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Abstract

We investigate the problem of representation of moment sequences by measures in Polyno-
mial Optimization Problems, consisting in finding the infimum f ∗ of a real polynomial f on a
real semialgebraic set S defined by a quadratic module Q. We analyse the exactness of Moment
Matrix (MoM) relaxations, dual to the Sum of Squares (SoS) relaxations, which are hierarchies
of convex cones introduced by Lasserre to approximate measures and positive polynomials.
We show that the dual of the MoM relaxation coincides with the SoS relaxation extended with
the real radical of the support of the associated quadratic module Q. We deduce that the real
radical of the support ofQ is generated by the annihilator of a generic element of the truncated
moment cone, for a sufficiently high order of the MoM relaxation. We prove the exactness of
MoM relaxation when regularity conditions, known as Boundary Hessian Conditions, hold on
the minimizers. This implies that MoM exactness holds generically. We show that MoM exact-
ness holds when the support ofQ is zero-dimensional. When the set of minimizers is finite, we
describe a MoM relaxation which involves f ∗, show its MoM exactness and propose a practical
algorithm to achieve MoM exactness. We prove that if the real variety of polar points is fi-
nite then the MoM relaxation extended with the polar constraints is exact. Effective numerical
computations illustrate this MoM exactness property.
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1 Introduction

Let f ,g1, . . . , gs ∈ R[X1, . . . ,Xn] be polynomials in the indeterminatesX1, . . . ,Xn with real coefficients.
The goal of Polynomial Optimization is to find:

f ∗≔ inf
{
f (x) ∈R | x ∈Rn, gi(x) ≥ 0 for i = 1, . . . , s

}
, (1)

that is the infimum f ∗ of the objective function f on the basic semialgebraic set S ≔ {x ∈Rn | gi(x) ≥
0 for i = 1, . . . , s }. It is a general problem, which appears in many contexts (e.g. real solution of
polynomial equations, . . . ) and with many applications. To cite a few of them: in combinatorics,
network optimization design, control, . . . See for instance [Las10].

To solve this NP hard problem, Lasserre [Las01] proposed to use two hierarchies of finite di-
mensional convex cones depending on an order d ∈N and he proved, for Archimedean quadratic
modules, the convergence when d →∞ of the optima associated to these hierarchies to the min-
imum f ∗ of f on S . The first hierarchy replaces non-negative polynomials by Sums of Squares
(SoS) and non-negative polynomials on S by polynomials of degree ≤ d in the truncated quadratic
module Qd(g) generated by g = {g1, . . . , gs}.

The second and dual hierarchy replaces positive measures by linear functionals ∈ Ld(g) which
are non-negative on the polynomials of the truncated quadratic module Qd(g). We will describe
more precisely these constructions in section 2.1.

This approach has many interesting properties (see e.g. [Las15], [Lau09], [Mar08]). It was
proposed with the aim to recover the infimum f ∗ and, if this infimum is reached, the minimizer
set {ξ ∈ S | f (ξ) = f ∗}.

To tackle this challenge, one can first address the finite convergence problem, that is when
the value f ∗ can be obtained at a given order of the relaxation(s). The second problem is the
exactness of the relaxations, which is the main topic of this paper. The Sum of Squares (SoS)
exactness is when the non-negative polynomial f − f ∗ belongs to the truncated quadratic module
Q2d(g) for some d ∈N. TheMoment Matrix (MoM) exactness is when an optimal linear functional
σ∗ ∈ L2d(g) for f is coming from a positive measure supported on S for some d ∈N. We are going
to investigate in details this MoM exactness property.

Several works have been developed over the last decades to tackle these problems. [Par02]
showed that if the complex variety VC(I ) defined by an ideal I generated by real polynomials is
finite and I is radical, then f − f ∗ has a representation as a sum of squares modulo I and the SoS
relaxation is exact. [Lau07] showed the finite convergence property if the complex variety VC(I ) is
finite, and a moment sequence representation property, if moreover the ideal I is radical. [Nie13c]
showed that if the semialgebraic set S is finite, then the finite convergence property holds for a
finitely generated preordering defining S . [LLR08] proved that if S is finite, the value f ∗ and
the minimizers can be recovered from moment matrices associated to the truncated preordering
defining S . In [Las+13], the kernel of moment matrices is used to compute a border basis of the
real radical ideal R

√
I when S = VR(I ) is finite. [Sch05a] proved that f − f ∗ is in the quadratic

module Q defining S modulo (f − f ∗)2 if and only if f − f ∗ ∈ Q and then the SoS relaxation is
exact. [Mar06], [Mar09] proved that under some regularity conditions on the minimizers, known
as Boundary Hessian Conditions (BHC), f − f ∗ is in the quadratic module and the SoS exactness
property holds. [NDS06], [DNP07] showed that adding gradient constraints when S = Rn or KKT
constraints when S is a general basic semialgebraic set, the SoS exactness property holds when
the corresponding Jacobian ideal is radical. [Nie13a] showed that adding the Jacobian constraints,
the finite convergence property holds under some regularity assumption on the complex variety
associated to these constraints and on the compactness of S . In [Nie14], it is shown that BHC
imply finite convergence and that BHC are generic. [KS19] showed the SoS exactness property if
the quadratic module defining S is Archmedian and some strict concavity properties of f at the
finite minimizers are satisfied.
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Though many works focussed on the SoS relaxation and on the representation of positive poly-
nomials with sums of squares, the MoM relaxation has been much less studied. It has interesting
features, that deserve a deeper exploration: the convex cones Ld(g) of truncated non-negative
linear functionals are closed; finite convergence can be decided by flat extension tests on mo-
ment matrices [CF98], [LM09]; finite minimizers can be extracted from moment matrices [HL05],
[Mou18]. On the other hand, exact SoS relaxations can provide certificates of positivity, which is
also interesting from a theoretical and practical point of view. But no method exists to recover
the minimizers when only finite convergence holds or from SoS representations of f − f ∗. Proper-
ties of representation of the (truncated) moment sequence minimizers as measures and moment
matrices have been used so far to recover the minimizers.

For the sake of completeness of Lasserre relaxation approach and its pratical impact, it is then
natural to ask the following question:

Are the (truncated) moment sequence minimizers of some high enough order relaxation of a
Polynomial Optimization Problem coming from measures ?

The answer is known to be negative for some pathological problems (see for instance Examples
2.6, 2.7, 2.8, 2.9, 2.10 for cases of different natures), but it remained open for regular problems,
for more than a decade.

In this paper, we address this question for regular problems, investigate truncated moment
relaxation from a new perspective, and develop a theoretical and computational study of trun-
cated positive linear functionals. We analyse in details the properties of moment relaxations and
present new results on the representation of moments of positive linear functionals as moments
of measures.

We first show in Theorem 3.9 that the dual of the MoM relaxation (L2d(g))d∈N is the SoS
relaxation associated to the quadratic module (Q2d(g))d∈N extended with the real radical of the
support of Q. This yields the real radical ideal R

√
suppQ as the ideal generated by the annihilator

of a generic element σ ∈ L2d(g) for d sufficiently large (see Theorem 3.16).
Our key ingredient on exact moment representations is Theorem 3.19. When the quotient by

the support of Q is of dimension zero, we prove that the linear functionals in Ld(g) truncated in a
degree greater than twice the regularity of the points in S coincide with the measures supported
on S , that is the convex hull of the evaluations at the points of S . Moreover, the ideal generated
by the annihilator of a generic element in Ld(g) is the vanishing ideal of S .

The main result Theorem 4.4 shows that MoM exactness holds for regular problems. We prove
that when the Boundary Hessian Conditions are satisfied, the MoM relaxation is exact. This gener-
alizes the results on finite convergence and SoS exactness proved in [Mar06], [Mar09], and [Nie14].
It also shows that MoM exactness holds generically (Corollary 4.5).

We apply these results to Polynomial Optimization Problems, showing in Theorem 5.1 that
when the set S is finite, the MoM relaxation is exact if the quotient by the support of the quadratic
module Q is of dimension zero. This generalizes the results of [LLR08] on semi-definite moment
representations.

When the set of minimizers is finite, we describe a MoM relaxation which involves f ∗, show
its MoM exactness (Corollary 5.2) and propose a practical algorithm to achieve MoM exactness
using approximate numerical computation. In Theorem 5.5, we prove that if the real variety of
polar points is finite then the relaxation extended with Jacobian constraints is MoM exact. This
generalizes the results of finite convergence and SoS exactness of the KKT and Jacobian relaxations
under regularity conditions, proved in [NDS06], [DNP07], [Nie13a].

The paper is structured as follows. In the next sections of the introduction, we define the alge-
braic objects that we will use and recall their main properties. In Section 2, we describe in details
the notions of finite convergence and exactness for the Sum of Squares (SoS) and Moment Matrix
(MoM) relaxations. We give several examples showing how these notions are related. In Section 3,
we recall the properties of full moment sequences (Section 3.1), investigate the truncated moment
sequence properties (Section 3.2) and prove the moment representation property for a quadratic
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module with a zero-dimensional support. In Section 4 we prove that exactness holds for regu-
lar, generic problems. In Section 5, we investigate polynomial optimization problems where the
moment relaxation can be made exact, on finite semialgebraic sets (Section 5.1), for Polynomial
Optimization Problems with a finite number of minimizers (Section 5.2) and adding constraints
from the polar ideal (Section 5.3). Examples of Polynomial Optimization Problems and numerical
experimentations with the Julia package MomentTools.jl are presented in Section 6 to illustrate
these developments.

1.1 Polynomials

We provide the basic definitions on real polynomials and refer to [Mar08] for more details. Let
R[X] ≔ R[X1, . . . ,Xn] be the R-algebra of polynomials in n indeterminates X1, . . . ,Xn. Let Σ2 =

Σ
2[X] ≔

{
f ∈ R[X] | ∃r ∈ N, gi ∈ R[X] : f = g21 + · · · + g2r

}
be the convex cone of Sum of Squares

polynomials (SoS). If A ⊂ R[X], Ad ≔ { f ∈ A | deg f ≤ d }. In particular R[X]d is the vector space of
polynomials of degree ≤ d.

