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Abstract A potential strategy for mitigating nitrous oxide (N2O) emissions from permanent grasslands
is the partial substitution of fertilizer nitrogen (Nfert) with symbiotically fixed nitrogen (Nsymb) from
legumes. The input of Nsymb reduces the energy costs of producing fertilizer and provides a supply of
nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications.
Legumes have been promoted as a potential N2O mitigation strategy for grasslands, but evidence to support
their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of
potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can
be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid
the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and
DayCent), we tested the N2O mitigation potential and productivity of full factorial combinations of legume
proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed
that replacing fertilizer with legumes reduced N2O emissions without reducing productivity across a broad
range of legume‐fertilizer combinations. Although the models were consistent with the relative changes
of N2O emissions compared to the baseline scenario (200 kg N ha−1 yr−1; no legumes), they predicted
different levels of absolute N2O emissions and thus also of absolute N2O emission reductions; both were
greater in DayCent than in APSIM. We recommend confirming these results with experimental studies
assessing the effect of clover proportions in the range 30–50% and ≤150 kg N ha−1 yr−1 input as these were
identified as best‐bet climate smart agricultural practices.

1. Introduction

Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) and plays a dominant role in stratospheric ozone
depletion (Ravishankara et al., 2009; Smith et al., 2014). Agriculture contributes 58–84% to global anthropo-
genic N2O emissions (Mosier et al., 2004; P. Smith et al., 2008) and is thus important for N2O mitigation
(Ciais et al., 2013; K. A. Smith, 2017). Most agricultural N2O emissions arise from inputs of nitrogen (N)
by being too high or out of synchrony with crop or pasture demand, resulting in the applied N being suscep-
tible to losses through leaching or gaseous emissions including N2O (Davidson & Kanter, 2014).

Grassland systems cover about 40% of the Earth's land surface and a quarter of these are located in temperate
zones (White et al., 2000). Globally estimated N2O emissions from managed grasslands contributed 54% to
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the total agricultural emissions in 2006 (Dangal et al., 2019). These N2O emissions significantly increased
during recent decades due to increased mineral and organic fertilizer applications and excreta deposition
from 1.74 Tg N2O‐N (1961) to 3.11 Tg N2O‐N (2014) (Dangal et al., 2019).

Besides fertilizer amendments (Flechard et al., 2007; K. A. Smith et al., 2012; Hörtnagl et al., 2018), recycling
of N through the excreta of grazing animals (Saggar et al., 2004), aerial N deposition (Well & Butterbach‐
Bahl, 2010) and biological nitrogen fixation (BNF) via legume symbiosis with Rhizobia (Jensen et al., 2012)
deliver important N inputs to grasslands while having the potential to increase N2O emissions.
Environmental variables, nitrogen rate, type of N input, timing, and placement of organic andmineral N fer-
tilizers are important factors that influence the magnitude and duration of N2O emission pulses
(Baggs, 2011; Flessa, 2012; Shcherbak et al., 2014; K. A. Smith et al., 1997, 2012).

Nitrous oxide mitigation strategies for grasslands mainly focus on an increased N use efficiency (NUE) (K. A.
Smith et al., 1997) by adjusting the amount, type, and timing of fertilizer to better match plant N demand
(Bolan et al., 2004; Eckard et al., 2010; de Klein & Eckard, 2008; D. Li et al., 2013; Luo et al., 2010; Saggar
et al., 2013). Other mitigation strategies aim to alter soil conditions affecting the microbial production of
N2O. Approaches here include liming of acid soils and the application of nitrification inhibitors (Cahalan
et al., 2015; Galbally et al., 2010; Lam et al., 2017). The use of legumes has also been proposed as a mitigation
strategy (Jensen et al., 2012; Rochette & Janzen, 2005). Legumes can (a) use symbiotically fixed N (Nsymb)
from the atmosphere as substitute for mineral fertilizer, which has high GHG costs associated with its man-
ufacture (1.6–6.4 kg CO2‐eq per kg fertilizer N; Brentrup & Pallière, 2008) and (b) provide a N source for
plants that is better synchronized to plant demand than the alternative, which is episodic applications of
N fertilizer. In addition, there is evidence that suggest mixtures of legumes and grasses can produce higher
yields than monocultures of grasses or legumes (“overyielding”) (Finn et al., 2013; Kirwan et al., 2007;
Lüscher et al., 2014). The potential to sustain or even increase yields would be a highly desirable character-
istic of any mitigation option both in terms of adoption of the technology by farmers (Vellinga et al., 2011)
and its benefit in reducing GHG emissions per area of land and per unit of product, referred to as “N2O emis-
sion intensity” (N2O‐Int) (van Groenigen et al., 2010).

Despite its theoretical advantages, the potential to mitigate N2O emissions with legumes remains largely
untested (Flessa et al., 2014; Osterburg et al., 2013). Only few field experiments have measured N2O emis-
sions for different legume proportions in permanent grassland systems, and these have shown mixed results
(Ammann et al., 2009; Fuchs et al., 2018; Hörtnagl et al., 2018; Ingram et al., 2015; Jensen et al., 2012;
Klumpp et al., 2011; D. Li et al., 2011; Schmeer et al., 2014; Simek, 2004; Virkajärvi et al., 2010) (Figure 1;
see Supporting Information Text S1). Although N2O emissions across these studies were highly variable, a
smoothed fit suggests constant emissions across the full range of clover proportions used in these studies
(Figure 1b). In contrast, N2O emissions increase with increased fertilizer rates (Figure 1c). In order to test
the robustness of legumes as a N2O mitigation option, it would be valuable to extend the experimental evi-
dence to better cover a wider range of legume proportions, for example, by examining the potentially inter-
esting combination of a low N fertilizer level and relatively high (30–80%) proportion of clover (Figure 1).

Currently, the potential of grass‐legume mixtures is poorly exploited (Phelan et al., 2015). While New
Zealand and Switzerland have promoted grass‐legume mixtures and have grasslands with up to 30% legume
content as the norm, the use of legumes is not the standard in many other countries. The area of grasslands
containing legumes is furthermore not routinely captured in country statistics nor are the legume propor-
tions. Similarly, there are large spatial and temporal variations in legume proportions caused by varying seed
mixes and difficulties in legume establishment, management, and persistence. Due to this lack of data, a
quantitative estimate of the status quo is difficult. This motivated the assessment of several simplified scenar-
ios to approximate the magnitude of the global mitigation potential.

Costs and workload constrain experimental measurements to a few locations and seasons, with restrictions
on the number of treatments and replicates. Overall, experiments investigating N2O emissions in swards of
different clover proportions are limited by the temporal coverage and/or by the number of treatments
(clover‐fertilizer combinations). Studies applying the eddy covariance (EC) technique to acquire data of high
temporal coverage and resolution can clearly resolve N2O emission peaks at the field‐scale (Fuchs et al., 2018;
Hörtnagl et al., 2018), while the number of simultaneously observed treatments in EC studies is very limited.
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Studies withmore treatments tend to use manual GHG chambers to investigate N2O emissions, but these are
generally limited by their coarse temporal resolution (e.g., Niklaus et al., 2016) and are therefore less capable
of resolving temporal dynamics. However, if sampling frequency is too low, data are less suitable for annual
N2O flux budgets (Barton et al., 2015). On the other hand, manual and automatic GHG chamber studies with
higher sampling frequency (Klumpp et al., 2011; D. Li et al., 2011) covering a full growing season have often
been constrained to two to five clover‐fertilizer combinations only. In addition, chambers cover relatively
small sampling areas (usually less than a few m2). While any in situ measurement delivers valuable data,
a systematic assessment of the effect of different clover proportions on N2O emissions at different sites
and scales (plot to ecosystem to catchment) is clearly lacking and unlikely to be resolved experimentally.

Biogeochemical process models allow for the ex‐ante and ex‐post estimation of GHG emissions (including
N2O emissions) under many different management regimes. In particular, they can be used for a systematic
assessment of mitigation strategies across several sites, investigating different rates of N fertilizer and levels
of legume proportion simultaneously, which has so far not been achieved in field N2O measurements.
Models can predict these different scenarios over a long time‐span and reveal important long‐term effects
(e.g., Lugato et al., 2018).

