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Finite-temperature violation of the anomalous transverse Wiedemann-Franz law

The Wiedemann-Franz (WF) law links the ratio of electronic charge and heat conductivity to fundamental constants. It has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport, which represents the topological nature of the wave function, remains an open question. Here we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-Kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K, but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature, rather than the inelastic scattering as observed in ordinary metals. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The accuracy of the experiment is supported by the verification of the Bridgman relation between the anomalous Ettingshausen and Nernst effects. Our results identify the anomalous Lorenz ratio as an extremely sensitive probe of Berry spectrum near the chemical potential.

INTRODUCTION

The Berry curvature of electrons can give rise to the anomalous Hall effect (AHE) [1,2]. This happens if the host solid lacks time-reversal symmetry, which impedes cancellation after integration over the whole Fermi surface. Explored less frequently [3][4][5], the thermoelectric and thermal counterparts of the AHE (the anomalous Nernst and anomalous Righi-Leduc effects) arise also by the same fictitious magnetic field [6][START_REF] Xiao | Berry-Phase Effect in Anomalous Thermoelectric Transport[END_REF][START_REF] Onoda | Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets[END_REF]. How do the magnitudes of these anomalous off-diagonal coefficients correlate with each other? Do the established correlations between the ordinary transport coefficients hold? Satisfactory answers to these questions are still missing. A semiclassical formulation of anomalous Hall effect [START_REF] Sinitsyn | Semiclassical theories of the anomalous Hall effect[END_REF] is laborious, because the concept of Berry connection (or the 'anomalous velocity' [START_REF] Karplus | Effect in Ferromagnetics[END_REF]) is based on off-diagonal matrix elements linking adjacent Bloch functions and not wave packets of semi-classical transport theory [START_REF] Sinitsyn | Semiclassical theories of the anomalous Hall effect[END_REF]. This makes any intuitive picture of how Berry curvature combined to a longitudinal thermal gradient can produce a transverse electric field (an anomalous Nernst response) [START_REF] Xiao | Berry-Phase Effect in Anomalous Thermoelectric Transport[END_REF][START_REF] Mccormick | Semiclassical theory of anomalous transport in type-II topological Weyl semimetals[END_REF] or a transverse thermal gradient (an anomalous thermal Hall response) [START_REF] Matsumoto | Rotational motion of magnons and the thermal Hall effect[END_REF][START_REF] Qin | Energy Magnetization and the Thermal Hall Effect[END_REF] even more challenging.

Here, we present a study of correlations between the anomalous off-diagonal transport coefficients of a magnetic solid, with a focus on the relation between anoma-lous electrical, σ A ij , and thermal, κ A ij , Hall conductivities. The anomalous Lorenz ratio is defined as:

L A ij = κ A ij T σ A ij . (1) 
We track L A ij in order to compare it with the Sommerfeld value:

L 0 = π 2 3 k B e 2 . (2) 
We find that over a wide temperature range (0.5 K < T < 100 K), L A ij and L 0 remain close to each other, but a deviation starts above 100 K. We argue that this observation implies a hitherto unnoticed mechanism for finitetemperature violation of the Wiedemann-Franz (WF) law and points to a small (10 meV) energy scale in the Berry spectrum of Mn 3 Ge that is absent in Mn 3 Sn. This experimental observation is backed by theoretical calculations identifying the source of the Berry curvature in this family. By directly measuring the anomalous Ettingshausen and anomalous Nernst effects, we verify the validity of the Bridgman relation connecting the two transverse thermoelectric coefficients to each other. This confirms that the Bridgman relation, a consequence of Onsager reciprocity and based on thermodynamics of irreversible processes [START_REF] Callen | The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects[END_REF], holds regardless of microscopic details. Finally, we quantify the anomalous transverse thermoelectric response α A ij and find that the ratio of α A ij /σ A ij tends to saturate towards a value close to k B /e in the high-temperature limit. Following theoretical propositions [START_REF] Chen | Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism[END_REF][START_REF] Kübler | Non-collinear antiferromagnets and the anomalous Hall effect[END_REF], a large AHE was found in Mn 3 X (X = Sn, Ge) family of non-collinear antiferromagnets [START_REF] Nakatsuji | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature[END_REF][START_REF] Nayak | Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3[END_REF][START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF] below a remarkably high Néel temperature [START_REF] Zimmer | Investigation of the Magnetic Phase Transformation in Mn3Sn[END_REF][START_REF] Tomiyoshi | Polarized neutron diffraction study of Mn3Sn[END_REF][START_REF] Tomiyoshi | Magnetic Structure and Weak Ferromagnetism of Mn3Sn Studied by Polarized Neutron Diffraction[END_REF]. These newcomers to the emerging field of antiferromagnetic spintronics [START_REF] Smejkal | Topological antiferromagnetic spintronics[END_REF], present a distinct profile of the Hall resistivity in which the extraction of the anomalous Hall conductivity becomes straightforward. An anomalous thermoelectric (Nernst) [START_REF] Ikhlas | Large anomalous Nernst effect at room temperature in a chiral antiferromagnet[END_REF][START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF] and Righi-Leduc [START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF], counterparts of AHE, were also observed in Mn 3 Sn. In the case of Mn 3 Sn the triangular order is destroyed at finite temperature [START_REF] Nakatsuji | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature[END_REF][START_REF] Ikhlas | Large anomalous Nernst effect at room temperature in a chiral antiferromagnet[END_REF][START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF]. This is not the case of Mn 3 Ge where the fate of these signals can be followed down to sub-Kelvin temperatures.

