
HAL Id: hal-03082531
https://hal.science/hal-03082531v5

Submitted on 29 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Moment Representation in Polynomial
Optimization

Lorenzo Baldi, Bernard Mourrain

To cite this version:
Lorenzo Baldi, Bernard Mourrain. Exact Moment Representation in Polynomial Optimization. Jour-
nal of Symbolic Computation, In press, pp.102403. �10.1016/j.jsc.2024.102403�. �hal-03082531v5�

https://hal.science/hal-03082531v5
https://hal.archives-ouvertes.fr


Exact Moment Representation in Polynomial Optimization

Lorenzo Baldi, Bernard Mourrain

Inria d’Université Côte d’Azur, Sophia Antipolis, France

Abstract

We investigate the problem of representing moment sequences by measures in the context of
Polynomial Optimization Problems, that consist in finding the infimum of a real polynomial on
a real semialgebraic set defined by polynomial inequalities. We analyze the exactness of Moment
Matrix (MoM) hierarchies, dual to the Sum of Squares (SoS) hierarchies, which are sequences of
convex cones introduced by Lasserre to approximate measures and positive polynomials. We
investigate in particular flat truncation properties, which allow testing effectively when MoM
exactness holds and recovering the minimizers.

We show that the dual of the MoM hierarchy coincides with the SoS hierarchy extended
with the real radical of the support of the defining quadratic module Q. We deduce that
flat truncation happens if and only if the support of the quadratic module associated with
the minimizers is of dimension zero. We also bound the order of the hierarchy at which flat
truncation holds.

As corollaries, we show that flat truncation and MoM exactness hold when regularity
conditions, known as Boundary Hessian Conditions, hold (and thus that MoM exactness holds
generically); and when the support of the quadratic module Q is zero-dimensional. Effective
numerical computations illustrate these flat truncation properties.

1 Introduction

Let f ,g1, . . . , gs ∈R[X1, . . . ,Xn] be polynomials in the indeterminates X1, . . . ,Xn with real coefficients.
The goal of Polynomial Optimization is to find:

f ∗ B inf
{
f (x) ∈R | x ∈Rn, gi(x) ≥ 0 for i = 1, . . . , s

}
, (1)

that is the infimum f ∗ of the objective function f on the basic, closed semialgebraic set S B {x ∈Rn |
gi(x) ≥ 0 for i = 1, . . . , s }. This is a general problem, which appears in many contexts and with
many applications. To cite a few of them: in graph theory [LV22], network optimization design
[MH15], control [HK14]: see [Las10] for a more comprehensive list. Equality constraints are also
allowed in this setting, since g(x) = 0 if and only if g(x) ≥ 0 and −g(x) ≥ 0. We can then consider
optimization problems on real algebraic varieties, i.e. common zero loci of finitely many real
polynomials. Moreover, many famous NP-hard and NP-complete problems can be rephrased as
polynomial optimization problems, see e.g. [Lau09, Sec. 1.1].

To (approximately) solve such problems, Lasserre [Las01] proposed to use two hierarchies of
finite dimensional convex cones depending on an order d ∈N, and he proved, for Archimedean
quadratic modules, the convergence of the optima associated to these hierarchies to the minimum f ∗

of f on S, when d→∞. The first hierarchy replaces non-negative polynomials by Sums of Squares
(SoS) and non-negative polynomials on S by polynomials of degree ≤ d in the truncated quadratic
module Q2d(g) generated by the tuple of polynomials g = {g1, . . . , gs }.

The second and dual hierarchy replaces positive measures by linear functionals L2d(g) which
are non-negative on the polynomials of the truncated quadratic module Q2d(g). We will describe
these constructions more precisely in section 2.1.

This approach has many interesting properties (see e.g. [Las15; Lau09; Mar08]). It was proposed
with the aim to recover the infimum f ∗, and if this infimum is reached, the set of minimizers
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Smin := {ξ ∈ S | f (ξ) = f ∗}. The extraction of minimizers is strongly connected to the so called flat
truncation property, that will be the focus of the paper.

To tackle these challenges, one can first address the finite convergence problem, that is when the
value f ∗ can be obtained at a given order of the relaxation(s). The second problem is the exactness of
the hierarchies: we call the Sum of Squares (SoS) hierarchy exact when the non-negative polynomial
f − f ∗ belongs to the truncated quadratic module Q2d(g) for some d ∈N; and we call the Moment
Matrix (MoM) hierarchy exact when, for all d ∈ N big enough , any optimal linear functional
λ∗ ∈ L2d(g) is represented by a positive measure supported on S. We are going to investigate in
detail this exactness property of the MoM hierarchy.

Several works have been developed over the last decades to address SoS representation problems.
[Par02] observed that if the complex variety V

C
(I) defined by an ideal I = (h) generated by real

polynomials is finite and I is radical, then f − f ∗ has a representation as a sum of squares modulo
I . [Lau07] showed the finite convergence property if the complex variety V

C
(I) is finite, and that

the truncated moment sequence at some level of the hierarchy has a representing measure, if
moreover the ideal I is radical. [Nie13c] showed that if the semialgebraic set S is finite, then the
finite convergence property holds for a preordering defining S.

[Sch05a] proved that f − f ∗ is in the quadratic module Q defining S modulo the ideal (f − f ∗)2

if and only if f − f ∗ ∈ Q, and then the SoS hierarchy is exact. [Mar06], [Mar09] proved that, under
regularity conditions at the minimizers, known as Boundary Hessian Conditions (BHC), f − f ∗
is in the quadratic module, i.e., the SoS exactness property holds. [NDS06], [DNP07] showed
that, by adding gradient constraints when S = R

n or KKT constraints when S is a general basic
semialgebraic set, the SoS exactness property holds when the corresponding Jacobian ideal is
radical. [Nie13a] showed that, by adding the Jacobian constraints, the finite convergence property
holds under some regularity assumption. [Nie13b] showed that finite convergence and the flat
truncation property are equivalent under generic assumptions, if the SoS hierarchy is exact and
strong duality holds. In [Nie14], it is shown that BHC imply finite convergence and that BHC
are generic. [KS19] showed the SoS exactness property if the quadratic module defining S is
Archimedian and some strict concavity properties of f at the finite minimizers are satisfied.

Though many works focused on the SoS hierarchy and the representation of positive polynomi-
als with Sums of Squares, the MoM hierarchy has been much less studied. We mention [LLR08]
and [Las+13], which prove that if S is finite, the value f ∗, the minimizers and the vanishing ideal
of S can be recovered from moment matrices associated with the truncated preordering defining S.

From a methodological and practical point of view, flat truncation tests on moment matrices,
see e.g. [CF98] and [LM09], are a way to decide finite convergence, i.e. whether the minimum
f ∗ is reached at some order of the hierarchy (another approach is the comparison of the lower
bound obtained with an objective value at a local minimizer). But flat truncation also implies MoM
exactness. Moreover, it allows extracting the finite minimizers from moment matrices (see [HL05],
[Mou18]), whereas SoS exactness does not yield the minimizers. Therefore a natural question, of
theoretical and practical importance, is:

When does flat truncation hold in a Polynomial Optimization Problem?

It is known that truncated minimizing pseudo-moment sequences are not always represented
by measures, see Appendix A, and thus flat truncation does not hold in general. But surprisingly,
no algebro-geometric characterization of when flat truncation holds has been described in the last
decades.

Contributions. Our main contribution is a complete characterization of flat truncation in
terms of the zero-dimensionality of a natural ideal defining the minimizers of the Polynomial
Optimization Problem. Furthermore, we show that flat truncation for generic minimizing linear
functionals implies the flat truncation property for all minimizing linear functionals, and the
exactness property.

Theorem A (see Theorems 4.1 and 4.4). Assume that we have MoM finite convergence. Then
dim R[X]

supp(Q(g)+(f −f ∗)) = 0 if and only if there exists d such that a generic λ∗ ∈ Lmin
2d (f ;g) has flat truncation.
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In this case, all λ ∈ Lmin
2d (f ;g) have flat truncation, and the MoM hierarchy is exact.

Above, supp(Q(g) + (f − f ∗)) := (Q(g) + (f − f ∗))∩−(Q(g) + (f − f ∗)) is an ideal, associated with
the quadratic module Q(g) + (f − f ∗) which defines the minimizers Smin; Lmin

2d (f ;g) is the face of
the minimizers of the MoM relaxation of order d; and linear functionals in the relative interior of
Lmin

2d (f ;g) are generic (see Definition 3.11 for a precise definition).
Theorem A easily allows to conclude that flat truncation occurs when regularity conditions,

known as Boundary Hessian Conditions (BHC) hold true, see Definition 4.6. This conditions hold for
generic g and f .

Theorem B (see Theorem 4.7 and Corollary 4.8). Let f ∈R[X], Q =Q(g) be an Archimedean finitely
generated quadratic module and assume that the BHC hold at every minimizer of f on S = S(g). Then
the SoS hierarchy is exact, the MoM hierarchy is exact, and the flat truncation holds for all λ ∈ Lmin

2d (f ;g)
when d is big enough. Moreover, this condition occurs for generic f and g satisfying the Archimedean
condition.

Theorem B extends the results on finite convergence, SoS exactness and flat truncation proved
in [Mar06], [Mar09], [Nie13b] and [Nie14]. A detailed comparison with these references is technical
and therefore developed to Section 4.

Another consequence of Theorem 4.4, shown in Theorem 4.10, is that when the set S is finite,
flat truncation holds if the quotient by the support of the quadratic module Q is of dimension zero.
This generalizes results of [LLR08] and [Las+13] on semidefinite moment representations on finite
sets.

To prove these results, we investigate in detail the properties of truncated moment relaxations
and their duals, i.e. properties of truncated quadratic modulesQd(g) and positive linear functionals
Ld(g). These properties are summarized in Theorem C.

Theorem C (see Theorems 3.14, 3.18 and 3.19). If d is big enough, then the kernel of the (truncated)
moment matrix of a generic λ∗ ∈ Ld(g) generates the real radical of suppQ(g). Furthermore, if λ∗ has flat
truncation, then suppQ(g) is zero-dimensional, S(g) is finite and the flat truncation degree is at least the
interpolation degree of S(g).

Conversely, if suppQ(g) is zero-dimensional and d is big enough, then all λ ∈ Ld(g) have the flat
truncation property.

When the quotient by the support of Q is of dimension zero, Theorem C shows that (truncated)
linear functionals in Ld(g) are all represented by measures supported on S, or in other words
they are represented by convex combinations of evaluations at the points of S. This is therefore a
particular solution of the moment problem, in the spirit of Curto-Fialkow’s flat extension [CF98].
A detailed comparison with related results in the zero-dimensional case, such as [LLR08] and
[Las+13], is performed in Section 3. The characterization of the ideal generated by the kernel of
the moment matrix for generic linear functionals is new in the positive dimensional case.

Outline. The paper is structured as follows. In the next section of the introduction, we define
the algebraic objects that we will use and recall their main properties. In Section 2, we describe in
detail the notions of finite convergence and exactness for the Sum of Squares (SoS) and Moment
Matrix (MoM) hierarchies. We present several examples showing how these notions are related
(these examples are detailed in Appendix A).

In Section 3, we investigate the properties of truncated moment sequences (Section 3.1), of
their annihilators (Section 3.2) and we analyze when flat truncation holds and relate it with the
interpolation degree (Section 3.3).

In Section 4, we apply these results to Polynomial Optimization Problems (POPs). In Section 4.1,
we prove necessary and sufficients conditions for flat truncation and analyze at which degree flat
truncation holds and yields the minimizers. We prove that exactness and flat truncation hold for
POPs satisfying the Boundary Hessian Conditions (Section 4.2), and under a zero-dimensionality
assumption, which implies that the underlying semialgebraic set is finite (Section 4.3).
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For the numerical computations performed on the examples, which illustrate these develop-
ments, we use the Julia package MomentPolynomialOpt.jl1 with the SDP solvers Mosek and SDPA,
based on interior point methods.

1.1 Notation

We recall here basic notation and definitions we need hereafter, which can be found e.g. in the
textbooks [CLO15; Las10; Mar08].

If A is a subset of a R-vector space V , we denote cone(A) the convex cone generated by A, by
conv(A) its convex hull and by ⟨A⟩ its linear span.

Polynomials. Let R[X] B R[X1, . . . ,Xn] be the R-algebra of polynomials in n indeterminates
X1, . . . ,Xn. We denote (h1, . . . ,hr ) ⊂R[X] the ideal generated by h1, . . . ,hr ∈R[X].

If A ⊂ R[X] and t ∈ N, At B {f ∈ A | degf ≤ t }. In particular R[X]t is the vector space of
polynomials of degree ≤ t.

Given a finite set of polynomials g = {g1, . . . , gr }, we define Πg B {
∏
j∈J gj : ∅ ,J ⊂ {1, . . . , r}} =

{g1, . . . , gr , g1g2, g1g3, . . . , g1 · · ·gr}, the set of all the products of the gi ’s, and ±gB {g1,−g1, . . . , gr ,−gr}.
If A ⊂ R[X] we define S(A) B

{
x ∈ R

n | f (x) ≥ 0 ∀f ∈ A
}
. In particular we denote S(g) ={

x ∈ R
n | g(x) ≥ 0 ∀g ∈ g

}
the basic, closed semialgebraic set defined by g. If S ⊂ R

n, we denote
Pos(S) = {f ∈R[X] : f (x) ≥ 0 ∀x ∈ S} the convex cone of nonnegative polynomials on S.

Let Σ2 = Σ2[X]B
{
f ∈R[X] | ∃r ∈N, hi ∈R[X] : f = h2

1 + · · ·+ h2
r

}
be the convex cone of Sum of

Squares polynomials (SoS).Q ⊂R[X] is called quadratic module if 1 ∈Q, Σ2 ·Q ⊂Q andQ+Q ⊂Q. If in
additionQ ·Q ⊂Q,Q is a preordering. For a quadratic moduleQ ⊂R[X], we define suppQBQ∩−Q.
suppQ is an ideal of R[X], see e.g. [Mar08, Prop. 2.1.2]. Given a finite set g = {g1, . . . gr }, we denote
Q(g) the smallest quadratic module containing g, i.e. Q(g) = Σ2 +Σ2 · g1 + · · ·+Σ2 · gr . Quadratic
modules of the form Q(g) for finite g ⊂R[X] are called finitely generated. In a similar way, we denote
T (g) =Q(Πg) the smallest preordering containing g, also called finitely generated if g is finite.

We say that a quadratic module Q is Archimedean if ∃ 0 ≤ r ∈R : r −∥X∥2 ∈Q. Notice that if Q is
a finitely generated Archimedean quadrartic module then S(Q) is compact, and these conditions
are equivalent for finitely generated preorderings [Wör98; BW01]. We also recall that a finitely
generated quadratic module Q is Archimedean if and only if there exists g ∈Q such that S(g) is
compact, see e.g. [Mar08, Th. 7.1.1].

For an ideal I ⊂R[X], the real radical of I , denoted R

√
I , is the ideal:

R

√
I B {f ∈R[X] | ∃m ∈N, s ∈ Σ2 with f 2m + s ∈ I }.

We say that I is real or real radical if I = R

√
I .

Recall that R

√
I =

√
supp(I +Σ2), see e.g. [Mar08, p. 23], and thus R

√
I is a radical ideal. We are in

particular interested in the case I = suppQ =Q∩−Q for an arbitrary quadratic module Q ⊂R[X].
In this case, the real radical and radical coincide: R

√
suppQ =

√
suppQ, see e.g. [Mar08, Note 2.1.4].