We denote (h1, . . . ,hr ) ⊂ R[X] the ideal generated by h1, . . . ,hr ∈ R[X]. Q ⊂ R[X] is called
quadratic module if 1 ∈ Q, Σ2 ·Q ⊂ Q and Q +Q ⊂ Q. If in addition Q ·Q ⊂ Q, Q is preordering.
For Q ⊂ R[X], we define suppQ≔Q∩−Q. If Q is a quadratic module then suppQ is an ideal.

We say that a quadraticmoduleQ is finitely generated (f.g.) if ∃g1 . . . gl ∈R[X] : Q = Q(g1, . . . , gl )≔
Σ
2 +Σ

2 · g1 + · · · + Σ
2 · gl (it is the smallest quadratic module containing g1, . . . , gl ). We say that a

preordering O is finitely generated if ∃g1, . . . , gl ∈ R[X] : O = O(g1, . . . , gl ) ≔ Q(
∏
j∈J gj | J ⊂ {1, . . . , l})

(it is the smallest preordering containing g1, . . . , gl ).

For G ⊂ R[X], let Qt(G) ≔
{
s0 +

∑r
j=1 sjgj ∈ R[X]t | r ∈ N, gj ∈ G, s0 ∈ Σ

2
t , sj ∈ Σ

2
t−deggj

}
and

〈G〉t ≔
{ ∑r

i=1 fihi ∈R[X]t | r ∈N, hi ∈ G, fi ∈ R[X]t−deghi
}
.

For a sequence of polynomials g ≔ g1, . . . , gs we define Πg ≔
∏
j∈J gj : J ⊂ {1, . . . , t} and ±g ≔

g1,−g1, . . . , gr ,−gr . Observe that Qt(g,±h) = Qt(g) + 〈h〉2⌊ t2 ⌋ and Qt(Π(g,±h)) = Qt(Πg,±h). Notice

that 〈h〉t ⊂ (h)t and Qt(g) ⊂ Q(g)t, but (unluckily) these inclusions are strict in general. Finally if

A ⊂ R[X] we define S (A) ≔
{
x ∈ Rn | f (x) ≥ 0 ∀f ∈ A

}
. In particular we denote S (g) =

{
x ∈ Rn |

g(x) ≥ 0 ∀g ∈ g
}
(the basic semialgebraic set defined by g). If Q = Q(g), notice that S (g) = S (Πg) =

S (Q). We denote by Pos(S) = {f ∈R[X] : ∀x ∈ S,f (x) ≥ 0} the cone of positive polynomials on S .

1.2 Linear functionals

We describe the dual algebraic objects and refer to [Mou18] for more details. For σ ∈ (R[X])∗ =
{σ : R[X]→ R | σ is linear }, we denote 〈σ |f 〉 = σ(f ) the application of σ to f ∈ R[X]. Recall that
(R[X])∗ � R[[Y]]≔ R[[Y1, . . . ,Yn]], with the isomorphism given by:

(R[X])∗ ∋ σ 7→
∑

α∈Nn

〈
σ |Xα〉 Y

α

α!
∈ R[[Y]],

where {Yαα! } is the dual basis to {Xα}, i.e.
〈
Yα

∣∣∣Xβ
〉
= α!δα,β . With this basis we can also identify

σ ∈ (R[X])∗ with its sequence of coefficients (σα)α , where σα ≔ 〈σ |Xα〉. We will consider Borel
measures with support included in S ⊂ Rn, denoted as M(S), as linear fuctionals, i.e. M(S) ⊂
(R[X])∗. In this case the sequence (µα)α associated with a measure µ is the sequence of moments:
µα =

∫
Xα dµ. MoreoverM(1)(S) will denote the Borel probability measures supported on S . We

recall a version of Haviland’s theorem [Mar08, th. 3.1.2]: if σ ∈ (R[X])∗, then σ ∈ M(S) if and
only if ∀f ∈ Pos(S), 〈σ |f 〉 ≥ 0. In particular we are interested in evaluations: if ξ ∈ Rn then

eξ (f ) =
〈
eξ

∣∣∣f
〉
=
∫
f deξ = f (ξ) for all f ∈R[X].

If σ ∈ (R[X])∗ and g ∈R[X], we define the convolution of g and σ as g ⋆ σ ≔ σ ◦mg ∈ (R[X])∗ (i.e.
〈g ⋆ σ |f 〉 = 〈σ |gf 〉 ∀f ) and the Hankel operator Hσ : R[X]→ (R[X])∗, g 7→ g ⋆ σ . If σ = (σα)α and
g =

∑
α gαX

α then g ⋆ σ = (
∑
β gβσα+β)α . Notice that g ⋆ σ = 0 ⇐⇒ Hg⋆σ = 0. We denote by Ann(σ)

the annihilator of σ w.r.t. ⋆, that is Ann(σ) = kerHσ = {p ∈R[X] | p ⋆ σ = 0}.
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With respect to the basis {Xα} and {Yαα! }:

• the matrix Hσ is Hσ = (σα+β)α,β (the so called moment matrix);

• the matrix Hg⋆σ is Hg⋆σ = ((g ⋆ σ)α+β)α,β = (
∑
γ gγσα+β+γ )α,β (the so called localizing matrix).

We say that σ is positive semidefinite (psd) ⇐⇒ Hσ is psd, i.e. 〈Hσ (f )|f 〉 =
〈
σ
∣∣∣f 2

〉
≥ 0 ∀f ∈R[X]

(see [Sch17] or [Mar08] for basic properties of psd matrices).
If σ ∈ (R[X])∗ then σ [t] ∈ (R[X]t)

∗ denotes its restriction to R[X]t (and same for σ ∈ (R[X]r)
∗, r ≥

t); moreover if B ⊂ (R[X])∗ then B[t] ≔ {σ [t] ∈ (R[X]t)
∗ | σ ∈ B } (and same for B ⊂ (R[X]r)

∗, r ≥ t).
If σ ∈ (R[X]t)

∗ and g ∈ R[X]t, then g ⋆ σ ≔ σ ◦mg ∈ (R[X]t−degg )
∗. If σ ∈ (R[X])∗ (or σ ∈ (R[X]r)

∗,

r ≥ 2t), then we define Ht
σ : R[X]t→ (R[X]t)

∗, g 7→ (g ⋆ σ)[t]. We have (g ⋆ σ)[t] = 0 ⇐⇒ Ht
σ (g) = 0:

in analogy with the infinite dimensional setting, we define Annd(σ) = kerHd
σ .

Notice that, if s ≤ t, we can identify the matrix of Hs
σ with the submatrix of Ht

σ indexed by
monomials of degree ≤ t.

Let A ⊂ R[X] (resp. A ⊂ R[X]t). We define A⊥ ≔
{
σ ∈ (R[X])∗ | 〈σ |f 〉 = 0 ∀f ∈ A

}
(resp. A⊥ ≔{

σ ∈ (R[X]t)
∗ | 〈σ |f 〉 = 0 ∀f ∈ A

}
). Notice that σ ∈ 〈h〉⊥t (resp. (h)⊥) if and only if (h ⋆ σ)[t−degh] =

0 ∀h ∈ h (resp. h ⋆ σ = 0 ∀h ∈ h).
For G ⊂ R[X]t we define:

Lt(G) = {σ ∈ (R[X]t)
∗ | ∀q ∈ Qt(G) 〈σ |q〉 ≥ 0 }

Equivalently σ ∈ Lt(G) if and only if 〈σ |s〉 ≥ 0 ∀s ∈ Σ2
t and 〈σ |sf 〉 ≥ 0 ∀f ∈ G,∀s ∈ Σ2 : deg f s ≤ t.

For the non-truncated version we write L(A). Notice that if Q = Q(g) then L(g) = L(Q) (resp.
Lt(g) = Lt(Qt(g))) is the dual convex cone to Q (resp. to Qt(g)), see [Mar08, sec. 3.6]: L(g) = Q∨
and Lt(g) = Qt(g)∨. We give to R[X] and (R[X])∗ the locally convex topology defined as follows.
If V = R[X] or V = (R[X])∗ and W ⊂ V is a finitely dimensional vector subspace, W is equipped
with the Euclidean topology. We define U ⊂ V open if and only if U ∩W is open in W for every
finitely dimensional vector subspaceW . By conic duality: Q = L(g)∨ and Qt(g) = Lt(g)∨. If A ⊂ V ,
we denote by cone(A) the convex cone generated by A, by conv(A) its convex hull and by 〈A〉 its
linear span.

1.3 Nullstellensatz and Positivstellensatz

We refer to [BCR98] and [Mar08] for real algebra and geometry. An ideal I is called real (or real
radical) if a21 + · · ·+ a2s ∈ I ⇒ ai ∈ I ∀i. We define the real radical of an ideal I as:

R
√
I ≔{ f ∈ R[X] | ∃h ∈N, s ∈ Σ2 f 2h + s ∈ I } (2)

={ f ∈ R[X] | ∃k ∈N, s ∈ Σ2 f 2
k
+ s ∈ I }. (3)

Definition (2) is the classical one, and it is equivalent to (3), that will be more convenient in the
paper. The real radical of I is the smallest real ideal containing I . If Q is a quadratic module and
I is an ideal, we say that I is Q-convex if ∀g1, g2 ∈ Q, g1 + g2 ∈ I ⇒ g1, g2 ∈ I . Then I is a real ideal
if and only if I is radical and Σ

2-convex.
Minimal primes lying over suppQ are Q-convex (see [Mar08, prop. 2.1.7]), and thus Σ

2-
convex. Prime ideals are radical, thenminimal primes lying over suppQ are real. Then

√
suppQ =

R
√
suppQ: we will write R

√
suppQ instead of

√
suppQ to stress that it is a real ideal.

If I ⊂ R[X] is an ideal, we denote by V (I ) its (complex) variety, and we define VR(I )≔ V (I )∩Rn.
Moreover, if S ⊂ Rn we denote I (S) its (real) vanishing ideal.