BASIC PROPERTIES

The room-temperature field-dependence of the three transport properties in Mn 3 Ge is shown in Fig. 1. Like in Mn 3 Sn, a hysteretic jump is triggered at a welldefined magnetic field, marking the nucleation of domains of opposite polarity induced by magnetic field [START_REF] Li | Momentum-space and real-space Berry curvatures in Mn3Sn[END_REF]. The large jump, the small magnetic field required for inverting polarity and the weakness of the ordinary Hall response lead to step-like profiles contrasting with other topological solids exhibiting AHE [START_REF] Liang | Anomalous Nernst Effect in the Dirac Semimetal Cd3As2[END_REF][START_REF] Liang | Anomalous Hall effect in ZrTe5[END_REF][START_REF] Shekhar | Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd)[END_REF]. A steplike profile of anomalous transverse response (for other 
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Antiferromagnetic, dirty and correlated: a) A sketch of the magnetic texture of Mn3Ge showing the orientation of spins of Mn atoms. Red and blue represent two adjacent planes. b) Temperature dependence of the magnetization with Néel temperature visible at 370 K. c) Temperature dependence of resistivity along two orientations. d) The Seebeck coefficient, S, as a function of temperature. e) Low temperature specific heat C/T , as a function of T 2 . Extrapolation to T = 0 yields γ = 24.3 mJ mol -1 K -2 . f) Plot of the absolute value of S/T vs. γ for a number of correlated metals including Mn3X and MnSi [START_REF] Stishov | Heat capacity and thermal expansion of the itinerant helimagnet MnSi[END_REF][START_REF] Arsenijević | Manifestation of the spin textures in the thermopower of MnSi[END_REF].

varieties [START_REF] Sakai | Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal[END_REF][START_REF] Liu | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal[END_REF]) makes the extraction of the anomalous component straightforward. Panels of Fig. 1 show the measured Hall resistivity, Nernst signal and thermal Hall resistivity, which were used to extract electric, thermoelectric and thermal Hall conductivities.

Figure 2 presents a number of basic properties of the system under study. The spin texture [START_REF] Nakatsuji | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature[END_REF][START_REF] Zimmer | Investigation of the Magnetic Phase Transformation in Mn3Sn[END_REF][START_REF] Tomiyoshi | Polarized neutron diffraction study of Mn3Sn[END_REF] is shown in Fig. 2a. This magnetic order is stabilized thanks to the combination of Heisenberg and Dzyaloshinskii-Moriya interactions [START_REF] Liu | Anomalous Hall Effect and Topological Defects in Antiferromagnetic Weyl Semimetals: Mn3Sn/Ge[END_REF]. As seen in Fig. 2b, which shows the magnetization, it emerges below T N = 370 K. The small residual ferromagnetism has been attributed to the residual magnetic moment of octupole clusters of Mn atoms [START_REF] Suzuki | Cluster multipole theory for anomalous Hall effect in antiferromagnets[END_REF] in this pseudo-Kagome lattice.

A carrier density of n = 3.1 × 10 22 cm -3 is extracted from the magnitude of the ordinary Hall number[34] in agreement with a previous report [START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF]. The electrical resistivity shows little variation with temperature (Fig. 2c). and its magnitude of 150 µΩcm implies a mean free path as short as 0.9 nm, compatible with the fact that Mn 3 X crystals are not stoichiometric [START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF][START_REF] Tomiyoshi | Polarized neutron diffraction study of Mn3Sn[END_REF]. In our crystals, we found the Mn:Ge ratio ranges from 3.32:1 to 3.35:1 [34]. Since one tenth of Ge sites are occupied by Mn atoms, the average distance between these defects is 3 √ 10 times the average lattice parameter (a = 0.53 and c = 0.43 nm) and comparable to the short electronic mean free path.