In this study, we use the biogeochemical models APSIM (Holzworth et al., 2014) and DayCent (Del Grosso
et al., 2001; Parton et al., 1998, 2001). These models have the ability to simulate key processes of C and N

Figure 1. Observed data from literature (source = color) with documented N2O emissions, clover proportions and
fertilizer amounts. Panel (a) relates observed clover proportions (horizontal axis) and fertilizer levels (vertical axis) at
different sites to N2O emissions (bubble area). The gray‐shaded area in (a) indicates that these combinations are
unrealistic or of little or no practical interest, but some are important for testing model performance. The plots at the
margins relate (b) clover proportion to N2O emissions across all fertilizer levels and (c) fertilizer amendments to N2O
emissions across all clover proportions. The dashed blue line indicates N2O emissions according to the IPCC emission
factor (1% of Nfert), black lines indicate locally weighted regression (loess) fits of the displayed data and the shaded
area their 95% confidence intervals (Cleveland & Devlin, 1988). All studies are from the temperate zone except
Virkajärvi et al. (2010), which was in boreal grasslands characterized by freeze‐thaw cycles.
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cycling, including key processes of N2O production, nitrification, and denitrification and, importantly, have
been validated with field data at the study sites used with respect to Nsymb (Fitton et al., 2019) and
combinations of biomass yields and N2O emissions (Ehrhardt et al., 2018; Fuchs et al., 2020). The number
of deployed models in this current study was lower than those in the publication cited above because
most of the biogeochemical models were not able to simulate grass‐legume interaction explicitly, as
required for this study.

We conducted a simulation study at five temperate grassland sites using the two biogeochemical models,
each in two variants. Our specific objectives were (1) to systematically assess the effects of a wide range of
legume proportions and N fertilizer amounts on yields, N2O emissions, and N2O emission intensities
(N2O‐Int) and (2) to identify the optimal N2O mitigation strategy.

2. Materials and Methods

A set of theoretical scenarios, that is, combinations of legume proportions (0–100%) and N fertilizer amounts
(Nfert; 13 levels 0–600 kg N ha−1 yr−1) in a full factorial design, was run at five temperate grassland sites
across the globe for a simulation period of 30 years (1981–2010) (Figure 2). Although the higher fertilizer
rates are of little practical relevance, they are important for testing model responses and constraining statis-
tically derived surfaces. Grass‐clover mixtures of two species Lolium perenne and Trifolium repenswere mod-
eled as examples of species that are widespread across the temperate climatic zone. Mineral fertilizer in form
of ammonium nitrate was simulated. The starting point for this study was the final stage of an international
modeling intercomparison exercise initiated by the Global Research Alliance (Integrative Research Group)
as described by Ehrhardt et al. (2018). For simplicity, and in order to exclude the confounding effects of graz-
ing by further enhancing variability, we performed the study on non‐grazed grassland systems. Mitigation of
N2O emissions via changes in grazing practices (i.e., livestock density and N fertilizer inputs) have pre-
viously been investigated by Sándor et al. (2018).

2.1. Models Used in This Study

This exercise was performed by a consortium of modelers with the biogeochemical models APSIM
(Holzworth et al., 2014; in two variants) and DayCent (Del Grosso et al., 2001; Parton et al., 1998; in two var-
iants) according to an agreed protocol. Models were previously calibrated (corresponding to Stage 5 in

Figure 2. Overview of the modeled scenarios: 13 levels of varying fertilizer amount (0–600 kg N ha−1 yr−1) and >11
levels of clover proportion (0–100%) were simulated. Fertilizer types included both organic fertilizer (OF) and mineral
fertilizer (MF). All simulations were run at five sites G1 (USA), G2 (New Zealand), G3 (France), G4 (United Kingdom),
and G5 (Switzerland) by the biogeochemical process models APSIM and DayCent, both in two variants (see text for
details). In order to obtain the response variables on a homogeneous grid and exclude inter‐annual variability, surfaces
were fitted to model outputs (yield, N2O emissions) per model‐site combination on the surface expanded by actual
clover percentage and annual fertilizer amount.

10.1029/2020GB006561Global Biogeochemical Cycles

FUCHS ET AL. 4 of 20



Ehrhardt et al., 2018) with respect to plant productivity, soil moisture and temperature, soil mineral N con-
tent, and model uncertainties of the respective models were evaluated in an international model intercom-
parison (Ehrhardt et al., 2018; Table S1) with further testing of yield and N2O emissions at two levels of
pasture clover content in Fuchs et al. (2020). Biological nitrogen fixation and yields in grass‐clover mixtures
were validated at one site described by Fitton et al. (2019). The scenarios required modelers to manipulate
the legume proportion of the grasslands. In a physical experiment, this would be achieved by sowing or
over‐sowing the desired species, with the ultimate legume proportion resulting from interactions between
management and environmental conditions (see Fuchs et al., 2018). APSIM simulates grasslands in a way
that is comparable with a physical experiment where the modeler can influence, but not directly control,
the proportion of legumes (dynamic legume proportion), while in DayCent the legume proportion is expli-
citly specified by the modeler (Table S2; Fitton et al., 2019). Biological nitrogen fixation from grasslands with
varying legume proportion can be simulated by APSIM directly as the dependency of BNF on species com-
position is represented in the model (Text S2). In contrast, DayCent requires the user to specify a potential
maximum Nsymb that should, sensibly, vary with legume proportion. In Fitton et al. (2019), we developed a
method to derive this DayCent parameter (potential maximum Nsymb) based on the legume percentage of
the pasture. Note that DayCent internally reduces the actual Nsymb as fertilization increases. This method
is described in Text S3 and was validated in Fitton et al. (2019).
2.1.1. APSIM
APSIM (v7.10 r4162), short for Agricultural Production Systems sIMulator (Holzworth et al., 2014), is a
process‐oriented simulation framework comprising several modules. The model primarily operates on a
daily time‐step, but several individual modules work with shorter internal time discretization. APSIM was
used for this study in two variants differing in their soil water modules, the SWIM module based on
Richards' equation (here named AP1; Huth et al., 2012; SWIM for Soil and Water integrated Model), and
the capacitance‐based Soil Water module (here named AP2; Probert et al., 1998; further details can be seen
in Text S2). Sward growth was simulated with the AgPasture module (F. Li et al., 2011) with recent additions
to model reallocation of N reserves (Vogeler & Cichota, 2016) and an implementation of the
Penman‐Monteith equation designed for intermingled canopies (Snow & Huth, 2004). Soil organic matter
and nitrogen transformations were simulated with the SoilN module (Probert et al., 1998) with a derivation
of the N2:N2O ratio adapted from DayCent (Thorburn et al., 2010) and a simple routine to calculate volati-
lization losses (Vogeler et al., 2010). APSIM simulates N2O production from nitrification and denitrification.
Nitrification is implemented with a Michaelis‐Menten approach, with a fixed fraction of NH4

+ for nitrifica-
tion. N2O production via nitrification is down‐regulated at suboptimal temperature, moisture, and pH in the
respective layer. Denitrification depends on NO3

− and active C concentrations in the respective layer. The
maximum denitrification rate is regulated downwards and depends on temperature and soil moisture in
each layer (for further details on the simulation and parameterization of BNF and N2O emissions in
APSIM, see Text S2). Simulated pasture composition in APSIM is dynamic and adapts to prevailing condi-
tions, such as fertilizer inputs, much as one might expect a physical pasture to behave. To create variation
in legume content for any given fertilizer regime, the simulated pastures were resown every third year, much
as might be done in a physical experiment.
2.1.2. DayCent
DayCent, the daily time‐step model that has evolved from the Century model (Del Grosso et al., 2001; Parton
et al., 1998), was used in this study in the variants DayCent v4.5 2010 (here named DC1) and DayCent v4.5
2013 (here named DC2). These variants differ in their calculations of solar radiation and in their calculations
of maintenance and growth respiration, as well as the implementation of N2O emissions due to freeze‐thaw
cycles in the latter (please find further details in Text S3). DayCent includes four major sub‐models: (1) the
plant growth sub‐model calculates biomass production and allocates net primary production (NPP) to var-
ious plant pools; (2) the soil organic matter (SOM) sub‐model simulates decomposition of dead plant mate-
rial (litter) and SOM and allocates soil carbon to three SOC pools and the litter pool; (3) the soil water
sub‐model simulates water flow between different layers; and (4) the trace gas flux sub‐model simulates gas-
eous emissions. DayCent simulates N2O losses based on the leaky pipe metaphor where nitrification and
denitrification are conceptualized as leaky pipes through which N is cycling but losing some gaseous N
through a hole (Parton et al., 2001). Nitrification and denitrification rates depend on NH4

+ (for nitrification)
and NO3

− concentrations and labile carbon availability (for denitrification), soil water content and

10.1029/2020GB006561Global Biogeochemical Cycles

FUCHS ET AL. 5 of 20



temperature. While the proportion of the nitrification and denitrification escaping as gaseous N as either
(NOx, N2O, or N2) is fixed, the ratio of N2O with respect to NOx and N2 depends on soil water content
and soil properties regulating soil gas diffusivity (Parton et al., 2001; see Text S3).
2.1.3. Empirical Findings for the Effect of Nfert and Clover on Yields
In order to present model results in the context of empirical findings, we displayed example data from two
studies for the dependency of yields on fertilizer N (Reid, 1983; here E1) and clover proportion (Nyfeler
et al., 2009; here E2) in Figure 4. These can be regarded as case studies with the purpose of showing the
reader what patterns we would expect. We used the regression equation from Reid (1983) as displayed in
their Table 2. In contrast to our model outputs, grass‐clover mixtures in Reid (1983) did not contain exactly
50% clover in dry biomass. Besides Reid (1983), see also further studies of Sparrow (1979), Prins (1983), and
Whitehead (1995) for comparable data. To provide empirical evidence for the effect of clover percentage on
yields, we used the equation from Nyfeler et al. (2009), equation 1 with the coefficients according to their
Table S3 for mixtures of T. repens and L. perenne, excluding the other species. The Nyfeler study had
50 kg N ha−1 yr−1 as the minimum fertilizer rate instead of 0 kg N ha−1 yr−1 as in our study.