Linear functionals, truncations and moment matrices. For a R-vector space V , V ∗ is the dual
space of linear functionals on V . For λ ∈ V ∗, we denote ⟨λ,v⟩ = λ(v) the application of λ to v ∈ V .
For A ⊂ V , we define A⊥ B

{
λ ∈ V ∗ | ⟨λ,a⟩ = 0 ∀a ∈ A

}
and A∨ B

{
λ ∈ V ∗ | ⟨λ,a⟩ ≥ 0 ∀a ∈ A

}
.

Let (R[X])∗ be the vector space of linear functionals on R[X]. Recall that (R[X])∗ � R[[Y]]B
R[[Y1, . . . ,Yn]], with the isomorphism given by: (R[X])∗ ∋ λ 7→

∑
α∈Nn⟨λ,Xα⟩Yα ∈R[[Y]], where {Yα}

is dual to {Xα}, i.e. ⟨Yα ,Xβ⟩ = δα,β . When necessary, we will identify λ ∈ (R[X])∗ with its sequence
of coefficients (λα)α called pseudo-moments, in analogy to the case of a measure, where λα B ⟨λ,Xα⟩.
See [Mou18] for more details on this approach, or [Las10, §3.2.1] for a classical presentation based
on pseudo-moment sequences. Using linear functionals instead of pseudo-moment sequences
allows us to treat dual elements, independently of any choice of basis in the primal space.

1https://github.com/AlgebraicGeometricModeling/MomentPolynomialOpt.jl

4



If t ≤ s ∈N and λ ∈ (R[X]s)∗ (or λ ∈ R[X]∗), then λ[t] ∈ (R[X]t)∗ denotes its restriction to R[X]t.
Similarly if B ⊂ (R[X]s)∗ then B[t] B {λ[t] ∈ (R[X]t)∗ | λ ∈ B }.

For t ≤ r ∈N, λ ∈ (R[X]r )∗ and g ∈R[X]t, we define the convolution of g and λ as the element of
(R[X]r−t)∗ defined by g ⋆ λ : f ∈R[X]r−t 7→ ⟨g ⋆ λ,f ⟩ = ⟨λ,gf ⟩. We denote Annt(λ) the annihilator of
λ w.r.t. ⋆ in degree ≤ t, that is Annt(λ) = {p ∈R[X]t | p ⋆ λ = 0}. Given λ ∈ (R[X]r )∗, r ≥ 2t, we define
the Hankel operator:

H t
λ : R[X]t→ (R[X]t)

∗

p 7→ (p ⋆ λ)[t].

The moment matrix of λ in degree t is the matrix H t
λ = (λα+β)|α|≤t,|β|≤t of the Hankel operator H t

λ

with respect to the bases {Xβ} and {Yα}. Notice that the moment matrix Hk
λ can be also identified

with the symmetric operator associated to the quadratic form p ∈R[X]k 7→ ⟨λ,p2⟩. By definition,
the kernel of the moment matrix H t

λ is the annihilator of λ in degree ≤ t: Annt(λ) = kerH t
λ.

If s ≤ t, we can identify the matrix of H s
λ with the submatrix of H t

λ indexed by monomials of de-
gree ≤ s. The localizing matrix of λ at g ∈R[X] is the matrixH t

g⋆λ = ((g⋆λ)α+β)α,β = (
∑
γ gγλα+β+γ )α,β

of the Hankel operator H t
g⋆λ. This coincides with the definition of localizing matrix used in the

literature, see e.g. [Las10, Eq. (3.14)].

2 Finite Convergence and Exactness

We describe now Lasserre SoS and MoM relaxations [Las01], and we define the exactness property.
Hereafter we assume that the minimum f ∗ of the objective function f is always attained on S, that
is: Smin B {x ∈ S | f (x) = f ∗ } , ∅.

2.1 Polynomial optimization relaxations

The construction of polynomial optimization relaxations relies on the approximation of the cone of
positive polynomials by tractable convex cones, that we recall hereafter.
Lasserre’s SoS hierarchy. For d ∈N let Σ2

d = Σ2 ∩R[X]d be the finite dimensional convex cone of
SoS of degree ≤ d. For d ∈N and g = {g1, . . . gr } ⊂R[X], let

Qd(g)B
{
s0 +

r∑
j=1

sjgj ∈R[X]d | r ∈N, s0 ∈ Σ2
d , sj ∈ Σ

2
d−deggj

}
be the truncated quadratic module generated by g. For the applications in polynomial optimization,
we are interested in quadratic modules truncated at even degrees.

We define the SoS relaxation of order d of problem (1) as Q2d(g) and the supremum:

f ∗SoS,d B sup
{
a ∈R | f − a ∈ Q2d(g)

}
. (2)

Lasserre’s MoM hierarchy. To define the dual approximation of the polynomial optimization
problem, we define for d ∈N and g = {g1, . . . gr } ⊂R[X]d :

Ld(g)BQd(g)∨ = {λ ∈ (R[X]d)∗ | ⟨λ,q⟩ ≥ 0 ∀q ∈ Qd(g) }

the cone of positive linear functionals on Qd(g), which is the dual convex cone to Qd(g), see [Mar08,
Sec. 3.6]. By conic duality, Qd(g) = Ld(g)∨.

We have λ ∈ Ld(g) if and only if ⟨λ,s⟩ ≥ 0 ∀s ∈ Σ2
d and ⟨λ,sf ⟩ ≥ 0 ∀g ∈ g,∀s ∈ Σ2 such that

deggs ≤ d. Another equivalent way to describe Ld(g) is using positive semidefinite matrices or
Linear Matrix Inequalities, since the Ld(g) are spectrahedra: λ ∈ Ld(g) if and only if the symmetric

matrices H
⌊ d2 ⌋
λ , H

⌊ d−degg1
2 ⌋

g1⋆λ
, . . . , H

⌊ d−deggr
2 ⌋

gr⋆λ
are positive semidefinite. As before, for the applications in
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polynomial optimization we are interested in positive linear functionals acting on even degree
polynomials.

We consider an affine hyperplane section of the cone L2d(g):

L(1)
2d (g)B

{
λ ∈ L2d(g) | ⟨λ,1⟩ = 1

}
.

This will be the set of feasible pseudo-moment sequences of the MoM relaxation of order d. With
this notation we define the MoM relaxation of order d of problem (1) as:

f ∗MoM,d B inf
{
⟨λ,f ⟩ ∈R | λ ∈ L(1)

2d (g)
}
. (3)

We easily verify that f ∗SoS,d ≤ f
∗

MoM,d ≤ f
∗.

Definition 2.1. Consider the problem of minimizing f ∈ R[X] on S(g). We define the set of
minimizing linear functionals at relaxation order d as the linear functionals λ minimizing (3), i.e.

Lmin
2d (f ;g)B

{
λ ∈ L(1)

2d (g) | ⟨λ,f ⟩ = f ∗MoM,d

}
.

When Q(g) is Archimedean and d is big enough, the infimum f ∗MoM,d is attained and Lmin
2d (f ;g)

is nonempty, see [JH16] and [Bal22, p. 101]. Geometrically, Lmin
2d (f ;g) is the exposed face of the

minimizers of the MoM relaxation of order d.
We now introduce two convergence properties that will be central in the article.

Definition 2.2 (Finite Convergence). We say that the SoS hierarchy (Q2d(g))d∈N (resp. the MoM
hierarchy (L2d(g))d∈N) has the Finite Convergence property for f if ∃d ∈ N such that f ∗SoS,d = f ∗

(resp. f ∗MoM,d = f ∗).

Notice that if the SoS hierarchy has finite convergence then the MoM hierarchy has finite
convergence too, since f ∗SoS,d ≤ f

∗
MoM,d ≤ f

∗. Moreover, if f ∗MoM,d = f ∗ then Lmin
2d (f ;g) = {λ ∈ L(1)

2d (g) |
⟨λ,f ⟩ = f ∗ }.

Definition 2.3 (SoS Exactness). We say that the SoS hierarchy (Q2d(g))d∈N is exact for f if it has the
finite convergence property and ∃d ∈N such that f − f ∗ ∈ Q2d(g) (in other words sup = max in the
definition of f ∗SoS,d).

Notice that, by definition, if the conditions for SoS and MoM finite convergence, and SoS
exactness, hold true at order d, then they hold true at order k for all k ≥ d.

For the moment hierarchy we can ask the property that every truncated functional minimizer is
represented by a measure. This is the most natural condition which implies the finite convergence
of the MoM hierarchy. We will show in Section 4 that flat truncation (the condition used in
practice to verify the finite convergence and to extract the minimizers) implies that every truncated
functional minimizer is represented by a measure.

In the following we denoteM(1)(S) the finite positive Borel probability measure supported on S,
which are identified with the induced moment linear functionals f 7→

∫
f dµ acting on polynomials.

M(1)(S)[k] denotes the restrictions of such linear functionals to polynomials of degree ≤ k.

Definition 2.4 (MoM Exactness). We say that the MoM hierarchy (L2d(g))d∈N is exact for f if:

• it has the finite convergence property, and

• for every k ∈N, there exists d = d(k) ∈N such that every truncated functional minimizer is
represented by a probability measure supported on S, i.e. Lmin

2d (f ;g)[k] ⊂M(1)(S)[k].

Notice that, in contrast with the previous definitions, in the definition of MoM exactness we
require the property Lmin

2d(k)(f ;g)[k] ⊂M(1)(S)[k] to hold for every k, and in general the fact that the
property is verified for particular k does not imply that it holds for every k.

We show now an example where we investigate the properties of finite convergence and
exactness.
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Example 2.5. Consider the problem of minimizing f = X2 on the semialgebraic set S = S(g) =
S(1−X2 −Y 2,X +Y −1) ⊂R

2 defined by g1 = 1−X2 −Y 2 and g2 = X +Y −1. Clearly, the minimum
is f ∗ = 0 and the only minimizer is (0,1). Notice that f − f ∗ = X2 ∈ Q2(1−X2 −Y 2,X +Y − 1) and
therefore f ∗SoS,1 = f ∗MoM,1 = f ∗ = 0, we have finite convergence and the SoS hierarchy is exact.

We now investigate MoM exactness. If a truncated moment sequence λ is represented by a
probability measure µ ∈M(1)(S) such that

∫
f dµ = f ∗, then the support of µ should be contained

in the set of minimizers Smin = { (0,1) } of f . Thus µ = e(0,1) is the evaluation at (0,1) (or in other
words, the Dirac measure concentrated at (0,1)). Its moments are easily computed: µ00 = 1, µ10 = 0,
µ01 = 1, µ20 = 0,µ11 = 0,µ02 = 1.

Analyzing the constraints on the degree one and two moments of an optimal moment sequence
λ ∈ Lmin

2 (f ;g), where

Lmin
2 (f ;g) = {λ ∈R[X]∗2 |H

1
λ ≽ 0, H0

g1⋆λ
≽ 0, H0

g2⋆λ
≽ 0,⟨λ,1⟩ = 1,⟨λ,f ⟩ = f ∗ = 0}

= {λ ∈R[X]∗2 |


λ00 λ10 λ01
λ10 λ20 λ11
λ01 λ11 λ02

 ≽ 0, λ00 −λ20 −λ02 ≥ 0, λ10 +λ01 −λ00 ≥ 0,λ00 = 1,λ20 = 0},

we deduce that λ00 = 1, λ10 = 0, λ01 = 1, λ20 = 0, λ11 = 0 and λ02 = 1: this shows that the only
element of Lmin

2 (f ;g) is λ = e[2]
(0,1). In particular notice that ⟨λ,X2⟩ = ⟨λ, (Y − 1)2⟩ = 0.

For any order d ≥ 1 and any element λ ∈ Lmin
2d (f ;g), its truncation λ[2] is in Lmin

2 (f ;g) since
⟨λ[2],X2⟩ = ⟨λ,X2⟩ = 0. This implies that ⟨λ,X2⟩ = ⟨λ, (Y − 1)2⟩ = 0 and thus ∀p ∈ R[X]d ,⟨λ,X p⟩ =
⟨λ, (Y − 1)p⟩ = 0, see e.g. [Las+13, Lem. 3.12]. We deduce from Proposition 3.15 that the moments
of λ[d] = e[d]

(0,1) are represented by the Dirac measure e(0,1). Therefore the MoM hierarchy is exact.
Another equivalent way to certify MoM exactness is to check flat truncation (see Definition 3.16).

For λ ∈ Lmin
2d (f ;g) with d ≥ 2, we have computed the moments of degree ≤ 2. Since the moment

matrices in degree ≤ 2:

H0
λ =

(
1
)
, H1

λ =


1 0 1
0 0 0
1 0 1


have the same rank, the flat extension property is satisfied. This certifies that λ[2] = e[2]

(0,1) is
represented by a measure supported at the minimizer of f on S and the MoM hierarchy is exact,
see Theorem 4.1.

In practice, to check the finite convergence, one tests the flat extension or the flat truncation
property (see [CF98], [LM09], [Nie13b]). But flat truncation certifies MoM exactness, and not
only finite convergence. We will investigate flat truncation for POPs in Section 4, where it is also
described in more detail its practical importance.

Notice that in the previous example the rank condition is satisfied by the full sequence of
moments of λ ∈ Lmin

2 (f ;g) (i.e. general this is not true, as the high degree moments may be
increasing the rank of the moment matrix, see for in instance [Nie13b, Ex. 1.1] and also [Qui21].
Therefore it is necessary to discard the high degree moments, i.e. to consider Lmin

2d (f ;g)[t], for some
t ≤ 2d, instead of simply Lmin

2d (f ;g). This implies that we look for rank conditions on the moment
matrix of the truncated moment sequence (i.e. we use the flat truncation, see Definition 3.16). This
point of view, of considering restrictions of linear functionals to a smaller degree, is a key concept
in the manuscript, and it is ubiquitous in all our main results.

We finally recall that we are assuming Smin , ∅ (and in particular f ∗ is finite). Notice also that
if strong duality holds, then there is no duality gap and SoS finite convergence is equivalent to
MoM finite convergence.

2.2 Examples and counterexamples

While for generic, regular polynomial optimization problems we expect both SoS exactness [Nie14]
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Table 1: Summary of convergence results.

Expl. SoS f. c. SoS ex. MoM f. c. Flat tr. MoM ex. dimS
A.1 NO NO NO NO NO 0
A.2 NO NO NO NO NO 1
A.3 NO NO NO NO NO 2
A.4 NO NO NO NO NO ≥ 3
A.5 YES YES YES NO NO ≥ 3
A.6 YES YES YES NO NO 0
A.7 YES NO YES YES YES 0
A.8 YES NO YES YES YES 0

and MoM exactness with flat truncation (see Section 4.2 and [Nie13b]), these two notions are in
general independent.

We collected and described in details known and new examples of these possible pathological
behaviours in Appendix A. In particular, we produce new examples of optimization problems over
finite semialgebraic sets, defined by Archimedean quadratic modules, where we do not have finite
convergence and flat truncation, see Example A.1 and Example A.6. We summarize these examples
in Table 1 in terms of the properties of finite convergence (SoS f.c. and MoM f.c.) exactness (SoS ex.
and MoM ex.), flat truncation (Flat tr.) and the dimension of the semialgebraic set S.

3 Geometry of Moment Representations

Determining whether a linear functional on the polynomial ring is represented by a measure is the
so-called Moment Problem. By Haviland’s theorem (see e.g. [Mar08, Th. 3.1.2] and [Sch17, Th. 1.12])
an infinite pseudo-moment sequence or a linear functional λ ∈R[X]∗ is represented by a measure, if
and only if λ is takes nonnegative values when applied to nonnegative polynomials. Since checking
this is a computationally hard task, a motivation supporting Sum of Squares relaxations is to find
(proper) subsets of positive polynomials that have the same property, but chosen in such a way
that checking this condition is easy. An important result in this direction is the theorem of Putinar,
refining the result of Schmüdgen.