The Seebeck coefficient (Fig. 2d) has a nonmonotonic temperature dependence with a peak around 60 K, and a sign change above 200 K, and a large low-temperature slope indicative of electronic correlations. The T -linear electronic specific heat (Fig. 2e), is as large as γ = 24.3 mJ mol -1 K -2 , thirty times larger than copper and five times larger than iron [START_REF] Kittel | Introduction to Solid state Physics[END_REF]. Assuming a single spherical Fermi surface corresponding to the known carrier density, such a γ, implies an effective mass as large as m * = 14.5 m e , which should not be taken literally given that the system is multiband. The slope of the Seebeck coefficient at low-temperature (S/T -0.2 µVK -2 ) correlates with γ yielding q = SN Av e T γ 1, as observed in other correlated systems [START_REF] Behnia | On the thermoelectricity of correlated electrons in the zero-temperature limit[END_REF] (Fig. 2f). On the other hand, the low temperature resistivity presents a weak upturn impeding the detection of any T -square term and the Wilson ratio (of the specific heat and magnetic susceptibility [START_REF] Coleman | Heavy fermions: Electrons at the edge of magnetism[END_REF]) implies that mobile electrons do not play any significant role in the magnetic response [34].

THE ANOMALOUS TRANSVERSE WF LAW

For each temperature, we measured σ A zx and κ A zx , identified as jumps in σ zx (B) and κ zx (B). This led to the determination of L A zx at each temperature and a comparison with L 0 to check the WF law.

Our main finding is presented in Fig. 3. Below 100 K, the anomalous Lorenz ratio, L A zx was found to be flat with a magnitude slightly larger than the Sommerfeld value, equal to it within the experimental margin. The results were reproduced by two different measuring methods (with resistive sensors and thermocouples [34]) and in two different samples. In one of them, we checked the persistent validity of this equality below 1 K down to 0.3 K. As seen also in the figure ,L A zx begins a steady downward deviation from L 0 above 100 K. Interestingly, σ A zx begins a steady decrease itself above 100 K. The temperature dependence of σ A zx is similar to what was reported in previous reports [START_REF] Nayak | Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3[END_REF][START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF] and its zero-temperature magnitude (which depends on stoichiometry [START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF]) is in agreement with was reported for a similar Mn content [START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF]34]. As seen in Fig. 3d, the anomalous Lorenz ratio in Mn 3 Ge and in Mn 3 Sn behave very differently, in spite of the fact that resistivity in both shows only a slight change with temperature (Fig. 3e), in contrast to elemental ferromagnets.

THE BRIDGMAN RELATION

Several previous reports of the violation of WF law have been refuted afterwards. One may therefore wonder if our data can be validated by an independent criteria. The answer is affirmative. Their validity is supported by the verification of the Kelvin relation (for normal longitudinal transport coefficients) and the Bridgman relation (for anomalous transverse coefficients). Their violation counter the thermodynamics of irreversible processes.

To check the Bridgman relation, we directly measured both the Nernst (Fig. 4a) and the Ettingshausen (Fig. 4b) effects. The former is the transverse electric field generated by a longitudinal thermal gradient, S zx = Ez ∇xT and the latter is the transverse thermal gradient produced by a longitudinal charge current, A zx = ∇zT Jx . The anomalous Ettingshausen effect (Fig. 4b) is easily invertible by a small magnetic field, like other anomalous transverse responses. We measured S A zx and A zx at several different temperatures. Combined with longitudinal thermal conductivity data κ xx (T ), this allowed us to check the Bridgman relation [START_REF] Bridgman | The Connections between the Four Transverse Galvanomagnetic and Thermomagnetic Phenomena[END_REF], which links these three quantities:

A zx = T S A zx κ xx . (3) 
As seen in Fig. 4c, the two sides of the equation remain close to each other in the whole temperature range. The Bridgman relation, derivable by a thermodynamic argument [START_REF] Sommerfeld | The Statistical theory of thermoelectric, galvano-and thermomagnetic phenomena in metals[END_REF] is based on Onsager reciprocity [START_REF] Callen | The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects[END_REF]. Its experimental validity has been confirmed in semiconductors [START_REF] Delves | Thermomagnetic effects in semiconductors and semimetals[END_REF] and in superconductors hosting mobile vortices [START_REF] Huebener | Superconductors in a temperature gradient[END_REF]. While there is a previous report on simultaneous measurements of anomalous Nernst and Ettingshausen coefficients [START_REF] Seki | Relationship between anomalous Ettingshausen effect and anomalous Nernst effect in an FePt thin film[END_REF], the present study is the first experimental confirmation of the validity of Bridgman relation in the context of topological transverse response. We also verified the Kelvin relation linking the Seebeck and Peltier coefficients [34].