2.2. Site Information

The sites used for the simulations were five grassland sites in the temperate zone (Table S3). Daily weather
data for 1980–2010 was supplied by A. Ruane from the AgMERRA data set (Ruane et al., 2015). Each mod-
eling group used their plant growthmodel parameterizations, with the exceptions noted below, as developed
in the fully informed or calibrated (Stage 5) modeling reported by Ehrhardt et al. (2018). The exception to the
parameterization was in relation to the grass‐legume ratio and symbiotic N fixation as described in the spe-
cific model sections in the supporting information.

2.3. Validation Results

For net primary production, the applied models in the validation exercise showed relative biases of −0.04–
0.74 and RRMSE of 0.70–0.89 (Ehrhardt et al., 2018). For N2O emissions, relative biases were−0.80–0.03 and
RRMSE ranged between 0.13 and 0.81 (Ehrhardt et al., 2018; see Table S1a). A detailed validation of N2O
emissions and its drivers at the Swiss site revealed that both models used here generally performed better
than the Swiss IPCC calculations for that site (Fuchs et al., 2020).

The relationship between yields and legume percentage was validated in Fitton et al. (2019), showing that
APSIM most accurately predicted yields at 0% and 100% clover (bias below 2%), but underestimated yields
at 25–50% clover by 23–27% and overestimated yields at 75% clover by 10%. DayCent estimated yields with
a bias below 10% across all clover percentages, except at 75% clover percentage where it overestimated yields
by 33% (Fitton et al., 2019; see Table S1b).

2.4. Modeling Protocol

Management events included cutting and fertilization. Cutting events were simulated monthly during the
growing season (May‐October for the European sites G3–5, May‐September for G1 in North Dakota, and
September‐May for G2 in New Zealand; each on the first day of the month) and followed by fertilization
on the fifth day of the month (Table S4). In line with agricultural practices, the exception deviating from this
scheme was that there was no fertilizer applied after the last harvest of the season and fertilization in spring
started in the month before the first cut in each year (Table S4). The residual biomass after all cuts was
1,200 kg DM ha−1, and all cut biomass was removed from the simulation. The total amount of N to be
applied annually was split equally between the individual applications, which were surface applied. The
mineral N was applied as ammonium‐nitrate (NH4‐NO3). Aerial deposition of N was set to zero. The sites
were presumed to be flat; hence, there were no N losses via run‐off. Model outputs included yields, harvested
C and N, plant N uptake, N2O emissions, soil organic carbon (SOC), soil organic nitrogen (SON), nitrate and
ammonium concentrations, and nitrate leaching (Table S5).

2.5. Statistical Analysis

The dynamic simulation of clover proportions in APSIM resulted in clover proportions that were irregularly
distributed between 0% and 100% and therefore not suitable for direct analysis. From visual inspection, we
observed no trends in the output data. In order to (1) obtain a response value on a regular grid for any
clover‐fertilizer combination per site, per model and per fertilizer type and to (2) exclude the inter‐annual
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variability and analyze an aggregated outcome across years, we fitted response surfaces on the area spanned
by clover proportion and fertilizer amount (Figure 2; see also Figure S1 for an example surface fit). These
smooth surfaces can be considered as an interpolation, aggregating the 30 years of model outputs. We used
the tensor product smoother to include two dimensions (clover proportion and fertilizer amount), suitable
due to its scale‐invariant properties (Wood, 2006). We prescribed a fixed number of knots for both dimen-
sions (k = 4, resulting in 42 = 16 knots) in order to hold the number of parameters consistent across all sur-
face fits. We had also investigated surface responses using a linear model with second order polynomials for
both predictors and an interaction. However, residual analysis of the results from that approach showed that
the polynomial fits violated the assumptions of the linear model (i.e., residual distribution showed no nor-
mality and homogeneous variance) in most site‐model combinations. Thus, from visual inspection and resi-
dual analysis, the chosen method using the tensor product smoother better represented the characteristics of
the data and was therefore chosen for this study. Daily model outputs were aggregated to annual values
before the fitting. The surface fitting and statistical analyses were carried out using the open source software
R (R Core Team, 2016) and specifically the “mgcv” package (Wood, 2011) for fitting smoothing splines,
building the tensor product of the predictors (Nfert and clover %) with the function te(), and fitting the
smoothing splines on this tensor product with gam() (Wood, 2011). Further, the “data.table” package
(Dowle & Srinivasan, 2017) was used for efficiently handling the large data sets. ANOVA was used in order
to systematically asses the effects of clover proportion, fertilizer amount, model and site on yields, Nsymb,
N2O emissions, and N2O emission intensities (N2O‐Int calculated as mass unit of N2O emissions per mass
unit biomass yield). For the statistical analysis, the post‐processed data set (after surface fitting) was used
as this had the advantage of a balanced design. The ANOVA was performed separately for APSIM and
DayCent, since the patterns varied between models such that averaging across model types would make it
impossible to address model‐specific behaviors and their implications on the results. To compare the effect
of clover proportion and fertilizer amount on a response variable (e.g., yield, N2O emissions, and N2O‐Int)
across several sites, the response variable was presented as standardized response. Here, the standardization
was consistently defined as the response variable divided by the maximum of the respective response vari-
able across all scenarios (combinations of clover proportion and fertilizer amount) per site and model.

Y ′
i;m; s ¼

Yi;m; s

max Yi;m; s
� �

Y′i,m,s is the standardized response variable for scenario i, fixed model m, and fixed site s, and Yi,m,s is the
original response variable. The results are presented per model (DayCent, APSIM) across model variants
in order to assess the general pattern rather than the individual model variants' differences. Mean values
and ranges given in the text and figures refer to the mean and range across variants and not the
inter‐annual which was excluded by the surface fitting procedure.

A baseline scenario of no clover with 200 kg N ha−1 yr−1 fertilizer applied was used for comparing mitigation
scenarios. This baseline reasonably represents intensively used cut‐and‐carry systems, corresponding to N
recommendations for fertilized grassland present in several countries. To test if a small clover percentage
would significantly change the results under the baseline, we regarded clover percentages of 5% as a second
baseline scenario. Here, we were not trying to mimic the actual management at the sites nor intending to
address site‐specific optima (species, N rates, grazing). Instead, we conceptually prescribed fixed manage-
ment schedules in order to look at the response surfaces of fixed comparable setups across sites. While cor-
responding approximately to actual fertilizer amounts at the G5 site, which was the highest input system of
any of the sites in this study, this baseline deviated from the actual fertilizer amendments on the other sites
(Table S3). Nevertheless, we used this as baseline because we were interested in the general patterns using
the sites as “generalizable” examples.

2.6. Estimating the Global Technical Mitigation Potential of Replacing Nfert With BNF

Our work focuses onmanaged pasturelands with C3 grasses and is not applicable to extensive rangeland and
C4 pastureland. Dangal et al. (2019) estimated that pastures based on C3 grasses cover 570 million ha of the
terrestrial surface, based on the HYDE3.2 data set by Klein Goldewijk et al. (2017). We used the estimated
global amount of 2.9 Tg N2O‐N yr−1 for the recent period 2001–2014 together with their estimate of 11%
of these emissions being attributed to synthetic fertilizer, resulting in emissions of 319 Gg Tg N2O‐N yr−1
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attributed to fertilizer application during this period. Based on this estimate of N2O emissions from global
fertilizer application on grasslands, we used our estimated relative values for N2O mitigation averaged
across sites to calculate the global technical mitigation potential of replacing Nfert with BNF under the
baseline and different mitigation scenarios. For the global estimate, the mitigation effect was considered
relative to the N2O emissions attributed to fertilizer use, which are the site emissions at the fertilizer
scenario minus the background N2O emissions, that is, N2O emissions under the scenario of no fertilizer
nor symbiotically fixed N input.