We recall the description of the Zariski closure of basic semialgebraic sets.

Theorem 1.1 (Real Nullstellensatz, [Mar08, th. 2.2.1], [BCR98, cor. 4.4.3]). Let S = S (g) be a basic
semialgebraic set. Then I (S) = R

√
suppO(g). In other words, f = 0 on S ⇐⇒ ∃h ∈N : − f 2h ∈ O(g).
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In particular, S (g) is empty if and only if −1 ∈ O(g) (and thus R[X] = O(g)), and if I is an ideal

then I (VR(I )) =
√
supp(Σ2 + I ) = R

√
I .

If S ⊂ Rn, we denote by Pos(S) the convex cone of non-negative polinomials on S : Pos(S) ≔
{ f ∈R[X] | f (x) ≥ 0 ∀x ∈ S }.

We say that a quadratic module Q is Archimedean if ∃ 0 ≤ r ∈ R : r − ‖X‖2 ∈ Q. Notice that if
Q is Archimedean then S (Q) is compact. The viceversa is true for preorderings, see Theorem 1.2
and also [Sch05c].

When S is compact, one can obtain an Archimedean quadratic module from Q(g) by adding a
generator gM =M −‖X‖2 ≥ 0, forM big enough or by adding all the products of the gi ’s, replacing
the generators g by Πg.

The importance of Archimedean quadratic modules is illustrated by Schmüdgen/Putinar’s
characterization of strictly positive polynomials, and their solution of the moment problem (see
theorem 3.1).

Theorem 1.2 (Schmüdgen / Putinar Positivstellensatz,[Sch91] [Put93]). Let S (g) be a basic semial-
gebraic set.

• If S (g) is compact then O(g) is Archimedean;

• If Q(g) is Archimedean, then f > 0 on S (g) implies f ∈ Q(g).

As a corollary one can prove that, if Q is Archimedean, then Q = Pos(S).

1.4 Finite varieties, interpolation polynomials and bases

Now we move to interpolator polynomials, a tool which will be often used in the proofs.
Consider a finite set of points Ξ = {ξ1, . . . ,ξr} ∈ Cn. It is well known that it admits a family of

interpolator polynomials. Such a family (ui) ⊂ C[X] is by definition such that ui(ξj ) = δi,j . The
minimal degree ι(Ξ) of a family of interpolator polynomials is called the interpolation degree of Ξ.

Let I (Ξ) = {p ∈ C[X] | p(ξi) = 0 ∀i ∈ 1, . . . , r } be the complex vanishing ideal of the points Ξ.
The Castelnuovo-Mumford regularity of an ideal I (resp. Ξ) is maxi (degSi − i) where Si is the i

th

module of syzygies in a minimal resolution of I (resp. I (Ξ)). Let denote it by ρ(I ) (resp. ρ(Ξ)).
Since a family of interpolator polynomials (pi ) is a basis of C[X]/I (Ξ), the ideal I (Ξ) is gen-

erated in degree ≤ ι(Ξ) + 1 and ρ(Ξ) ≤ ι(Ξ) + 1. A classical result [Eis05, th. 4.1] relates the
interpolation degree of Ξ with its regularity, and the minimal degree of a basis of C[X]/I (Ξ). This
result can be stated as follows, for real points Ξ ⊂ Rn:

Proposition 1.3. Let Ξ = {ξ1, . . . ,ξr } ⊂ Rr with regularity ρ(Ξ). Then ι(Ξ) = ρ(Ξ)− 1, the minimal de-
gree of a basis of R[X]/I (Ξ) is ρ(Ξ)−1 and there exists interpolator polynomials u1, . . . ,ur ∈ R[X]ρ(Ξ)−1.

We say that h = {h1, . . . ,hs} is a graded basis of an ideal I if for all p ∈ I , there exists qi ∈ R[X]
with deg(qi) ≤ deg(p)−deg(hi) such that p =

∑s
i=1 hi qi . Equivalently, we have for all t ∈N, 〈h〉t = It .

For p ∈ R[X] and I an ideal of R[X], let λdeg(p) be its homogeneous component of highest
degree, that we call the initial of p, and let λdeg(I ) = ({λdeg(p) | p ∈ I}) be the initial of I . A family
h = (h1, . . . ,hs) is a graded basis of the ideal I = (h1, . . . ,hs) iff λdeg(I ) = (λdeg(h1), . . . ,λdeg(hs)). For
more properties of graded bases, also known as H-bases, see e.g. [Mac16].

A graded basis of an ideal I = (h) can be computed as a Grobner basis using a monomial
ordering ≺, which refines the degree ordering (see e.g. [CLO15]). It can also be computed as a
border basis for a monomial basis of least degree of R[X]/I (see e.g. [MT05]).

The degree of a graded basis of an ideal I is bounded by its regularity ρ(I ) (see e.g. [BS87]).
For a set of points Ξ = {ξ1, . . . ,ξr}, the ideal I (Ξ) has a graded (resp. Grobner, resp. border) ba-

sis of degree equal to the regularity ρ(Ξ). The minimal degree of a monomial basis B of R[X]/I (Ξ)
is ι(Ξ) = ρ(Ξ)− 1. Such a basis B can be chosen so that it is stable by monomial division.
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Proposition 1.4. Let Ξ = {ξ1, . . . ,ξr } ⊂ Rn, I = I (Ξ) its real vanishing ideal and let ρ = ρ(Ξ) the

regularity of Ξ. For t ≥ ρ − 1, σ ∈ I⊥t if and only if σ ∈ 〈e[t]ξ1 , . . . ,e
[t]
ξr
〉. Moreover if t ≥ 2(ρ − 1) and

σ ∈ Lt(It) then σ ∈ cone(e
[t]
ξ1
, . . . ,e

[t]
ξr
).

Proof. Let u1, . . . ,ur ∈ R[X]t be interpolation polynomials of degree ≤ ρ − 1 ≤ t (Proposition 1.3).
Consider the sequence of vector space maps:

0→ It →R[X]t
ψ
−→ 〈u1, . . . ,ur〉 → 0

p 7→
r∑

i=1

p(ξi)ui ,

which is exact since kerψ = {p ∈ R[X]t | p(ξi) = 0} = It . Therefore we have R[X]t = 〈u1, . . . ,ur〉 ⊕ It .
Let σ ∈ I⊥t . Then σ̃ = σ −∑r

i=1 〈σ |ui〉e
[t]
ξi
∈ I⊥t is such that 〈σ̃ |ui〉 = 0 for i = 1, . . . , r. Thus,

σ̃ ∈ 〈u1, . . . ,ur〉⊥ ∩ I⊥t = (〈u1, . . . ,ur〉 ⊕ It)⊥ = R[X]⊥t , i.e. σ̃ = 0 showing that I⊥t ⊂ 〈e
[t]
ξ1
, . . . ,e

[t]
ξr
〉. The

reverse inclusion is direct since It is the space of polynomials of degree ≤ t vanishing at ξi for
i = 1, . . . , r.

Assume that t ≥ 2(ρ−1) and that σ ∈ Lt(It). Then σ ∈ I⊥t and
〈
σ
∣∣∣p2

〉
≥ 0 for any p ∈R[X]⌊ t2 ⌋. By

the previous analysis,

σ =
r∑

i=1

ωie
[t]
ξi

As
〈
σ
∣∣∣u2i

〉
= ωi ≥ 0 for i = 1, . . . , r, we deduce that σ ∈ cone(e[t]ξ1 , . . . ,e

[t]
ξr
).

2 Finite Convergence and Exactness

We describe now the Lasserre SoS and MoM relaxations [Las01], and we define the exactness prop-
erty. Hereafter we assume that the minimum f ∗ of the objective function f is always attained on
S , that is: Smin

≔ {x ∈ S | f (x) = f ∗ } , ∅.

2.1 Polynomial optimization relaxations

We define the SoS relaxation of order d of problem (1) as Q2d(g) and the supremum:

f ∗SoS,d ≔ sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
. (4)

When necessary we will replace g by Πg (that is Q(g) by O(g)).
We want to define the dual approximation of the polynomial optimization problem. We are

interested in an affine hyperplane section of the cone Ld(g):

L(1)d (g)≔
{
σ ∈ Ld(g) | 〈σ |1〉 = 1

}
.

We will use the notation L(1)(g) in the infinite dimensional case. The convex sets L(1)d (g) are spec-

trahedra: they are defined by the Linear Matrix Inequalities H
⌊ d2 ⌋
σ < 0, H

N1
g1⋆σ
< 0, . . . , H

Nr
gr⋆σ
< 0,

where Ni = d − ⌈
deggi
2 ⌉. The convex set L(1)d (g) is also called the state space of (R[X]d ,Qd(g),1) in

[KS19]. The pure states are the extreme points of this convex set.
With this notation we define the MoM relaxation of order d of problem (1) as L2d(g) and the

infimum:
f ∗MoM,d ≔ inf

{
〈σ |f 〉 ∈R | σ ∈ L(1)2d (g)

}
. (5)

When necessary we will replace g byΠg (that is Q(g) by O(g)). We are interested, in particular,
in the linear functionals that realize the minimum. We easily verify that f ∗SoS,d ≤ f

∗
MoM,d ≤ f ∗.

When Smin := {ξ ∈ S | f (ξ) = f ∗} , ∅, the infimum f ∗MoM,d is reached since L(1)d (g) is closed.
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Definition 2.1. Let f ∈ R[X] and f ∗ denote its minimum on S (g). We define the set of functional
minimizers as:

Lmin
2d (g)≔

{
σ ∈ L(1)2d (g) | 〈σ |f 〉 = f

∗ }.

Notice that Ld(g) is the cone over L(1)d (g), since for σ ∈ Ld(g) we have 〈σ |1〉 = 0⇒ σ = 0 (see

[Las+13, lem. 3.12]), and σ ∈ Ld(g) , 0 implies 1
〈σ |1〉σ ∈ L

(1)
d (g).

