 25�21 = 4,
d4 = c5 � c4 = 27� 25 = 2.
In general manner, we have: c1 = 9; and ci+1 = ci+di, with di 2 f2; 4; 6g, for
each i 2 N. The �rst m consecutive odd composite natural numbers satisfy
the following pseudo-recurrence equations:
c1 = 9,
c2 = c1 + d1 = 9 + d1, with d1 2 f2; 4; 6g, but of cours d1 = 6 in this case.
c3 = c2+ d2 = 9+ d1+ d2, with d1, d2 2 f2; 4; 6g, but we have exactly d1 = 6
and d2 = 6 in this case.
.
.
.
cm = cm�1 + dm�1 = cm�2 + dm�2 + dm�1 = 9 + d1 + d2 + :::+ dm�1,
with di 2 f2; 4; 6g for each i 2 f1; 2; :::;m� 1g.
We conclude that: for each m 2 N, the m-th odd composite natural cm is
limited between the natural numbers

Nm = 9 + (2 + 2 + :::+ 2) = 9 + 2 (m� 1)

14



(the sum of 2 is taken (m� 1) times),
and the natural number

N 0
m = 9 + (6 + 6 + :::+ 6) = 9 + 6 (m� 1)

i.e.,
9 + 2 (m� 1) � cm � 9 + 6 (m� 1) for m 2 N

Since the �rst four gaps are exactly d1 = d2 = 6, d3 = 4 and d4 = 2,
we obtain then the strict inequality : for any natural number m � 4.

9 + 2 (m� 1) < cm < 9 + 6 (m� 1)
The above remarks, shows that we have the following result.

Lemma 10 For every natural number m � 4, the smallest element Cm =
(c1 < c2 < ::: < cm) of the subset Oddci (m), is limited between �m � Cm �
T3m, where �m = (9 + 2i)i2f0;1;:::;m�1g and T3m = (3� (2i+ 1))i2f1;:::;mg. Or

equivalently, the sum
mP
i=1

ci of the �rst m consecutif odd composite natural

numbers is limited between
m (m+ 8) <

mP
i=1

ci < 3m (m+ 2).

Proof. The sequence Cm = (c1 < c2 <; :::; < cm) of the �rst m consecutif
odd composite natural numbers can be de�ned recursively by:
c1 = 9 and ci+1 = ci + di, for each i 2 f1; 2; :::;m� 1g, with di 2 f2; 4; 6g.
Then:
mP
i=1

ci = c1 + c2 + :::+ cm = 9 + (9 + d1) + :::+ (9 + d1 + :::+ dm�1).

Since for each 1 � i � m � 1, we have di 2 f2; 4; 6g then
mP
i=1

ci is bounded

by S1 <
mP
i=1

ci < S2 with:

S1 = 9 + (9 + 2) + (9 + 2� 2) :::+ (9 + 2 (m� 1))

=
m�1P
i=0

(9 + 2i) = m (m+ 8) is a lower integer bound of
mP
i=1

ci,

and
S2 = 9 + (9 + 6) + (9 + 2� 6) :::+ (9 + 6 (m� 1)) =

mP
i=1

3� (2i+ 1)
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= 3m (m+ 2) is a great integer bound of
mP
i=1

ci.

Notice that the above result is equivalent to say that the sequence Cm is
limited between the sequence �m = (9 + 2i)i2f0;1;:::;m�1g and the sequence
T3m = (3� (2i+ 1))i2f1;:::;mg, i.e., �m � Cm � T3m in the product order
(Nm;�).

Example 11 For example, the �rst ten successive odd composite numbers

9
+6�! 15

+6�! 21
+4�! 25

+2�! 27
+6�! 33

+6�! 35
+6�! 39

+6�! 45
+4�! 49

are limited in the top by the �rst ten odd composite numbers multiple of 3 :

9
+6�! 15

+6�! 21
+6�! 27

+6�! 33
+6�! 35

+6�! 39
+6�! 45

6�! 51
+6�! 57

or equivalently in the product order (N10;�), we have:

(9; 15; 21; 25; 27; 33; 35; 39; 45; 49) � (9; 15; 21; 27; 33; 35; 39; 45; 51; 57)

and this example shows that the sequence of the multiple of 3 grow faster
than the sequence the odd composite natural numbers since the sequence of
the multiple of 3 is a sub-sequence of the sequence of odd composite natural
numbers.