3. Results
3.1. Nitrous Oxide Emissions

Nitrous oxide emissions ranged between 0.01 and 1.9 kg N2O‐N ha−1 yr−1 (0.1–0.4% of Nfert) across scenarios
for APSIM variants and between 1.8 and 9.6 kg N2O‐N ha−1 yr−1 (1.4–5.5% of Nfert) for DayCent model var-
iants averaged across sites (Table 1, Figure 3). The emissions varied significantly among models, sites, and
fertilizer levels (Tables 1 and S4). Clover proportion did not affect N2O emissions in DayCent (Table 1)
and did not affect N2O emissions in APSIM at 0–75% clover but significantly increased N2O emissions at
the 75–100% clover level (Table 1) due to increased N2O emissions at high fertilizer levels of
450–600 kg N ha−1 yr−1 in clover‐rich grasslands (Table 2, Figure 3). The N2O emissions depended not only
on the amount of N input but also on the N source. For the same total N input (here defined as Nfert + Nsymb),
lower N2O emissions were found when a larger fraction of the N input came from symbiotic N fixation
(as Nsymb) rather than from fertilization (Nfert). The mitigation option would be ineffective if N2O emissions
were independent of the source of N; thus, this finding shows that an important precondition for effective-
ness of the mitigation strategy was met. The N2O emissions were highest at maximal fertilizer levels and

Table 1
Effects of Site, Model, Fertilizer Amount, and Clover Percentage on Yield, N2O Emission, and N2O‐Int

Yield t DM ha−1 yr−1 N2O emission kg N2O‐N ha−1 yr−1 N2O‐Int g N2O‐N kg−1 DM−1

APSIM DayCent APSIM DayCent APSIM DayCent

Grand mean 10.3 6.8 0.52 5.31 0.04 0.83
Site *** *** *** *** *** ***

G1 8.3a 5.0a 0.38b 2.53a 0.034a 0.595a

G2 11.9b 7.3b 0.53cd 3.57b 0.034a 0.494a

G3 10.7c 6.7bc 0.43a 7.11c 0.028a 1.071b

G4 9.2b 6.3c 0.61de 6.32c 0.054b 1.015b

G5 11.3bc 8.8d 0.78e 10.4d 0.059b 1.231b

Model *** *** ns *** *** ***
AP1 10.8a ‐ 0.55a ‐ 0.037a ‐
AP2 9.8b ‐ 0.51a ‐ 0.043b ‐
DC1 ‐ 5.8a ‐ 4.91a ‐ 0.917a

DC2 ‐ 7.8b ‐ 5.75b ‐ 0.751b

Nfert *** *** *** *** *** ***
0 5.3a 5.8a 0.01a 1.83a 0.006a 0.341a

150 9.1b 6.7b 0.31b 4.35b 0.025b 0.681a

300 11.3c 7.0b 0.66c 6.59c 0.054c 0.989b

450 12.4cd 7.1b 1.21d 8.37cd 0.096d 1.232bc

600 13.3d 7.3b 1.90e 9.62d 0.145e 1.392c

Clover % *** *** *** ns *** ns
0 8.7a 6.1a 0.50a 4.80a 0.044a 0.886a

25 9.5a 7.1bc 0.48a 5.31a 0.040ab 0.785a

50 10.7b 7.3c 0.46a 5.51a 0.034b 0.769a

75 11.8b 6.9bc 0.54ab 5.51a 0.034b 0.823a

100 10.8b 6.5ab 0.68b 5.46a 0.050ab 0.884a

Note. Predicted values per model (APSIM, DayCent) are shown for mineral fertilizer scenarios (see Table S7 including organic fertilization). Different small let-
ters indicate significant differences among levels (Tukey's HSD) per factor (Site, Model, Nfert, Clover %). ns indicates no significant differences for the respective
factor.
***Significant effect at a significance level of p < 0.01.
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were generally smallest in the absence of fertilizer. While N2O emissions were higher for the DayCent
variants, APSIM variants predicted higher losses via nitrate leaching (Figure S4).
3.1.1. Effect of Fertilization on Nitrous Oxide Emissions
In the absence of fertilization, models simulated average N2O emissions of 0.01 kg N2O‐Nha−1 yr−1 (APSIM)
and 1.83 kg N2O‐N ha−1 yr−1 (DayCent) across clover proportions (Table 1). At 150 kg N fertilization levels,
N2O emissions increased to 0.31 kg N2O‐N ha−1 yr−1 (APSIM) and 4.35 kg N2O‐N ha−1 yr−1 (DayCent)
(Table 2). At maximal fertilization levels (600 kg N), N2O emissions reached 1.9 kg N2O‐N N ha−1 yr−1

(APSIM) and 9.6 kg N2O‐N ha−1 yr−1 (DayCent), averaged across clover scenarios, model variants and
sites (Table 1). Fertilization increased N2O emissions for all model‐site‐combinations. However, different
types of relationships were observed. The APSIM models showed an almost exponential increase of N2O
with fertilization, (Figure 3), while the DayCent models simulated approximately linear relationships, and
in some cases (e.g., G3) lower N2O emission increments at higher fertilizer rates (leveling‐off) (Figure 3).
3.1.2. Effect of Clover Proportion on Nitrous Oxide Emissions
In general, clover proportion did not affect N2O emissions across models and sites (Figure 3, Tables 1 and 2)
between 0% and 75% clover (Table 1). As an exception, APSIM simulated significantly increased N2O emis-
sions at a clover proportion of 100% in the higher fertilized scenarios (≥450 kg Nfert,), depicting the effects of
high N inputs in these scenarios. However, one has to keep in mind that those clover‐fertilizer combinations
are rather artificial and of no practical importance. A notable characteristic was that DayCent simulated
background N2O emissions of 1.8 (0.4–4.3) kg N2O‐N ha−1 yr−1, without N fertilization or clover in the field.
APSIM showed no N2O fluxes without N fertilization independent of clover level.

Figure 3. (a) Boxplots of N2O emissions across all mineral N scenarios (clover‐fertilization combinations) per site
(G1–G5) for APSIM (top) and DayCent variants (bottom); (b) dependency of standardized N2O emissions (y‐axis) on
fertilizer amount (x‐axis) at 0% clover percentage (dot‐dashed) 50% clover percentage (dashed) and 100% clover
percentage (solid line); and (c) dependency of standardized N2O emissions (y‐axis) on clover percentage (x‐axis) for the
fertilizer levels 0 kg N (dot‐dashed), 150 kg N (dashed), and 450 kg N (solid line) (APSIM: top, DayCent: bottom).
N2O emissions in b and c were standardized with the maximum yields per model‐site combination. Lines display the
mean across sites, shaded areas indicate the range across sites per model family.
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3.2. Sward Productivity

Annual yields of the grass‐clover mixtures ranged between 0.9 and 15.7 t DM ha−1 yr−1 across models and
sites, clover, and fertilizer combinations (Figure 4a, Table 2). For APSIM, average yields across scenarios
(i.e., variations in fertilizer inputs and clover proportion) ranged between 8.3 t DM ha−1 yr−1 at Site G1
and 11.9 t DM ha−1 yr−1 at Site G2 (Table 1). DayCent simulated lower average yields, ranging between
5.0 t DM ha−1 yr−1 (G1) and 8.8 t DM ha−1 yr−1 (G5) across scenarios (Table 1). Variability between scenar-
ios (within model) was higher for APSIM (mean sum of squares MSQNfert = 890; MSQClover% = 238.4) com-
pared to DayCent (MSQNfert = 24.6, MSQClover% = 24.6; Table S6). The models agreed that highest
productivity levels were simulated at G2 and G5, medium productivity at G3, while lower productivity
was simulated for G4 and G1 (Figure 4a, Table 1).