Theorem 3.1 ([Put93]). Let Q(g) be an Archimedean quadratic module and S = S(g). Let λ ∈R[X]∗. If
⟨λ,g⟩ ≥ 0 for all q ∈ Q(g), then λ ∈M(S) is represented by a measure.

Hereafter we analyze in detail the properties of finite dimensional cones of truncated pseudo-
moment sequences, and we investigate the truncated moment problem. Section 3.1 and Section 3.2
contains the main technical tools of the paper. We provide a new and explicit description of the dual
of the hierarchy of truncated moment sequences, in terms of a quadratic module (Theorem 3.4),
and consequently prove properties of the cones Ld(g) (Lemma 3.6) and of their generic elements
(Theorem 3.14). Finally we apply these results to the zero-dimensional case (Theorem 3.19) and we
investigate the connections with the flat truncation property (Section 3.3).

3.1 Truncated moment representations

For a finitely generated quadratic module Q =Q(g) ⊂R[X], we have Lk(g) =Qk(g)∨ =Qk(g)
∨

and
Lk(g)∨ =Qk(g), where ∨ denotes the dual cone and the closure is taken w.r.t. the euclidean topology
on R[X]k . Thus the following definition is natural for the study of the MoM relaxations.

Definition 3.2. Let Q =Q(g) be a finitely generated quadratic module. We define Q̃ =
⋃
dQd(g).
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Notice that Q̃ depends a priori on the generators g of Q. We will prove that Q̃ is a finitely
generated quadratic module and that it does not depend on the particular choice of generators.
Moreover notice that Q ⊂ Q̃ =

⋃
dQd(g) ⊂

⋃
dQd(g) =Q ⊂R[X], where the closure in R[X] is taken

with respect to the finest locally convex topology, see e.g. [Mar08, Sec. 3.6]. We also remark that
these inclusions can be strict, as we will discuss in this section (see in particular Example 3.5).

Recall that suppQ =Q∩−Q is an ideal if Q is a quadratic module. Recall also that, if J ⊂R[X],
then Jk = J ∩R[X]k denotes the intersection with the space of polynomials of degree ≤ k. In this
section, we also denote suppQk(g) = Qk(g)∩ −Qk(g) ⊂ R[X]k and suppQk(g) = Qk(g)∩ −Qk(g) ⊂
R[X]k .

Lemma 3.3. Let Q = Q(g) and J = R

√
suppQ. Then for every d ∈ N there exists k ≥ d such that

Jd ⊂ Qk(g).

Proof. We denote Q[d] B Qd(g). Let m be big enough such that ∀f ∈ J = R

√
suppQ =

√
suppQ

we have: f 2m ∈ suppQ (if
√

suppQ = (h1, . . . ,ht) and haii ∈ suppQ, we can take m such that 2m ≥
a1 + · · ·+ at). Let f ∈ Jd with degf ≤ d. Then f 2m ∈ suppQ[k′] ⊂ Q[k′] for k′ ∈N big enough. Using
the identity [Sch05b, Rem. 2.2]:

m− a = (1− a
2

)2 + (1− a
2

8
)2 + (1− a4

128
)2 + · · ·+ (1− a

2m−1

22m−1 )2 − a2m

22m+1−2
,

substituting a by −mfε and multiplying by ε
m , we have that ∀ε > 0, f + ε ∈Q[k] for k = max{k′ ,2md}

(the degree of the representation of f + ε does not depend on ε). This implies that f ∈ Q[k].

We can now describe Q̃ =
⋃
dQd(g).

Theorem 3.4. Let Q = Q(g) be a finitely generated quadratic module and let J = R

√
suppQ. Then

Q̃ =Q + J and suppQ̃ = J . In particular, Q̃ is a finitely generated quadratic module and does not depend
on the particular choice of generators of Q.

Proof. We denote Qd(g) = Q[d]. By [Mar08, Lem. 4.1.4] Q[d] + Jd is closed in R[X]d , thus Q[d] ⊂
Q[d] + Jd . Taking unions we prove that Q̃ ⊂Q+ J .

Conversely by Lemma 3.3 for d ∈ N and k ≥ d ∈ N big enough, Jd ⊂ Q[k]. Then, we have
Q[d] + Jd ⊂Q[k] +Q[k] ⊂Q[k] +Q[k] ⊂Q[k]. Taking unions on both sides gives Q+ J ⊂ Q̃.

Finally suppQ̃ = supp(Q+ J) = J by [Sch05b, Lem. 3.16].

Remark. We proved that Q̃ = Q + R

√
suppQ. We also have suppQ̃ = R

√
suppQ so that if suppQ is

not real radical then Q ⊊ Q̃. Example A.8 is such a case where suppQ , R

√
suppQ. We notice

that, by Theorem 3.4 and [Sch05b, Th. 3.17], if Q is stable,2 then Q̃ = Q. But the inclusion
Q̃ =Q+

√
suppQ ⊂Q can be strict, as shown by the following example.

Example 3.5 ([Sch05a, Ex. 3.2], [Sch05b, Rem. 3.15], Example A.1, Example A.6). LetQ =Q(1−X2−
Y 2,−XY ,X−Y ,Y −X2) ⊂R[X,Y ]. Notice that S = S(Q) = {0} and that Q is Archimedean. Therefore,
by Theorem 3.1, Q = Pos({0}). One can verify that suppQ = (0) and that I (S) = suppQ = (X,Y ).
Thus we have Q+

√
suppQ = Q̃ ⊊Q.

Theorem 3.4 suggests the idea that, when we consider the MoM hierarchy, we are extending the
quadratic module Q(g) to Q(g,±h), where h are generators of R

√
suppQ(g). We specify this idea in

Lemma 3.6, Proposition 3.10 and Theorem 3.14, investigating the relations between the truncated
parts of Ld(g). In the following, we denote ⟨h⟩t = {

∑
i pihi : pi ∈ R[X], deg(pihi) ≤ t } the vector

space of polynomials in the ideal (h) generated in degree ≤ t.
2Q(g) is stable if ∀d ∈N there exists k ∈N such that Q(g)∩R[X]d ⊂ Qk(g)∩R[X]d .
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Lemma 3.6. Let J = R

√
suppQ(g). If (h) ⊂ J , degh ≤ t, then ∃d ≥ t such that ⟨h⟩t ⊂ Qd(g). In this case:

Ld(g)[t] ⊂ Lt(g,±h) ⊂ Lt(g),

and in particular Ld(g)[t] ⊂ Lt(±h). Moreover, Ld+2k(g)[t+k] ⊂ Lt+k(±h) for all k ∈N.

Proof. Let ⟨h⟩t be the vector space of polynomials in the ideal (h) generated in degree ≤ t. By
Lemma 3.3, ⟨h⟩t ⊂ (h)t ⊂ Qd(g) for some d ≥ t. Let h ∈ h and f ∈ R[X]t−degh. Then ±f h ∈ Qd(g),
and for λ ∈ Ld(g), we have ⟨λ[t], f h⟩ = ⟨λ,f h⟩ = 0, i.e. Ld(g)[t] ⊂ Lt(g,±h). The other inclusion
Lt(g,±h) ⊂ Lt(g) follows by definition.

For the second part, notice that ⟨h⟩t+k ⊂ Qd+2k(g). Indeed, if p ∈ ⟨h⟩t+k then p =
∑
i X

α(i)pi ,
where pi ∈ ⟨h⟩t ⊂ Qd(g) and |α(i)| ≤ k. Writing Xα(i) = (Xα(i)+1

2 )2 − (Xα(i)−1
2 )2, we deduce that p =∑

i(
Xα(i)+1

2 )2pi + ( Xα(i)−1
2 )2(−pi) ∈ Qd+2k(g), i.e. ⟨h⟩t+k ⊂ Qd+2k(g). Then we can conclude the proof as

in the first part.

Remark. Lemma 3.6 says that the MoM hierarchy (L2d(g))d∈N is equivalent to the MoM hierarchy
(L2d(g,±h))d∈N, where (h) = R

√
suppQ(g). Lemma 3.6 is an algebraic result, in the sense that

suppQ(g) may be unrelated to the geometry S(g) that g defines. If some additional conditions hold
(namely if we have only equalities, or a preordering, or a small dimension), it can however provide
geometric characterizations. Recall that we denote Πg all the products of the gi ’s.

Corollary 3.7. Suppose that S(g) ⊂ V
R

(h). Then for every t0 ≥ degh there exists t1 ≥ t0 such that:

Lt1(Πg)[t0] ⊂ Lt0(±h).

In particular this holds when (h) = I (S(g)).
Moreover, Lt1+2k(g)[t0+k] ⊂ Lt0+k(±h) for all k ∈N.

Proof. Recall the Real Nullstellensatz, see e.g. [Mar08, Note 2.2.2 (vi)]: I (S(g)) = R

√
suppT (g).

Then S(g) ⊂ V
R

(h) if and only if R

√
(h) = I (V

R
(h)) ⊂ I (S(g)) = R

√
suppQ(Πg) = R

√
suppT (g). We can

then conclude applying Lemma 3.6.

Corollary 3.8. Let Q =Q(g). Suppose that S(g) ⊂ V
R

(h) and dim R[X]
suppQ ≤ 1. Then for every t0 ≥ degh

there exists t1 ≥ t0 such that (h)t0 ⊂ Qt1(g). In this case:

Lt1(g)[t0] ⊂ Lt0(±h),

and in particular this holds when (h) = I (S(g)).
Moreover, Lt1+2k(g)[t0+k] ⊂ Lt0+k(±h) for all k ∈N.

Proof. We prove it as Corollary 3.7, using [Mar08, cor. 7.4.2 (3)]:

dim
R[X]

suppQ(g)
≤ 1⇒I (S(g)) = R

√
suppQ(g) (4)

instead of the Real Nullstellensatz.

We conclude this section discussing how the closure properties of truncated quadratic modules
are related with strong duality for Lasserre’s hierarchies. We briefly recall existing results in this
direction.

Theorem 3.9 (Strong duality). Let Q =Q(g) be a quadratic module and f the objective function. Then:

(i) if suppQ = (0) then ∀d: f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Q2d(g)) and f ∗SoS,d = f ∗MoM,d [Mar08,
Prop. 10.5.1];

(ii) if for some r ∈R, r2 − ∥X∥2 ∈ g then f ∗SoS,d = f ∗MoM,d for all d [JH16].
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Remark. [JH16] applies when the ball constraint r2 −∥X∥2 appears explicitly in the description of S.
But if we consider a problem with MoM finite convergence and such thatQ(g) is Archimedean, then
we can use [JH16] to prove that we have also SoS finite convergence. Indeed, if Q(g) is Archimedean
there exists r, t such that r2 − ∥X∥2 ∈ Q2t(g). This means that Q2d(g, r2 − ∥X∥2) ⊂ Q2d+2t(g). If we
define:

• f ∗SoS,d = sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
• f ∗

′

SoS,d = sup
{
λ ∈R | f −λ ∈ Q2d(g, r2 − ∥X∥2)

}
and f ∗MoM,d , f ∗

′

MoM,d the corresponding MoM relaxations, then:

f ∗MoM,d ≤ f
∗′

MoM,d = f ∗
′

SoS,d ≤ f
∗

SoS,d+t ≤ f
∗.

Then finite convergence of the MoM hierarchy implies finite convergence of the SoS one.

We now prove a strong duality result, that will be useful to analyze finite convergence and
exactness in Appendix A. This result, very similar to a result in [Mar03], generalizes the condition
suppQ = (0) in Theorem 3.9.

For this generalization, we need the definition of graded basis. We say that h is a graded basis
of I = (h) if ⟨h⟩t = I ∩R[X]t = It for all t ∈N, where ⟨h⟩t denotes the vector space of polynomials
in I = (h) generated in degree ≤ t. For instance, any Groebner basis with respect to an ordering
compatible with the total degree is a graded basis.

Proposition 3.10. Let Q =Q(g) be a finitely generated quadratic module, and let h be a graded basis of
R

√
suppQ. Then for any d we have that Qd(g,±h) = Qd(g,±h) is closed. Moreover, if S(g) , ∅ and we

consider the relaxations Q2d(g,±h) and L2d(g,±h) (extensions of Q2d(g) and L2d(g) using the generators
of R

√
suppQ), then for any f ∈R[X], there is no duality gap: f ∗SoS,d = f ∗MoM,d . In this case, if f ∗SoS,d > −∞,

then f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Q2d(g,±h)).

Proof. Consider the quotient map φ : R[X]2d →R[X]2d

/
I2d . By [Mar08, Lem. 4.1.4], the image of

Q2d(g,±h) under φ is closed. Since h is a graded basis,

φ−1(φ(Q2d(g,±h))) =Q2d(g,±h) + I2d =Q2d(g) + ⟨h⟩2d + I2d =Q2d(g) + ⟨h⟩2d =Q2d(g,±h)

and thus Q2d(g,±h) is closed as well. Therefore we have L2d(g,±h)∨ = (Q2d(g,±h))∨∨ =Q2d(g,±h) =
Q2d(g,±h), from which we deduce that there is no duality gap, by classical convexity arguments, as
follows.

If f ∈R[X] and S(g) , ∅, let H =
{
a ∈R | f − a ∈ Q2d(g,±h)

}
. By construction, H is empty or an

interval unbounded from below. We prove now that it is always bounded from above. Since S(g) , ∅
then f ∗ < +∞, and for all a > f ∗ there exists x ∈ S(g) such that f (x) < a. Then f (x)− a < f (x)− f ∗,
and thus f − a <Q(g,±h) and a <H . Therefore H is bounded from above.

If H = ∅, then f ∗SoS,d = supH = −∞. If f ∗MoM,d > −∞, then ∃M ∈R such that ⟨λ,f ⟩ ≥ −M > −∞ for

all λ ∈ L(1)
2d (g,±h). Using [Bal22, Lem. 1.3.9], we deduce that ⟨λ,f +M⟩ ≥ 0 for all λ ∈ L2d(g,±h), and

thus f +M ∈ L2d(g,±h)∨ =Q2d(g,±h), a contradiction to H = ∅. Therefore, f ∗MoM,d = −∞ = f ∗SoS,d .

If H , ∅, since Q2d(g,±h) is closed and H bounded from above, f ∗SoS,d = supH = sup
{
a ∈ R |

f − a ∈ Q2d(g,±h)
}

is attained. If f ∗SoS,d < f
∗

MoM,d , then f − f ∗MoM,d < Q2d(g,±h). Thus there exists a

separating functional λ ∈ L(1)
2d (g,±h) such that ⟨λ,f − f ∗MoM,d⟩ < 0, which implies that ⟨λ,f ⟩ < f ∗MoM,d

in contradiction with the definition of f ∗MoM,d . Consequently, f ∗SoS,d = f ∗MoM,d .
Finally, if f ∗SoS,d > −∞ then H , ∅, and we can conclude as before that f ∗SoS,d is attained.
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3.2 Annihilators of truncated moment sequences

Recall that the annihilator Annt(λ) is the kernel of the moment matrix of λ in degree ≤ t (or of the
Hankel operator). With the characterization of Q̃ we can now describe these kernels of moment
matrices associated to truncated positive linear functionals.

We recall the definition of genericity in the truncated setting and equivalent characterizations.

Definition 3.11. Let C ⊂ R[X]∗d be a convex set. We say that λ∗ ∈ C is generic in C if rankH
⌊ d2 ⌋
λ∗ =

max{rankH
⌊ d2 ⌋
η | η ∈ C}.