The following lemmas gives some lower bounds of the m-th odd composite
natural number cm.

Lemma 12 The m-th odd composite natural number cm is greater than 2m
with m = � (2n).

Proof. The proof is by induction on the natural m � 1. For m = 1, we have
and c1 = 9 > 2� 1, consequently, the hypothesis is true for m = 1. Suppose
that for some natural m � 1, we have cm > 2m with m = � (2n). For m+1,
we have the gabs d = cm+1 � cm 2 f2; 4; 6g, and then cm+1 � cm � 2, or
equivalently cm+1 � cm + 2. Since cm > 2m by the hypothesis for m � 1,
we obtain then cm+1 � cm + 2 > 2m + 2 = 2 (m+ 1), consequently cm+1 >
2 (m+ 1). We conclude by induction on m that we have cm > 2m, for each
m � 1.

Even better, we have:
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Lemma 13 For each natural n � 1, we have cm > 2n with m = � (2n) and
cm is the m-th odd composite number.

Proof. The proof is by induction on the natural n � 1. For n = 1, we have
m = � (2� 1) = 1 and c1 = 9 > 2 � 1 = 2, consequently, the hypothesis
is true for n = 1. For n = 2, we have m = � (4) = 2. And the assertion
c2 = 15 > 2 � 2 = 4 is also true for n = 2. Suppose that for some natural
n � 1, we have cm > 2n with m = � (2n). For n + 1, we have m0 =
� (2 (n+ 1)) = m+1 in the case when pm+1 = 2n+1, and � (2 (n+ 1)) = m
in the case when pm+1 6= 2n+1. In the case pm+1 = 2n+1 then cm+1 > 2n+1
since cm > 2n by the hypothesis for n. And in the case pm+1 6= 2n + 1, we
have also cm+1 > 2n+ 1 since cm is at least equal to 2n+ 1. In either cases,
we have cm+1 > 2 (n+ 1) since d = cm+1 � cm 2 f2; 4; 6g. We conclude by
induction on n that we have, for each n � 1, cm > 2n with m = � (2n).

Given the importance of above lemma for the paper, we give an other proof
by contradiction and we con�rm the validity of the lemma for a large n.
Proof. The proof is by contradiction. Suppose that, in the contrary, we
have for certain n � 1, cm � 2n. Then, the interval f1; 2; ::::; 2ng contains m
primes + m composites +n even numbers. Since the di¤erence between two
consecutif odd numbers is 2. And last odd number in the interval is 2n� 1,
which it is a prime or an odd composite number, in either cases we have then
: 1+ 2m = 2n� 1 =) m = n� 1: Then we have (n� 1)+ (n� 1)+n = 2n;
and this is an absurdity. Consequently, we have for each n � 1; cm > 2n..
For a large n;we can con�rm also that we have the following:
The fundamental theorem of primes limn log n=pn = 1 is equivalent to:

the n�th prime pn is about n log n , for large n. And this may be interpreted
as asserting that, if there are n primes in an interval, then the length of the
interval is roughly n log n. Since we have m primes, with m = �(2n) ,
then 2n � m logm Suppose that cm � 2n., then we have m + m = n (m
primes+m composites= n odd numbers between 1 and 2n). Then 2m = n
=) 2m = (m logm) =2 and this implies that logm=4 which is absurd for a
large n.
The following lemma asserts that, if each terms of the sequence Sm (n) =
(si (n))i2Im, is a composite natural number, then the largest term of the
sequence will exceed the number 2n, and this will contradict the fact that
the greatest element of the sequence Sm (n) is equal to 2n� 2.
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Lemma 14 If each term of the sequence Sm (n) is a composite natural num-
ber then at least the maximal element of this sequence will be exceeds the
number 2n.

