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Epithelial–mesenchymal transition (EMT) is a cellular 
process during which epithelial cells acquire mesen
chymal phenotypes and behaviour following the down
regulation of epithelial features. EMT is triggered in 
response to signals that cells receive from their micro
environment. The epithelial state of the cells in which 
EMT is initiated is characterized by stable epithelial 
cell–cell junctions, apical–basal polarity and interac
tions with basement membrane. During EMT, changes 
in gene expression and posttranslational regulation 
mechanisms lead to the repression of these epithelial 

characteristics and the acquisition of mesenchymal char
acteristics. Cells then display fibroblastlike morphol
ogy and cytoarchitecture, as well as increased migratory 
capacity. Furthermore, these now migratory cells often 
acquire invasive properties (Fig. 1).

EMT was first described by researchers studying 
early embryogenesis as a programme with welldefined 
cellular features1,2. It is now widely accepted that EMT 
occurs normally during early embryonic development, 
to enable a variety of morphogenetic events, as well as 
later in development and during wound healing in adults. 
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Abstract | Epithelial–mesenchymal transition (EMT) encompasses dynamic changes in cellular 
organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell 
migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions 
and is driven by a conserved set of inducing signals, transcriptional regulators and downstream 
effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT 
is expanding rapidly. This growing interest warrants the need for a consensus among researchers 
when referring to and undertaking research on EMT. This Consensus Statement, mediated by  
‘the EMT International Association’ (TEMTIA), is the outcome of a 2-year-long discussion among 
EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines 
for EMT research in future publications. We trust that these guidelines will help to reduce 
misunderstanding and misinterpretation of research data generated in various experimental 
models and to promote cross-disciplinary collaboration to identify and address key open questions 
in this research field. While recognizing the importance of maintaining diversity in experimental 
approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research 
to increasing our understanding of developmental processes and combatting cancer and other 
diseases depend on the adoption of a unified terminology to describe EMT.
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Moreover, EMT is known to be activated during cancer 
pathogenesis and tissue fibrosis. The reverse process, 
known as mesenchymal–epithelial transition (MET), 
also occurs frequently during development. A salient 
characteristic of EMT occurring in vivo, whether during 
normal development or in a pathological context, is that 
the transition from an epithelial to a mesenchymal state is 
often incomplete, resulting in cells that reside in interme
diate states that retain both epithelial and mesenchymal 
characteristics. Importantly, these intermediate states can 
be diverse, depending on the biological context3.

The EMT research field has grown explosively over 
the past 20 years. More than half of all articles on EMT 

have been published in the past 5 years alone (Fig. 2), and 
half of those have reported on studies of EMT in the  
context of cancer biology. The growing complexity and 
diversity of the EMT literature has resulted in vague 
and often confusing definitions of EMT and associated 
nomenclature. Cell biologists have traditionally focused 
on the microscopically visible and profound changes in 
cell–cell interactions, cell motility, cytoskeletal organi
zation, cell proliferation and resistance to various stress
ors that occur during EMT. Molecular biologists have 
focused on changes in the activity of EMTassociated 
transcription factors (EMTTFs) and in aspects of 
their regulation, often involving various chromatin 
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Fig. 1 | EMT diversity represented by an epithelial–mesenchymal plasticity model. Various cellular features associated 
with an epithelial or a mesenchymal cell state are found in a range of combinations and to different degrees in cells in 
different developmental contexts. Epithelial cells are connected with each other via a variety of epithelial cell junctions, 
including adherens junctions, desmosomes, gap junctions and tight junctions. Adherens junctions are connected to cortical 
actin bundles, while desmosomes are linked with cytokeratin intermediate filaments. Tight junctions are localized at the 
apical-lateral contact points in order to help maintain epithelial polarity. Apical–basal polarity guides proper organization 
of the tight junctions, adherens junctions and desmosomes in epithelial cells. Polarity complexes, including the Par, Crumbs 
and Scribble complexes, define the apical versus basolateral domains of an epithelial cell. Epithelial cells are attached to 
the underlying basement membrane via hemidesmosomes, which contain integrin to allow binding to the basement 
membrane and are also linked to cytokeratins inside the cell. By contrast, mesenchymal cells do not contain functional 
epithelial junctions and present a back–front polarity in their actin stress fibres. Mesenchymal cells contain vimentin- 
based intermediate filaments and utilize integrin-containing focal adhesions to attach to the extracellular matrix.  
The accumulated loss or gain of epithelial/mesenchymal (E/M) characteristics pushes a cell towards various intermediate 
states (bottom left and right) in a fluid and reversible manner, between a complete epithelial (middle left) and a complete 
mesenchymal (middle right) state. EMT, epithelial–mesenchymal transition.
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modifications to orchestrate changes in EMTassociated 
gene expression. Cancer biologists have often empha
sized the acquisition of various malignancyassociated 
cell phenotypes, notably invasiveness, as well as dis
semination and different degrees of cell responsive
ness to various therapeutic modalities. However, these 
contextspecific, or even researchcommunityspecific, 
criteria to define or refer to EMT do not reflect the 
current experimental shortcomings in the abil
ity to identify EMT events. As we learn more about 
EMTassociated changes, it is becoming apparent that 
there is a great diversity of EMT phenotypic manifes
tations. Thus, narrow definitions have become inap
propriate or inaccurate, and a more encompassing 
definition is required in order to describe this complex cell  
biological programme.