In particular, we will consider generic λ∗ in the following convex sets, which are used in
polynomial optimization:

• C = L2d(g), the cone of positive linear functionals or feasible pseudo-moment sequences of
Lasserre’s moment relaxation of order d;

• C = L(1)
2d (g), the convex set defined as the section of L2d(g) given by ⟨λ,1⟩ = 1;

• C = Lmin
2d (f ;g), the exposed face of L(1)

2d (g) defined by ⟨λ,f ⟩ = f ∗MoM,d ;

• C = L2d(g)[2k],L(1)
2d (g)[2k],Lmin

2d (f ;g)[2k], the restrictions of the positive linear functionals of
the above sets to R[X]2k .

We will use generic linear functionals to recover the minimizers when we have the flat truncation
property. They can be characterized as follows, see [Las+13, Prop. 4.7] and [Bal22, Prop. 3.4.10].

Proposition 3.12. Let C be a convex subset of Ld(g) and let λ ∈ C. The following are equivalent:

(i) λ is generic in C;

(ii) Ann⌊ d2 ⌋(λ) ⊂ Ann⌊ d2 ⌋(η) ∀η ∈ C;

(iii) ∀k ≤ d, we have: rankH
⌊ k2 ⌋
λ = max{rankH

⌊ k2 ⌋
η | η ∈ C }, i.e. λ[k] is generic in C[k].

Remark. By Proposition 3.12 notice that ∀d′ ≤ d, if λ∗ ∈ Ld(g) is generic then (λ∗)[d′] is generic in
Ld(g)[d′]. In particular, Ann⌊ d′2 ⌋

(λ∗) ⊂ Ann⌊ d′2 ⌋
(η) ∀η ∈ Ld(g).

We can show that any linear functional in the relative interior is generic.

Lemma 3.13. Let C be a convex subset of Ld(g). Then any linear functional λ in the relative interior of
C ⊂ Ld(g) is generic in C.

Proof. Let λ be in the relative interior of C. For any λ1 ∈ C, there exists λ2 ∈ C and a1, a2 ∈ R>0
with a1 + a2 = 1, such that λ = a1λ1 + a2λ2.

Denote k = ⌊d2 ⌋. The inclusion

Annk(λ) = kerHk
λ = kerHk

a1λ1+a2λ2
⊃ kerHk

λ1
∩kerHk

λ2
= Annk(λ1)∩Annk(λ2)

is direct. Conversely, if f ∈ Annk(λ) then f ⋆ λ = a1(f ⋆ λ1) + a2(f ⋆ λ2) = 0. In particular,

0 = ⟨f ⋆ λ,f ⟩ = a1⟨f ⋆ λ,f ⟩+ a2⟨f ⋆ λ,f ⟩ = a1⟨λ1, f
2⟩+ a2⟨λ2, f

2⟩

Therefore ⟨λ1, f
2⟩ = ⟨λ2, f

2⟩ = 0, and from [Las+13, Lem. 3.12] we have f ∈ Annd(λ1)∩Annd(λ2),
proving the reverse inclusion. We deduce that ∀λ1 ∈ C we have Annk(λ) ⊂ Annk(λ1) , thus λ is
generic from Proposition 3.12.
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As any point in the relative interior of C is generic in C by Lemma 3.13, in practice generic
linear functionals can be recovered from SDP solvers based on interior point methods. Indeed,
these solvers approximately follow the central path to get an approximately optimal solution
(possibly using a self-dual-embedding or facial reduction) of the original SDP problem, see e.g.
[HKR02] and references therein. Therefore, using an SDP solver based on interior point methods
we can approximately get a point in the relative interior (see also [LLR08, Sec. 4.4.1]). Notice also
that there are examples of cones C ⊂ Ld(g) where extreme points are generic in C, see Example 4.2.

We are now ready to describe the annihilator of these generic elements.

Theorem 3.14. If d, t ∈N are big enough and λ∗ ∈ Ld(g) is generic, we have R

√
suppQ(g) = (Annt(λ∗)).

Moreover if Q(g) = T (g) is a preordering, then (Annt(λ∗)) = I (S(g)).

Proof. We denote J = R

√
suppQ. Let t ∈N be such that J is generated in degree ≤ t, by the graded

basis h = h1, . . . ,hs(see above Proposition 3.10 for the definition). From Lemma 3.3 we deduce that
there exists d ∈N such that J2t ⊂ Qd(g). Let λ∗ ∈ Ld(g) be generic.

We first prove that J ⊂ (Annt(λ∗)). By Proposition 3.12 we have Annt(λ∗) =
⋂
λ∈Ld (g) Annt(λ).

Then it is enough to prove that Jt ⊂ Annt(λ) for all λ ∈ Ld(g).
By Lemma 3.6 Ld(g)[2t] ⊂ L2t(±h) ⊂ ⟨h⟩⊥2t. Then ∀f ∈ Jt = ⟨h⟩t , ∀p ∈ R[X]t , ∀λ ∈ Ld(g), we

have f p ∈ ⟨h⟩2t and ⟨λ[2t], f p⟩ = 0. This shows that H t
λ(f )(p) = ⟨(f ⋆ λ)[t],p⟩ = ⟨λ,f p⟩ = 0, i.e.

f ∈ Annt(λ) = kerH t
λ.

Conversely, we show that (Annt(λ∗)) ⊂ J for λ∗ generic inLd(g). Since J = suppQ̃ = supp
⋃
jQj(g)

(by Theorem 3.4) it is enough to prove that Annt(λ∗) ⊂ Qd(g)∩−Qd(g) = suppQd(g) = suppLd(g)∨.
Let f ∈ Annt(λ∗) =

⋂
λ∈Ld (g) Annt(λ) (we use again Proposition 3.12) and let λ ∈ Ld(g). Then

⟨λ,f ⟩ = ⟨(f ⋆ λ)[t],1⟩ = H t
λ(f )(1) = 0. In particular f ∈ Ld(g)∨. We prove that −f ∈ Ld(g)∨ in the

same way. Then f ∈ Ld(g)∨ ∩−Ld(g)∨ =Qd(g)∩−Qd(g) = suppQd(g), and finally we deduce from
Definition 3.11 and Theorem 3.4 that Annt(λ∗) ⊂ suppQ̃ = J .

The second part follows from the first one and the Real Nullstelensatz.

Theorem 3.14 generalizes the results of [LLR08] for equations defining real algebraic varieties.
In [LLR08], in the zero-dimensional case the flat truncation criterion is used to detect equality
between the ideal generated by the annihilator (or by the kernel of the moment matrix) and the
real radical of the equations. As explained in Theorem 3.18, we cannot use flat truncation to detect
equality in the positive dimensional case. Other techniques to verify that t,d are big enough to
generate the real radical of the support have been further investigated in [Bal22, Ch. 4] and [BM21].

Theorem 3.14 shows the possibilities and the limits of MoM hierarchies. For instance we cannot
expect exactness of the MoM relaxation L2d(g) for any objective function f (i.e. L2d(g)[k] ⊂M(S)[k])
if R

√
suppQ , I (S): see Example A.6.

3.3 Interpolation degree and flat truncation

In this section, we analyze the properties of moment sequences in Ld(g) when S = S(g) is finite.
We will use the results in this section to study the case of finitely many minimizers in Polynomial
Optimization Problems, and in particular the flat truncation property.

Let Ξ = {ξ1, . . . ,ξr} ∈ Cn be a finite set of (complex) points and let I (Ξ) = {p ∈ C[X] | p(ξi) =
0 ∀i ∈ 1, . . . , r } be the complex vanishing ideal of the points Ξ. It is well known (see e.g. [Eis05]) that
Ξ admits a family of interpolator polynomials (ui) ⊂C[X] such that ui(ξj ) = δi,j , which form a basis
C[X]/I (Ξ). The minimal degree of a family of interpolator polynomials is called the interpolation
degree of Ξ and denoted θ(Ξ).

A classical result states that θ(Ξ) + 1 is the Castelnuovo-Mumford regularity of the ideal I(Ξ) (see
[Eis05, Th. 4.1]). This interpolation degree θ(Ξ) is the minimal degree of a basis of C[X]/I (Ξ). It is
also the minimal degree of a monomial basis B of R[X]/I (Ξ). Such a minimal degree basis B can be
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chosen so that it is a monomial basis stable by monomial division3. Moreover, the ideal I (Ξ) has a
graded (resp. Grobner, resp. border) basis of degree θ(Ξ) + 1 (see e.g. [BS87]).

The next result shows that (positive) moment sequences orthogonal to the vanishing ideal of
the points, truncated above twice the interpolation degree are represented by (positive) measures.
Recall that if I is an ideal we denote It = I ∩R[X]t and ⟨⟩ denotes the linear span of a set.

Proposition 3.15. Let Ξ = {ξ1, . . . ,ξr} ⊂ R
n, I = I (Ξ) its real vanishing ideal and let θ = θ(Ξ) the

interpolation degree of Ξ. Let t ≥ θ and λ ∈R[X]∗t . Then λ ∈ I⊥t if and only if λ ∈ ⟨e[t]
ξ1
, . . . ,e[t]

ξr
⟩. Moreover

if t ≥ 2θ and λ ∈ Lt(It), then λ ∈ cone(e[t]
ξ1
, . . . ,e[t]

ξr
) and rankH

⌊ t2 ⌋
λ ≤ r.

Proof. Let u1, . . . ,ur ∈R[X]t be interpolation polynomials of degree θ ≤ t. Consider the sequence of
vector space maps:

0→ It→R[X]t
ψ
−→ ⟨u1, . . . ,ur⟩ → 0

p 7→
r∑
i=1

p(ξi)ui ,

which is exact since kerψ = {p ∈R[X]t | p(ξi) = 0} = It. Therefore we have R[X]t = ⟨u1, . . . ,ur⟩ ⊕ It.
Let λ ∈ I⊥t . Then λ̃ = λ −

∑r
i=1⟨λ,ui⟩e

[t]
ξi
∈ I⊥t is such that ⟨λ̃,ui⟩ = 0 for i = 1, . . . , r. Thus,

λ̃ ∈ ⟨u1, . . . ,ur⟩⊥ ∩ I⊥t = (⟨u1, . . . ,ur⟩ ⊕ It)⊥ = R[X]⊥t , i.e. λ̃ = 0 showing that I⊥t ⊂ ⟨e
[t]
ξ1
, . . . ,e[t]

ξr
⟩. The

reverse inclusion is direct since It is the space of polynomials of degree ≤ t vanishing at ξi for
i = 1, . . . , r.

Assume now that t ≥ 2θ and λ ∈ Lt(It). Then λ ∈ I⊥t and ⟨λ,p2⟩ ≥ 0 for any p2 ∈ R[X]t. By the
previous analysis,

λ =
r∑
i=1

ωie
[t]
ξi

As 0 ≤ ⟨λ,u2
i ⟩ =ωi for i = 1, . . . , r, we deduce that λ ∈ cone(e[t]

ξ1
, . . . ,e[t]

ξr
).

Let s = ⌊ t2⌋. We verify that the image of H s
λ : p ∈ R[X]s 7→

∑r
i=1ωip(ξi)e[s]

ξi
is included in

⟨e[s]
ξ1
, . . . ,e[s]

ξr
⟩, computing H s

λ(ui) for i = 1, . . . , r. Thus rankH s
λ ≤ dim⟨e[s]

ξ1
, . . . ,e[s]

ξr
⟩ = r since (e[s]

ξi
)i=1,...,r

is the dual basis of (ui)i=1,...,r .

We describe now a property, known as flat truncation, which allows to test effectively if truncated
moment sequences are represented by sums of point evaluations.

Definition 3.16 (Flat truncation, [Lau09, Th. 6.18], [Nie13b, Sec. 1.2]). Let dg = ⌈1
2 maxi=1,...,sdeg(gi)⌉.

We say that the flat truncation property holds for λ ∈ Ld(g) at degree t if t ≤ d
2 − dg and

rankH t
λ = rankH

t+dg

λ . (5)

This definition coincides with the definition of flat truncation given in [Nie13b], and previously
exploited in [Lau09]. The flat truncation is a modification of the flat extension criterion by Curto
and Fialkov (see e.g. [CF05]), and is very useful in polynomial optimization to certify the finite
convergence and to extract the minimizers.

We now investigate in more detail this rank condition for the moment matrix of λ ∈ Ld(g). In
the following lemma, we reprove and extend known properties associated with flat truncation (see
e.g. [Lau09, Th. 5.33] and references therein). Our improvements are the characterization of the
annihilator (or, of the kernel of the moment matrix) as the full truncated vanishing ideal of the
points, and a truncation degree for which all the linear functionals coincide with sums of point
evaluations.

3i.e. if mm′ ∈ B then m and m′ ∈ B
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Lemma 3.17. If λ ∈ Ld(g) is such that rankH t
λ = rankH t+s

λ = r with t + 1 ≤ t + s ≤ d
2 , then

λ[t+s+ d
2 ] =ω1e

[t+s+ d
2 ]

ξ1
+ · · ·+ωre

[t+s+ d
2 ]

ξr

for some points ξi ∈ R
n and weights ωi > 0, i = 1, . . . , r. Denoting Ξ = {ξ1, . . . ,ξr}, we also have

Annt+s(λ) = I (Ξ)t+s and V (Annt+s(λ)) = Ξ (or, in other words, (Annt+s(λ)) = I (Ξ)).
Moreover, if t ≤ d

2 + s −deg(g), where deg(g) = maxi=1,...,sdeg(gi), the inclusion Ξ ⊂ S(g) holds true.

Proof. From [Lau09, Th. 5.29], there exists unique Ξ = {ξ1, . . . ,ξr} ⊂ R
n and ω1, . . . ,ωr > 0 such

that λ[2(t+s)] = ω1e[2(t+s)]
ξ1

+ · · ·+ωre
[2(t+s)]
ξr

, (Annt+s(λ)) = I (Ξ) and V (Annt+s(λ)) = Ξ. In particular
(Annt+s(λ)) is a zero-dimensional ideal and Annt+s(λ) ⊂ I(Ξ)t+s. Conversely, for any h ∈ I(Ξ)t+s, we
have

⟨λ,h2⟩ = ⟨λ[2(t+s)],h2⟩ =
r∑
i=1

ωi⟨e
[2(t+s)]
ξi

,h2⟩ =
r∑
i=1

ωih
2(ξi) = 0.

Thus h ∈ Annt+s(λ) (see [Las+13, Lem. 3.12]) and I(Ξ)t+s = Annt+s(λ).
As rankH t

λ = rankH t+1
λ = r, we deduce from above, that (Annt+1(λ)) = I(Ξ) is generated in

degree ≤ t + 1 and that θ(Ξ) ≤ t. Therefore Ξ has interpolator polynomials u1, . . . ,ur of degree ≤ t.
Let us show that the description of λ on polynomials of degree ≤ 2(t + s), can be extended

to higher degree. For any h ∈ Annt+s(λ) = I(Ξ)s+t, i.e. such that ⟨λ,h2⟩ = 0, and any p ∈ R[X] d
2

we have ⟨λ,hp⟩ = 0. This shows that λ ∈ (I (Ξ)t+s+ d
2
)⊥. We deduce from Proposition 3.15 that

λ[t+s+ d
2 ] ∈ cone(eξ1

, . . . ,eξr )
[t+s+ d

2 ]. This implies that λ[t+s+ d
2 ] =ω1e

[t+s+ d
2 ]

ξ1
+ · · ·+ωre

[t+s+ d
2 ]

ξr
, evaluating

⟨λ,ui⟩ = ⟨λ[t+s+ d
2 ],ui⟩ =ωi at the interpolator polynomials u1, . . .ur of Ξ of degree ≤ t.