Proof. From the lemma 6, all the terms of sequence Sm (n) are an odd
numbers except the �rst s1 (n) = (2n� 2). Since each term si (n) 6= 1 it is
supposed to be a composite number, we consider then the possible factoriza-
tion of each odd term si (n) as the following form:

si (n) = p
0

i (n) qi (n)

such that p
0
i (n) is the smallest prime number dividing si (n), (the exis-

tence of this prime factor is assured by the fundamental theorem of arith-
metic or it su¢ ces to see the Lemma 2, and qi (n) is the other proper fac-
tor). According to the lemmas 3 and 6, the factors p

0
i (n), qi (n) are odd

� 3, for all i 2 f2; :::;mg in the case when pm 6= 2n � 1, and for all
i 2 f2; :::;m� 1g in the case when pm = 2n�1 (because in this case, we have
sm = 2n� pm = 2n� (2n� 1) = 1). The term s1 (n) = 2n� 2 = 2(n� 1) is
the only natural even number of the sequence Sm (n), which it is evidently a
composite number.

Since si (n) = 2n� pi > 2n� pi+1 = si+1 (n),

we have also,
si (n) = p

0
i (n) qi (n) > p

0
i+1 (n) qi+1 (n) = si+1 (n), for each i 2 f1; :::;m� 1g.

Consequently,
s1 (n) = p

0
1 (n) q1 (n) > s2 (n) = p

0
2 (n) q2 (n) > ::: > sm (n) = p

0
m (n) qm (n) �

1.
Two cases will be considered, depending on whether pm 6= 2n � 1 (in this
case sm (n) = 2n�pm � 3 it is also a composite number) or, pm = 2n�1 (in
this case sm (n) = 2n� pm = 1 it is neither prime nor a composite number).

1stcase: if pm 6= 2n � 1, then each term si (n) is to be considered a com-
posite number, and we have:

s1 (n) = 2n � p1 = p
0
1 (n) q1 (n) with p

0
1 (n) � 2 and q1 (n) � 3, then

s1 (n) � 9,
s2 (n) = 2n�p2 = p

0
2 (n) q2 (n) with p

0
2 (n) � 3 and q2 (n) � 3, then s2 (n) � 9,
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.,

.,
sm (n) = 2n � pm = p

0
m (n) qm (n) with p

0
m (n) � 3 and qm (n) � 3, then

sm (n) � 9.
But, since s1 (n) > s2 (n) > :::: > sm (n) � c1 = 9,
is strictly decreasing sequence of odd composite numbers, then certainely,
sm�1 (n) � c2 = 15, sm�2 (n) � c3 = 21, ..., and s1 (n) � cm (the m-th odd
composite number).
According with the lemma 13 we have the cm > 2n. Consequently, we have
s1 (n) � cm > 2n.
For the second case, i.e., if pm = 2n � 1 then sm (n) = 2n � pm = 2n �
(2n� 1) = 1, and in this case we have:
s1 (n) > s2 (n) > :::: > sm�1 (n) � 9 = c1,
and consequently, s1 (n) � cm�1. But we have cm�1 � 2 (n� 1)(from the
lemma 13) and since cm�1 is an odd composite and the prime pm is equal to
2n�1, in this case, certainly cm�1 > 2n+1 and then s1 (n) � cm�1 > 2n+1.
Consequently, from the cases 1 and 2 we have s1 (n) > 2n , if each term of
the sequence Sm (n) is to be considered a composite natural number.

3.2 Existence of prime in the sequence Sm (n) = (si (n))i2Im,
for any natural number n � 2 with m = � (2n)

Theorem 15 For any natural number n � 2 with m = � (2n), the �nite
sequence of natural numbers Sm (n) = (si (n))i2Im de�ned by si (n) = 2n�pi,
with 1 � i � m, contains at least one prime sr 2 Pm \ Sm (n).

Proof. For each natural number n � 2, let Sm (n) = (si (n))i2Im be the
�nite sequence of natural numbers as de�ned in the section 3 above with
m = � (2n). The proof is by contradiction, and so we begin by assuming
that the following hypothesis H (n0) is true for some natural number n0 � 2.