Purpose of this Consensus Statement
The use of the term EMT in research areas as diverse as 
developmental biology, cell biology, tissue homeostasis 
and disease (notably cancer and fibrosis) has created 
discrepancies in data interpretation and persistent disa
greements about whether the process studied is EMT4–9, 
largely because the plasticity and heterogeneity of EMT 
programmes have been insufficiently considered. 
EMT was originally described as an important process 
in embryonic development during which epithelial cells 
underwent a phenotypic transformation to mesenchy
mal cells. These early analyses and subsequent valida
tions in cell culture described the phenotypic changes 

associated with EMT using a limited set of molecular 
markers. However, the later identification of EMT as a 
crucial programme in cancer progression10,11 indicated 
that EMT involves more than the originally identified 
developmental EMT programmes and that, clearly, 
many different variations of the EMT programme exist 
that cannot be accurately defined by those limited sets 
of markers.

As the complexity of EMT events and EMT regula
tors in both development and cancer becomes increas
ingly appreciated, there is a need for the community of 
researcher experts on EMT to agree on a number of key 
points. These include: definitions of major EMTrelated 
terms, a description of EMTassociated phenomena, 
a description of the diverse versions of EMT that can 
occur in different contexts, the contextdependent func
tion and activity of EMT regulators, and the relation
ship between the core and noncore EMT functions of 
EMTTFs. In the context of cancer, there is also a need to 
further consider the contributions of genetic alterations, 
the complex input of changing tumour environments 
and the EMTlike changes that occur in nonepithelial 
cancers such as melanoma, sarcoma and leukaemia. 
Provoked by the passionate town hall discussions that 
took place during the 2017 and 2019 meetings of the 
EMT International Association (TEMTIA), TEMTIA 
proposes the following guidelines to define the EMT 
programme, its phenotypic plasticity and the resulting 
multiple intermediate epithelial–mesenchymal states. 
By building such a consensus on EMTrelated concepts, 
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Fig. 2 | Growth of the primary literature in EMT. The first experimental analysis of epithelial–mesenchymal transition 
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regulation of EMT was identified in 1994. Subsequent growth of such research was stimulated by linkage of EMT to 
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we aim to eliminate semantic problems in the EMT 
debate and facilitate genuine crossdisciplinary discus
sion of the roles of EMT in both normal development 
and pathological conditions.

A brief history of EMT
Modern EMT studies began with research aimed at 
understanding tissue morphogenesis during develop
ment, cell behaviour in culture and carcinoma invasive
ness in cancer progression. Elizabeth Hay recognized 
the importance of EMT in embryogenesis1 and began to 
discuss the concept of “epithelial–mesenchymal trans
formation” in the late 1970s. EMT was subsequently 
observed in the context of neural crest formation12,13, 
heart valve formation14 and Müllerian duct regression15, 
as well as in epithelial tissue explants in vitro16. This 
‘epithelial–mesenchymal transformation’ process was 
alternately referred to as ‘epithelial–mesenchymal tran
sition’, to distinguish it from the process of neoplastic 
transformation commonly used by the cancer research 
community. ‘Epithelial–mesenchymal transition’ became 
the term of use after the first TEMTIA meeting, which 
brought the field together in 2003.

Many observations originating more than a quar
ter century ago described EMT as being induced by a 
diverse array of contextual signals. For example, cul
tured amnion cells were ‘transformed’ from an epithe
lial phenotype into fibroblastlike cells in response to a 
leukocyte medium17. Endocardial cells underwent EMT 
in response to signals from adjacent cardiac muscle18. 
Hepatocyte growth factor (HGF) was found to induce 
transformation of epithelial cells into migratory fibro
blasts19. Fibroblast growth factor 1 (FGF1) induced an 
‘epithelial plasticity’ response in bladder carcinoma10, 
connecting EMT to cancer. TGFβ, overexpressed in 
cancers and required for cardiac EMT20, was found to 
be a potent inducer of EMT in cultured cells11. These 
observations provided the first indications that diverse 
extracellular signals, including soluble factors and 
components of the extracellular matrix (ECM), could 
act together to evoke EMT programmes in responding  
epithelial cells.

These early descriptive studies shed little light on 
the mechanisms operating within individual cells that 
enable the induction of EMT. Discoveries in the field 
of Drosophila melanogaster developmental genetics led 
to the identification of master regulators of EMT — for 
example, the transcription factors Snail and Twist, which 
act pleiotropically to orchestrate mesoderm formation 
during gastrulation21. The identification of related tran
scription factors in chordates revealed the high degree 
of conservation of these factors during metazoan evo
lution22 and thus highlighted the importance and rele
vance of studying various developmental animal model 
systems in order to understand EMT regulation.

Research aimed at identifying molecular regulators of 
EMT began on a large scale in the 1990s. For example, 
identification of the Snailrelated transcription factor 
Slug (also known as Snai2) as an inducer of EMT dur
ing chick gastrulation and neural crest cell formation 
illustrated that specific transcription factors can act as 
key upstream regulators of EMT23. The finding that 

Slug expression can convert epithelial carcinoma cells 
into mesenchymal derivatives made a strong case for a 
connection between embryonic EMT and cancer pro
gression24. This notion was reinforced by the observation 
that the Snail family of transcription factors are capable 
of inducing EMT and invasiveness (the capacity to leave 
the epithelial tissue and migrate into the underlying tis
sue) in normal epithelial cells, in part through transcrip
tional repression of the gene encoding Ecadherin25–28. 
Additional EMTTFs, notably E47, Twist1, Zeb1 and 
Zeb2, were identified by means of their ability to evoke 
morphological and molecular changes associated with 
EMT29–32. It is important to note that these EMTTFs 
usually cooperate with one another to orchestrate 
EMT. A large number of studies have also revealed  
that EMTinducing signals can regulate the expres
sion and activity of these EMTTFs, doing so via both  
transcriptional and posttranscriptional mechanisms.