We now introduce two convergence properties that will be central in the article.

Definition 2.2 (Finite Convergence). We say that the SoS relaxation (Q2d(g))d∈N (resp. the MoM
relaxation L2d(g))d∈N has the Finite Convergence property for f if ∃k ∈N such that for every d ≥ k,
f ∗SoS,d = f

∗ (resp. f ∗MoM,d = f
∗).

Notice that if the SoS relaxation has finite convergence then the MoM relaxation has finite
convergence too, since f ∗SoS,d ≤ f

∗
MoM,d ≤ f ∗.

Definition 2.3 (SoS Exactness). We say that the SoS relaxation (Q2d(g))d∈N is exact for f if it has
the finite convergence property and for all d big enough, we have f − f ∗ ∈ Q2d(g) (in other words
sup = max in the definition of f ∗SoS,d ).

For the moment relaxation we can ask the (stronger) property that every truncated functional
minimizer is coming from a measure:

Definition 2.4 (MoM Exactness). We say that the MoM relaxation (L2d(g))d∈N is exact for f on the
basic closed semialgebraic set S if:

• it has the finite convergence property;

• for every k ∈ N big enough, for d = d(k) ∈ N big enough, every truncated functional mini-
mizer is coming from a probability measure supported on S , i.e. Lmin

2d (g)[k] ⊂M(1)(S)[k].

If not specified, S will be the semialgebraic set S = S (g) defined by g.
MoM exactness may be considered as a particular instance of the so called Moment Problem

(i.e. asking if σ ∈ R[X]∗ is coming from a measure) or of the Strong Moment Problem (i.e. asking
that the measure has a specified support). More precisely, MoM exactness can be considered as a
Truncated Strong Moment Property (since we are considering functionals restricted to polynomials
up to a certain degree).

In practice, to check the finite convergence, one tests the flat extension or the flat truncation
property of moment matrices (see [CF98], [LM09], [Nie13b]). Notice that flat truncation certifies
MoM exactness, and not only finite convergence. As the flat truncation property implies MoM
exactness, we will deduce from Theorem 4.4 that the flat truncation property holds at some finite
order of the MoM relaxation (and not only asymptotically) for regular Polynomial Optmization
Problems.

We recall results of strong duality, i.e. cases when we know that f ∗SoS,d = f ∗MoM,d , that will be
using. See also Proposition 3.13.

Theorem 2.5 (Strong duality). Let Q = Q(g) be a quadratic module and f the objective function. Then:

(i) if suppQ = 0 then ∀d: f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Qd(g)) and f
∗
SoS,d = f ∗MoM,d[Mar08,

prop. 10.5.1];

(ii) if r2 − ‖X‖2 ∈ g then f ∗SoS,d = f
∗
MoM,d for all d [JH16].

Remark. [JH16] applies when the ball constraint r2−‖X‖2 appears explicitely in the description of
S . But if we consider a problem with MoM finite convergence and such that Q(g) is Archimedean,
then we can use [JH16] to prove that we have also SoS finite convergence. Indeed, if Q(g) is
Archimedean there exists r,d such that r2 − ‖X‖2 ∈ Q2d(g). This means that Q2t(g, r

2 − ‖X‖2) ⊂
Q2d+2t(g). If we define:
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• f ∗SoS,d = sup
{
λ ∈ R | f −λ ∈ Q2d(g)

}

• f ∗
′

SoS,d = sup
{
λ ∈ R | f −λ ∈ Q2d(g, r

2 − ‖X‖2)
}

and f ∗MoM,d , f
∗′
MoM,d the corresponding MoM relaxations, then:

f ∗MoM,t ≤ f ∗
′

MoM,t = f
∗′
SoS,t ≤ f ∗SoS,d+t ≤ f

∗.

Then finite convergence of theMoM relaxation implies finite convergence of the SoS one (we thank
Monique Laurent for her useful comments).

We recall that we are assuming Smin
, ∅ (in particular f ∗ is finite: otherwise it may happen

that f ∗SoS,d = −∞). Notice that if strong duality holds, then SoS finite convergence is equivalent to
MoM finite convergence.

2.2 Examples and counterexamples

In this section, we give examples showing how these notions are (not) related.

No finite convergence. The first example shows that SoS and MoM relaxations for polynomial
optimization on algebraic curves do not have necessarily the finite convergence property.

Example 2.6 ([Sch00]). Let C ⊂ Rn be a smooth connected curve of genus ≥ 1, with only real points
at infinity. Let h = {h1, . . . ,hs} ⊂ R[X] be a graded basis of I = I (C) = (h) . Then there exists f ∈R[X]
such that the SoS relaxation Q2d(±h) and the MoM relaxation L2d(±h) have no finite convergence
and are not exact.

Indeed by [Sch00, Theorem 3.2], there exists f ∈ R[X] such that f ≥ 0 on C = S (±h), which is
not a sum of squares in R[C] = R[X]/I . Consequently, f < Σ2[X] + I = Q(±h). As f ≥ 0 on C, its
infimum f ∗ is non-negative and we also have f − f ∗ < Q(±h).

Using Proposition 3.13 we deduce that Qd(±h) is closed, that there is no duality gap and that
the supremum f ∗SoS,d is reached. Thus if the SoS relaxation has finite convergence then f − f ∗ ∈
Q2d(±h) for some d ∈N. This is a contradiction, showing that the SoS and the MoM relaxations
have no finite convergence and cannot be SoS exact for f .

In dimension 2, there are also cases where the SoS and MoM relaxations cannot have finite
convergence or be exact.

Example 2.7 ([Mar08]). Let g1 = X3
1 −X2

2 , g2 = 1 −X2. Then S = S (g) is a compact semialgebraic
set of dimension 2 and O(g) is Archimedean. We have f = X1 ≥ 0 on S but X1 < O(g) (see [Mar08,
Example 9.4.6(3)]). The infimumof f on S is f ∗ = 0. Assume that we haveMoMfinite convergence.
By Theorem 2.5 and remark below, Qd(Πg) is closed, the supremum f ∗SoS,d is reached and strong
duality holds: f ∗SoS,d = f ∗MoM,d = f ∗ = 0 for d ∈ N big enough. Then f − f ∗ = f ∈ O(g): but this is
a contradiction. Therefore, the relaxations Q2d(Πg) and L2d(Πg) cannot have finite convergence
and thus cannot be exact for f = X1.

The next example shows that non-finite convergence and non-exactnesss always happen in
dimension ≥ 3.

Example 2.8. Let n ≥ 3. LetQ be an Archimedean quadratic module generated by g1, . . . , gs ∈R[X]
such that S (Q) ⊂ Rn is of dimension m ≥ 3 and let h be a graded basis of R

√
suppQ (in particular

h = 0 if suppQ = 0 or if m = n, i.e. S (Q) is of maximal dimension), then there exists f ∈R[X] such
that the SoS relaxation (Q2d(g,±h))d∈N and MoM relaxation (L2d(g,±h))d∈N do not have the finite
convergence property (and thus are not exact).

Indeed by Proposition 3.13 f ∗SoS,d = f
∗
MoM,d for d big enough and the supremum f ∗SoS,d is reached.

By [Sch00, Prop. 6.1] for m ≥ 3, Pos(S (Q)) = Pos(S (Q+(h))) )Q+(h). So let f ∈ Pos(S (Q)) \Q+(h)
and let f ∗ be its minimum on S (Q). Suppose that f − f ∗ ∈Q+ (h), then f ∈Q+ (h) + f ∗ =Q+ (h), a
contradiction. Then the SoS and the MoM relaxations do not have the finite convergence property
(and they are not exact).
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SoS exactness, no MoM exactness.

Example 2.9. We want to find the global minimum of f = X2
1 ∈ R[X1, . . . ,Xn] = R[X] for n ≥ 3. Let

d ≥ 2, X′ = (X2, . . . ,Xn) and σ ∈ Ld(Σ2[X′]) such that σ <M(Rn−1)[d]. Such a linear functional exists
because when n > 2 there are non-negative polynomials in R[X′] which are not sum of squares,
such as the Motzkin polynomial (see [Rez96]). As Qd(Σ2[X′]) is closed, such a polynomial can be
separated from Qd(Σ2[X′]) by a linear functional σ ∈ Ld(Σ2[X′]), which cannot be the truncation
of a measure (i.e. Σ2[X′] does not have the truncated moment property). Define σ : h 7→ 〈σ |h〉 =
〈σ |h(0,X2, . . . ,Xn)〉. We have σ ∈ L(Σ2[X]) since σ ∈ L(Σ2[X′]). Obviously 〈σ |f 〉 = 0 = f ∗ (the
minimum of X2

n ), f − f ∗ = X2
1 ∈ Σ

2 and the SoS relaxation is exact. Since σ is coming from a
measure if and only if σ is coming from a measure, the MoM relaxation cannot be exact.

The previous example generalizes easily to quadratic modulesQ with supp(Q) , {0}, which do
not have the (truncated) moment property, i.e. there exists σ ∈ Ld(Q) such that σ <M(S (Q))[d].
Taking f = h2 with h ∈ supp(Q), h , 0, we have 〈σ |f 〉 = 0 = f ∗ and the MoM relaxation cannot be
exact since σ <M(S (Q))[d], while the SoS relaxation is exact (f − f ∗ = h2 ∈Q).

Example 2.9 is an example where the number of minimizers of f on S is infinite. We show that
this can happen also when the minimizers are finite (and even when S is finite!).

Example 2.10 ([Sch05a, ex. 3.2], [Sch05b, rem. 3.15], Example 3.6). We want to minimize the
constant function f = 1 on the origin S = S (Q) = {0}, whereQ = Q(1−X2−Y 2,−XY,X−Y,Y −X2) ⊂
R[X,Y ]. In this case suppQ = R

√
suppQ = (0). Notice that the SoS relaxation is exact and the MoM

relaxations has finite convergence, since f is a square. Now suppose that the MoM relaxation

is exact, i.e. Lmin
2d (g)[2k] = L(1)2d (g)

[2k] ⊂ M(1)(S)[2k] = {e[2k]0 } for some d,k big enough. Then for
σ∗ ∈ L2d(g) generic we have (Annk(σ

∗)) = (Annk(e0)) = (X,Y ). But from Theorem 3.16 we know
that for d,k big enough (Annk(σ

∗)) = R
√
suppQ = (0), a contradiction. Then the MoM relaxation is

not exact.