The temperature dependence of the anomalous transverse thermoelectric conductivity, α A zx , extracted from anomalous Nernst coefficient, is presented in Fig. 4d. As expected, it vanishes in the zero-temperature limit, but is remarkably large at room temperature. This can be seen by noting that the ratio of α A zx to σ A zx is close to k B /e at room temperature. This contrasts with the ordinary longitudinal counterpart of this ratio which includes a T /T F damping factor, inversely scaling with the Fermi temperature, T F [START_REF] Behnia | Nernst effect in metals and superconductors[END_REF].

ORIGIN OF THE FINITE-TEMPERATURE VIOLATION

Having discussed the thermoelectric response, let us now turn back to the thermal transport. The zerotemperature validity of the WF law implies that the transverse flow of charge and entropy caused by Berry
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) curvature conforms to a ratio of π 2 3 k B e 2 . This confirms Haldane's argument [START_REF] Haldane | Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property[END_REF] that AHE is a property of the topological quasi-particles of the Fermi surface. As argued previously [START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF], only the states within the thermal window of the Fermi surface can be affected by a temperature gradient and give rise to a finite κ A zx . However, even in the case of ordinary longitudinal transport [START_REF] Ziman | Principles of the Theory of Solids[END_REF], the WF law ceases to be valid in presence of inelastic scattering. This is because small-angle inelastic collisions decay the momentum flow less efficiently than the energy flow both for electron-phonon [START_REF] Ziman | Principles of the Theory of Solids[END_REF] and electron-electron [START_REF] Jaoui | Departure from the Wiedemann-Franz Law in WP2 Driven by Mismatch in T-square Resistivity Prefactors[END_REF] scattering. However, if inelastic scattering played a significant role, one would have not observed such a drastic difference between Mn 3 Sn and Mn 3 Ge. Moreover, since the violation of the WF law is not correlated with any significant change in the magnitude of resistivity, it cannot be attributed to the gradual emergence of an extrinsic source of AHE [6]. Therefore, one should look for a hitherto unidentified route to the finite-temperature violation of the anomalous transverse WF law.

0
In the semi-classic picture of electronic transport, charge and heat conductivity are set by the mean-freepath and the Fermi radius averaged over the whole Fermi surface with a pondering factor, which is [START_REF] Ziman | Principles of the Theory of Solids[END_REF][START_REF] Van Houten | Thermo-electric properties of quantum point contacts[END_REF][START_REF] Behnia | Fundamentals of Thermoelectricity[END_REF]:

F n ( k ) = ( k -µ) n ∂f ( k ) ∂ k . ( 4 
)
This expression for the pondering factor has been obtained for both Boltzmann [START_REF] Ziman | Principles of the Theory of Solids[END_REF] and Landauer [START_REF] Van Houten | Thermo-electric properties of quantum point contacts[END_REF] formalisms with n = 0 for charge transport, n = 1 for thermoelectric transport and n = 2 for thermal transport. Therefore, the main source of each transport coefficient is not located at the same place in the k-space. The Berry curvature summed over the Fermi sheets with these pondering factors can potentially generate a mismatch between σ A ij and κ A ij . As the temperature raises, the summations extend over a broader interval in the kspace inversely proportional to the thermal de Broglie length of electrons (Λ = h √ 2πm * k B T ) [START_REF] Behnia | Fundamentals of Thermoelectricity[END_REF]. The electrical 
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) and thermal summations of the Berry curvature depend on these two length scales as well as the fine details of the spectrum, i.e. the size of the Berry curvature sources (and sinks) as well as their relative distance to the Fermi level (See Fig. 5). One can see that the validity of the WF correlation becomes harder to satisfy with warming. The higher the temperature, the larger the k-space area swept by the two different pondering functions and the easier to find a mismatch between σ A ij and κ A ij if the Berry curvature changes significantly across Λ -1 . In this context, one can conceive a mismatch between thermal and electrical summations of the Berry curvature (whose typical scale in the momentum space is an order of magnitude smaller).
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THEORETICAL CALCULATIONS OF THE ANOMALOUS LORENZ RATIO