Table 2
Average and Range of Yields, N2O Emission, and N2O‐Int for Different Combinations of Nfert and Clover Proportion Across Sites andModel Variants for APSIM and
DayCent for Mineral Fertilizer N Scenarios

N 0 N 150 N 300 N 450 N 600

APSIM Yield (t DM ha−1 yr−1)
0% clover 2.0 (0.9–3.6) 6.5 (5.4–7.6) 9.7 (8.7–11.2) 11.7 (9.7–13.8) 13.4 (9.7–16.0)
25% clover 2.2 (1.2–3.4) 7.2 (6.1–8.7) 10.8 (9.4–12.1) 12.9 (10.9–14.1) 14.2 (11.2–15.8)
50% clover 3.9 (2.6–5.3) 9.1 (7.5–10.9) 12.2 (10.6–13.7) 13.6 (11.6–15.0) 14.5 (16.4–15.7)
75% clover 7.5 (4.9–9.9) 11.8 (10.1–13.4) 13.1 (10.9–14.8) 13.1 (10.5–14.6) 13.6 (10.5–15.7)
100% clover 11.1 (8.5–13.3) 10.9 (7.3–13) 10.7 (7.0–12.9) 10.7 (7.0–12.9) 10.7 (7.0–12.8)
DayCent Yield (t DM ha−1 yr−1)
0% clover 3.2 (1.6–4.2) 5.8 (4.9–7.3) 6.8 (5.8–8.6) 7.0 (5.5–8.9) 7.6 (5.8–9.7)
25% clover 5.9 (3.7–7.6) 7.0 (5.2–8.9) 7.4 (5.6–9.4) 7.5 (5.4–9.5) 7.7 (5.5–9.9)
50% clover 7.0 (4.8–9.1) 7.3 (5.2–4.9) 7.4 (5.3–9.5) 7.5 (5.3–9.6) 7.5 (5.3–9.7)
75% clover 6.9 (5.0–9.0) 6.9 (5.1–9.0) 7.0 (5.1–0.1) 7.0 (5.1–9.1) 7.1 (5.1–9.2)
100% clover 6.5 (4.6–8.6) 6.5 (4.9–8.6) 6.5 (4.9–8.6) 6.5 (4.9–8.5) 6.5 (4.9–8.5)
APSIM N2O emission (kg N2O‐N ha−1 yr−1)
0% clover 0 (0–0) 0.2 (0.1–0.3) 0.6 (0.3–1.0) 1.1 (0.6–1.9) 1.7 (0.9–3.1)
25% clover 0 (0–0) 0.2 (0.10.3) 0.6 (0.3–1.0) 1.1 (0.5–2.0) 1.8 (0.8–3.2)
50% clover 0 (0–0) 0.2 (0.1–0.3) 0.6 (0.2–1.0) 1.2 (0.5–2.1) 2.0 (0.8–3.5)
75% clover 0 (0–0) 0.2 (0.1–0.3) 0.6 (0.3–1.1) 1.3 (0.6–2.4) 2.3 (1.0–4.3)
100% clover 0 (0–0) 0.2 (0.1–0.4) 0.8 (0.4–1.5) 1.8 (0.7–3.6) 3.4 (1.0–6.7)
DayCent N2O emission (kg N2O‐N ha−1 yr−1)
0% clover 1.9 (0.4–4.3) 4.6 (2.3–7.6) 7.5 (3.7–13.5) 10.0 (4.7–19.8) 11.9 (5.1–22.9)
25% clover 2.4 (0.5–5.3) 5.0 (2.3–7.9) 7.9 (3.8–14.4) 10.4 (4.6–20.6) 12.2 (5.1–23.4)
50% clover 2.6 (0.6–5.6) 5.2 (2.4–8.0) 8.1 (3.8–14.6) 10.6 (4.6–20.7) 12.4 (5.1–23.5)
75% clover 2.6 (0.6–5.6) 5.2 (2.4–8.0) 8.0 (3.7–14.4) 10.6 (4.6–20.5) 12.4 (5.1–23.3)
100% clover 2.6 (0.6–5.6) 5.1 (2.3–7.9) 8.0 (3.7–14.3) 10.6 (4.6–20.3) 12.4 (5.1–23.0)
APSIM N2O‐Int (g N2O‐N kg−1 DM−1)
0% clover 0.010 (0.003–0.034) 0.028 (0.019–0.043) 0.059 (0.040–0.096) 0.097 (0.061–0.159) 0.134 (0.079–0.220)
25% clover 0.006 (0.001–0.018) 0.027 (0.018–0.04) 0.057 (0.033–0.090) 0.093 (0.051–0.149) 0.131 (0.069–0.210)
50% clover 0.002 (0.000–0.006) 0.023 (0.013–0.034) 0.052 (0.025–0.082) 0.092 (0.045–0.149) 0.140 (0.073–0.228)
75% clover 0.001 (0.001–0.002) 0.017 (0.010–0.026) 0.049 (0.03–0.079) 0.105 (0.063–0.177) 0.179 (0.108–0.313)
100% clover 0.001 (0.001–0.006) 0.025 (0.016–0.037) 0.075 (0.048–0.128) 0.172 (0.108–0.315) 0.311 (0.166–0.585)
DayCent N2O‐Int (g N2O‐N kg−1 DM−1)
0% clover 0.63 (0.41–1.05) 0.82 (0.45–1.18) 1.09 (0.55–1.57) 1.34 (0.70–2.12) 1.49 (0.80–2.35)
25% clover 0.42 (0.26–0.84) 0.73 (0.38–1.11) 1.05 (0.52–1.51) 1.33 (0.66–2.09) 1.50 (0.78–2.34)
50% clover 0.37 (0.22–0.78) 0.72 (0.36–1.11) 1.07 (0.51–1.50) 1.36 (0.65–2.10) 1.57 (0.79–2.39)
75% clover 0.41 (0.25–0.82) 0.78 (0.38–1.15) 1.16 (0.52–1.56) 1.49 (0.67–2.19) 1.73 (0.81–2.77)
100% clover 0.41 (0.25–0.84) 0.84 (0.38–1.20) 1.29 (0.54–1.83) 1.68 (0.70–2.75) 1.99 (0.85–3.57)
Empirically estimated N2O emissiona (kg N2O‐N ha−1 yr−1)
IPCC 0.0 (0.0–0.0) 1.5 (0.5–4.5) 3.0 (0.9–9.0) 4.5 (1.4–13.5) 6.0 (1.8–18.0)
Shcherbak et al. (2014)b 0.0 2.0 5.5 10.6c 17.4c

Note. For comparison, we include the IPCCN2O emission estimate with its 95% confidence intervals as well as the empirical estimates by Shcherbak et al. (2014).
aFor models empirically estimating N2O emission, no distinction between different clover proportions is available. bEmpirical model for “perennial grass/for-
age” in Table S3 of Shcherbak et al. (2014); emission of N2O‐N = 1.067 a (7.76 a 0.0353*Nfert)*Nfert) *10−3. cEven though Shcherbak et al. (2014) displayed
N2O emission estimates for only N up to 300 kg N in their paper, the N fertilizer amounts in grasslands used for deriving their empirical relationship covered
the higher levels (see supplementary information of Shcherbak et al., 2014), and we thus included levels up to 600 kg in our table.
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3.2.1. Effects of Fertilizer Amount on Yield
Yields of grass monocultures significantly increased with the amount of fertilizer added. Average yields were
lowest for scenarios without fertilizer (5.3 t DM ha−1 yr−1 in APSIM and 5.8 t DM ha−1 yr−1 in DayCent and
up to 13.3 t DM ha−1 yr−1 in APSIM and 7.3 t DM ha−1 yr−1 in DayCent at 600 kg N input when averaged
across sites and clover proportions; Table 1). While ASPIM suggested that increased fertilization still
increased yields at the highest fertilizer levels (i.e., significant yield differences between 450 and
600 kg Nfert), DayCent simulated yields leveling off above ~200 kg N fertilization (i.e., no significant yield
increase at the fertilizer levels ≥300 kg N compared to the 150 kg N; Table 1, Figure 4b). In unfertilized grass
monocultures, APSIM simulated yields of 2.0 t DM ha−1 yr−1 (0.9–3.6 t DM ha−1 yr−1 across sites, Table 2)

Figure 4. (a) Boxplots of yields across all mineral N scenarios (clover‐fertilization combinations) per site (G1–G5) for
APSIM (top) and DayCent variants (middle); (b) dependency of standardized yield (vertical axis) on fertilizer amount
(horizontal axis) at 0% clover percentage (dot‐dashed), 50% clover percentage (dashed), and 100% clover percentage
(solid line); and (c) dependency of standardized yield (vertical axis) on clover percentage (horizontal axis) for the fertilizer
levels 0 kg N (dot‐dashed), 150 kg N (dashed), and 450 kg N (solid line) (APSIM: top, DayCent: middle). Yields in
b and c were standardized with the maximum yields per model‐site combination. Lines display the mean across sites, and
shaded areas indicate the range across sites per model family. The bottom panels display conceptually our
expectations from empirical findings. For the effect of fertilization (b), we displayed the empirical‐derived regression
equation from Reid (1983) (E1) and refer to both equation and coefficients in Table 2 in their publication. In contrast to
our model outputs, grass‐clover mixtures in Reid (1983) did not contain exactly 50% clover in dry biomass. For the
effect of clover percentage (c), we used the empirical‐derived equation from Nyfeler et al. (2009) (E2), equation 1 with the
coefficients according to their Table S3 for mixtures of T. repens and L. perenne, excluding the other species. The
Nyfeler study had 50 kg N as the minimum fertilizer rate, displayed dot‐dashed, not 0 kg N. For the empirical studies in
the bottom panel, the line indicates the mean and the shaded area the range across years.
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corresponding to 13% (7–21%) of the maximum site yields. In contrast, DayCent simulated higher yields of
3.2 t DM ha−1 yr−1 (1.6–4.2 t DM ha−1 yr−1) or 36% (20–46%) of maximum site yields without any
fertilization (reflected in the offset in Figure 4b).