The hypothesis H (n0):
"There exists a natural number n0 � 2, such that each term si (n0) 2

Sm (n0), for each i 2 Im, is not a prime number".

This is equivalent to say :
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"there exists a natural number n0 � 2, such that each term si (n0) 2 Sm (n0),
for each i 2 Im, is a composite number or equal to the natural number 1".
Symbolically the hypothsis H (n0) can be written as
"9 (n0 > 2) 2 N; 8 i 2 f1; 2; 3; :::mg: the term si (n0) is not a prime number"
We recall that, the unique term si (n0) of Sm (n0), which can be equal to the
number 1 is the last term sm (n0) = 2n0� pm, in the case when pm = 2n0� 1
(see Lemma 6). The last term sm (n0) = 2n0 � pm is the unique term of the
sequence Sm (n0), which is neither prime nor a composite number in the case
when pm = 2n0 � 1, i.e., in the case when sm (n0) = 1.

To contradict or reject the hypothesis H (n0) for all n0 > 2, (in symbolic
terms this contradiction is written: 8 (n > 2) 2 N;9i 2 f1; 2; 3; :::mg such
that si (n) is a prime number). Using the lemma 13, if the hypothesis H (n0)
is true for some natural number n0 � 2, then s1 (n0) = maxSm (n0) � cm >
2n0 and this is an absurdity because s1 (n0) = 2n0 � 2 = maxSm (n0) < 2n0
and sm (n0) = 2n0 � pm � 1. Consequently, it is impossible to write all the
elements of sequence Sm (n0) = (s1 (n0) > s2 (n0) > ::: > sm (n0)) between
the numbers 1 and 2n0 � 2 if each term of sequence it is assumed to be
an odd composite number except the �rst term, which is evidently an even
composite term. Consequently, the refutation of the argument H (n0) for all
n0 > 2.
Then, it is impossible to write each term of sequence Sm (n) = (si (n))i2Im
as an odd composite number between the numbers 1 and 2n0 � 2, if each
term of this sequence it is assumed to be a composite natural number, and
consequently, there must be at least one term
sr (n) = 2n � pr = p

0
r (n) qr (n), which is not a composite number, then

necessarily that the factor qr (n) is strictly inferior to the number 3, and
because qr (n) is an odd number, it can not be equal to the number 2 and
then we have certainely qr (n) = 1 and then sr (n) = 2n�pr = p

0
r (n) qr (n) =

p
0
r (n)� 1, i.e, the prime p

0
r (n) is equal to the term sr (n) = 2n� pr = p

0
r (n)

with p
0
r (n) 2 Pm( where Pm is the set of primes inferior strictly to the number

2n).
Therefore, for each (n � 2) 2 N, the sequence Sm (n) = (si (n))i2Im contains
at least one term sr (n), with r 2 Im, which it is a prime number, i.e, sr (n) 2
Pm \ Sm (n).

Theorem 16 Every even integer 2n � 4, with n � 2, is a sum of two primes.
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Proof. If n = 2 then, 4 = 2 + 2. If n > 2, we consider the �nite se-
quence of primes Pm := (p1 = 2 < p2 = 3 < :::: < pm) with m = � (2n) and
let Sm (n) = (si (n))i2Im be the �nite sequence of natural numbers de�ned
by si (n) = 2n � pi, where pi is i-th prime of Pm. From the theorem 15,
there exists at least one prime number sr (n) 2 Sm (n). Since we have
sr (n) = 2n � pr, with pr is the r-th prime number of sequence Pm, we
obtain the result 2n = pr + sr (n). It follows that the Goldbach�s conjecture
is e¤ectively a theorem of number theory.

As a consequence of this result, given an even natural number 2n � 4 with
n � 2, to �nd the pair of primes numbers (p; s) such that 2n = p+s, it su¢ ces
that the algorithm runs through the �nite sequence Sm (n) = (si (n))i2Im,
which contains, at least one solution of this equation for each natural number
n � 2.
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