The anomalous Hall conductivity σ A zx and anomalous thermal Hall conductivity κ A zx are expressed in the form of the Berry curvature Ω n zx (k) [START_REF] Vafek | Quasiparticle Hall transport of d-wave superconductors in the vortex state[END_REF],

σ A zx (µ) = e 2 ∞ -∞ dξ - ∂f (ξ -µ) ∂ξ σzx (ξ), (5) 
κ A zx (µ) = 1 T ∞ -∞ dξ -(ξ -µ) 2 ∂f (ξ -µ) ∂ξ σzx (ξ), (6) 
σzx (ξ) = BZ dk (2π) 3 n <ξ Ω n zx (k) (7) Ω n zx (k) = 1 i m =n n|v z |m n|v x |m -(x ↔ z) ( n -m ) 2 . ( 8 
)
Here f (ξ -µ) = 1/(e ξ-µ k B T + 1) is the Fermi-Dirac function and vx/z is the velocity operator,and σzx (ξ) is actually the zero-temperature anomalous Hall conductivity (divided by e 2

). We point out that the electric and thermal coefficients are mainly different in the pondering factors for σzx (ξ). As shown in Fig. 5, the pondering factor -∂f (ξ-µ) ∂ξ in Eq. 5 is a δ-function while The total Berry curvature σzx (ξ) is determined by the intrinsic band structure of a give material. It is not surprising that L A zx depends sensitively on the position of µ because κ A zx (µ) and σ A zx (µ) do. In experiment, Mn 3 Ge(Sn) is usually off-stoichiometric in the form of Mn 3+x Ge(Sn) 1-x [START_REF] Nakatsuji | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature[END_REF][START_REF] Nayak | Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3[END_REF][START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF][START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF], where there are usually excess of Mn but deficiency of Ge(Sn). Such an offstoichiometry can shift the chemical potential up in energy compared to the charge neutral point.

-(ξ -µ) 2 ∂f (ξ-µ)
By shifting µ slightly above, we can successfully reproduce the general trend of T -dependence of L A zx for both Ge and Sn compounds in Fig. 6. For Mn 3 Ge at µ = 180 meV above the charge neutral point, L A zx drops quickly from 100 ∼ 250 K and goes up again after 250 K, qualitatively consistent with the experiment. The first drop is induced by dips of σ A zx at ∼0.1 and ∼0.3 eV, because the κ A zx (T ) sums smaller Berry curvature than σ A zx (T ) does in this case (see Eqs.5-6). We note that the dip at ∼0.1 eV is induced by an anti-crossing gap while the dip at ∼0.3 eV is caused by a Weyl point. (See the supplementary Fig. S11) The following up-turn is related to the increase of σ A zx after these dips. We also note that the theoretical violation is smaller than the experimental one. This may point to a significant role played by electronic correlations, which is neglected in the density-functional theory employed here. For Mn 3 Sn at µ = 140 meV, however, L A zx remains close to L 0 in a large temperature range. Different behaviors between two materials originate in their different Berry curvature σzx (ξ), as shown in Fig. 6(a) and (c). For Mn 3 Sn, σzx (ξ) is approximately anti-symmetric with respect to µ = 140 meV in an energy window of nearly 200 meV, inducing L A zx ≈ L 0 up to 400 K and even above. However, µ may vary from such an ideal anti-symmetric point in different samples. This explains the observed deviation of of L A zx in a different Mn 3 Sn sample, as shown in Fig. S9. To demonstrate the sensitive role of the chemical potential, we show L A zx -T curves for different µ in Fig. 6. Because it depends on the competition of the Berry curvature [σ zx (ξ)] profile and the temperature (5k B T ), L A zx ≈ L 0 at low T for different µ. In addition, there are interesting topological features near the chose chemical potential (see Fig. 6e-f). Along the Γ -M line in the Brillouin zone, there are two Weyl points induced by the crossing between the lowest and second lowest conduction bands. These Weyl points were not revealed in previous study which usually focuses on the crossing between the lowest conduction band and the highest valence band. For Mn 3 Sn at µ = 140 meV, a Weyl point exists and contributes large Berry curvature to the anomalous Hall conductivity. For Mn 3 Ge at µ = 180 meV, however, the Weyl cone is strongly tilted so that negative and positive Berry curvatures nearly cancel each other near the Weyl point (see more information in the supplementary Fig. S10).

CONCLUDING REMARKS

To summarize, we measured counterparts of the anomalous Hall effect associated with the flow of entropy and found that the Wiedemann-Franz law linking the magnitude of the thermal and electrical Hall effects is valid at zero-temperature, but a finite deviation emerges above 100 K. This deviation is not caused by inelastic scattering, but arises because of a mismatch in thermal and electrical summations of Berry curvature over the Fermi surface. The Bridgman relation, which links anomalous Nernst and Ettingshausen coefficients is satisfied over the whole temperature range. Finally, we observed that the room-temperature α A zx /σ A zx ratio is close to k B /e.