We show now that Ξ = {ξ1, . . . ,ξr} ⊂ S(g) if t ≤ d
2 + s −deg(g). For i = 1, . . . , r and j = 1, . . . ,m the

polynomial u2
i gj has degree ≤ 2t + deg(g) ≤ t + s+ d

2 . Then we obtain:

0 ≤ ⟨λ,u2
i gj⟩ = ⟨λ[t+s+ d

2 ],u2
i gj⟩ = ⟨ω1e

[t+s+ d
2 ]

ξ1
+ · · ·+ωre

[t+s+ d
2 ]

ξr
,u2
i gj⟩ =ωigj(ξi),

showing that gj(ξi) ≥ 0 for all i and j, i.e. Ξ ⊂ S(g).

Remark. Lemma 3.17 can be used to test flat truncation in a simpler way when d is big, as we
explain in the following. Assume for simplicity that 2dg = deg(g). Then, if rankH t

λ = rankH t+s
λ

with t ≤ d
2 + s−deg(g), we have 2(t +dg) = 2t + deg(g) ≤ t + s+ d

2 . Then from Lemma 3.17 we deduce
that λ restricted to polynomials of degree ≤ 2(t + dg) is equal to a sum of evaluations at points of S

with positive weights, and the flat truncation is satisfied: rankH t
λ = rankH

t+dg

λ . In particular, when

s = 1 and d ≥ 2t − 2 + 2deg(g), rankH t
λ = rankH t+1

λ implies rankH t
λ = rankH

t+dg

λ .

We now show that we can use flat truncation for generic linear functionals to describe semialge-
braic sets with a finite number of points. Results similar to Theorem 3.18 and Theorem 3.19 have
been already studied in [LLR08; Las+13]: we discuss in detail the differences with previous results
after Theorem 3.19.

Theorem 3.18. If a positive linear functional λ∗ ∈ Ld(g) is such that (λ∗)[2(t+dg)] is generic inLd(g)[2(t+dg)]

(that is Annt+dg
(λ∗) ⊂ Annt+dg

(λ) for all λ ∈ Ld(g)[2(t+dg)]) and λ∗ satisfies the flat truncation property

at degree t ≤ d
2 − dg, then:

(i) S = S(g) = {ξ1, . . . ,ξr} is non-empty and finite;

(ii) Ld(g)[t+dg+ d
2 ] = cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ];

(iii) t ≥ θ(ξ1, . . . ,ξr ) and Annt+1(λ∗) = I (ξ1, . . . ,ξr )t+1 = I (S)t+1 is the vanishing ideal of S truncated
in degree t + 1.
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(iv) I (S)2(t+dg) ⊂ Qd(g) and (Annt+1(λ∗)) = R

√
suppQ(g) = I (S) (in particular, this ideal is zero-

dimensional).

Proof. Let λ∗ ∈ Ld(g) be such that (λ∗)[2(t+dg)] is generic in Ld(g)[2(t+dg)], and assume that rankH t
λ∗ =

rankH
t+dg

λ∗ with t ≤ d
2 − dg. By Lemma 3.17 applied with s = dg,

(λ∗)[t+dg+ d
2 ] =ω1e

[t+dg+ d
2 ]

ξ1
+ · · ·+ωre

[t+dg+ d
2 ]

ξr

with ωi > 0, Ξ = {ξ1, . . . ,ξr} ⊂ S(g), Annt+1(λ∗) = I(Ξ)t+1 and (Annt+1(λ∗)) = I(Ξ). This implies in
particular that t + 1 ≥ θ = θ(Ξ), the interpolator degree of Ξ.

Let h = h1, . . . ,hm ⊂ Annt+1(λ∗) be a graded basis of I(Ξ) of degree ≤ t + 1. As (λ∗)[2(t+dg)] is
generic in Ld(g)[2(t+dg)], for any λ ∈ Ld(g) we have Annt+dg

(λ∗) ⊂ Annt+dg
(λ) by Proposition 3.12,

and ⟨λ,h2
i ⟩ = 0. Then for any p ∈ R[X]dg+ d

2
we have ⟨λ,hip⟩ = 0, proving that λ ∈ (h)⊥

t+dg+ d
2

=

(I (Ξ)t+dg+ d
2
)⊥, i.e. Ld(g)[t+dg+ d

2 ] ⊂ (I (Ξ)t+dg+ d
2
)⊥.

This also means that Ld(g)[t+dg+ d
2 ] ⊂ L[t+dg+ d

2 ](I (Ξ)t+dg+ d
2
). As t +dg + d

2 ≥ 2t + 2 ≥ 2θ, we deduce

from Proposition 3.15 that λ[t+dg+ d
2 ] ∈ cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ]. This shows that Ld(g)[t+dg+ d
2 ] ⊂

cone(eξ1
, . . . ,eξr )

[t+dg+ d
2 ]. On the other hand the inclusion Ld(g)[t+dg+ d

2 ] ⊃ cone(eξ1
, . . . ,eξr )

[t+dg+ d
2 ]

holds true since Ξ ⊂ S. Therefore

Ld(g)[t+dg+ d
2 ] = cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ].

Let us show that Ξ = S. For ζ ∈ S we have e
[t+dg+ d

2 ]
ζ ∈ Ld(g)[t+dg+ d

2 ] ⊂ (h)⊥
t+dg+ d

2
, and thus for

i = 1, . . . ,m, ⟨eζ ,hi⟩ = hi(ζ) = 0. This shows that ζ is a root of h and thus ζ ∈ Ξ. We conclude that
Ξ = {ξ1, . . . ,ξr} = S.

The inclusion I (S)2(t+dg) ⊂ Qd(g) follows from Ld(g)[t+dg+ d
2 ] ⊂ (h)⊥

t+dg+ d
2
. Indeed, 2(t + dg) ≤

t + dg + d
2 and thus Ld(g)[2(t+dg)] ⊂ (h)⊥2(t+dg). Now notice that (Ld(g)[2(t+dg)])∨ ⊂ Qd(g), using convex

duality. Therefore dualizing Ld(g)[2(t+dg)] ⊂ (h)⊥2(t+dg) we obtain the desired inclusion. Moreover,

I (S)2(t+dg) ⊂ Qd(g)∩−Qd(g) ⊂ suppQ̃ = R

√
suppQ, by Theorem 3.4, and finally:

(Annt+1(λ∗)) = I (S) = (I (S)2(t+dg)) ⊂ R

√
suppQ(g) ⊂ R

√
suppT (g) = I (S),

where the last equality is the Real Nullstellenstatz, see e.g. [Mar08, Note 2.2.2 (vi)]. This shows
that (Annt+1(λ∗)) = R

√
suppQ(g) = I (S), concluding the proof.

This theorem tells us that if the flat truncation property holds at degree t ≤ d
2 − dg for a generic

element, then any linear functional in Ld(g), truncated in degree t+ d
2 +dg, coincides with a positive

measure supported on S = {ξ1, . . . ,ξr}.
In the following theorem we show that when supp(Q) is a zero-dimensional ideal (and thus S

is finite), the flat truncation is satisfied for all the positive linear functionals (and thus in particular
for generic ones).

Theorem 3.19. Suppose that dim R[X]
suppQ(g) = 0. Then S = S(g) is finite and there exists d ≥ 2(θ+dg) such

that I (S)2(θ+dg) ⊂ suppQd(g), where θ = θ(S) is the interpolation degree of S, and for any λ ∈ Ld(g) the
flat truncation property holds at degree θ.

Proof. Let I = suppQ(g) and J = R

√
suppQ(g), and recall that J =

√
I , see e.g. [Mar08]. We de-

duce that dim R[X]
J = dim R[X]

I = 0 and by (4) we have I (S(g)) = R

√
suppQ(g) = J . Then V

R
(J) =

V
R

(I (S(g))) = S(g) = {ξ1, . . . ,ξr} is finite.
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We choose a graded basis h of J with degh ≤ θ+1. By Corollary 3.8, there exists d ∈N such that
I (S)2(θ+dg) ⊂ suppQd(g). From Corollary 3.8 and Proposition 3.15 we deduce that positive linear
functionals in Ld(g) restricted to degree ≤ 2(θ + dg) are conical sums of evaluations at ξ1, . . . ,ξr :

Ld(g)[2(θ+dg)] ⊂ L2(θ+dg)(±h) = L2(θ+dg)(J2(θ+dg)) = cone(eξ1
, . . . ,eξr )

[2(θ+dg)],

and for all λ ∈ Ld(g), we have rankHθ
λ = rankH

θ+dg

λ , since

λ[2(θ+dg)] =
rankHθ

λ∑
j=1

ωij e
[2(θ+dg)]
ξij

with ωij > 0.

Theorem 3.19 says that if dim R[X]
suppQ(g) = 0 then the minimal order for which we have flat

truncation is not bigger than d ≥ 2(θ+dg) such that I (S)2(θ+dg) ⊂ suppQd(g). This degree is related

to the minimal d for which I (S) = R

√
suppQ(g) is generated by suppQd(g), that is, the minimal

degree d such that I(S)θ+dg
⊂ Ann d

2
(λ∗) for a generic λ∗ ∈ Ld(g). Moreover, as in the remark after

Lemma 3.17, we can replace θ + dg with θ + 1 if d is big enough.

Theorem 3.18 and Theorem 3.19 show that if dim R[X]
suppQ(g) = 0 then S is a finite set of points

and for a high enough degree d, all moment sequences in Ld(g), truncated in degree twice the
interpolation degree are represented by a weighted sum of Dirac measures at these points. In
particular, it is possible to recover all the points in S from a generic truncated moment sequence,
see [HL05], [ABM15] and [Mou18].

Results related to Theorem 3.19 and Theorem 3.18 were obtained in [LLR08] and [Las+13],
where they focus on the case of equations h defining a finite real variety. They prove that, for d
big enough and for every positive linear functional λ ∈ L2d(±h), the flat truncation property holds
for Hd

λ , and that λ[2d] is a conic combination of evaluations at the points of V
R

(h). This can be
deduced from Theorem 3.19, since in the case where V

R
(h) = {ξ1, . . . ,ξr} is non-empty and finite,

dim R[X]
suppQ(±h) = 0. Theorem 3.18 generalizes [LLR08, Prop. 4.5], since our result does not assume

any explicit equality constraints, emphasizes the role of the support of the quadratic module
and the interpolation degree, and provides better degree bounds for the flat truncation degree.
Theorem 3.19 analogously generalizes [LLR08, Prop. 4.6]. These generalizations are crucial for the
characterization of flat truncation in Theorem 4.4, and for Corollary 4.8.

In [LLR08, Rem. 4.9] the authors also mention that their results can be proved for a preordering
defining a finite semialgebraic set. This result can be deduced directly from Theorem 3.19,
since when S = S(g) = {ξ1, . . . ,ξr} is non-empty and finite, we have by the Real Nullstellensatz ,
dim R[X]

suppT (g) = dim R[X]
R

√
suppT (g)

= dim R[X]
I (S(g)) = 0.

But Theorem 3.19 is even more general, as shown by the following example of a quadratic
module, whose support is zero-dimensional, but it is not a preordering.

Example 3.20 ([Mar08, Ex. 7.4.5 (1)]). Let Q =Q(X,Y ,1−X,1−Y ,−X4,−Y 4) ⊂R[X,Y ]. In this case
suppQ, which contains X4 and Y 4, is zero-dimensional and Q is not a preordering since XY <Q.
Theorem 3.19 applies in this case, but the results cannot be deduced from [LLR08] or [Las+13].

As we will see, in Polynomial Optimization Problems, flat truncation implies MoM exactness
and thus finite convergence. Moreover, it allows extracting the minimizers from an optimal
sequence.

4 Flat truncation in polynomial optimization problems

In this section, we analyze when flat truncation occurs in the Polynomial Optimization Problem,
which consists of minimizing f ∈R[X] on the basic semialgebraic set S = S(g) where g = {g1, . . . , gs }
are finitely many real polynomials.
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Recall that we denote f ∗ the minimum of f on S. In the following, we will consider the
semialgebraic set Smin = S(g,±(f − f ∗)) = S(g)∩ {x ∈Rn | f (x) = f ∗} and assume that it is nonempty.

The interest in flat truncation properties in polynomial optimization arises from two aspects.
First, in such a case we can certify finite convergence and exactness of the MoM hierarchy, see
Theorem 4.1. Second, if we have a flat moment matrix we can recover the global minimizers of
the problem. For more details on the algorithm to extract the minimizers, we refer the reader to
[HL05; ABM15; Mou18].

In the following, we adapt the results of Section 3 to the quadratic module Q(g,±(f − f ∗))
defining the minimizers Smin.

4.1 Flat truncation degree

In the following, we aim at analyzing the degree at which flat truncation holds using the inter-
polation degree, and we provide the first necessary and sufficient condition for flat truncation
(Theorem 4.4). But first, we describe the consequences of flat truncation for generic minimizing
linear functionals in Theorem 4.1. This theorem extends related results, e.g. in [Lau09; Nie13b]:
we perform a detailed comparison with the existing literature after the proof.

Theorem 4.1. Consider the problem of minimizing f on S(g). If the flat truncation property holds for a
generic λ∗ ∈ Lmin

2d (f ;g) at a degree t such that deg(f )− dg − d ≤ t ≤ d − dg, then:

(i) f ∗ = f ∗MoM,d (i.e. we have MoM finite convergence);

(ii) the set of minimizers Smin = {ξ1, . . . ,ξr} is non-empty and finite;

(iii) kerH t+1
λ∗ = Annt+1(λ∗) = I (Smin)t+1 (i.e. the kernel of the truncated moment matrix equals the

truncated ideal of the minimizers) and V (Annt+1(λ∗)) = Smin;

(iv) Lmin
2d (f ;g)[t+dg+d] = cone(eξ1

, . . . ,eξr )
[t+dg+d] (i.e. all the minimizing truncated feasible moment

sequences are conic sums of evaluations at the minimizers) and all λ ∈ Lmin
2d (f ;g) have flat

truncation at degree t;

(v) the MoM hierarchy is exact.

Proof. Let λ∗ ∈ Lmin
2d (f ;g) be generic such that rankH t

λ∗ = rankH
t+dg

λ∗ with deg(f ) ≤ t + dg + d

and t + dg ≤ d. Then by Lemma 3.17, (λ∗)[t+dg+d] =
∑r
i=1ωie

[t+dg+d]
ξi

with ξi ∈ S = S(g), ωi > 0,
Annt+1(λ∗) = I (ξ1, . . .ξr )t+1 = I (Ξ)t+1 and V (Annt+1(λ∗)) = Ξ. Notice that f (ξi) ≥ f ∗ since ξi ∈ S.

We show now that Smin = Ξ. As ⟨λ∗,1⟩ = 1 we have
∑r
i=1ωi = 1. Moreover f ∗MoM,d = ⟨λ∗, f ⟩ ≤ f ∗

and since deg(f ) ≤ t + dg + d we obtain:

f ∗ ≥ ⟨λ∗, f ⟩ = ⟨(λ∗)[t+dg+d], f ⟩ =
r∑
i=1

ωi⟨e
[t+dg+d]
ξi

, f ⟩ =
r∑
i=1

ωif (ξi) ≥ f ∗.

This implies that f (ξi) = f ∗ for i = 1, . . . , r. Therefore f ∗ = f ∗MoM,d and Smin ⊃ Ξ.