The effect of fertilizer on yields depended on the clover proportion in the sward. In APSIM, a fertilizer
response was found for grass‐clover mixtures of 0–80% clover; for example, grass‐clover mixtures of 50%
in APSIM largely benefited from fertilization and increased yields from 3.9 t DM ha−1 yr−1 without fertiliza-
tion to 12.2 t DM ha−1 yr−1 at 300 kg N fertilization, while high‐clover mixtures ≥75% and clover monocul-
tures did not benefit from fertilization above 300 kg N (Figure 4b, Table 2). DayCent showed a fertilizer
response for mixtures of 25% clover, but little fertilization effect on mixtures of ≥50% clover (Figure 4b,
Table 2), for example, for 50% clover, an increase in yield from 7.0 t DM ha−1 yr−1 without fertilization to
7.4 t DM ha−1 yr−1 at 300 kg N fertilization (Figure 4b, Table 2). Legume monocultures produced similar
yields regardless of fertilizer level, consistently for all models (n.s. in Table 1), while the absolute amount
of legumemonoculture yields varied largely across models and sites. For example, APSIM predicted an aver-
age yield of 10.7 t DM ha−1 yr−1 ranging from 7.0–12.8 t DM ha−1 yr−1 across sites and DayCent
6.5 t DM ha−1 yr−1 with sites ranging from 4.9–8.5 t DM ha−1 yr−1 (Table 2).
3.2.2. Effect of Clover Proportion on Yields
Species mixtures were significantly more productive than grass monocultures in unfertilized swards
(Table 2, Figure 4c). Transgressive over‐yielding, that is, higher yields for mixtures than for the
highest‐yielding monoculture, were observed for DC1 and for APSIM (both variants) above 50 kg N fertiliza-
tion. Without fertilization, maximum yields were found at 100% clover. When increasing fertilizer levels, the
clover proportion for maximum production (“optimal clover proportion”—Cloopt) shifted to lower clover
proportions. For example, Cloopt in APSIM was 82% (site‐median) at 150 kg N, decreasing to 47% at
450 kg N, and in DayCent Cloopt decreased from 58% at 150 kg N to 43% at 450 kg N.

3.3. Symbiotically Fixed Nitrogen

Symbiotically fixed nitrogen reached up to 465 (±65) kg N ha−1 yr−1 and 422 (±153) kg N ha−1 yr−1 at the
scenarios without fertilizer inputs for APSIM and DayCent simulations, respectively (Table 3). With increas-
ing clover proportion, Nsymb increased up to a maximum and decreased at higher clover proportions. This
pattern resulted from high productivity in mixtures due to the complementarity between grass and clover
growth, which becomes less beneficial at higher clover proportions, resulting in smaller total growth and
in less Nsymb.

Table 3
Average and Standard Deviation Across Sites (sd) of Nsymb for Different Fertilizer Rates and Clover Percentages as
Simulated by APSIM and DayCent

APSIM DayCent

Nfert
(kg ha−1 yr−1)

Clover
percentage (%)

Nsymb
(kg ha−1 yr−1)

sd Nsymb
(kg ha−1 yr−1)

Nsymb
(kg ha−1 yr−1)

sd Nsymb
(kg ha−1 yr−1)

0 0 0 0 0 0
0 20 9 10 211 78
0 50 96 27 377 139
0 70 231 66 422 153
0 100 465 65 420 153
150 0 0 0 0 0
150 20 48 11 190 87
150 50 168 34 309 143
150 70 285 50 331 157
150 100 316 63 306 158
300 0 0 0 0 0
300 20 66 16 152 87
300 50 174 40 234 137
300 70 241 52 244 149
300 100 203 49 211 145
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Consistent with the experimental findings of Nyfeler et al. (2009), the higher the amount of fertilizer, the
lower the clover proportion at maximum Nsymb. For example, in APSIM, the maximum Nsymb at
150 kg Nfert was found at 86% clover (median across sites), while at fertilizer levels of 300 kg N, highest
amounts of Nsymb were found at 79% clover proportion. In DayCent, the maximum Nsymb was found at
slightly lower clover proportions around 70% clover for 150 kg Nfert and at 300 kg Nfert.

Fertilization increased Nsymb for clover mixtures (below 70–80% clover) at moderate fertilizer levels as N
addition stimulated growth. For example, grass‐clover mixtures of 50% clover showed maximum fixation
at around 150 kg N ha−1 yr−1 fertilization, while Nsymb decreased with further fertilizer increment
(Table 3). Nsymb in clover monocultures decreased with increasing fertilization, as fertilized clover swards
acquire their N from fertilization if available (Table 3).

3.4. Nitrous Oxide Emission Intensities

Nitrous oxide emission intensity estimates (N2O‐Int), that is, N2O emissions per unit of biomass yield, allow
a productivity‐based comparison of N2O emissions across sites, scenarios, and models. N2O‐Int ranged
between 0.01 and 0.31 g N2O‐N kg−1 DM (APSIM) and 0.63–1.99 g N2O‐N kg−1 DM (DayCent) across clover
proportions and fertilizer levels on average across sites (Table 2; Figure S3). MaximumN2O‐Int were reached
at 100% clover and themaximal fertilizer rate (600 kg Nfert), except for DayCent at the G3 and G1 sites, where
the maximumwas already reached at 440 and 260 kg Nfert due to the leveling‐off in N2O emissions at higher
fertilizer levels. Without fertilizer input, N2O emission intensities maximized in grass monocultures which
was primarily due to the small denominator (low yields) without fertilizer or Nsymb. Significant variation in
N2O‐Int among models, fertilizer inputs, and sites were observed. Models agreed that N2O‐Int were signifi-
cantly lower for the sites G1 and G2 compared to G4 and G5 (Table 1). Increasing fertilizer inputs strongly
increased N2O emission intensity from 0.006 g N2O‐N kg−1 DM in unfertilized swards to 0.096 g N2O‐
N kg−1 DM at 450 kg N fertilization for APSIM and from 0.341 g N2O‐N kg−1 DM at unfertilized sward to
1.232 g N2O‐N kg−1 DM at 450 kg Nfert for DayCent (Table 1, Figure S3). Lower N2O‐Int was found for mix-
tures compared to clover and grass monocultures (based on means across fertilizer levels, models, and sites,
Figure S3, Table 1). Modeled N2O‐Int was highest when N input came from fertilizer and decreased with
increasing fraction of the total N input acquired via symbiosis. While the pattern of lower N2O intensities
at higher fractions of Nsymb was independent of the level of total N input, the magnitude (slope) of the effect
on N2O intensity was such that a great mitigation effect was achieved in systems with high total N input.
Variability in N2O‐Int between models exceeded variability across sites and fertilizer levels meaning that
there is considerable uncertainty in the estimated magnitude. Still, models agreed on the overall patterns
of mixtures resulting in lower N2O‐Int compared to monocultures.

3.5. N2O Mitigation Potential

In order to assess a mitigation potential, a baseline scenario is required. Here, we selected the scenario with-
out clover and with a fertilizer rate of 200 kg N ha−1 yr−1 (N200.Clo0) as outlined above (see section 2.4). To
understand the effect of successive reductions in fertilizer input, we assessed the results by two stepwise
reductions of fertilizer to 100 and 0 kg N ha−1 yr−1 and determined the clover proportion that obtained
the maximum yield (Cloopt) for each site‐model combination at the reduced fertilizer input. These were
labeled Nx. Cloopt where x is the amount of fertilizer input.