SoS finite convergence, MoM exactness.

Example 2.11. Let f = (X4Y 2 + X2Y 4 + Z6 − 2X2Y 2Z2) + X8 + Y 8 + Z8 ∈ R[X,Y ,Z]. We want to

optimize f over the gradient variety VR
(
∂f
∂X
, ∂f
∂Y
, ∂f
∂Z

)
which is zero dimensional (see [NDS06]). By

Theorem 5.1 the MoM relaxation is exact, and by Theorem 2.5 and remark below the SoS has

the finite convergence property (notice that Q(± ∂f
∂X
,± ∂f

∂Y
,± ∂f

∂Z
) =O(± ∂f

∂X
,± ∂f

∂Y
,± ∂f

∂Z
) is Archimedean

since VR
(
∂f
∂X
, ∂f
∂Y
, ∂f
∂Z

)
is compact). But the SoS relaxation is not exact, as shown in [NDS06].

Example 2.12. Let f = X1. We want to find its value at the origin, defined by ‖X‖2 = 0. As proved
in [Nie13c] there is finite convergence but not exactness for the SoS relaxation. By Theorem 5.1
the MoM relaxation is exact.

We summarize the previous examples in Table 1 in terms of the properties of finite conver-
gence (SoS f.c. and MoM f.c.) exactness (SoS ex. and MoM ex.) and the dimension m of the
semialgebraic set S .

3 Geometry of Moment Representations

We give a description of the moment linear functionals in the full dimensional and truncated
case. In particular, in Section 3.1 we describe know properties of quadratic modules and their
duals (see for instance [Mar08, ch. 3]) and we focus on generic elements (Definition 3.2), infinite
dimensional equivalents of the finite dimensional ones (see for instance [Las+13]). The finite di-
mensional (truncated) case is described in Section 3.2, where the main technical tools of the paper
are developed. In particular we analyse the extended quadratic module associated with the MoM
relaxations (Theorem 3.9), and consequently prove properties of the cones Ld(g) (Lemma 3.10)
and of their generic elements (Theorem 3.16). Finally we apply these results to the zero dimen-
sional case (Theorem 3.19).
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Table 1: Summary of convergence results.

Expl. SoS f. c. SoS ex. MoM f. c. MoM ex. m

2.6 NO NO NO NO 1

2.7 NO NO NO NO 2

2.8 NO NO NO NO ≥ 3

2.9 YES YES YES NO ≥ 3

2.10 YES YES YES NO 0

2.11 YES NO YES YES 0

2.12 YES NO YES YES 0

3.1 Infinite moment representations

With our setting, the classical moment problem can be stated as follows: given σ ∈ R[X]∗, when
there exists µ ∈M(Rn) such that:

∀f ∈R[X] 〈σ |f 〉 =
∫
f dµ .

Haviland’s theorem (see [Mar08, th. 3.1.2] and [Sch17, th. 1.12]) says that this happens if and
only if σ is positive on positive polynomials. Since checking this is a computationally hard task,
then it is interesting to find (proper) subsets of positive polynomials that have the same property,
chosen in such a way that checking this conditions is easy. Important results in this direction are
theorems of Schmüdgen and Putinar.

Theorem 3.1 ([Sch91],[Put93]). Let Q be an Archimedean finitely generated quadratic module and

S = S (Q). Then L(Q) =M(S) = cone(eξ : ξ ∈ S).

This theorem solves the moment problem in the Archimedean (compact) case. Notice that
M(S (Q)) depends only on S = S (Q) and not on the generators of Q. In particular, if Q and Q′ are
Archimedean and S (Q) = S (Q′) then L(Q) = L(Q′).

If we have a generic measure µ ∈ M(S), i.e. which is nonzero on any nonzero polynomial on
S , obviously its support is equal to S : suppµ = S . We want to generalize this property to linear
functionals which are not necessary coming frommeasures. In particular we want to recover infor-
mations about the semialgebraic set S = S (g) from linear functionals σ ∈ L(g). We are interested
in generic elements σ∗ ∈ L(Q), that we characterize in terms of the annihilator, i.e. the kernel of
the Hankel operator (see also Proposition 3.15).

Definition 3.2. We say that σ∗ ∈ L(Q) is generic if Ann(σ∗) ⊂ Ann(σ) ∀σ ∈ L(Q).

Proposition 3.3. Let I be an ideal of R[X] and σ∗ ∈ L(I ) be generic. Then Ann(σ∗) = R
√
I .

Proof. Notice that if x ∈ VR(I ) then ex ∈ L(I ). Moreover Ann(ex) = I (x). This implies:

Ann(σ∗) ⊂
⋂

x∈VR(I )
Ann(ex) =

⋂

x∈VR(I )
I (x) = I (VR(I )) =

R
√
I ,

where the last equality is the Real Nullstellenstatz, Theorem 1.1.
By definition, I ⊂ Ann(σ∗). Since Ann(σ∗) is a real radical ideal (see [Las+13, prop. 3.13]) we

have R
√
I ⊂ Ann(σ∗), which proves that Ann(σ∗) = R

√
I .

Proposition 3.3 generalizes to quadratic modules as follows.

Proposition 3.4. Let Q be a quadratic module, S = S (Q) and σ∗ ∈ L(Q) be generic. Then R
√
suppQ ⊂

Ann(σ∗) ⊂ I (S). Moreover if Q is Archimedean then Ann(σ∗) = I (S).
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Proof. As in the proof of Proposition 3.3, we get:

Ann(σ∗) ⊂
⋂

x∈S
Ann(ex) =

⋂

x∈S
I (x) = I (S).

Now observe that suppQ ⊂ Ann(σ∗) by definition. Since Ann(σ∗) is a real radical ideal (see
[Las+13, prop. 3.13]), then R

√
suppQ ⊂ Ann(σ∗).

For the second part, if Q is Archimedean, then by Theorem 3.1 L(Q) =M(S). In particular
σ∗ is a measure µ ∈ M(S) supported on S : ∀f ∈ R[X], 〈σ∗|f 〉 =

∫
f dµ. Let h ∈ I (S) and f ∈ R[X].

Then:

〈σ∗|f h〉 =
∫
f hdµ =

∫
0dµ = 0,

i.e. h ∈Ann(σ∗), which proves the reverse inclusion.

Now we describe L(Q) without the Archimedean hypothesis (compare with Theorem 3.1).

Lemma 3.5. Let Q be a quadratic module. Then L(Q) = L( R
√
suppQ +Q). In particular for any ideal

I ⊂ R
√
suppQ we have L(Q) = L( R

√
I +Q).

Proof. Since
√
suppQ ⊂Q (see [Mar08, th. 4.1.2]), we have

√
suppQ +Q ⊂Q +Q =Q. Then:

L(Q) = L(Q) ⊂ L(
√
suppQ +Q) ⊂ L(Q).

Since R
√
suppQ =

√
suppQ (see Section 1.3) we have L( R

√
suppQ+Q) = L(

√
suppQ+Q) = L(Q).

Remark. Lemma 3.5 shows that, even if the semialgebraic set is not compact, we can replace any
ideal in the description of the semialgebraic set with its real radical. In particular, since I (S (g)) =
R
√
O(g) (by Theorem 1.1), we have L(O(g)) = L(O(g) + I (S (g))).
The inclusion Q +

√
suppQ ⊂Q can be strict, as shown by the following example.

Example 3.6 ([Sch05a, ex. 3.2], [Sch05b, rem. 3.15], Example 3.6). LetQ =Q(1−X2−Y 2,−XY,X−
Y,Y −X2) ⊂ R[X,Y ]. Notice that S = S (Q) = {0} and that, sinceQ is Archimedean, Q = Pos({0}). In
this case suppQ = (0) and I (S) = suppQ = (X,Y ), and thus Q +

√
suppQ (Q.

3.2 Truncated moment representations

Now we prove the corresponding results in the truncated case. For a finitely generated quadratic

module Q = Q(g) ⊂ R[X], we denote Q[k] = Qk(g). Notice that Q[k]
∨
= Q∨[k] = Ld(g), and thus the

following definition is natural and important for the study of the MoM relaxations.

Definition 3.7. Let Q = Q(g) be a finitely generated quadratic module. We define Q̃ =
⋃
dQd(g) =⋃

dQ[d].

Notice that Q̃ depends a priori on the generators g of Q: we will prove that Q̃ is a finitely
generated quadratic module and that it does not depend on the particular choice of generators.

Moreover notice that Q ⊂ Q̃ =
⋃

d

Q[d] ⊂
⋃

d

Q[d] = Q, but these inclusions may be strict as we will

see.

Lemma 3.8. Let Q = Q(g) and J = R
√
suppQ. Then for every d ∈ N there exists k ≥ d such that

Jd ⊂ Q[k].

Proof. Let m be big enough such that ∀f ∈ J = R
√
suppQ =

√
suppQ we have: f 2

m ∈ suppQ (if√
J = (h1, . . . ,ht) and h

ai
i ∈ I , we can take m such that 2m ≥ a1 + · · · + at). Let f ∈ Jd with deg f ≤ d.

Then f 2
m ∈ suppQ[k′] ⊂Q[k′ ] for k

′ ∈N big enough. Using the identity [Sch05b, remark 2.2]:

m− a = (1− a
2
)2 + (1− a

2

8
)2 + (1− a4

128
)2 + · · ·+ (1− a

2m−1

22
m−1 )

2 − a2
m

22
m+1−2 ,
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substituting a by −mfε and multiplying by ε
m , we have that ∀ε > 0, f + ε ∈Q[k] for k =max{k′ ,2md}

(the degree of the representation of f + ε does not depend on ε). This implies that f ∈ Q[k].