As our understanding of the inductive signals and 
transcriptional control of EMT evolved, it became 
apparent that the activation and execution of EMT does 
not require changes in DNA sequence and can be revers
ible. This made it clear, in turn, that EMT occurs as a 
result of complex epigenetic regulatory programmes, 
much like those operating at different stages of devel
opment. During development, some cell popu lations 
may undergo multiple rounds of EMT and MET, indi
cating substantial phenotypic plasticity. For example, 
during renal morphogenesis, the epithelial cells lining 
renal vesicles are derived from renal mesenchymal 
cells via MET, while these mesenchymal cells in turn 
are descendants of epithelial cells in the epiblast via 
EMT33. During somite formation, paraxial mesenchyme 
cells undergo MET to form epithelial somites, which then 
undergo EMT to give rise to the sclerotome34. Likewise, 
during the pathogenesis of cancers and fibrosis, EMT is 
activated to various degrees (from partial to fully) and 
is often reversible, revealing a plasticity that can yield 
cells residing in a spectrum of states, between a fully epi
thelial phenotype and a fully mesenchymal phenotype3 
(considered as the end points of EMT). Thus, EMT does 
not result in a single mesenchymal state, but rather in a 
variety of intermediate states with various degrees of epi
thelial and mesenchymal features. This finding presents 
a major challenge to the EMT research community: how 
best to capture the diversity and plasticity of the EMT 
programmes operating in various biological contexts.

EMT in development, cancer and fibrosis
A driving paradigm for the growth of this research field 
has been that EMT operates in normal tissues during 
development and wound healing, but is also a driver in 
the pathogenesis of cancer and fibrosis. The common 
starting point of diverse EMTs is the downregulation of 
certain features of the epithelial phenotype. Importantly, 
however, although it is now recognized that the EMT 
programmes do not operate as binary switches that shunt 
cells from fully epithelial to fully mesenchymal extremes, 
it remains unclear whether discrete phenotypic states are 
arrayed along the epithelialtomesenchymal (EtoM) 
phenotypic spectrum or, alternatively, a continuum of 
such states exist that lack distinct, definable boundaries. 

Neural crest
A multipotent cell population 
formed at the interface 
between the neuroepithelium 
and the epidermis. Neural crest 
cells give rise to multiple cell 
types, including the neurons, 
glial cells, pigment cells, 
fibroblasts, smooth muscle 
cells, odontoblasts and 
adipocytes.

Müllerian duct
A coelomic epithelium-derived 
tubular structure present in 
early reproductive tract 
development. Müllerian duct 
gives rise to the oviduct, 
uterus, cervix and part of the 
vagina in the female embryo.  
it degenerates in the male 
embryo through the action of 
anti-Müllerian hormone.

Renal vesicles
Epithelialized vesicles derived 
from the metanephric 
mesenchyme during kidney 
development. Each renal 
vesicle gives rise to one 
nephron and, together with 
vascular-derived glomerulus 
and ureteric bud-derived 
collecting duct, forms the basic 
unit of renal filtration.

Epiblast
A population of pluripotent 
cells during early mammalian, 
reptilian and avian development. 
The epiblast undergoes 
epithelialization, initiates 
gastrulation morphogenesis 
and gives rise to the three 
principal germ layers 
(ectoderm, mesoderm and 
endoderm).

Somite
An epithelial vesicle formed 
through periodic budding from 
the mesenchymal pre-somitic 
mesoderm. The somite is located 
between the neural tube and the 
intermediate mesoderm and 
gives rise to the sclerotome (axial 
bones) and dermomyotome 
(dermis and skeletal muscles).

Sclerotome
A part of the epithelial  
somite that undergoes  
EMT first and gives rise  
to the vertebrae and ribs.
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The extent to which such intermediates represent sta
ble states in specific biological contexts is also unclear. 
A continuum of EMT intermediate states might enable 
rapid interconversion between cells possessing various 
combinations of these traits, a process viewed as hav
ing high phenotypic plasticity. Moreover, it is possible 
that the phenotypic states between the fully epithelial 
and fully mesenchymal end points might not be arrayed 
along a linear spectrum, and that multiple alternative 
paths can operate to enable an epithelial cell to advance 
towards a mesenchymal state. Finally, the cells activating 
EMT programmes in adult tissues under pathological 
conditions commonly express combinations of epithe
lial and mesenchymal markers and rarely complete the 
entire EMT programme, suggesting that ‘partial EMTs’ 
represent the norm rather than the exception.

Development. During animal development, cells of epi
thelial origin often migrate long distances from their 
original position to their final destination. The exit and 
detachment from the epithelial sheet and the following 
migration to distant locations depend on cells acquiring 
a mesenchymal state through EMT. Moreover, in many 
cases, the cells later undergo a permanent or temporary 
reversal to an epithelial state through MET (for example, 
endoderm cells) or switch to a different state (for example, 
neural crest cells). A great degree of morphological vari
ability is associated with epithelial cells that participate 
in developmental EMTs, ranging from cells possessing 
fully formed epithelial cell–cell junctions (including 
tight junctions, adherens junctions and/or desmosomes) 
and an underlying basement membrane (to which they 
adhere through hemidesmosomes), such as the pluri
potent epiblast cells of amniotes35, to the primitive epithe
lial cells giving rise to mesendoderm in Xenopus laevis  
and zebrafish, which exhibit only apical–basal polarity and  
incompletely assembled cell–cell junctions36.