From Proposition 3.12 we have that λ∗ ∈ Lmin
2d (f ;g) being generic implies that (λ∗)[2(t+dg)] is

generic in Lmin
2d (f ;g)[2(t+dg)]. Moreover (λ∗)[2(t+dg)] =

∑r
i=1ωie

[2(t+dg)]
ξi

∈ L(1)
2d (g,±(f − f ∗))[2(t+dg)] since

Ξ ⊂ Smin = S(g,±(f − f ∗)). Then, as L(1)
2d (g,±(f − f ∗)) ⊂ Lmin

2d (f ;g) and (λ∗)[2(t+dg)] is generic in
Lmin

2d (f ;g)[2(t+dg)], we have

∀λ ∈ L2d(g,±(f − f ∗)) Annt+dg
(λ∗) ⊂ Annt+dg

(λ),

i.e. (λ∗)[2(t+dg)] is generic in L2d(g,±(f − f ∗))[2(t+dg)]. We can then conclude from Theorem 3.18 that:

• Smin = Ξ;
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• Lmin
2d (f ;g)[t+dg+d] = cone(eξ1

, . . . ,eξr )
[t+dg+d];

• t ≥ θ(ξ1, . . . ,ξr );

• suppQ(g,±(f − f ∗)) is zero dimensional, since
√

suppQ(g,±(f − f ∗)) = R

√
suppQ(g,±(f − f ∗))

is zero-dimensional.

From Theorem 3.19, applied to Q(g,±(f −f ∗)), we deduce that all λ ∈ Lmin
2d (f ;g) have flat truncation

at degree t.
Finally we show MoM exactness. For every d′ ≥ d and λ ∈ Lmin

2d′ (f ;g), we have λ[2d] ∈ Lmin
2d (f ;g)

since ⟨λ,f ⟩ = f ∗. Therefore λ has flat truncation in degree t and by Lemma 3.17, λ[t+dg+d′] is
represented by a convex sum of Dirac measures at points in S (that are the minimizers ξ1, . . . ,ξr).
This shows that the moment hierarchy is exact, since increasing d′ we increase also the truncation
degree where λ coincides with a weighted sum of evaluations at the minimizers, i.e., setting
k = t + dg + d′, we have Lmin

2d′ (f ;g)[k] ⊂ M(1)(S(g))[k] for all d′. As increasing d′ in the previous
inclusion we also increase k, this proves MoM exactness and concludes the proof.

Theorem 4.1 relaxes previous degree conditions. In [Lau09, Th. 6.18], the degree condition to
deduce (i) and (ii) in Theorem 4.1 is deg(f ) ≤ 2t + 2dg, which is in general a stronger condition
than deg(f ) ≤ t + dg + d in Theorem 4.1. Theorem 4.1 also shows that the kernel of the moment
matrix of a generic truncated moment sequence, Annt+1(λ∗), is the truncated vanishing ideal of the
minimizers and that the hierarchy is exact. This means that any element in Lmin

2d (f ;g) truncated in
any degree t is represented by a measure, provided d ≥ t is big enough. Recall from Section 3 that
the points in the relative interior of Lmin

2d (f ;g) are generic in this convex cone, and thus interior
point SDP solvers in practice return approximations of generic linear functionals in Lmin

2d (f ;g).
Theorem 4.1 shows that, if any generic minimizing linear functional has flat truncation at degree t,
then all minimizing linear functional have flat truncation at degree t. Similar results have been
described in [LLR08; Las+13], but only for the feasibility problem in the zero-dimensional case.
This result was not previously described in the general polynomial optimization case (e.g. this
statement cannot be found in [Lau09, Th. 6.18]). In [Nie13b], it is shown that finite convergence of
the hierarchies and flat truncation for all minimizing linear functionals are generically equivalent
conditions, but the special properties of generic minimizing linear functionals are not considered
(see also the discussion after Theorem 4.4).

A key ingredient in this analysis is Lemma 3.17. From Lemma 3.17 and the remark after it, if d

is big enough the results of Theorem 4.1 hold true, if we replace the condition rankH t
λ∗ = rankH

t+dg

λ∗

with rankH t
λ∗ = rankH t+1

λ∗ .
However, we show in Example 4.2 that the condition rankH t

λ∗ = rankH t+1
λ∗ is in general not

sufficient to conclude that the points extracted from the moment matrix are inside the semialgebraic
set. This is the first example where such a pathological behaviour is explicit.

Example 4.2. We consider the problem of minimizing f = (1+X)(X−1)2 on S(1−X2,−X3) = [−1,0].
Notice that the SoS hierarchy is exact, since f ∗ = 0 and:

(1 +X)(X − 1)2 =
1
2

(
(1 +X)2 + 1−X2

)
(X − 1)2 ∈ Q4(1−X2,−X3).

This implies that f ∗SoS,2 = f ∗MoM,2 = f ∗. The only minimizer of f on S is −1, and I (−1) = (X + 1):
therefore we would expect to get flat truncation at degree zero for a generic element, and in
particular rankH0

λ∗ = rankH1
λ∗ = 1. But this is not the case if we consider the MoM relaxation of

order 2. Indeed an explicit computation shows that λ = 1
2 (e[4]
−1 + e[4]

1 ) ∈ Lmin
4 (f ;g), and rankH1

λ =
rankH2

λ = 2. Therefore a generic λ∗ ∈ Lmin
4 (f ;g) cannot satisfy flat truncation at degree t = 0.

More precisely, it is possible to show that Lmin
4 (f ;g) = conv

(
e[4]
−1 ,

1
2 (e[4]
−1 + e[4]

1 )
)
. Therefore a generic

λ∗ ∈ Lmin
4 (f ;g) will also satisfy rankH1

λ = rankH2
λ = 2.
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λ∗0 = 0.9999999989784975, λ∗1 = −0.3530324749675295 λ∗2 = 0.9998474115299072
λ∗3 = −0.3531851571450224 λ∗4 = 0.9996947364721432.

We confirm numerically the computation above, using the package MomentPolynomialOpt.jl
to compute f ∗ and a generic λ∗ ∈ Lmin

4 (f ;g): the pseudo-moments that we obtain are We compute
the singular values of H0

λ∗ , H
1
λ∗ and H2

λ∗ to have a numerically stable indication of the ranks:

Sing. Val. of H0
λ∗ : 0.9999999989784975

Sing. Val. of H1
λ∗ : 1.352956188465637,0.6468912220427679

Sing. Val. of H2
λ∗ : 2.2063794508570065,0.7931627759613444,7.983780245045715 · 10−8

This confirms the theoretical description and shows that the rank condition is numerically
satisfied for t = 1. The points extracted from the matrix are ξ1 ≈ 0.9997640487211856 and
ξ2 ≈ −1.0000000483192044: notice that ξ1 < S. This happens because the condition rankH t

λ∗ =

rankH
t+dg

λ∗ is not satisfied (we cannot compute H
t+dg

λ∗ =H3
λ∗ as 3 = t + dg > d = 2).

On the other hand, if we increase the order of the relaxation and compute λ∗ ∈ Lmin
6 (f ;g)

generic, we can verify flat truncation for t = 0 and the only point extracted is −1. Moreover, notice,
from Lemma 3.17 applied with s = 1 and the remark below, that in this case it is enough to check

rankH0
λ∗ = rankH1

λ∗ to verify that rankH t
λ∗ = rankH

t+dg

λ∗ , since the condition 0 = t ≤ d+s−deg(g) = 1
is satisfied.

We have seen that flat truncation implies MoM exactness and a finite set of minimizers. We now
show that, under the assumption of MoM finite convergence, flat truncation is equivalent to the
zero-dimensionality of the support for the quadratic module Q+ (f − f ∗) defining the minimizers.

We first need a technical lemma, that will be important to investigate the relationship between
Lmin

2d (f ;g) and L(1)
2d (g,±(f − f ∗)). Indeed, notice that L(1)

2d (g,±(f − f ∗)) ⊂ Lmin
2d (f ;g), by definition, but

the converse inclusion is not true in general, since for λ ∈ Lmin
2d (f ;g) we only have ⟨λ,f ⟩ = f ∗, and

not f − f ∗ ∈ Annd− deg(f )
2

(λ).

Lemma 4.3. Let f ∈ Q2k(g), λ ∈ L2d(g) and t ∈N with 0 ≤ t ≤ d − k. Then ⟨λ,f ⟩ = 0 implies for all
q ∈R[X]t, ⟨λ,qf ⟩ = 0. In other words, f ∈ Annt(λ).

Proof. We set g0 = 1 for notational convenience. Let f =
∑
i sigi =

∑
i,j p

2
i,jgi ∈ Q2k(g), with

degp2
i,jgi ≤ 2k. We want to prove that for all q ∈ R[X] such that deg(q) ≤ t we have ⟨λ,qf ⟩ = 0. In

particular, it is enough to prove that:

⟨λ,qp2
i,jgi⟩ = 0 for all i, j and q ∈R[X]t . (6)

Now, notice that ⟨λ,f ⟩ = 0 implies ⟨λ,p2
i,jgi⟩ = 0 for all i, j (since λ is nonnegative on Q2k(g)),

and therefore for all T ∈R and h ∈R[X]t+degpi,j we have:

0 ≤ ⟨λ, (pi,j − T h)2gi⟩ = T 2⟨λ,h2gi⟩ − 2T ⟨λ,hpi,jgi⟩

(we can apply λ to (pi,j − T h)2gi since deg((pi,j − T h)2gi) ≤ 2t + 2k ≤ 2d). For all h ∈R[X]t+degpi,j the
polynomial T 2⟨λ,h2gi⟩ − 2T ⟨λ,hpi,jgi⟩ is nonnegative by the above inequality, and since it vanishes
at T = 0, it has a double root at T = 0. This implies that ⟨λ,hpi,jgi⟩ = 0 for all h ∈R[X]t+degpi,j . If we
substitute h = qpi,j , we deduce eq. (6) for all q ∈R[X]t, and thus f ∈ Annt(λ).

We can now prove the equivalence between the flat truncation and the zero-dimensionality of
the support for the quadratic module Q + (f − f ∗) defining the minimizers. The proof relies on two
main ideas:

(i) we use Lemma 4.3 to move from Lmin
2d (f ;g) to L(1)

2d (g,±(f − f ∗));
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(ii) we use Theorem 3.19 to analyze the zero dimensional case.

Theorem 4.4. Assume that we have MoM finite convergence. Then dim R[X]
supp(Q(g)+(f −f ∗)) = 0 if and only

if there exists d such that a generic λ∗ ∈ Lmin
2d (f ;g) has flat truncation.

In this case, if θ = θ(Smin) is the interpolation degree and D = max(dg,⌈
deg(f )

2 ⌉), there exists δ ∈N
such that f − f ∗ ∈ Q2δ(g) and flat truncation at degree θ happens for all λ ∈ Lmin

2d (f ;g), when d is such
that:

(i) ( R

√
suppQ(g))2δ+2θ+2D−deg(f ) ⊂ Q2d(g);

(ii) I (Smin)2θ+2D ⊂ Q2d(g) + (f − f ∗)2d ;

(iii) δ+ 2θ + 2D −deg(f ) ≤ d.

Proof. Let us assume without loss of generality that f ∗ = 0.
We first show that flat truncation implies dim R[X]

supp(Q+(f )) = 0. As in the proof of Theorem 4.1, if

λ∗ ∈ Lmin
2d (f ;g) is generic satisfying flat truncation at degree t then (λ∗)[2(t+dg)] is a generic element of

L2d(g,±f )[2(t+dg)]. Since the flat truncation property is satisfied, we conclude from Theorem 3.18, in
particular point (iv), that R

√
supp(Q+ (f )) = (Annt+1(λ∗)) = I (Smin) and dim R[X]

supp(Q+(f )) = dim R[X]
I (Smin) =

0.
Conversely, if dim R[X]

supp(Q+(f )) = 0, we deduce from Theorem 3.19 that the flat truncation property

is satisfied for any λ ∈ L2d(g,±f ) at degree θ = θ(Smin) = θ(S(g,±f ) for d such that I (Smin)2(θ+D) ⊂
Q2d(g) + (f )2d . Let a = 2θ + 2D and λ ∈ Lmin

2d (f ;g) generic. We want to show that λ[a] ∈ L2d(g,±f )[a],
so that we can conclude using Theorem 3.19. Since λ ∈ Lmin

2d (f ;g) ⊂ L2d(g), it is sufficient to prove
that:

⟨λ,qf ⟩ = 0 for all q of degree ≤ a−deg(f ). (7)

We prove now (7), starting from ⟨λ,f ⟩ = f ∗ = 0. MoM finite convergence implies that ⟨λ,f ⟩ ≥ 0
for all λ ∈ L2d(g), and therefore f ∈ L2d(g)∨ = Q2d(g). Let δ ≤ d be minimal such that f ∈ Q2δ(g)
and let h = h1, . . . ,hm be a graded basis of R

√
suppQ. From [Mar08, Lem. 4.1.4] we deduce that

Q2δ(g) + (h)2δ is closed (as a subset of R[X]2δ with the Euclidean topology, see also the proof of
Proposition 3.10), and therefore Q2δ(g) ⊂ Q2δ(g) + (h)2δ. Thus we can write:

f = g + h =
s∑
i=0

sigi +
m∑
i=1

pihi ∈ Q2δ(g) + (h)2δ,

where we set g0 = 1 for notation convenience, g =
∑s
i=0 sigi ∈ Q2δ(g) and h =

∑m
i=1pihi ∈ (h)2δ. It is

then enough to prove that ⟨λ,qg⟩ = ⟨λ,qh⟩ = 0, where λ ∈ Lmin
2d (f ;g) and deg(qg) ≤ b,deg(qh) ≤ b

for b = 2δ+ a−deg(f ) = 2δ+ 2θ + 2D −deg(f ).
We start by proving ⟨λ,qh⟩ = 0. We deduce from Lemma 3.6 that for d big enough we have

(h)b ⊂ Q2d(g) and L2d(g)[b] ⊂ Lb(±h). Therefore

⟨λ,qh⟩ = ⟨λ[b],qh⟩ = 0.

Now we prove that ⟨λ,qg⟩ = 0. Since δ+(a−deg(f )) ≤ d, we can apply Lemma 4.3 with g ∈ Q2δ(g)
and t = a−deg(f ) ≥ deg(q), and conclude that ⟨λ,qg⟩ = 0, as desired.

Therefore ⟨λ,qf ⟩ = ⟨λ∗,qg⟩+ ⟨λ∗,qh⟩ = 0 for all q of degree ≤ a−deg(f ) and (7) is satisfied. This
implies that λ[a] ∈ L2d(g,±f )[a], or in other words Lmin

2d (f ;g)[a] ⊂ L2d(g,±f )[a]. Therefore we can
apply Theorem 3.19 to conclude that the flat truncation property is satisfied for all λ ∈ Lmin

2d (f ;g)
at degree θ.

Let us briefly comment the degree conditions in Theorem 4.4.
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(i) If S has nonempty interior, it is not necessary to check the first condition, since in this case
suppQ = 0. More generally if the quadratic module is reduced, that is if R

√
suppQ = suppQ,

the first condition is automatically satisfied;

(ii) The second condition is the key one: it tells us that flat truncation happens when the ideal of
the minimizers, truncated in the appropriate degree, can be described using the truncated
quadratic module and the truncated ideal generated by f − f ∗;

(iii) The third condition is technical, derived from Lemma 4.3. It allows to move from Lmin
2d (f ;g)

to L2d(g,±(f − f ∗)), where we can apply the results of the previous section.