We can now describe Q̃.

Theorem 3.9. Let Q = Q(g) be a finitely generated quadratic module and let J = R
√
suppQ. Then

Q̃ = ∪d∈NQ[d] = Q + J and supp Q̃ = J . In particular, Q̃ is a finitely generated quadratic module and
does not depend on the particular choice of generators of Q.

Proof. By [Mar08, lemma 4.1.4]Q[d]+ Jd is closed in R[X]d , thus Q[d] ⊂Q[d]+ Jd . Taking unions we

prove that Q̃ ⊂Q + J .
Conversely by Lemma 3.8 for d ∈ N and k ≥ d ∈ N big enough, Jd ⊂ Q[k]. Then, we have

Q[d] + Jd ⊂Q[k] +Q[k] ⊂Q[k] +Q[k] ⊂Q[k]. Taking unions on both sides gives Q + J ⊂ Q̃.

Finally supp Q̃ = supp(Q + J) = J by [Sch05b, lemma 3.16].

Remark. We proved that Q̃ =Q + R
√
suppQ, and thus in Example 3.6 we have that Q̃ (Q. We also

have supp Q̃ = R
√
suppQ so that if suppQ is not real radical then Q ( Q̃. Example 2.12 is such

a case where suppQ , R
√
suppQ. We notice that, by Theorem 3.9 and [Sch05b, th. 3.17], if Q is

stable1 then Q̃ =Q.

Theorem 3.9 suggests the idea that, when we consider the MoM relaxation, we are extending
the quadratic moduleQ(g) to Q(g,±h), where h are generators of R

√
suppQ(g). We specify this idea

in Lemma 3.10, Proposition 3.13 Theorem 3.16.
We describe relations between the truncated parts of Ld(g).

Lemma 3.10. Let J = R
√
suppQ(g). If (h) ⊂ J , degh ≤ d, then ∃k ≥ d:

Lk(g)[d] ⊂ Ld(g,±h) ⊂ Ld (g).

In particular Lk(g)[d] ⊂ Ld(±h).

Proof. By Lemma 3.8, 〈h〉d ⊂ (h)d ⊂ Qk(g) for some k ≥ d. Let h ∈ h and f ∈ R[X]d−degh. Then

±f h ∈ Qk(g), and for σ ∈ Lk(g), we have
〈
σ [d]

∣∣∣f h
〉
= 〈σ |f h〉 = 0, i.e. Lk(g)[d] ⊂ Ld(g,±h). The other

inclusion Ld(g,±h) ⊂ Ld(g) follows by definition.

Remark. Lemma 3.10 says that the MoM relaxation (L2d(g))d∈N is equivalent to the MoM relax-
ation (L2d(g,±h))d∈N, where (h) = R

√
suppQ(g).

Lemma 3.10 is an algebraic result, in the sense that suppQ(g) may be unrelated to the geometry
S (g) that it defines. If some additional conditions hold (namely if we have only equalities, or a
preordering, or a small dimension), it can however provide geometric characterizations that will
be useful in Section 5.

Corollary 3.11. Suppose that S (g) ⊂ VR(h). Then for every t0 ≥ degh there exists t1 ≥ t0 such that:

Lt1(Πg)[t0] ⊂ Lt0(±h).

In particular this holds when (h) = I (S (g)).

Proof. S (g) ⊂ VR(h) if and only if R
√
(h) ⊂ I (S (g)) = R

√
suppQ(Πg) by Theorem 1.1. Then we can

apply Lemma 3.10.

Corollary 3.12. Let Q = Q(g). Suppose that S (g) ⊂ VR(h) and dim R[X]
suppQ ≤ 1. Then for every t0 ≥

degh there exists t1 ≥ t0 such that:
Lt1(g)

[t0] ⊂ Lt0(±h).
In particular this holds when (h) = I (S (g)).

1Q(g) is stable if ∀d ∈N there exists k ∈N such that Q(g)∩R[X]d =Qk(g)∩R[X]d .
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Proof. We prove it as Corollary 3.11, using [Mar08, cor. 7.4.2 (3)] instead of Theorem 1.1.

We mention a strong duality result, that is useful to produce examples and counterexamples
for exactness and finite convergence. It is essentially the result in [Mar03]. This generalizes the
condition suppQ = 0 in Theorem 2.5. We conjecture that a similar result holds more generally
when Q is reduced (i.e. suppQ = R

√
suppQ) without adding the generators of the radical of the

support.

Proposition 3.13. Let Q = Q(g) be a finitely generated quadratic module, and let h be a graded basis

of R
√
suppQ. Then for any d we have Qd(g,±h) = Qd(g,±h) is closed. Moreover, if we consider the

extended relaxations Q2d(g,±h) and L2d(g,±h), then for any f ∈ R[X] such that f ∗ > −∞ we have that
f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Q2d(g,±h)) and there is no duality gap: f ∗SoS,d = f

∗
MoM,d .

Proof. By [Mar08, lemma 4.1.4], Qd(g,±h) = Qd(g) + Id is closed. Therefore we have Ld(g,±h)∨ =

(Qd(g,±h))∨∨ = Qd(g,±h) = Qd(g,±h), from which we deduce that there is not duality gap, by
classical convexity arguments, as follows.

If f ∈ R[X] such that f ∗ > −∞, then
{
λ ∈ R | f − λ ∈ Q2d(g,±h)

}
is bounded from above.

Since Q2d(g,±h) is closed f ∗SoS,d = sup
{
λ ∈ R | f − λ ∈ Q2d(g,±h)

}
is attained. If f ∗SoS,d < f

∗
MoM,d ,

then f − f ∗MoM,d < Q2d(g,±h). Thus there exists a separating functional σ ∈ L(1)2d (g,±h) such that〈
σ
∣∣∣f − f ∗MoM,d

〉
< 0, which implies that 〈σ |f 〉 < f ∗MoM,d in contradiction with the definition of f ∗MoM,d .

Consequently, f ∗SoS,d = f
∗
MoM,d .

With the characterization of Q̃ we can now describe the kernel of Hankel operators associated
to truncated moment sequences, in analogy to the infinite dimensional case analyzed in Propo-
sition 3.4. First we recall the definition of genericity in the truncated setting and equivalent
characterizations.

Definition 3.14. We say that σ∗ ∈ Lk(g) is generic if rankHk
σ ∗ =max{rankHk

η | η ∈ Lk(g)}.

This genericity can be characterized as follows, see [Las+13, prop. 4.7].

Proposition 3.15. Let σ ∈ L2k(g). The following are equivalent:

(i) σ is generic;

(ii) Annk(σ) ⊂ Annk(η) ∀η ∈ L2k(g);

(iii) ∀d ≤ k, we have: rankHd
σ =max{rankHd

η | η ∈ L2k(g)}.

Remark. By Proposition 3.15 notice that ∀d ≤ k, if σ∗ ∈ L2k(g) is generic then (σ∗)[2d] is generic in
L2k(g)[2d]. In particular, Annd(σ

∗) ⊂ Annd(η) ∀η ∈ Lk(g).
Notice that the linear functionals in the relative interior of Lk(g) are generic. If we use an SDP

solver based on interior point method we will (approximately) get a moment sequence in the rela-
tive interior of the face L2d(g)∩ {〈σ |f 〉 = f ∗MoM,d}, which is then generic. We will use generic linear
functionals to recover the minimizers when we have exactness, see Theorem 4.4 and Theorem 5.1.

We are now ready to describe the kernel of generic elements.

Theorem 3.16. Let Q = Q(g) and J = R
√
suppQ. Then for all d,t ∈N big enough and for σ∗ ∈ Ld(g)

generic, we have J = (Annt(σ
∗)).

Proof. Let t ∈N such that J is generated in degree ≤ t, by the graded basis h = {h1, . . . ,hs}. From
Lemma 3.8 we deduce that there exists d ∈N such that J2t ⊂ Qd(g). Let σ∗ ∈ Ld(g) generic.

We first prove that J ⊂ (Annt(σ
∗)). By Proposition 3.15 we have Annt(σ

∗) =
⋂
σ∈Ld (g)Annt(σ).

Then it is enough to prove that Jt ⊂ Annt(σ) for all σ ∈ Ld(g).
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By Lemma 3.10 Ld (g)[2t] ⊂ L2t(±h) ⊂ 〈h〉⊥2t. Then ∀f ∈ Jt = 〈h〉t , ∀p ∈ R[X]t , ∀σ ∈ Ld(g), we

have f p ∈ 〈h〉2t and
〈
σ [2t]

∣∣∣f p
〉
= 0. This shows that Ht

σ (f )(p) =
〈
(f ⋆ σ)[t]

∣∣∣p
〉
= 〈σ |f p〉 = 0, i.e.

f ∈ Annt(σ).
Conversely, we show that (Annt(σ

∗)) ⊂ J for σ∗ generic inLd(g). Since J = supp Q̃ = supp
⋃
jQj (g)

(by Theorem 3.9) it is enough to prove that Annt(σ
∗) ⊂ suppQd(g) = suppLd(g)∨.

Let f ∈ Annt(σ∗) =
⋂
σ∈Lk(g)Annt(σ) (we use again Proposition 3.15) and let σ ∈ Ld(g). Then

〈σ |f 〉 =
〈
(f ⋆ σ)[t]

∣∣∣1
〉
= Ht

σ (f )(1) = 0. In particular f ∈ Ld(g)∨. We prove that −f ∈ Ld(g)∨ in the

same way. Then f ∈ suppQd(g), which proves that Annt(σ
∗) ⊂ suppQ̃ = J .

Theorem 3.16 is important as it shows the possibilities and the limits of the Lasserre MoM re-
laxations. For instance we cannot expect exactness of the MoM relaxation L2d(g) for any objective
function f (i.e. L2d(g)[k] ⊂M(S)[k]) if R

√
suppQ , I (S): see Example 2.10.

The geometric corollary of this theorem is the following:

Corollary 3.17. Let O = O(g) and S = S (g). Then there exists d,t ∈ N such that for σ∗ ∈ Ld(Πg)
generic, we have I (S) = (Annt(σ

∗)).