In many cases, the quasimesenchymal state is not 
reached through a complete loss of cell–cell junctions, 
but instead by changes in the nature and dynamics 
of junction formation and dissolution, which may 
explain how cells with mesenchymal characteristics can 
exhibit collec tive cell migration37 — that is, the migra
tion of cohorts of cells that seem to be held together 
by various types of cell–cell junctions. Such plastic, 
quasimesenchymal phenotypes are observed in cells 
that migrate collectively and are held together partially by  
cadherinbased cell–cell contacts, in endoderm and meso
derm cells of D. melanogaster, zebrafish, X. laevis and  
mouse38–43, and in neural crest cells of zebrafish, chick 
and X. laevis44,45. It is important to note that not every 
migratory process employed by epithelial cells involves 
EMT, as is the case in chicken epiblast morphogenesis 
before the formation of the primitive streak46.

Cancer. During the multistep progression of carcino
mas that are initially benign, epithelial cells acquire a 
few distinctly mesenchymal traits that confer to them 
the ability to invade adjacent tissues, locally, and then to 
disseminate to distant tissues. Much of this phenotypic 
progression towards increased invasiveness depends 
on the activation of EMT3,47–51. Carcinoma cells might 

be able to perform collective migration locally without 
activating EMT, possibly using collective migration 
mechanisms similar to those used during development. 
However, it is unclear whether primary carcinoma cells 
can complete the entire process of metastatic dissemina
tion without activating, at least transiently, components 
of the EMT programme. The behaviour of carcinoma 
cells that transition to intermediate epithelial/mesenchy
mal states (E/M states) (that is, partial EMTs) echoes the 
behaviour of epithelial cells during normal development. 
Cancer cells proceed through a gradation of phenotypic 
states, each associated with combinations of epithelial 
and mesenchymal markers3,51,52.

The activation of alternative EMT programmes 
and the progression of individual cells to different states 
along the EtoM spectrum can generate extensive 
pheno typic heterogeneity within tumours. Supporting 
this notion, multiple E/M cell subpopulations with dis
tinct chromatin landscapes and gene expression signa
tures have been reported in skin and mammary primary 
tumours, and these subpopulations are often spatially 
localized within specific areas of a tumour53. Moreover, 
hybrid E/M states are enriched in circulating tumour cells 
(CTCs) that are released by primary breast and lung can
cers and their metastases54,55, ostensibly reflecting the cel
lular heterogeneity seen within the originating primary 
tumours. Such phenotypic plasticity and heterogeneity 
may provide cancer cells with increased adaptability 
and resistance, enabling them to respond to a variety of 
external cues and physiological stresses3,49,51,52,56,57. Thus, 
because tumour cells encounter diverse microenviron
ments as they navigate the multiple steps of the metastatic 
cascade (Box 1) and migrate through and reach different 
tissues, various hybrid E/M phenotypes may provide a 
survival advantage in these distinct environments, such 
as blood and lymphatic vessels and primary and second
ary tumour sites. The tissue of origin of the tumour cell, 
specific combinations of expressed EMTTFs, and chro
matin modifications may also determine the phenotypic 
heterogeneity of these various hybrid E/M states.

The diversity of EMTassociated cancer cell pheno
types is reflected in the discrepancies in experimental 
and histopathological observations of human tumours 
that have fueled a longstanding debate regarding the 
roles of EMT in cancer progression4,5,58–60. Such discrep
ancies can often be attributed to the use of different 
EMT markers and the analysis of particular EMTTFs 
as markers of this programme; in addition, the EMT 
programmes operating in different tissues might differ 
from one another. For instance, Snai1 and Twist1 have 
both been shown to be important for metastasis in the 
PyMTdriven breast cancer model61,62, but dispensable for 
metastasis in a pancreatic cancer model7, which instead 
depends on Zeb1 (rEF.63). Further confusion has come 
from the observation that carcinoma cells undergoing 
a partial EMT can reduce their epithelial phenotype 
through posttranslational mechanisms64, making it 
challenging to interpret studies that rely solely on the 
perturbation of transcriptomes by EMTTFs. These and 
other examples indicate that the versions of EMT pro
grammes and the functions of the involved EMTTFs 
are tissue context dependent. Moreover, as is often 

Tight junctions
intercellular barriers formed 
between epithelial cells. Such 
junctions regulate transepithelial 
particle transport and prevent 
the free diffusion of cell 
membrane proteins between 
the apical and basolateral 
domains.

Adherens junctions
A type of cell–cell junction in 
which the plasma membranes 
of apposing cells adhere to 
each other through cadherin- 
mediated homophilic 
interactions. Adherens junctions 
associate with condensed actin 
filaments intracellularly.

Desmosomes
A type of cell–cell junction  
that provides strong adhesion 
between cells and resists 
mechanical stress. Desmosomes 
interact with intermediate 
filaments intracellularly.

Hemidesmosomes
A type of cell–matrix 
attachment structure  
mediated by integrin– 
matrix interactions 
extra cellularly and 
intermediate filaments 
intracellularly.

PyMT
A breast cancer metastasis 
model in which the 
polymavirus middle  
T-antigen is overexpressed  
in mammary epithelial cells  
as a driver of breast tumour 
development.
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seen during the course of embryonic development, 
cancerassociated EMT is only activated partially and 
transiently, making endstage markers of a fully mesen
chymal state uninformative in cancer studies. Another 
complicating factor is that EMT programmes have been 
linked to additional traits that are not associated with 
canonical EMT regulation, such as stemness, cell sur
vival rate, metabolic changes and, in the case of cancer 
cells, resistance to anticancer therapeutic drugs65,66.