METHODS

Sample preparation and transport measurement:

Single crystals of Mn 3 Ge were grown from polycrystalline samples, using Bridgman-Stockbarger technique. The raw materials, Mn (99.99% purity) and Ge (99.999% purity), were weighed and mixed in an Argon glove box with a molar ratio of 3.3:1, loaded in an alumina crucible then sealed in a vacuum quartz ampule. The mixture was heated up to 1050 o C, remained for 2 hours to ensure homogeneity of melt, then was cooled slowly down to 800 o C to obtain polycrystalline samples. The polycrystalline Mn 3 Ge were ground, loaded in an alumina crucible and sealed into another vacuum quartz ampule. The growth temperature was controlled at 980 o C and 800 o C for high-temperature and low-temperature end, respectively. Finally, to obtain high temperature hexagonal phase, the quartz ampule was quenched with water. The single crystals were cut by a wire saw into typical di-mensions of 0.3×1.5×2 mm 3 for transport measurements. The stoichiometry was found to be Mn 3.08 Ge 0.92 (Mn:Ge = 3.32-3.35:1) using energy dispersive X-ray spectroscopy (EDX), This is close to the ratio of the raw materials and comparable to previous reports [START_REF] Kiyohara | Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[END_REF].

Longitudinal and Hall resistivity were measured by the standard four-probe method using a current source (Keithley 6221) with a DC-Nanovoltmeter (Keithley 2182A) in a commercial measurement system (PPMS, Quantum Design). The thermal conductivity and thermal Hall effect were performed using a heater and two pairs of thermocouples in the PPMS in a high-vacuum environment [START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF]. For temperatures below 4.2 K, the measurements were performed in a dilution refrigerator inserted in a 14 T superconducting magnet using oneheater-three-thermometers set-up, allowing to measure longitudinal and transverse transport coefficients with the same contacts.

Theoretical calculations: The band structure was calculated with the density-functional theory in the framework of the generalized-gradient approximation [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF]. The Bloch wave functions were projected to atomic-orbital-like Wannier functions [START_REF] Mostofi | Wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions[END_REF]. Based on the Wannier-projected tight-binding Hamiltonian, we calculated the Berry curvature and the anomalous Hall conductivity in the clean limit. More details can be found in Ref. [START_REF] Zhang | Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt)[END_REF]. As shown in Fig. 6(a) and (c), the σzx (ξ) data are analytically fitted so that integrals in Eqs. 5 and 6 can be evaluated accurately with dense energy steps.

Data availability: The data that support the findings of this study are available upon reasonable request.
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S1. MAGNITUDE OF THE ANOMALOUS HALL CONDUCTIVITY

The zero-temperature anomalous Hall conductivity found here (190 Ω -1 cm -1 ) is to be compared with previous reports of 150-450 Ω -1 cm -1 in Ref. [1] and 320-380 Ω -1 cm -1 in Ref. [2]. The difference in stoichiometry between the present sample (Mn 3.1 Ge 0.9 ) and the one studied in Ref. [2] (Mn 3.05 Ge 0.95 ) combined to the fact that the magnitude of the anomalous Hall resistivity depends 
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FIG. S3. a) Temperature dependent longitudinal thermal conductivity κxx and κzz and anomalous transverse thermal conductivity κ A zx , the diamond and star denote the data measured in #1 and #2, respectively. b) The anomalous transverse thermal resistance W A zx with the function of temperature.

on Mn content [2], provide an explanation for this apparent discrepancy. The temperature dependent anomalous Hall conductivity in different samples cut from the same batch are similar (see Fig. S1).

S2. CARRIER DENSITY

The field dependence of Hall resistivity along two different directions, yield the same value for ∂ρ H /∂B at high magnetic field at 2 K (see Fig. S2). The slope was found to be R H = ∂ρ H /∂B = -0.02 µΩ cm/T. Using a single-band model (n = 1 eR H ), we found a carrier density of 3.1×10 22 cm -3 , which is comparable to Ref. [1]. A small anomalous Hall resistivity observed previously [1] in the B z configuration is also observed in our sample. 

L 0 L x x / L 0 T ( K ) L x x / L 0 ( M n 3 G e ) FIG.
S4. The Lorenz ratio for longitudinal thermal and electrical transport in Mn3Ge.