Proof. Apply Theorem 3.16 and Theorem 1.1.

We deduce another corollary, giving degree bounds for the case of a graded basis of a real
radical ideal.

Corollary 3.18. Let I = R
√
I be a real radical ideal and h be a graded basis of I . let ρ = ρ(I ) denote its

regularity. Then for all d ≥ ρ and σ∗ ∈ L2d(±h) generic, we have (Annd(σ∗)) = I .

Proof. We can find a graded basis h of degree ≤ ρ, see Section 1.4. Let d ≥ ρ and σ∗ ∈ L2d(±h)
generic. Then for all i we have (hi ⋆ σ

∗)[d] = 0, i.e hi ∈Annd(σ∗) and thus I ⊂ (Annd(σ
∗)).

Conversely, from Theorem 3.16 and its proof we see that (Annd(σ
∗)) ⊂ I for all d.

The following theorem is central in the paper: when supp(Q) is a zero-dimensional ideal (and
thus S is finite), we can completely describe our positive linear functionals with evaluations.

Theorem 3.19. Suppose that dim
R[X]

suppQ(g) = 0. Then, S = S (g) = {ξ1, . . . ,ξr} is non-empty and finite

and there exists d ∈N such that ∀k ∈N:

Ld+k(g)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

where ρ = ρ(ξ1, . . . ,ξr ) is the regularity of S . Moreover, if d ≥ t ≥ ρ(ξ1, . . . ,ξr ), d big enough, and
σ∗ ∈ L2d(g) is generic, then (Annt(σ

∗)) = I (ξ1, . . . ,ξr) = I (S) is the vanishing ideal of S .

Proof. Let I = suppQ(g) and J = R
√
suppQ(g) =

√
suppQ(g). Since dim R[X]

J = dim R[X]
I = 0 we have

I (S (g)) = R
√
suppQ(g) = J by [Mar08, cor. 7.4.2 (3)]. Then VR(J) = VR(I (S (g))) = S (g) = {ξ1, . . . ,ξr }

is finite.
We choose a graded basis h of J with degh ≤ ρ = ρ(ξ1, . . . ,ξr ), see Section 1.4. By Corollary 3.12

and Proposition 1.4, there exists d ∈N big enough such that for every k ∈N:

Ld+k(g)[2(ρ−1)+k] ⊂ L2(ρ−1)+k(±h) = L2(ρ−1)+k(J2(ρ−1)+k) = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

Since the converse inclusion is obvious, we prove that Ld+k(g)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

The second part follows from I (S (g)) = R
√
suppQ(g) and Corollary 3.18.

Remark. Notice that there exist examples with S (g) finite and dim
R[X]

suppQ(g) > 1, see Example 3.6.

However the hypothesis:

(i) dim R[X]
suppQ(g) = 0; and
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(ii) S (g) is finite and dim R[X]
suppQ(g) ≤ 1

are equivalent: (i) ⇒ (ii) is shown in the proof of Theorem 3.19, while (ii) ⇒ (i) follows from
I (S (g)) = R

√
suppQ(g) (see [Mar08, cor. 7.4.2 (3)]).

As special cases, we have that the conclusions of Theorem 3.19 hold for:

• Q(g) = Q(±h) = I (h) +Σ
2 with h = (h1, . . . ,hs) ⊂ R[X] and VR(h) = {ξ1, . . . ,ξr } non-empty and

finite. In this case, (Annt(σ
∗)) = I (ξ1, . . . ,ξr ) = R

√
(h) is the real radical of (h).

• Q(Πg) = O(g) is a preordering with S = S(g) = {ξ1, . . . ,ξr } non-empty and finite, since by

Theorem 1.1, dim R[X]
suppO(g) = dim R[X]√

suppO(g)
= dim R[X]

I (S(g)) = 0

Related results were obtained in [LLR08] and [Las+13], where they focus on the case of equa-
tions h defining a finite real variety. They prove that, for degree big enough and for every positive
linear functional σ ∈ L2d(g), the flat truncation property holds for Ht

σ , and that σ [2t] is a conic
linear combination of evaluations at the points of VR(h). In [LLR08, rem. 4.9] it is also mentioned
that the same can be proved for a preordering defining a finite semialgebraic set.

Theorem 3.19 generalizes these results, as shown by the following example where the quadratic
module that is not a preordering whose support is zero dimensional.

Example 3.20 ([Mar08, ex. 7.4.5 (1)]). Let Q = Q(X,Y ,1 −X,1 − Y,−X4,−Y 4) ⊂ R[X,Y ]. In this
case suppQ is zero dimensional andQ is not a preordering. Theorem 3.19 applies in this case, but
the results of [LLR08], [Las+13] do not apply.

4 Exactness for regular polynomial optimisation problems

In this section, we address the main question: Is the moment relaxation exact for regular poly-
nomial optimisation problems ? The regularity conditions that we consider are the Boundary
Hessian Conditions (BHC). These are conditions on the minimizers of a polynomial f on a basic
semialgebraic set S introduced by Marshall in [Mar06] and [Mar09], which as particular cases
of the so called local-global principle. Under these conditions, global properties of polynomials
(e.g. f ∈ Q) can be deduced from local properties (e.g. checking the BHC at the minimizers of f
on S (Q)). We refer to [Sch05a], [Sch06] and [Mar08, ch. 9] for more details. We introduce BHC
conditions following [Nie14].

Definition 4.1 (Boundary Hessian Conditions). Consider a POP with inequality constraints g =
{g1, . . . , gr }, equality constraints h = {h1, . . . ,hs} and objective function f . Let V = V (h) ⊂ Rn and
suppose that Q = Q(g,±h) is Archimedean. We say that the Boundary Hessian Conditions hold at a
minimizer point ξ ∈ S(g,±h) of f if ξ is a smooth point of V and:

• we can choose gi1 = t1, . . . , gik = tk that are part of a regular system of parameters t1, . . . , tm,m ≥
k, for V at ξ and for some neighbourhoodU of ξ we have S (gi1 , . . . , gik ,±h)∩U = S (g,±h)∩U ;

• On V , locally at ξ we have that ∇f = a1∇t1 + · · · + am∇tm, where ai are strictly positive real
numbers;

• On V , locally at ξ we have that Hess(f )(0, . . . ,0, tk+1, . . . tm) is positive definite in tk+1, . . . tm.

These conditions are related to standard conditions in optimization at a point ξ ∈ S (see e.g.
[Ber99]). Hereafter, the active constraints at ξ ∈ S are the constraints gi1 , . . . , gim such that gij (ξ) = 0.

To simplify the description of these conditions, we consider a constraint ±g(x) ≥ 0 as a single
(equality) constraint. Therefore an equality constraint defining the set S is an active constraint at
a point ξ ∈ S .

• Constraint Qualification Condition (CQC): for the active constraints gi1 , . . . , gil at ξ, the gradi-
ents ∇gi1(ξ), . . . ,∇gim(ξ) are linearly independent.
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• Strict Complementary Condition (SCC): for the active constraints gi1 , . . . , gim at ξ, there exist
a1, . . . ,am ∈ R with ai > 0 if gij is not an equality constraint such that ∇f = a1∇gi1(ξ) + · · · +
am∇gim(ξ).

• Second Order Sufficiency Condition (SOSC): for L(x) = f (x)−∑m
j=1 ajgij with ai > 0 if gij is not

an equality constraint, we have ∀v ∈ 〈∇gi1(ξ), . . . ,∇gim(ξ)〉⊥, v , 0, vt∇2L(ξ)v > 0.

If these conditions are satisfied, then the BHC conditions are satisfied with the active sign
constraints at ξ as regular parameters t1 = gi1 , . . . , tk = gik , see [Nie14].

Notice that when BHC hold, the minimizers are non-singular, isolated points and thus finite.
It is proved in [Mar06] that if BHC holds at every minimizer of f on S (g) then f − f ∗ ∈ Q(g),

which implies that the SoS relaxation is exact. [Nie14] proved that the BHC at every minimizer of
f , which hold generically, implies the SoS finite convergence property.

In this section, we prove that, if the BHC hold, then the MoM relaxation is exact. We need
some preliminary lemmas.

Lemma 4.2. Let p,g ∈ R[X], k ≥ degp+degg and d ≥ 2k+degg . If σ = σ [d] ∈ Ld(g) then:
〈
σ [d]

∣∣∣p2g
〉
=

0 implies pg ∈Annk(σ).

Proof. Let h ∈ R[X]k and σ = σ [d] ∈ Ld(g). Since σ [d] is positive on Qd(g) and
〈
σ [d]

∣∣∣p2g
〉
= 0, then

∀t ∈R:
0 ≤

〈
σ [d]

∣∣∣(p + th)2g
〉
= t2

〈
σ [d]

∣∣∣h2g
〉
+2t

〈
σ [2d]

∣∣∣phg
〉
.

As a function of t the last expression is non-negative, and equal to 0 for t = 0. Then t = 0 must be a

double root, and thus
〈
σ [d]

∣∣∣phg
〉
=
〈
(f g ⋆ σ)[k]

∣∣∣h
〉
= 0 for all h ∈R[X]k. But this means pg ∈Hk

σ .

Lemma 4.3. Let f ∈ Ql(g). Then for k and d ≥ 2k big enough, if σ ∈ Ld(g) then: 〈σ |f 〉 = 0 if and only
if f ∈Annk(σ).