Simulations suggested that N200.Clo0 soils emitted 0.46 (±0.27 SE) g N2O‐N per kg of dry matter yield across
all models and sites (Figure 5). For the first reduction in fertilizer input, N100.Cloopt, models showed consis-
tently lower N2O intensities of 0.30 (±0.25) g N2O‐N per kg of dry matter yield, corresponding to an average
reduction of N2O‐Int by 34%. The lower N2O‐Int was present at all model‐site combinations and resulted
from a reduction of N2O emissions by 25% on average and 32% higher yields compared to the baseline
(Figure 5). Even though all model results showed that N2O‐Int consistently declined as fertilizer inputs were
reduced, the magnitude of these reductions varied strongly across models and considerably across sites
(Figure 5). A complete fertilizer omission reduced N2O‐Int to 0.19 g N2O‐N per kg of dry matter yield, cor-
responding to a 58% reduction compared to the N200.Clo0 baseline.

In order to define a target for the mitigation management, a key question is how clover proportions need to
be adapted in order to produce maximum yields. Clover proportions at which the maximum yields were
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reached ranged 66–86% (APSIM range across sites) and 0–72% (DayCent)
for a N200.Cloopt scenario. A decrease in fertilization, N100.Cloopt, gave
higher optimal clover proportions (72–100% by APSIM and 40–100% by
DayCent across sites) as might be expected. Complete fertilizer omission
(N0.Cloopt) resulted in clover proportions for optimal yield of 88–100%
(APSIM) and 46–89% (DayCent).

If a reduction of N2O emissions is accompanied by yield losses, its
acceptability by farmers is likely to be very low. Thus, our aimwas to iden-
tify scenarios at which the yield was not compromised by the N2O mitiga-
tion and distinguish them from scenarios with yield losses. Surprisingly,
yield reductions compared with N200.Clo0 were only found for N0.
Cloopt at five out of 20 model‐site combinations. Thus, these results sug-
gest that a reduction of fertilizer from 200 to 0 kg N was possible without
yield losses provided it was also possible to obtain an optimal clover pro-
portion in the sward.

The global N2Omitigation potential of replacing Nfert partially with Nsymb

was calculated for the optimal clover content and the 30% and 60%
clover scenarios. Average N2O emissions across our models were
2.96 kg N2O‐N ha−1 yr−1 if business‐as‐usual fertilizer application was
200 kg N ha−1 yr−1. If the relative mitigation effects assessed our study
are assumed to be representative for C3 pasturelands and assuming the
baseline fertilizer application of 200 kg N ha−1 yr−1, a reduction to
100 N ha−1 yr−1 combined with an increase to 30% or 60% clover would
reduce fertilizer N2O emissions by 37–40% and would scale to a global
mitigation effect of 119–128 Gg N2O‐N yr−1. While N2O emissions were
similar at 30% and 60% clover, yields were reduced (by 20%) at the 30% clo-
ver scenario compared to the baseline, while no yield decrease was found
for the 60% clover scenario.

In comparison, a complete omission of Nfert combined with an increase in
Nsymb to its maximum scales to reductions of 258 Gg N ha−1 yr−1 for C3
pasturelands globally, when assuming 200 kg N yr−1 initial fertilization,
respectively. Using initial clover percentage of 5%, instead of 0%, did not
substantially affect these results.

4. Discussion
4.1. Yields, N2O Emissions, N2O Emission Intensities, and
Mitigation Potentials

The general pattern of modeled yields increasing with increasing fertilizer
input is consistent with experimental data. Yields of grass monocultures
and grass‐legume mixtures in APSIM increased across the whole range
of fertilizer levels from 0 to 600 kg N ha−1 yr−1; however, in DayCent,
yields increased only between 0 to 200 kg N ha−1 yr−1 of fertilizer.
Empirical findings show yields leveling off at high fertilizer amounts
(400–500 kg N ha−1 yr−1), depending on the site conditions (Prins, 1983;
Reid, 1983; Sparrow, 1979; Whitehead, 2000) or still increasing at the
highest N fertilizer levels (Wilkins et al., 2001). We conclude that yield

responses to fertilization were more realistically simulated in APSIM but were unrealistically low in
DayCent, which showed only marginally increased yield with increased fertilizer applications above
200 kg N ha−1 yr−1 at 50% clover (Table 2 even at the sites with high yield potential (G2–G5) (Prins, 1983;
Whitehead, 2000). Underestimating a fertilizer effect on yields has a consequence for calculating mitigation
potentials (section 3.5), as this would lead to an overestimation of potential reductions in N2O‐Int.

Figure 5. N2O mitigation scenarios for mineral fertilizer replacement:
(a) N2O emission intensity; (b) N2O emission; and (c) yields are displayed
for scenario N200.Clo0 (200 kg N, 0% clover), N100.Cloopt (100 kg N,
clover % for maximum yield), and N0.Cloopt (no fertilizer, clover % for
maximum yield); the points display the mean, and whiskers display the
standard error of the mean, calculated from the variability across models
and sites.
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Model outputs reflected the influence of clover proportion on yields observed in grass‐clover studies (Kirwan
et al., 2007; Lüscher et al., 2014; Nyfeler et al., 2009; Suter et al., 2015). Yield maxima for DayCent were
observed when the proportion of clover was between 38% and 79% across sites at 150 kg N and at relatively
low clover proportions (0–47%) at 300 kg N. APSIM simulated yield maxima at comparably high clover
proportions of 74–87% at 150 kg N and 66–76% at 300 kg N. Measured data showed overyielding at
40–60% clover for fertilizer levels of 50–450 kg ha−1 yr−1 at a site near G5 (Nyfeler et al., 2009), indicating
that models were generally in line with observed data, but APSIM had a tendency to simulate higher optimal
clover proportions than observed at this site. APSIM and DayCent differed with respect to plant N uptake at
higher fertilizer levels. APSIM simulated highly efficient N uptake at high fertilizer levels, whereas in
DayCent grasslands did not profit from increased fertilization above 200 kg N, and DayCent simulated
increased leaching. It should be noted that the effect of legume percentage on DayCent's potential N fixation
was derived from APSIM simulations (Fitton et al., 2019) while DayCent reduced N fixation from the poten-
tial based on its internal simulation of soil nitrogen conditions. Thus, while the twomodels used here are not
completely independent, there are several degrees of separation between them. The development of a more
process‐based representation of multiple species in DayCent could avoid such a dependency.

Modeled Nsymb was within realistic ranges across all sites and scenarios (Table 1; Ledgard & Steele, 1992;
Lüscher et al., 2014; Nyfeler et al., 2011), for example, Nsymb of up to 323 kg N ha−1 yr−1 was measured in
Nyfeler et al. (2011) and values of up to 545 kg N ha−1 yr−1 have been observed by Carlsson and Huss‐
Danell (2003), both with T. repens, in line with our findings of maxima ranging between 424 and
559 kg N ha−1 yr−1 across sites. Grass‐clover mixtures of <80% clover have the potential to fix more N2 from
the atmosphere compared to clover monocultures due to niche complementarity, while clover proportions
>80% are less beneficial due to less growth and therefore less Nsymb (Nyfeler et al., 2011), which was also
depicted by the models.

Simulated N2O emissions in APSIM were low compared to N2O emission estimates using IPCC Emission
Factors at all fertilizer levels (i.e., below the IPCC lower confidence interval). These lowN2O emissions could
arise either from APSIM simulating low soil organic matter turnover rates or because APSIM simulates N
being taken up by plants too efficiently or a combination of both effects. In contrast, N2O emissions in
DayCent exceeded IPCCmean estimates at all fertilizer levels but were within the upper confidence interval
estimates of the IPCC and were similar to estimates from Shcherbak et al. (2014) for the upper fertilizer
application rates (>300 kg N ha−1 yr−1). These high N2O emissions in DayCent coincided with increased
leaching rates at higher levels of fertilization, reflecting that plants were not able to benefit from additional
N fertilization and thus biomass yields from DayCent at these fertilizer rates seemed to be unrealistically
low. While the current IPCC Emission Factor (EF1) approach assumes a linear increase in N2O emissions
with N fertilizer amounts, Shcherbak et al. (2014) found Nfert to have a nonlinear effect on N2O emissions.
They analyzed site data across the globe using multiple N application rates, showing that the increases in
N2O emissions were higher at higher fertilizer amounts (mean +0.0033% change in N2O emitted per addi-
tional kg N ha−1 yr−1 of fertilizer added based on 41 site‐years for grassland; Table S3 in Shcherbak
et al., 2014). Greater change in N2O emissions per Nfert increment at higher fertilizer input levels implies that
N2O emission reductions are more effective in high N input systems compared to systems of moderate or low
fertilizer N inputs, where a reduction in the same amount of Nfert is less effective. Kim et al. (2013) concep-
tualized the relationship between N fertilizer amounts and N2O emissions and hypothesized an initial linear
increase of N2O production at the low fertilizer levels at whichmicrobes compete with plants for available N.
Additional N fertilizer increase beyond optimal plant N uptake rates would then lead to an exponential
increase in N2O production due to an excess of available N, stimulating nitrification and denitrification.
Eventually, further fertilizer N increment would lead to N2O production leveling off, leading to a steady state
where soil C limits N2O production (Kim et al., 2013; Rochette et al., 2010). Model outputs showed nonlinear
(APSIM) and linear (DayCent) effects of N fertilizer amounts on N2O emissions on average, while leveling
off was observed for some model‐site combinations in DayCent.