Related properties have been previously investigated. It is shown in [Nie13b, Th. 2.2] that,
under genericity assumptions, if for an order d big enough we have f ∗SoS,d = f ∗MoM,d (strong duality)
and sup = max in the definition of f ∗SoS,d , then there is finite convergence (that is f ∗MoM,d = f ∗) if
and only if flat truncation is satisfied for every λ ∈ Lmin

2d (f ;g). Theorem 4.4 applies for other cases,
for instance when there is finite convergence but the SoS hierachy is not exact (see Example A.8).
This is made possible by analysing the closure of the quadratic modules we are considering. As a
corollary of Theorem 4.4 we will show (in Theorem 4.7 and Corollary 4.8) that, under genericity
assumption, we have finite convergence, that the MoM hierarchy is exact and that the flat truncation
property is satisfied.

Another improvement made is the estimation of the order d of the hierarchy that is sufficient to
have flat truncation, answering a question in [Nie13b, Sec. 5]. This is the first result in this direction.
These conditions depends on properties of the minimizers and the quadratic module Q2d(g) that
might be difficult to check a priori. In particular, they depend on the interpolation degree of the
minimizers. However, they may be analyzed in some specific cases, such as optimization problems
with a single minimizer, to deduce more precise bounds. Moreover, the relation between the degree
of flat truncation and the interpolation degree θ shows that computing the degree of flat truncation
is at least as hard as computing θ, which is difficult with no a priori knowledge on the minimizers.

We illustrate Theorem 4.4 in the following example, showing how it can help to predict the flat
truncation degree.

Example 4.5. We continue Example 2.5. Notice that f − f ∗ = X2 ∈Q2 :=Q2(g) =Q2(1−X2 −Y 2,X +
Y −1) (i.e. the SoS hierarchy is exact) and then the MoM hierarchy has finite convergence. Using
Theorem 4.4, we analyse if flat truncation holds at some degree. We have I (Smin) = (X,Y − 1) ⊂
R

√
supp(Q+ (f − f ∗)) = R

√
supp(Q+ (X2)) where Q :=Q(1−X2 −Y 2,X +Y − 1). Indeed:

X =
X2 + (Y − 1)2

2
+

1−X2 −Y 2

2
+X +Y − 1 ∈Q2 ⊂Q2 + (X2)2

−X + ε =
ε
2

(
1− X

2

ε2 + (1− X
ε

)2
)
∈Q2 + (X2)2 ∀ε > 0⇒−X ∈Q2 + (X2)2

1−Y =
1
2

(
X2 + (1−Y )2 + 1−X2 −Y 2

)
∈Q2 ⊂Q2 + (X2)2

Y − 1 = X +Y − 1−X ∈Q2 +Q2 + (X2)2 =Q2 + (X2)2

that implies (X,Y − 1)1 ⊂ supp(Q2 + (X2)2) ⊂ R

√
supp(Q+ (f − f ∗)) and thus dim R[X]

supp(Q+(X2)) = 0.
Theorem 4.4 implies that flat truncation holds for a high enough order d of the MoM relaxation.

We investigate the degree conditions in Theorem 4.4 to prove that flat truncation happens for
the MoM hierarchy at order d = 1. We have I(Smin) = (X,Y − 1), θ = 0, dg = 1, deg(f ) = 2, D = 1 and
δ = 1.

(i) As S has nonempty interior, suppQ = 0 and the first point (i) is satisfied.

(ii) Notice that 2(θ +D) = 2, and therefore we have to show that (X,Y − 1)2 ⊂Q2 + (X2)2. Since
we have shown above that (X,Y − 1)1 ⊂ Q2 + (X2)2, it is enough to prove that ±X2,±X(Y −
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1),±(Y − 1)2 ∈Q2 + (X2)2. Now, ±X2, (Y − 1)2 ∈Q2 + (X2)2 by definition. Finally:

−(Y − 1)2 = 1−Y 2 −X2 +X2 + 2(X +Y − 1)− 2X ∈Q2 +Q2 + (X2)2 =Q2 + (X2)2

±X(Y − 1) =
1
2

(
(±X + (Y − 1))2 −X2 − (Y − 1)2

)
∈Q2 + (X2)2,

concluding the proof of the second point (ii).

(iii) We have 1 = δ+ 2θ + 2D −deg(f ) ≤ d = 1, and thus the third point (iii) is satisfied.

Therefore flat truncation happens at degree θ = 0 for the MoM hierarchy at order d = 1.

4.2 Boundary Hessian Conditions

In this section, we show that if regularity conditions, known as Boundary Hessian Conditions
(BHC), are satisfied, then the flat truncation property holds. These are conditions on the minimizers
of a polynomial f on a basic semialgebraic set S introduced by Marshall in [Mar06] and [Mar09],
which are particular cases of the so called local-global principle. Under these conditions, global
properties of polynomials (e.g. f ∈Q) can be deduced from local properties (e.g. checking the BHC
at the minimizers of f on S(Q)). We refer to [Sch05a], [Sch06] and [Mar08, Ch. 9] for more details.
We introduce BHC conditions following [Mar06; Nie14].

Definition 4.6 (Boundary Hessian Conditions). Consider a POP with inequality constraints g =
g1, . . . , gr , equality constraints h = h1, . . . ,hs and objective function f . Let V = V

R
(h) ⊂ R

n and
suppose that Q =Q(g,±h) is Archimedean. We say that the Boundary Hessian Conditions hold at a
minimizer point ξ ∈ S(g,±h) of f if ξ is a smooth point of V and:

(i) we can choose gi1 = t1, . . . , gik = tk that are part of a regular system of parameters t1, . . . , tm, m ≥
k, for V at ξ4 and for some neighbourhoodU of ξ we have S(gi1 , . . . , gik ,±h)∩U = S(g,±h)∩U ;

(ii) On V , locally at ξ we have that ∇f = a1∇t1 + · · ·+ am∇tm, where ai are strictly positive real
numbers;

(iii) On V , locally at ξ we have that Hess(f )(0, . . . ,0, tk+1, . . . tm) is positive definite in tk+1, . . . tm.

These conditions are related to standard conditions in optimization at a point ξ ∈ S (see [Ber99]
and [Nie14]). Notice that when BHC hold, the minimizers are non-singular, isolated points and thus
finite. It is proved in [Mar06] that if BHC holds at every minimizer of f on S(g) then f − f ∗ ∈ Q(g),
which implies that the SoS hierarchy is exact. [Nie14] proved that the BHC at every minimizer of f ,
which hold generically, implies the SoS finite convergence property.

In this section, we prove that, if the BHC hold, then the flat truncation property holds. For
simplicity, we restrict to the case of only inequalities, i.e. we assume h = 0.

Theorem 4.7. Let f ∈ R[X], Q = Q(g) be an Archimedean finitely generated quadratic module and
assume that the BHC hold at every minimizer of f on S = S(g). Then the SoS hierarchy is exact, the MoM
hierarchy is exact, and the flat truncation holds for all λ ∈ Lmin

2d (f ;g) when d is big enough. If conditions
(i)-(iii) in Theorem 4.4 are satisfied for the relaxation order d, then the flat truncation property holds.

Proof. If BHC hold at every minimizer of f on S(g) then Smin is finite andf −f ∗ ∈ Q(g) (see [Mar06]),
which implies that the SoS hierarchy is exact and thus the MoM hierarchy has finite convergence.
Moreover, if the BHC conditions hold at every minimizer of f on S, then dim R[X]

supp(Q+(f −f ∗)) = 0
(see the proof of [Mar06, Th. 2.3], where it is shown that the field of fractions of R[X] modulo any
minimal prime ideal lying over supp(Q+(f −f ∗)) is isomorphic to R, that implies dim R[X]

supp(Q+(f −f ∗)) =

0). Then Theorem 4.4 implies that flat truncation occurs for all λ ∈ Lmin
2d (f ;g) and in particular for

generic elements, when conditions (i)-(iii) are satisfied. Finally Theorem 4.1 allows to conclude
that the MoM hierarchy is exact.

4this means that the ti ’s vanish at ξ and that their gradients (or differentials) are linearly independent at ξ
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We show now that flat truncation and moment exactness hold generically in the space A of
polynomials (f ,g) of bounded degree for which Q(g) is Archimedean. We notice that if one
of the gi ’s has even degree equal to 2di , then A has nonempty interior: indeed, if we choose
g1 = R2−x2d1

1 −· · ·−x
2d1
n , for any sufficiently small perturbation g̃1 of g1 in degree d1, S(g̃1) is compact.

Therefore Q(̃g) satisfies the Archimedean condition for all sufficiently small perturbations g̃ of g
(see also [Mar08, Th. 7.1.1]). This is the typical situation in polynomial optimization, where it is
common to set g1 := R2 − x2

1 − · · · − x2
n.

For polynomials f ∈R[X]d and g1 ∈R[X]d1
, . . . , gs ∈R[X]ds , we say that a property holds generi-

cally (or that the property holds for generic f ,g1, . . . , gs) if there exists finitely many nonzero poly-
nomials φ1, . . . ,φl in the coefficients of polynomials in R[X]d and R[X]d1

, . . . ,R[X]ds such that, when
φ1(f ,g) , 0, . . . ,φl(f ,g) , 0, the property holds. We say that the property holds for (f ,g) generic satis-
fying the Archimedean condition if the property hold for all (f ,g) ∈ A∩ {φ1(f ,g) , 0, . . . ,φl(f ,g) , 0 }.
Corollary 4.8. For f ∈ R[X]d and g1 ∈ R[X]d1

, . . . , gs ∈ R[X]ds generic satisfying the Archimedean
condition, the SoS hierarchy is exact, the MoM hierarchy is exact and the flat truncation holds for all
λ ∈ Lmin

2d (f ;g) when d is big enough: if conditions (i)-(iii) in Theorem 4.4 are satisfied for the relaxation
order d, then the flat truncation holds.

Proof. By [Nie14, Th. 1.2] BHC hold generically. We apply Theorem 4.7 to conclude.

Genericity of flat truncation can also be determined by combining other previous results,
as follows. In [Nie13b], it is shown that finite convergence and flat truncation are equivalent
conditions under some (non-trivial) genericity assumptions (Assumption 2.1 in [Nie13b], no
duality gap and sup = max in the SoS hierarchy, see Theorem 2.2, p. 492). In [Nie14], it is shown
that BHC are generic properties, using local optimality conditions. We can combine these two
results to show that under (stronger) generic conditions, flat truncation of the Lasserre’s hierarchy
holds, but some attention is needed. First, one needs to ensure that generically there is no duality
gap, for instance using the fact that the semialgebraic set has nonempty interior or using the results
of [JH16], and that the supremum is attained. On the other hand, Corollary 4.8 only requires the
BHC to hold to ensure generic flat truncation.

Here is an example where BHC holds.

Example 4.9 (Robinson form). We find the minimizers of Robinson form f = x6 +y6 +z6 +3x2y2z2−
x4(y2 +z2)−y4(x2 +z2)−z4(x2 +y2) on the unit sphere h = x2 +y2 +z2−1. The Robinson polynomial
has minimum f ∗ = 0 on the unit sphere, and the minimizers on V

R
(h) are:

√
3

3
(±1,±1,±1),

√
2

2
(0,±1,±1),

√
2

2
(±1,0,±1),

√
2

2
(±1,±1,0).

BHC are satisfied at every minimizer (see [Nie14, Ex. 3.2]), flat truncation holds and we can recover
the minimizers from Theorem 4.7. We estimate the bounds of Theorem 4.4 and compare with the
numerical experiments. It is not necessary to check (i), since (h) = R

√
suppQ(±h). For the point (ii),

we compute the interpolation degree of the minimizers. The vanishing ideal of the minimizers is

(3xyz3−xyz,6z5−5z3+z,−6yz4+2y3+3yz2−y,x2+y2+z2−1,6xz4+2xy2−xz2−x,4y2z2+2z4−2y2−3z2+1)

which has generators of degree 5, and this ideal cannot be generated in degree 4. Therefore the
interpolation degree is θ = 4. Then 2θ + 2D = 14, and thus we expect flat truncation for d ≥ 7. For
the point (iii), we notice that, since degf = 6, then δ ≥ 3 in Theorem 4.4. For the flat truncation, we
then need to have d ≥ δ+ 2θ + 2D −deg(f ) ≥ 3 + 10 + 6− 6− 2 = 11. However, in practice for this
example we have flat truncation numerically at order 6 and not before (using the SDP solver SDPA).
We recover a good approximation of the minimizers at this order:

v, M = minimize(f, [h], [], X, 6)

w, Xi = get_measure(M)

Here f ∗MoM,6 ≈ v = −1.27211 · 10−7 and the minimizers with positive coordinates are (all the twenty
minimizers are found):
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ξ1 ξ2 ξ3 ξ4
x 0.577351068999 8.812477930640 10−12 0.707107158043 0.707107157553
y 0.577351069076 0.707107158048 1.271729446125 10−13 0.707107157555
z 0.577351066102 0.707107158048 0.707107158042 2.478771201340 10−9

4.3 Finite semialgebraic sets

In this section we consider the case when S = S(g) = {ξ1, . . . ,ξr} ⊂R
n is non-empty and finite.

Theorem 4.10. Let Q =Q(g) and suppose that dim R[X]
suppQ = 0. Then S is finite, the MoM hierarchy is

exact and the flat truncation holds for all λ ∈ Lmin
2d (f ;g) when d is big enough. If conditions (i)-(iii) in

Theorem 4.4 are satisfied, then flat truncation holds at the relaxation order d.

Proof. Since dim R[X]
suppQ = 0, we deduce that S is finite and that every positive linear functional

satisfies flat truncation from Theorem 3.19. Then Theorem 3.18 implies that every truncated
positive linear functional is represented by a measure, which also implies MoM finite convergence.
We conclude applying Theorem 4.4 and Theorem 4.1.

As corollaries, we have that the conclusions of Theorem 4.10 hold:

• for the moment hierarchy (L2d(Πg))d∈N (recall that we denote Πg all the products of the gi ’s),
if S = S(g) = S(Πg) is finite, since by the real Nullstellensatz,

dim
R[X]

suppQ(Πg)
= dim

R[X]
suppT (g)

= dim
R[X]√

suppT (g)
= dim

R[X]
I (S(g))

= 0.

See [Nie13c, Th. 4.1] and [LLR08, Rem. 4.9]. Example A.1 shows that we cannot replace the
zero-dimensionality hypothesis in Theorem 4.10 by the finiteness of S for a general quadratic
modules.

• for the moment hierarchy (Ld(g,±h))d∈N when V
R

(h) is finite, since for Q =Q(g,±h),

dim
R[X]

suppQ
= dim

R[X]√
suppQ

= dim
R[X]

R

√
suppQ

≤ dim
R[X]
R

√
(h)

= 0.

See [Nie13c, Th. 1.1] and [LLR08]. This includes Polynomial Optimization problems with
binary variables and equations of the form X2

i −Xi = 0, for which MoM relaxations are of
particular interest, see e.g. [Lau03].

Example 3.20 shows that Theorem 4.10 is more general than the two cases above.
Notice that, even if the SoS hierarchy has the finite convergence property and the MoM hierarchy

is exact, it may not be SoS exact for a finite real variety, as shown in Example A.7 and Example A.8.

Example 4.11 (Gradient ideal, [NDS06]). We compute the minimizers of Example A.7. Let f =
(X4Y 2 +X2Y 4 +Z6−2X2Y 2Z2)+X8 +Y 8 +Z8 ∈R[X,Y ,Z]. We want to minimize f over the gradient
variety V

R

(
∂f
∂X ,

∂f
∂Y ,

∂f
∂Z

)
with dim R[X]

( ∂f∂X ,
∂f
∂Y ,

∂f
∂Z )

= 0. By Theorem 4.10, we deduce that flat truncation

holds for an order of relaxation d high enough. In this example, we have θ = 0, d = 4, deg(f ) = 8,
δ ≥ 4, so that we expect flat truncation at an order d ≥ 4, from Theorem 4.4.

v, M = minimize(f, differentiate(f,X), [], X, 4)

w, Xi = get_measure(M, 2.e-2)

The approximation of the minimum f ∗ = 0 is v = −1.6279 · 10−9, and the decomposition with a
threshold of 2 ·10−2, used to determine the correct numerical rank of the moment matrix, gives the
following numerical approximation of the minimizer (the origin):

ξ = (2.976731510689691 10−17;−9.515032317137384 10−19;3.763401209219283 10−18).
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Generalizations of this approach have been investigated to make the hierarchies exact, adding
equality constraints satisfied by the minimizers (and independent of the minimum f ∗) to a Polyno-
mial Optimization Program.