Fibrosis. EMT has also been observed to occur and 
play a role in diverse types of fibrosis (including in 
the lung, liver and kidney), with EMTTF expression 
shown to be a prerequisite for fibrosis development in 
mouse models3. As in cancer progression, the role of 
EMT in organ fibrosis has been the subject of active 
debate. A central issue in this debate is the origin of 
the myofibroblasts that accumulate in fibrotic tissues. 
These cells represent a specialized fibroblast population 
involved in collagen secretion and thus in the develop
ment and progression of interstitial fibrosis, which is the 
major cause of the disease in different tissues. Early 
lineagetracing studies supported the hypothesis that 
myofibroblasts arise from EMTdriven conversion67, but 
subsequent lineagetracing analyses have not provided 
compelling evidence of epithelial cells as precursors 

of fibrosisassociated myofibroblasts68. More recent 
studies have shown that renal epithelial cells undergo 
a partial EMT that is crucial for disease progression, but 
that they do not directly contribute to the formation 
of the myofibroblast population68,69. Instead, they lose 
their normal tubular function, and these damaged cells 
release paracrine signals to the renal interstitium, reshap
ing the microenvironment. The release of TGFβ converts 
existing fibroblasts into myofibroblasts, and the secre
tion of additional cytokines and chemokines probably 
recruits macrophages to the stroma. Hence, damaged 
renal epithelial cells promote both fibrogenesis and 
inflammation, which are hallmarks of renal fibrosis69,70. 
While the debate concerning the contribution of EMT 
to different types of fibrosis continues, the demonstrated 
requirement of EMTTF expression strongly suggests 
that the activation of EMT is indeed required for the 
development of several types of fibrosis.

Definitions of EMT and its associated terms
To facilitate the investigation of multifaceted EMT pro
cesses and discussion among diverse groups of research
ers studying EMT, we propose the following definitions of 
EMT and its associated terms to stand as a reference. We 
encourage researchers to adhere to this recommended  
nomenclature.

Box 1 | The metastasis cascade

The metastatic process is thought to consist of the following sequential steps (see the figure). Initial escape from the 
primary site (invasion) requires that the epithelial tumour cells loosen their cell–cell junctions to become motile (step 1) 
and that they degrade the basement membrane and extracellular matrix (eCm); breakdown of these physical barriers 
allows cells to migrate and invade into nearby normal tissues (step 2). The next step of metastasis is termed ‘intravasation’, 
during which tumour cells invade across the endothelial lamina, penetrate into the vascular or lymphatic vessels and 
thereby enter the systemic circulation (step 3). only a small number of the released neoplastic cells appear to be capable 
of surviving attack by the shear forces encountered in the circulation and by anoikis (a form of programmed cell death 
that occurs when cells detach from the surrounding eCm) provoked by the loss of anchorage to solid eCm. eventually, 
some of the survivors may arrest in and extravasate through the capillary endothelium of distant organs into the 
parenchyma of these organs (extravasation) (step 4). In the new stromal environment that they encounter, an even smaller 
subset succeed in establishing themselves (step 5) and in proliferating from minute growths (micrometastases) into fully 
malignant secondary tumours that are clinically detectable and eventually life-threatening (secondary growth) (step 6). 
The activation of epithelial–mesenchymal transition (emT) can provide tumour cells with the ability to migrate, invade, 
intravasate and extravasate. once they reach distant organs, these mesenchymal cells revert to a more epithelial identity 
via mesenchymal–epithelial transition (meT) in order to regain proliferating ability, to form secondary growth in distant 
organs. Figure adapted from rEF.93, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Interstitial fibrosis
Excessive deposition of 
extracellular matrix by 
fibroblasts in interstitial space, 
leading to tissue hardening and 
scarring.

Renal interstitium
The renal parenchymal space 
that is outside the tubular, 
glomerular and vascular 
structures.

Fibrogenesis
The phenomenon of excessive 
production of extracellular 
matrix by fibroblasts.
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EMT. A multifaceted and often reversible change in 
cellular phenotypes during which epithelial cells lose 
their apical–basal polarity, modulate their cytoskeleton 
and exhibit reduced cell–cell adhesive properties. Cells 
may individually or collectively acquire mesenchy
mal features and increase motility and invasive ability. 
Typically, a switch in intermediate filament usage from 
cytokeratins to vimentin is observed after a complete 
EMT. Cortical actin filament in epithelial cells also 
undergoes marked rearrangement during EMT. While 
the characteristics of fully epithelial cells are relatively 
clearly defined, our current knowledge does not allow 
us to define the mesenchymal state with specific cellular 
characteristic or molecular markers that are universal 
endproducts of all EMT programmes.

MET. Reciprocal changes in cellular phenotype that 
reverse EMTinduced phenotypes, during which 
mesenchymallike cells may acquire apical–basal polar
ity, reorganize their cytoskeleton, and exhibit increased 
cell–cell adhesion, resulting in an organized epithelium. 
MET occurs during embryonic development (for exam
ple, cardiac development, kidney morphogenesis and 
somite formation) and cancer.

Endothelial–mesenchymal transition. As with epithelial 
cells, endothelial integrity depends on cell–cell junctions, 
apical–basal polarity and interactions with an underly
ing basement membrane. Endothelial–mesenchymal 
transition (EndoMT) more accurately indicates the phe
nomenon in such cell populations and resembles EMT 
in most aspects, except for the replacement of Ecadherin 
by VEcadherin. EndoMT thereby enables endothelial 
cells to attenuate or deconstruct their functional integrity 
and apical–basal polarity, to acquire motile and invasive 
behaviour and to activate changes in gene expression that 
are driven by certain EMTTFs. Similar to epithelial cells in  
EMT, endothelial cells that have activated EndoMT pro
grammes exhibit a variety of intermediate or partial pheno
types, as discussed above for EMT. EndoMT was described 
initially during embryonic heart development71 and  
subsequently in the context of cardiac fibrosis72.