S3. LONGITUDINAL THERMAL TRANSPORT

Fig. S3 shows the temperature dependence of thermal conductivity along x axis, κ xx , and along z axis, κ zz as well as the anomalous transverse thermal conductivity, κ A zx . The latter was extracted using the anomalous thermal resistivity, W A zx and the longitudinal conductivities. Fig. S4 shows Lorenz ratio L xx for longitudinal transport in Mn 3 Ge. At finite temperature, L xx /L 0 exceeds unity indicating a large contribution from phonons. As expected, the ratio tends to unity in the zero temperature limit.

S4. THE KELVIN RELATION

The Peltier effect is the heat current produced by a charge current. The Kelvin relation relates the Peltier and Seebeck coefficients: Π xx = T S xx . Fig. S5b shows Π xx and T S xx in Mn 3 Ge. The ratio of Π xx /T S xx is close to 1 in the whole temperature range. The Peltier coefficient Π xx and the Ettingshausen coefficient zx were obtained by symmetrizing the signals obtained by injecting positive and negative currents through the sample in order to eliminate the Joule heating effect. Comparing to Ettingshausen effect, we can measure the heat absorb/release from the sample. We measured the temperature gradient along the sample to get the heat combining with the thermal conductivity [3].

S5. THERMAL EVOLUTION OF ANOMALOUS TRANSVERSE RESPONSE

Fig. S6 displays the field dependence of the three transverse coefficients at different temperatures. The temperature dependence of the anomalous transverse transport coefficients presented in main text were deduced from these curves.

S6. SPECIFIC HEAT CP AND MAGNETIC SUSCEPTIBILITY χ

The Fig. S7 a) and b) show the specific heat data for Mn 3 Ge and Mn 3 Sn. As seen in the inset, the electronic contribution in Mn 3 Sn is 19.1 mJ mol -1 K -2 . From the low-temperature magnetization curve (Fig. S7c), the magnetic susceptibility χ is deduced to be 6.2 × 10 -3 emu Oe -1 mol -1 . As seen in Fig. S8, the magnetic susceptibility is much larger than what is expected for the Pauli susceptibility of mobile electrons according to the Wilson ratio. This implies that most of the susceptibility is due to Mn spins.

S7. THE DEPENDENCE OF LORENZ RATIO IN

Mn3Sn ON STOICHIOMETRY

The focus of this paper is the validity and/or the violation of the anomalous transverse WF law in Mn 3 Ge. Nevertheless, let us notice that in the case of Mn 3 Sn, 
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Field dependence of transverse transport coefficients at different temperatures.

the published data suggests that the the precise chemical composition of the compound can effect validity or verification of the WF law with little effect on the temperature dependence of resistivity. The precise location of the chemical potential depends on the the Mn. A violation of the WF law in Mn 3 Sn is conceivable if the The electronic specific heat vs. magnetic susceptibility χ ; the red rectangle refers to Mn3Ge, the others are from Ref. [4], the solid line represent ) FIG. S9. The Lorentz ratio in Mn3Sn with different content of Mn.(digitized from [5,6]) chemical potential shifts away from the µ = 140 meV (See Fig. 6). 

S8. THE BAND STRUCTURE AND BERRY CURVATURE

FIG. 1 .

 1 FIG.1. Anomalous transverse coefficients, definitions and profiles: Off-diagonal components of the three conductivity tensors (electric, σ, thermoelectric, ᾱ, and thermal, κ) can be finite in the absence of magnetic field. As shown in the three left panels, they link to four vectors, which are charge density current, J, electric field, E, thermal gradient, ∇T and heat density current, JQ. a) Hall resistivity, ρzx; b) Hall conductivity, σzx, extracted from ρzx, ρxx and ρzz; c) Nernst signal, Szx; d) Transverse thermoelectric conductivity, αzx, extracted from Szx, Sxx, ρxx, ρzz and ρzx; e) thermal Hall resistivity, Wzx; f) thermal Hall conductivity, or the Righi-Leduc coefficient, κzx extracted from off-diagonal and diagonal thermal resistivities.

FIG. 3 .