As we saw in the previous example, for global optimization we can consider the gradient
equations (see [NDS06]): obviously ∇f (x∗) = 0 for all the minimizers x∗ of f on S = R

n. For
constrained optimization we can consider Karush–Kuhn–Tucker (KKT) constraints, adding new
variables (see [DNP07]) or projecting them to the variables X (Jacobian equations, see [Nie13a]).
These are sufficient but not necessary conditions for x∗ ∈ S being a minimizer. To avoid this problem
we can define the augmented Jacobian ideal, see e.g. [Nie13a]. The improvement made from the
KKT constraints is to consider conditions that are also necessary for being a minimizer, in the spirit
of Fritz John Optimality Conditions (see [Ber99, Sec. 3.3.5]).

In [NDS06], [DNP07] and [Nie13a], smoothness conditions or radicality assumptions on the
associated complex varieties are made in order to prove finite convergence and SoS exactness.
In particular, Assumption 2.2 in [Nie13a, Th. 2.3] requires the varieties defined by the active
constraints to be non-singular to conclude finite convergence of the hierarchy. Our conditions for
finite convergence and flat truncation in Theorem 4.10 are of a different nature, since they are on
the finiteness of the semialgebraic set. For instance we can apply Theorem 4.10 in Example 4.12, but
Assumption 2.2 in [Nie13a] is not satisfied, since the minimizer is a singular point. Moreover notice
that in our theorem we use only the defining inequalities g and not their products Πg, as done in
[Nie13a, Th. 2.3] (in other words, we consider the quadratic module and not the preordering).

Example 4.12 (Singular minimizer). We minimize f = X on the compact semialgebraic set S =
S(X3 −Y 2,1−X2 −Y 2). We have f ∗ = 0 and the only minimizer is the origin, which is a singular
point of the boundary of S. Thus BHC does not hold, and we cannot apply Theorem 4.7. We have
dim R[X]

supp(Q+(X)) = 0 since supp(Q+(X)) ⊃ (X,Y 2), but we cannot apply Theorem 4.4, as we don’t have

finite convergence of the SoS and MoM hierarchies. Indeed X <Q =Q(X3 −Y 2,1−X2 −Y 2), since
X <Q(X3,1−X2). This implies that the SoS and MoM hierarchies do not have finite convergence,
following Example A.3. This example also shows that we cannot remove the hypothesis of MoM
finite convergence in Theorem 4.4.

To get flat truncation, we add the augmented Jacobian equations, that define a finite real variety,
as we show in the following. First notice that, since V (X3 − Y 2) is singular, Assumption 2.2 in
[Nie13a] is not satisfied and the finite convergence of the hierarchy T2d(g,±h′) using the augmented
Jacobian equations cannot be deduced from [Nie13a, Th. 2.3]. Generators for augmented Jacobian
variety are h′ = (1−X2 −Y 2)(X3 −Y 2), Y (1−X2 −Y 2), Y (X3 −Y 2). The real roots are (−1,0), (1,0),
(0,0) and the two real intersections of 1−X2 −Y 2 = 0 and X3 −Y 2 = 0. Therefore dim R[X]

supp(Q+(h′)) ≤

dim R[X]
R

√
(h′)

= 0, and Theorem 3.19 implies flat truncation. We recover the minimizer considering

the MoM relaxation of order 5:

v, M = polar_minimize(f, [], [x^3-y^2,1-x^2-y^2], X, 5)

w, Xi = get_measure(M, 2.e-3)

The approximation of the minimum f ∗ = 0 is v = −0.0045, and the decomposition of the moment
sequence with a threshold of 2 · 10−3 gives the following approximation of the minimizer (the
origin):

ξ = (−0.004514367348787526,2.1341684460860045 10−21).

The error of approximation on ξ is of the same order than the error on the minimum f ∗.

5 Conclusion

We investigated the convex cones Ld(g) dual to the truncated quadratic modules Qd(g) from a new
perspective. We studied the kernels of moment matrices or annihilators of moment sequences

26



in these cones and characterize the ideal they generate (Theorem 3.14). We focused on the
zero-dimensional case and its relationships with the flat truncation property (Theorem 3.18 and
Theorem 3.19), that can be used to certify that a linear functional is represented by a measure.

The main contributions of the paper are the applications of the previous analysis to flat trunca-
tion in Lasserre’s MoM hierarchies for Polynomial Optimization. We studied the flat truncation
property in this context (Theorem 4.1) and deduced new necessary and sufficient conditions for flat
truncation (Theorem 4.4). These conditions can be used to show that, under regularity and thus
genericity assumptions (Boundary Hessian Conditions), the flat truncation property is satisfied
(Theorem 4.7, Corollary 4.8). We applied these results to Polynomial Optimization on finite sets
(Theorem 4.10), generalizing and giving a unified presentation to different results in the literature.

Theorem 4.4 provides the first known degree bounds for the flat truncation property to hold, in
terms of the inequalities g and the objective function f (in particular depending on the interpolation
degree of the minimizers). An interesting question would be to investigate if it is possible to improve
these degree bounds. Another possible research direction is to investigate regularity conditions,
simpler than Boundary Hessian Conditions, that imply flat truncation for MoM hierarchy of a
certain order d.
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properties, and the anonymous referees for their helpful suggestions for the improvement of the
presentation of the paper.
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A Appendix: Examples of exact and non-exact Lasserre’s hierarchies

In this appendix, we give examples showing how the notions of finite convergence and exactness of
the SoS and MoM hierarchies are (and are not) related.

No finite convergence. We start presenting the first example of optimization over a finite semial-
gebraic set, where we do not have finite convergence of the MoM and SoS hierarchies.

Example A.1 (see also [Sch05a, Ex. 3.2], [Sch05b, Rem. 3.15], Example 3.5, Example A.6). Consider
the minimization of f = Y −X on the origin S = S(g) = {0} ⊂ R

2, where Q = Q(g) = Q(1 −X2 −
Y 2,−XY ,X −Y ,Y −X2) ⊂R[X,Y ]. In this case suppQ = R

√
suppQ = (0), and thus from Theorem 3.9

there is no duality gap and f − f ∗SoS,d ∈ Q2d(g) for all d. Then, if there is SoS finite convergence,
Y −X = f −f ∗ ∈ Q(g). Since X−Y ∈ Q(g), finite convergence would imply that X−Y ∈ Q(g)∩−Q(g) =
suppQ(g) = (0), a contradiction. Therefore there is no SoS finite convergence, and by strong
duality there is no MoM finite convergence as well. This example shows that [Nie13c, Th. 4.1]
cannot be extended from preorderings to quadratic modules in general, but only when suppQ is a
zero-dimensional ideal (see Theorem 4.10).

The next example shows that SoS and MoM hierarchies for polynomial optimization on algebraic
curves do not necessarily have the finite convergence property. For the definition of graded basis,
see the paragraph before Proposition 3.10.

Example A.2 ([Sch00]). Let C ⊂R
n be a smooth connected curve of genus ≥ 1, with only real points

at infinity (e.g. the plane cubic defined by Y 2 = X3 −X). Let h = h1, . . . ,hs ⊂R[X] be a graded basis
of I = I (C) . Then there exists f ∈R[X] such that the SoS hierarchy Q2d(±h) and the MoM hierarchy
L2d(±h) have no finite convergence and are not exact.

Indeed by [Sch00, Th. 3.2], there exists f ∈ R[X] such that f ≥ 0 on C = S(±h), which is not a
sum of squares in R[C] = R[X]/I . Consequently, f < Σ2[X] + I =Q(±h). As f ≥ 0 on C, its infimum
f ∗ is non-negative and we also have f − f ∗ <Q(±h).
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Using Proposition 3.10 we deduce that Q2d(±h) is closed, that there is no duality gap and
that the supremum f ∗SoS,d is reached. Thus if the MoM hierarchy has finite convergence then the
SoS hierarchy also has finite convergence and f − f ∗ ∈ Q2d(±h) for some d ∈ N. But this is in
contradiction with the previous paragraph, showing that the SoS and the MoM hierarchies have no
finite convergence.

In dimension 2, there are also cases where the SoS and MoM hierarchies cannot have finite
convergence or be exact.

Example A.3 ([Mar08]). Let g1 = X3
1 −X

2
2 , g2 = 1−X1. Then S = S(g) is a compact semialgebraic

set of dimension 2 and T (g) is Archimedean. We have f = X1 ≥ 0 on S but X1 < T (g) (see
[Mar08, Example 9.4.6(3)]). The infimum of f on S is f ∗ = 0. Assume that we have MoM finite
convergence. Using for instance Proposition 3.10,Q2d(Πg) is closed, the supremum f ∗SoS,d is reached
and strong duality holds: f ∗SoS,d = f ∗MoM,d = f ∗ = 0. Then f −f ∗ = f ∈ T (g): but this is a contradiction.
Therefore, the hierarchies Q2d(Πg) =Q2d(g1, g2, g1g2) and L2d(Πg) = L2d(g1, g2, g1g2) cannot have
finite convergence and thus cannot be exact for f = X1.

The next example shows that non-finite convergence and non-exactnesss is always possible for
semialgebraic sets of dimension ≥ 3.

Example A.4. Let n ≥ 3. Let Q(g) be an Archimedean quadratic module generated by g1, . . . , gs ∈
R[X] such that S(g) ⊂ R

n is of dimension m ≥ 3 and let h be a graded basis of R

√
suppQ(g) (in

particular h = 0 if m = n, i.e. S(g) is of maximal dimension). Then there exists f ∈ R[X] such
that the SoS hierarchy (Q2d(g,±h))d∈N and MoM hierarchy (L2d(g,±h))d∈N do not have the finite
convergence property (and thus are not exact).

Indeed by Proposition 3.10 f ∗SoS,d = f ∗MoM,d for d big enough and the supremum f ∗SoS,d is reached.
By [Sch00, Prop. 6.1] for m ≥ 3, Pos(S(g)) ⊋ Q(g) + (h). So let f ∈ Pos(S(g)) \Q(g) + (h) and let f ∗

be its minimum on S(Q). Suppose that f − f ∗ ∈ Q(g) + (h), then f ∈ Q(g) + (h) + f ∗ = Q(g) + (h), a
contradiction. Then the SoS and the MoM hierarchy do not have the finite convergence property
(and they are not exact).

SoS exactness, no MoM exactness.

Example A.5. We consider in this example the unconstrained case. We want to find the global
minimum of f = X2

1 ∈ R[X1, . . . ,Xn] = R[X] for n ≥ 3. Let d ≥ 2, X′ = (X2, . . . ,Xn) and λ ∈ Σ2[X′]∨

such that λ < M(Rn−1)[d]. Such a linear functional exists because when n > 2 there are non-
negative polynomials in R[X′] which are not sum of squares, such as the Motzkin polynomial
(see [Rez96]). As Σ2[X′] is closed, such a polynomial can be separated from Σ2[X′] by a linear
functional λ ∈ Σ2[X′]∨, which cannot be the truncation of a measure. Define λ : h 7→ ⟨λ,h⟩ =
⟨λ,h(0,X2, . . . ,Xn)⟩. We have λ ∈ Σ2[X]∨ since λ ∈ Σ2[X′]∨. Obviously ⟨λ,f ⟩ = 0 = f ∗ (the minimum
of X2

1 ), f − f ∗ = X2
1 ∈ Σ2 and the SoS hierarchy is exact. Since λ is represented by a measure if and

only if λ is represented by a measure, the MoM hierarchy cannot be exact.

Example A.5 is an example where the number of minimizers of f on S is infinite. We show that
non exactness can happen also when the minimizers are finite (and even when S is finite!).

Example A.6 (see also [Sch05a, Ex. 3.2], [Sch05b, Rem. 3.15], Example 3.5, Example A.1). We
want to minimize the constant function f = 1 on the origin S = S(g) = {0}, where Q = Q(g) =
Q(1 −X2 − Y 2,−XY ,X − Y ,Y −X2) ⊂ R[X,Y ]. In this case suppQ = R

√
suppQ = (0). Notice that

the SoS hierarchy is exact and the MoM hierarchy has finite convergence, since f ∈ Q2(g). Now

suppose that the MoM hierarchy is exact, i.e. Lmin
2d (f ;g)[2k] = L(1)

2d (g)[2k] ⊂M(1)(S)[2k] = {e[2k]
0 }. Then

for λ∗ ∈ L2d(g) we have (Annk(λ∗)) = (Annk(e0)) = (X,Y ). But from Theorem 3.14 we know that for
d,k big enough (Annk(λ∗)) = R

√
suppQ = (0), a contradiction. Then the MoM hierarchy is not exact.

Moreover the flat truncation property is not satisfied in this case: see Theorem 4.4.

28



We investigate concretely this example for d = 1. We show in Figure 15 the plot of L2(g)[1], that
is the pseudo-moments of degree one of the linear functionals in the dual cone of Q2(g). Notice
that this is an outer approximation of e(0,0) ∈ L2(g)[1] or, identifying moments of degree one with
points of Rn, a convex outer approximation of S = {(0,0)}.

One can also verify explicitly that L2(g) has nonempty interior, as for instance λ = λ(ε) defined
by λ10 = 2ε, λ01 = ε, λ20 = ε

2 , λ11 = −ε2 and λ02 = 1
2 lies in the interior of L2(g) for ε > 0 small

enough.
Notice that L2(g)[1] ⊃ L3(g)[1] ⊃ L4(g)[1] ⊃ · · · ⊃ {e[1]

(0,0)}, and we have convergence since Q(g) is

Archimedean. This nested outer approximations never coincide with {e[1]
(0,0)}, as we have proven

before.

Figure 1: A generic point λ∗ ∈ L(1)
2 (g)[1] and moment outer approximations of L(1)(g)[1] = {e[1]

0,0}.

SoS finite convergence, MoM exactness.

Example A.7. Let f = (X4Y 2 +X2Y 4 + Z6 − 2X2Y 2Z2) +X8 + Y 8 + Z8 ∈ R[X,Y ,Z]. We want to
optimize f over the gradient variety V

R

(
∂f
∂X ,

∂f
∂Y ,

∂f
∂Z

)
which is zero-dimensional (see [NDS06]). By

Theorem 4.10 the flat truncation is satisfied and the MoM hierarchy is exact, and by Theorem 3.9
and remark below the SoS has the finite convergence property (notice that Q(± ∂f∂X ,±

∂f
∂Y ,±

∂f
∂Z ) =

T (± ∂f∂X ,±
∂f
∂Y ,±

∂f
∂Z ) is Archimedean since V

R

(
∂f
∂X ,

∂f
∂Y ,

∂f
∂Z

)
is compact). But the SoS hierarchy is not

exact, as shown in [NDS06].

Example A.8. Let f = X1. We want to find its value at the origin, defined by ∥X∥2 = 0. As proved in
[Nie13c] there is finite convergence but not exactness for the SoS hierarchy. On the other hand by
Theorem 4.10 the flat truncation property is satisfied and the MoM hierarchy is exact.
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