Epithelial–mesenchymal plasticity. We favour and rec
ommend use of the term ‘epithelial–mesenchymal plas
ticity’ (EMP) to describe the ability of cells to adopt mixed 
E/M features and to interconvert between intermediate 

E/M phenotypic states arrayed along the epithelial– 
mesenchymal spectrum that cannot be easily distinguished 
on the basis of our current understanding. This plasticity 
has been variably referred to as partial EMT, hybrid E/M 
status, a metastable EMT state, EMT continuum and  
EMT spectrum; in all cases, the cells express a mixture of 
epithelial features (such as cytokeratins) and mesenchy
mal features (such as cell migration) and markers. EMP 
indicates an ability to move readily between these various 
states, although the stability of the various states varies 
in different biological contexts. EMP is widely observed 
in development, wound healing and cancer. In addition 
to a mesenchymal type of migration, as observed during 
mesoderm formation, EMP can also participate in collec
tive migration — for example, during tubulogenesis and 
wound healing. EMP also accounts for the reversibility 
of the EMT programme. Epithelial cells going through 
EMT give rise to cell populations that may enter reversi
bly into states with various proportions of epithelial and 
mesenchymal features. EMP is thought to provide cells 
with the fitness and flexibility to fulfil the diverse require
ments during the course of either developmental or  
pathological processes.

EMT-TFs. In many if not most settings, both in cell 
culture and in vivo, EMP involves some degree of tran
scriptional regulation. Several transcription factors 
belonging to the Snail, Twist and Zeb families have 
been found to control cell–cell adhesion, cell migra
tion and ECM degradation, and to play evolutionarily 
conserved central roles in the execution of EMT in 
various biological settings and organisms (TABlE 1). Of 
note, all the developmental EMT processes described 
to date involve at least one member of these fami
lies of core EMTTFs. Other transcription factors 
have been shown to impact EMT in certain contexts 
(Supplementary Table 1). However, these transcrip
tion factors are also involved in other cellular processes 
(for example, proliferation, apoptosis or stemness).  
In addition, many of the EMTTFs are also expressed in 
nonepithelial cells, ranging from fibroblasts to haema
topoietic precursors, and in cancer types involving 
nonepithelial derivatives (melanoma, glioblastoma 
and leukaemia), where they play important roles during 
tumour progression, often beyond classic EMT phases. 
Although we use the term EMTTFs to describe all tran
scription factors associated with EMT, it is important to 

Table 1 | Core EMT transcription factors, with key studies reporting their discovery

Transcription 
factor

Type Development Cancer Fibrosis

Snai1 (Snail) Zinc finger Boulay et al., 1987 (rEF.84); 
Nieto et al., 1992 (rEF.85)

Batlle et al., 2000 (rEF.25); 
Cano et al., 2000 (rEF.26)

Boutet et al., 2006 (rEF.86)

Snai2 (Slug) Zinc finger Nieto et al., 1994 (rEF.23) Savagner et al., 1997 (rEF.24) —

Zeb1 Zinc finger Funahashi et al., 1993 (rEF.87) Grooteclaes and Frisch, 
2000 (rEF.88)

Oba et al., 2010 (rEF.89)

Zeb2 (SIP1) Zinc finger Verschueren et al., 1999 (rEF.90) Comijn et al., 2001 (rEF.31) Oba et al., 2010 (rEF.89)

Twist1 bHLH Thisse et al., 1988 (rEF.91) Yang et al., 2004 (rEF.30) Kida et al., 2007 (rEF.92); 
Lovisa et al., 2015 (rEF.70)

EMT, epithelial–mesenchymal transition.
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keep in mind that their expression alone is not sufficient 
to indicate that EMT is occurring.

Recommendations on the criteria to define EMT
In the current EMT literature, both cellular and molec
ular descriptors have been used to define EMT in var
ious biological systems. Below we provide several key 
recommendations on how to better use this informa
tion to cover the enormous complexity and plasticity 
of the EMT programme in diverse developmental and  
pathological settings.

EMT status cannot be assessed on the basis of one or a 
small number of molecular markers. EMT constitutes 
changes of cell behaviour that involve the loss of certain 
epithelial characteristics and the gain of certain mes
enchymal traits. The complex series of cellular changes 
occurring during EMT require the cooperation of a 
large number of molecular factors. On the basis of their 
involvement in the process, these factors can be divided 
into three groups: EMTinducing signals, EMTTFs 
and EMT markers that define and constitute various 
epithelial and mesenchymal cell characteristics. In the 
literature, diverse cellular and molecular descriptors 
have been used to define EMT in different biological sys
tems, which has been a major source of confusion. For 
example, some studies define partial loss of Ecadherin 
as an indication of EMT, while others argue that the 
maintenance of certain levels of expression of epithelial 
markers such as cytokeratins is indicative of cells not 
having undergone EMT. Given the complex manifesta
tions of the EMT programme, it has become clear that 
inferring the involvement of EMT in any process cannot 
rely solely on a few salient molecular markers, such as 
Ecadherin and vimentin73.