In line with the findings reviewed in Lüscher et al. (2014), N2O‐Int was lower in grass‐clover mixtures com-
pared to monocultures, which was expected since N2O‐Int penalizes yield losses (as observed at low N
input), and penalizes high N2O emissions (as observed at high N inputs). Thus, grass‐clover mixtures opti-
mize the combination of both. As the increase in N2O emissions with increases in N fertilizer typically
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exceed the yield gain for the same fertilizer increment, N2O‐Int were minimized at the lowest fertilizer levels
(Table 1). The modeled results of yields being maintained under reduced fertilizer might be too optimistic.
However, in a recent field experiment at Site G5 (Fuchs et al., 2018), N2O‐Int was reduced from
0.42 g N kg DM−1 yr−1 on a fertilized control obtaining fertilizer N via slurry (240 kg N, 4–15% clover) to
0.28 g N kg DM−1 yr−1 at the clover treatment (23–40% clover and no Nfert) over a 2‐year observation period.
Further, lab experiments by Barneze et al. (2019) confirmed the model results that higher clover proportions
increase productivity without affecting N2O emissions, resulting in reduced N2O‐Int.

The yields at higher clover percentages (75%) were overestimated by DayCent and APSIM (Table S1b). While
DayCent predicted an optimal clover content around 50%, similar to the observations, APSIM predicted
higher optimum clover content around 75%. The optimum clover proportion thus could likely be overesti-
mated in this modeling exercise.

Dangal et al. (2019) modeled total emissions from grassland of 3.11 Tg N2O‐N; other estimates range from
1.86 Tg N2O‐N in the EDGAR database (EDGAR, 2018) to 2.8 Tg N2O‐N in the study of Davidson (2009,
referring to 2000). A mitigation potential of 128 Gg N2O‐N yr−1 (which resulted from scaling up the results
from our study; baseline 200 kg N) resulted in a 4.1% reduction of global grassland N2O emissions if the
Dangal et al. estimate is used a reference. The tested mitigation option reduced total grassland N2O emis-
sions only moderately, since the largest fraction of grassland N2O emissions is attributed to the fate of animal
excreta and manure (Dangal et al., 2019), while fertilizer application contributes 11%. The estimated average
N2O emissions for C3 pasture in Dangal et al. (2019) was rather high with an average across C3 pasturelands
of 3.95 kg N2O‐N ha−1 yr−1 during 2010–2014 and was comparable to the estimates by our models for grass-
lands receiving 300 kg Nfert ha

−1 yr−1.

Replacing not only synthetic fertilizers but also organic N application and applying the organic N on crop-
lands would at least double the estimated N2O mitigation effect, since higher emissions come from organic
fertilizers compared to mineral fertilizers (Dangal et al., 2019). Modeling the scenarios presented here with
organic fertilizer instead of mineral fertilizer resulted in similar reductions of N2O. If the surplus of organic
fertilizer could replace mineral fertilizer on croplands, the mitigation strategy could have far more impact.
Since excreta deposition contributes the large fractions (54%; Dangal et al., 2019) of grassland N2O emis-
sions, larger reductions of grassland N2O emissions need to target excreta of grazing livestock.

The global estimates of N2O emission reductions largely depend on the absolute N2O emissions estimated by
the applied models. We are more confident in the relative estimates compared to absolute estimates, as the
mitigation potentials largely are driven by the N2O emission reductions due to omitted N fertilization.
Besides the model uncertainties, the global estimates contain uncertainty, first due to the strong dependence
on the outcomes of Dangal et al. (2019) and second due to the use of an average mitigation potential for a
limited number (n = 5) of sites. Thus, these estimates should rather be seen as an indicator for the magni-
tude, keeping these uncertainties in mind.

4.2. Conclusion and Outlook

In this study, we investigated the effect of reduced fertilizer combined with increased clover proportions as a
mitigation strategy and contributed to a mechanistic understanding of the relationships between the propor-
tion of clover and N2O emissions and emission intensities. Results from different models gave contrasting
perspectives on N2O emissions from grassland systems, with quite diverse outcomes in absolute N2O emis-
sion intensities, but agreement on the overall pattern of N2O emission reductions on a per‐unit‐area, as well
as on a per‐unit‐product basis. Models predicted relative changes in N2O emission and N2O‐Int (relative to
the overall site‐model reference level) much more consistently than they predicted the absolute changes in
site‐specific N2O emission intensities. Consequently, a more robust statement on the relative reduction in
N2O emission intensity than on absolute N2O reduction potential is possible.

The simulated effects of clover percentage and fertilizer on N2O emissions agreed well with the empirical
studies, that is, no increase in N2O emissions was observed at low tomedium fertilizer amounts with increas-
ing clover percentage up to 60% (compare Figure 1b with Figure 3). Assuming 0–5% clover and
200 kg N ha−1 yr−1 on average as the baseline scenario, an increase in clover percentage of all fertilized
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C3 pastures to 30% combined with a reduction of fertilizer inputs to 100 N ha−1 yr−1 would reduce global
N2O emissions by 128 Gg yr−1, around 4% of global grassland N2O emissions.

Different biogeochemical models tend to have complementary strengths, leading to their multi‐model
ensemble median performing better compared to individual models (Asseng et al., 2013; Ehrhardt
et al., 2018). Thus, using an ensemble reduces the overall error of the predictions, while also providing an
estimate of the uncertainty of those predictions. However, constructing a large ensemble was impossible
for this exercise because only few models are capable of simulating species mixtures (Kipling et al., 2016;
Snow et al., 2014). Major challenges were the adequate simulation of BNF in grass‐clover‐mixtures, which
finally led to a reduced number of participating models. In order to tackle present shortcomings, models
need to be improved and species‐interactions need to be considered in order to better and more realistically
reflect the ongoing processes. Few models adequately simulate grazing effects (Snow et al., 2014). We simu-
lated cut‐and‐carry systems in order to tackle the complexity of the modeling and ensure interpretable out-
puts. In reality, grazing would impact grassland productivity, legume content, and N2O emissions. However,
the reasoning was to first consider the simpler system in order to enable understanding without confounding
effects. An important next step for this work is to test the mitigation under grazing; however, this would
entail first overcoming challenges with models and their abilities to reasonably simulate grazed conditions
(e.g., see Snow et al., 2014).

Improved land use mapping of grass‐legume mixtures applying machine learning algorithms on remotely
sensed high‐resolution data may in the future allow the extent of grass‐legume mixtures to be identified,
and at some point, also the respective percentage of legumes in the mixtures. Such detailed maps will enable
a specific baseline on the actual extent and distribution of grass‐legume mixtures to be defined and conse-
quently enable a better estimate on the N2O mitigation potential of grass‐legume mixtures.

Practical limitations potentially restricting the applicability of the investigated N2Omitigation strategy were
not considered here. These limitations include the challenge of achieving high and persistent legume pro-
portions, particularly under grazing. Further, clover is not well adapted for all locations, and local soil con-
ditions such as low soil pH and waterlogging can severely limit clover production.

Here, we have shown that grass‐clovermixtures with the lowest fertilizer input were associated with the low-
est N2O emission intensities. Experimental studies which systematically assess N2O emissions under differ-
ent clover proportions for different N fertilizer regimes would be highly beneficial. Experimental work
should focus on assessing in detail swards with clover proportions of 30–50% and ≤150 kg N input as these
seem most beneficial with respect to multiple outputs such as yields, N yields and also feeding values
(Lüscher et al., 2014). Additional data on the endpoints (i.e., 0% and 100%) clover would assist in confirming
or refuting the modeled outcomes. Legumes have been shown to perform better than non‐legumes under
drought conditions (Hofer et al., 2017) and show higher water‐use efficiencies than non‐legumes (Adams
et al., 2018). Together with the fact that legumes can replace mineral fertilizer additions make them impor-
tant species for increasing sustainability and resilience of agricultural production under changing climate,
highlighting the role legumes could play not only for climate change mitigation but also for adaptation.

Data Availability Statement

The data used in this study are available in the ETH Research collection under https://www.research‐collec-
tion.ethz.ch/handle/20.500.11850/395370 as “Dataset: Evaluating the potential of legumes to mitigate N2O
emissions from permanent grassland using process‐based models.”
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