 3 FIG. 3. Anomalous transverse Wiedemann-Franz law: Temperature dependence of the anomalous Hall conductivity σ A zx (a) ; the anomalous thermal Hall conductivity divided by temperature κ A zx /T (b); c) the anomalous Lorenz ratio κ A zx /σ A zx T . Different symbols are used for data obtained with two different set-ups: resistive thermometers (diamonds) and thermocouples (circles). Star symbols refer to a third set of data obtained on another sample measured down to sub-Kevin temperatures. The horizontal solid line marks L0 = 2.44 × 10 -8 V 2 K -2 . The deviation between L and L0 starts at T > 100 K and is concomitant with the decrease in σ A zx . d) Temperature dependence of the anomalous Lorenz ratio in Mn3Ge and in Mn3Sn[START_REF] Li | Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow[END_REF][START_REF] Sugii | Anomalous thermal Hall effect in Anomalous thermal Hall effect the topological antiferromagnetic state[END_REF]. e) Comparison of their in-plane resistivity. The large deviation from the WF law in Mn3Ge occurs in spite of the fact that the temperature dependence of its resistivity is even more modest than that in Mn3Sn.

FIG. 4 .FIG. 5 .

 45 FIG. 4. Anomalous Nernst and Ettingshausen effects and the Bridgman relation: a) The transverse electric field created by a finite longitudinal temperature gradient as a function of magnetic field (the Nernst effect); b) the transverse thermal gradient produced by a finite longitudinal charge current (the Ettingshausen effect) at the same temperature. Insets show experimental configurations. c) The temperature dependence of the anomalous Nernst (S A zx ) and anomalous Ettingshausen ( A zx ) coefficients. A zx and S A zx T /κxx remain equal as expected by the Bridgman relation. d) Temperature dependence of α A zx extracted from the Nernst signal S A zx . Also shown is the temperature dependence of Anomalous Hall conductivity σ A zx .

FIG. 6 .

 6 FIG. 6. The zero-temperature Berry curvature σ A zx (µ) (a) (c) and the anomalous Lorenz ratio L A zx (c) (d). The charge neutral point is set to zero. The green, red and blue lines represent µ = 0, 140 and 180 meV, respectively. The dashed horizontal black lines represents L0 in (c) and (d). In the band structure (e) and (f), the color indicates the Berry curvature value. The blue arrows point out two Weyl points between the lowest and second lowest conduction bands.

  FIG. S1. Temperature dependence of anomalous Hall conductivity in three samples from the same batch in two configurations, B y and B x.

B

  FIG. S2. Hall resistivity ρH vs. B for B y (black line) and B z (red line) at 2 K. The blue lines are linear fits to quantify the ordinary Hall resistivity.

  FIG. S5. Kelvin relation: a) The comparison of Peltier coefficient, Πxx and Seebeck, Sxx times temperature, T at different temperatures. b) The ratio of Πxx/T Sxx as a function of temperature.

2 )T 2 ( K 2 )

 222 FIG. S7. Temperature dependence of specific heat of Mn3Ge, a) and Mn3Sn ,b). Inset show the C/T vs. T 2 of Mn3Sn . c) Magnetization curve of Mn3Ge measured at 2 K, the susceptibility χ = 6.2 × 10 -3 emu.Oe -1 mol -1 is extracted from the high-field slope (black dashed line).

2 )

 2 FIG. S8.The electronic specific heat vs. magnetic susceptibility χ ; the red rectangle refers to Mn3Ge, the others are from Ref.[4], the solid line represent

π 2 κ 2 B 3µ 2 B

 22 χ. The large magnetic susceptibility of Mn3Ge is not caused by correlated electrons but by ordered spins.

  FIG. S10. Contrasting Mn3Ge and Mn3Sn in the band structure and Berry curvature. The upper and lower panels are for Mn3Ge and Mn3Sn, respectively. (a) and (b) The Berry curvature Ωxz distribution in the kxky plane integrated along kz for Mn3Ge and Mn3Sn, respectively. The color bar of Ωxz is in arbitrary unit. Corresponding noncollinear AFM spin structure is shown in (i). There is a My mirror symmetry to constrain that only Ωxz is even to the mirror plane, i.e. only the anomalous Hall conductivity σxz is nonzero. The dashed circle in (a) indicates two hot spots near the M -point in the Brillouin zone (the black hexagon). (c)-(d) The band structure along kz through the center of a hot spot for Mn3Ge and Mn3Sn, respectively. The Fermi energy is set to zero. The color code indicates the Berry curvature distribution in the band structure. At the charge neutral point, the Berry curvature is dominantly contributed by an anti-crossing gap in along the kz axis for Mn3Ge, while such a gap is missing for Mn3Sn. (e)-(f) The band structure along Γ -M . When it lies at 180 meV, the chemical potential crosses a type-II Weyl point for Mn3Ge. Because of the strong tilting of the Weyl cone, its net contribution to the total Berry curvature (sum over all occupied bands) is small. In contrast, he chemical potential of 140 meV crosses a weakly-tilted Weyl point for Mn3Sn, inducing large Berry curvature.
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