More importantly, the use of various EMT molec
ular markers to characterize the phenotypic state of 
individual tumour cells has revealed that such cells, as 
described earlier, can simultaneously express both epi
thelial and mesenchymal genes. The core EMTTFs are 
often coexpressed in various combinations in order to 
orchestrate complex EMT programmes, and they involve 
various members of EMTTF families, such as Snai 
(Snai1 and Snai2) and Zeb (Zeb1 and Zeb2), depend
ing on the specific biological context74. Importantly, 
posttranscriptional regulation of EMT regulators at 
both the mRNA and protein levels is crucial in con
trolling EMT. Such regulation is often neglected in 
studies that use RNA expression exclusively to survey 
EMT molecular markers. A focus on defining EMT 
programmes exclusively on the basis of the expression 
of specific molecular markers such as these under
represents the enormous complexity and plasticity of  
the EMT programmes in diverse developmental and 
pathological settings.

The primary criteria for defining EMT status should 
be changes in cellular properties together with a set 
of molecular markers, rather than relying solely on 
molecular markers. One major feature that unites all 
the variant EMT programmes is the initial attenuation 
or deconstruction, to varying degrees and with diverse 

manifestations, of the epithelial phenotype. Epithelial 
cells harbour complexes that mediate cell–cell interac
tions, most notably adherens junctions, tight junctions 
and desmosomes (Fig. 1). Apical–basal polarity guides the 
proper organization of tight junctions, adherens junctions 
and desmosomes in epithelial cells. Polarity complexes, 
including the Par, Crumbs and Scribble complexes75–77, 
define the apicallateral and basallateral domains of epi
thelial cells (Fig. 1). During the early phase of EMT, loss of 
apical–basal polarity is often the first event to be observed 
and can lead to the destabilization of adhesion complexes, 
such as the tight junctions and adherens junctions at 
the lateral membrane78,79, as well as to the activation of 
EMTTFs80. The decrease or loss of epithelial adherens 
junctions and desmo somes occurs via transcriptional 
repression by the core EMTTFs of the genes encod
ing junctional proteins. The cytoplasmic relocalization 
of adherens junction proteins, such as Ecadherin, via 
posttranscriptional regulation is also an early feature of 
EMT initiation in various EMT models81.

Another key function of the EMT programmes is to  
provide stationary epithelial cells with the ability  
to migrate by invading through extracellular matri
ces secreted by both epithelial and mesenchymal cells. 
Thus, during EMT, epithelial cells often need to breach 
the basement membrane in order to migrate away from 
their epithelium of origin35,82. Migration of cells that have 
undergone EMT does not necessarily require the cells to 
lose all epithelial features, and a switch of intermediate 
filaments from cytokeratin to vimentin can facilitate cell 
migration. Depending on the extent of cell–cell adhe
sion loss, epithelial cells can migrate as single cells, in 
a mesenchymal manner, or collectively, while remain
ing attached with one another via weakened but still 
operative cell–cell interactions. This indicates that the 
breakdown of these tightly regulated epithelial struc
tures, the gain of motility and the ability to degrade ECM 
during EMT are inaccurately represented by the simple 
expression, or lack of expression, of selected markers. 
Furthermore, complex posttranslational modifica
tions of key proteins play critical roles in governing the 
complex cellular processes that occur during EMT. For 
these reasons, researchers should describe EMT and 
MET as functional changes in the biological proper
ties of cells rather than focusing largely on changes in a 
few readily monitored molecular markers. It is through 
this perspective that our understanding of EMT could 
faithfully reflect the function of EMT during animal 
development and pathological events (Fig. 1). Therefore, 
whenever it is experimentally feasible, EMT should be 
assessed through the combination of cellular properties 
and multiple molecular markers.

EMT-TFs and other molecular markers are valuable indi-
cators of EMT, but they should be assessed in conjunction 
with changes in cellular characteristics to define EMT. 
The morphological and functional changes that can be 
observed in cells during EMT often result from changes 
in gene expression. Many, but not all, EMTassociated 
changes in gene expression result directly or indirectly 
from the actions of EMTTFs, which play key roles 
in driving EMT. Indeed, most EMT programmes are  
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associated with the activation of expression of one 
or several core EMTTFs. Although core EMTTFs 
often initiate EMTassociated changes in gene expres
sion (TABlE 1), a large number of other EMTTFs and 
numerous microRNAs and long noncoding RNAs 
(lncRNAs) have also been shown to contribute to or 
play critical roles in diverse EMTs (Supplementary 
Table 1). Decreased association between βcatenin 
or p120catenin and Ecadherin, achieved by 
posttranslational modifications, can also greatly 
weaken the adhesive functions of adherens junctions. 
Reduced expression of junctional and polarity proteins 
is often visible during EMT. Depending on the cell 
type and the extent to which cells advance through an 
EMT programme, cells undergoing an EMT may begin 
to express vimentin, to suppress cytokeratin, to shift 
expression of key integrins and so forth. These changes 
in gene expression are often seen as being indicative 
of EMT or as markers of EMT, although, considering 
the extensive variations in EMT, their overall value in the 
diagnosis of EMT needs to be considered with caution. 
Beyond this small set of commonalities, it is difficult 
to define other changes as contributing universally to 
all the diverse manifestations of EMT programmes 
that have been described in the rapidly expanding lite
rature. Furthermore, our current knowledge does not 
allow us to know whether there is a linear succession 
of cellbiological changes as cells advance progressively 
through an EMT programme, or whether a diverse series 
of routes radiates in multiple directions from the starting 
point of attenuation or loss of epithelial junctions.

Finding reliable EMT markers requires a combina-
torial approach, as well as distinguishing between 
EMT-associated and non-EMT-associated functions. 
Analysing the state of a cell that is engaged in EMT 
often requires the use of markers that are specific to a 
specific biological context. To be able to assess in which 
position on the EMT spectrum a cell resides, it might 
be necessary to use a set of criteria that are standard
ized for the specific biological context. Obtaining quan
titative EMT marker measurements should always be 
coupled with cellular and functional analyses of EMT 
status, as described above. Importantly, recent studies 
have linked EMT to various other cellular programmes 
and functions, including cancer cell stemness, resistance 
to apoptosis, genome instability, cancer drug resistance 
and metabolic adaptation. Many components of EMT 
regulatory pathways, including EMTTFs, also affect 
other important cellular functions and phenotypes and 
are themselves regulated through diverse signals that 
may or may not involve canonical EMT. For example, 
EMTTFs such as Snai1/2 and Twist1 also regulate can
cer cell survival and cancer drug resistance66,83, and it 
is currently unknown whether cell survival and drug 
resistance are regulated independently of EMT. Likewise, 
many ECM remodeling proteins that are important 
for breaching the basement membrane can be regu
lated in both EMTdependent and EMTindependent 
manners. Furthermore, although cells may switch to a 
different cell fate upon EMT, the EMTassociated cel
lular changes from epithelial to more mesenchymal 

phenotypes are independent of cell differentiation or 
cell dedifferentiation. Therefore, it is important to note 
that the cellbiological definition of EMT strictly refers 
to cellular features describing the EtoM phenotypes, 
while we should keep these associated phenotypes 
in mind when examining the role of EMT in various 
biological settings.

Implications for future EMT research
Fifty years and over 38,000 publications after Betty Hay’s 
pioneering observations, the concept of EMT has now 
been widely applied in biomedical research. It provides 
a unifying framework for developmental and cancer 
studies, which is evidenced by the exponentially grow
ing number of EMTrelated publications. Such a frame
work holds the promise of farreaching breakthroughs 
in cancer diagnosis and treatment, for cancer biologists, 
and of bridging the gap in understanding normal and 
pathological epithelial organization and morphogene
sis, for developmental and cell biologists. To realize this 
promise, it is desirable that the EMT community reach 
a consensus on the definition of EMTrelated terms and 
on the conceptual framework for approaching EMT 
as a biological process with quantifiable molecular 
descriptors and cellular readouts. All the authors of this 
Consensus Statement article have agreed to adhere to the 
recommendations on nomenclature presented here in 
their future research publications and recommend that 
other researchers in the EMT and the larger biological 
research communities also follow these guidelines. Only 
by minimizing semantic misinterpretation and data mis
communication can we begin to appreciate the diversity 
of individual EMTs and uncover conserved themes in 
EMT regulation between development and disease.

Studies using cell lines, developmental systems and 
cancer models have revealed a diversity of EMTinduced 
phenotypes and have highlighted remarkable complex
ity in the execution and regulation of EMT. Looking 
forward, to decipher the complexity and plasticity of 
the EMT programme, we propose that EMT research, 
while remaining anchored in traditional developmen
tal, cell and cancer biology, should be explored within 
a broader conceptual context. The EMT field has in 
recent years attracted the interest of a diverse group of 
researchers with expertise in systems biology, biophysics, 
stem cell biology, pathology and mathematical model
ling. This remarkable strength of interest will enable 
crossdisciplinary collaborations and push this field 
of research forward. We expect that future EMT stud
ies will apply multidisciplinary approaches in order to 
gain increased mechanistic understanding of EMT. One 
open question in the cancer EMT field is the extent to 
which the stabilization of specific hybrid E/M states, or 
the dynamic switch between E/M states in response to 
distinct cues from the microenvironment, favours the 
metastatic process. With many important aspects of 
EMT remaining unexplored, advancing EMT research 
will require technological innovations to enable the 
study of both developmental and cancerassociated 
EMT at the singlecell level. These innovations will 
include singlecell live imaging, lineage tracing, gene 
expression analyses and studies of genetic and epigenetic 

Cancer cell stemness
The presence of subpopulations 
of cancer cells that exhibit stem 
cell-like behaviour.

Dedifferentiation
The conversion of cells from  
a more differentiated state  
to a less differentiated one. 
Dedifferentiation is often 
associated with the acquisition 
of progenitor or stem cell-like 
properties.

350 | June 2020 | volume 21 www.nature.com/nrm

C o n S e n S u S  S tat e m e n t



modifications. Finally, a combination of mathematical 
modelling with carefully constructed experimental  
analyses will be important to gaining a mechanistic 
understanding of EMT plasticity.

Another major challenge is the translation of the cur
rent knowledge of EMT heterogeneity and plasticity into 
clinical practice. While we are far from understanding 
the functional implications of EMT heterogeneity, sev
eral clinical trials have already incorporated the notion 
of EMT plasticity3, thereby opening the way for novel 
therapies that exploit EMT heterogeneity. Singlecell 
sequencing of normal tissues, primary tumours, circu
lating tumour cells and metastases, combined with cellu
lar analyses and functional validations, will capture the 
diversity and plasticity of EMT and have the potential 
to reveal the molecular alterations underlying tumour 
progression and the diverse responses to therapy.  

An increased understanding of the EMT mechanisms 
associated with these behaviours offers the poten
tial for targeted therapy to prevent cancer metastasis. 
For example, while the inhibition of EMTassociated 
changes might reduce cancer cell dissemination in 
earlystage carcinoma, preventing MET in dissemi
nated tumour cells might inhibit metastatic outgrowth 
in distant organs. Experimental and clinical studies 
have shown that the development of resistance to vari
ous therapies, including chemotherapies and immuno
therapies, is tightly associated with EMT phenotypes83. 
These studies suggest that targeting EMT, or the cells 
capable of executing it, holds promise in overcoming 
therapy resistance, which is a major challenge in cancer 
treatment.
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