Proof. The if part is obvious.
For the only if part, we set g0 = 1 for notation convenience. Since f ∈ Ql(g), then f =

∑
i sigi ,

with si =
∑
j p

2
i,j and deg sigi ≤ l. Let d ≥maxi,j {2deg(pi,j ) + deg(gi)} and σ ∈ Ld(g). By hypothesis:

0 =
〈
σ [d]

∣∣∣f
〉
=
∑

i,j

〈
σ [d]

∣∣∣∣p2i,jgi
〉
,

which implies
〈
σ [d]

∣∣∣∣p2i,jgi
〉
= 0 for all i and j. Let ki,j and di,j be given from Lemma 4.2 (applied

to pi,j and gi ). Let k′ ≥ maxi,j {ki,j }. Then pi,jgi ∈ Annk′ (σ) for all i and j which implies that

p2i,jgi ∈ Annk′−degpi,j (σ). Letting k = mini,j{k′ −degpi,j}, we finally get p2i,jgi ∈ Annk(σ) for all i and
j, and f =

∑
i,j p

2
i,jgi ∈Annk(σ).

Theorem 4.4. Let f ∈ R[X], Q = Q(g) be an Archimedean finitely generated quadratic module and as-
sume that the BHC hold at every minimizer of f on S = S (g). Then the moment relaxation (L2d(g))d∈N
is exact. For t ∈N and d,e ≥ t big enough:

Lmin
2d (g)[2t] = L2e(g,±(f − f ∗))[2t] = conv(eξ1 , . . . ,eξr )

[2t].

where {ξ1, . . . ,ξr } is the finite set of minimizers of f on S . Moreover, if d ≥ t ≥ ρ(ξ1, . . . ,ξr), d big enough,
and σ∗ ∈ Lmin

2d (g) is generic, then (Annt(σ
∗)) = I (ξ1, . . . ,ξr ) is the vanishing ideal of the minimizers of

f on S .

Proof. We can assume without loss of generality that f ∗ = 0. For d,e big enough, if σ ∈ Lmin
2d (g)

then f ∈ Anne(σ) by Lemma 4.3. This implies that Lmin
2d (g)[2e] ⊂ L2e(g,±f ). Since the BHC hold,

we know that dim
R[X]

supp(Q+(f )) = 0 (see the proof of [Mar06, th. 2.3]). By Theorem 3.19 applied
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to L2e(g,±f ), we have L2e(g,±f )[2t] = conv(eξ1 , . . . ,eξr )
[2t] for t ∈ N and e big enough. Since

conv(eξ1 , . . . ,eξr )
[2t] ⊂ Lmin

2d (g)[2t] by definition, we proved the first part: up to restriction, func-
tional minimizers are coming from convex sums of evaluations at the minimizers of f .

We prove that for d ≥ t ≥ ρ(ξ1, . . . ,ξr) big enough and σ∗ ∈ Lmin
2d (g) generic, (Annt(σ

∗)) =
I (ξ1, . . . ,ξr ) by applying Theorem 3.19 to Lmin

2d (g)[2t] = L2e(g,±(f − f ∗))[2t] = conv(eξ1 , . . . ,eξr )
[2t]

for e ∈N big enough.

Remark. The conclusions of Theorem 4.4 remain valid if

• f − f ∗ ∈Q (i.e. SoS exactness);

• dim
R[X]

supp(Q+(f −f ∗)) = 0

using Lemma 4.3 and the proof of Theorem 4.4.

We show now that moment exactness holds generically. For polynomials f ∈ R[X]d and g1 ∈
R[X]d1 , . . . , gs ∈ R[X]ds , we say that a property holds generically (or that the property holds for
generic f ,g1, . . . , gs) if there exists finitely many nonzero polynomials φ1, . . . ,φl in the coefficients
of polynomials in R[X]d and R[X]d1 , . . . ,R[X]ds such that, when φ1(f ,g) , 0, . . . ,φl (f ,g) , 0, the
property holds.

Corollary 4.5. For f ∈R[X]d and g1 ∈R[X]d1 , . . . , gs ∈ R[X]ds generic, the moment relaxation (L2d(g))d∈N
is exact.

Proof. By [Nie14, th. 1.2] BHC hold generically. We apply Theorem 4.4 to conclude.

5 Exact Moment Relaxations

In this section, we consider the Polynomial Optimization Problem of minimizing f ∈ R[X] on
a basic semialgebraic set S = S (g) where g = {g1, . . . , gs} ⊂ R[X]. We describe cases, where the
Moment Relaxation can be made exact, even if the given problem is not a regular Polynomial
Optimization Problem.

5.1 Finite semialgebraic set

We assume that S = S (g) = {ξ1, . . . ,ξr } ⊂ Rn is non-empty and finite.

Theorem 5.1. Let f ∗ denote the infimum of f on S = S (g) and let Q = Q(g). Suppose that dim R[X]
suppQ =

0. Then the moment relaxation (L2d(g))d∈N is exact. For t ∈N and d ≥ t big enough,

Lmin
2d (g)[2t] = conv(eξ1 , . . . ,eξl )

[2t],

where {ξ1, . . . ,ξl } ⊂ Rn is the finite set of minimizers of f on S . Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξl ),
d big enough, and σ ∈ Lmin

2d (g) is generic, then (Annt(σ)) = I (ξ1, . . . ,ξl) is the vanishing ideal of the
minimizers {ξ1, . . . ,ξl } of f on S .

Proof. By Theorem 3.19 for d ≥ t big enough, L2d(g)[2t] = cone(eξ1 , . . . ,eξr )
[2t]. Then:

Lmin
2d (g)[2t] = {σ ∈ L(1)2d (g)

[2t] | 〈σ |f 〉 = f ∗} = {σ ∈ conv(eξ1 , . . . ,eξr )
[2t] | 〈σ |f 〉 = f ∗} = conv(eξ1 , . . . ,eξl )

[2t].

For the second part we apply Proposition 1.4 and Corollary 3.18 to a graded basis h of I (ξ1, . . . ,ξl).

As corollaries, we have that the conclusions of Theorem 5.1 hold for:

• Q(Πg) = O(g) a preordering such that S = S (g) = S (Πg) is finite, since by Theorem 1.1,

dim R[X]
suppO(g) = dim R[X]√

suppO(g)
= dim R[X]

I (S(g)) = 0.
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• Q(g,±h) with VR(h) is finite, since for Q =Q(g,±h),

dim
R[X]

suppQ
= dim

R[X]
√
suppQ

= dim
R[X]

R
√
suppQ

≤ dim
R[X]
R
√
(h)

= 0.

Notice that, even if the SoS relaxation has the finite convergence property and the MoM re-
laxation is exact, it may not be SoS exact for real finite varieties as shown in Example 2.11 and
Example 2.12.

5.2 Finite minimizers

In this section, we consider Polynomial Optimization Problems for which the non-empty set of
minimizers is finite and we propose a strategy to recover them.

If the set ofminimizers is non-empty and finite, andwe know theminimum f ∗ of f on S = S (g),
by adding the equation f − f ∗ to the definition of the truncated quadratic module, we obtain a
quadratic module Q′ = Q(g,±(f − f ∗)), which defines the finite set S (Q′) of minimizers of f on S .
We can then apply the results of Section 5.1 to the relaxation (L2d(g,±(f − f ∗)))d or (L2d(Πg,±(f −
f ∗)))d .

Corollary 5.2. Let f ∈ R[X], Q = Q(g) be a finitely generated quadratic module. Assume that the
minimizers of f on S = S (g) are finite: {x ∈ S | f (x) = f ∗ } = {ξ1, . . . ,ξr }. Then for any t ∈N and d ≥ t
big enough:

L2d(Πg,±(f − f ∗))[2t] = conv(eξ1 , . . . ,eξr )
[2t].

Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξr ) and σ ∈ Lmin
2d (g,±(f −f ∗)) is generic, then (Annt(σ)) = I (ξ1, . . . ,ξr)

is the vanishing ideal of the minimizers of f on S .

In practice, the minimum f ∗ is usually not known. Since the computation of moment mini-
mizers σ∗ ∈ Lmin

d (g,±(f − f ∗)) is based on numerical Semi-Definite Program (SDP) solvers, we can

replace f ∗ by an approximate value, taking for instance f ∗MoM,d = inf
{
〈σ |f 〉 ∈ R | σ ∈ L(1)2d (g)

}
≤ f ∗

for d ∈N. Notice that if v < f ∗ then L(1)2d (g,±(f − v)) is empty since S (Πg,±(f − v)) is empty. If v is
not close to f ∗, the SDP solvers can detect the feasibility/infeasibility of the relaxation, that is if
Ld (Πg,±(f − v)) is empty or not.

Notice also that by Theorem 1.2 O(g) is Archimedean if the semialgebraic set is finite. If also
Q(g) is Archimedean, since the SDP solvers perform approximate numerical computations, and
since in this case L(Q(g)) = L(O(g)) =M(S (g)), we can also replace the relaxation associated to the
preordering by the relaxation associated to the quadratic module (the converegnce to moments of
measures should be studied in details in the Archimedean case). This leads to Algorithm 1 for the
computation of finite minimizers.

Algorithm 1: Finite Minimizers

input :d ∈N, f ,g1, . . . gr ∈ R[X]d such that f has a finite set of minimizers on S = S (g).
output :The minimizers {ξ1, . . . ,ξr} of f on S and f ∗ = infx∈S f (x).
k = ⌈d2⌉
repeat

Compute f ∗MoM,k = inf
{
〈σ |f 〉 ∈ R | σ ∈ L(1)2k (g)

}
.

Compute a generic element σ∗ ∈ L(1)2k (g,±(f − f
∗
MoM,k))

Extract of the minimizers ξ1, . . . ,ξr from Ht
σ ∗ for t ≤ k big enough.

k = k +1
untilminimizer extraction success
return the minimizers {ξ1, . . . ,ξr} and f ∗ = 〈σ∗|f 〉
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Each loop of this algorithm requires two calls to SDP solvers. The first one is to compute

f ∗MoM,k on the convex set L(1)2k (g). The second one is to compute an interior or generic point σ∗ of

L(1)2k (g,±(f − f
∗
MoM,k)), using an interior point SDP solver.

The extraction ofminimizers from theHankelmatrixHt
σ ∗ is based on the algorithm of polynomial-

exponential decomposition of series described in [Mou18]. It involves numerical linear algebra
functions such as SVD, eigenvalue and eigenvector computation. It provides an approximation
of the linear functional σ∗ as a weighted sum of evaluations σ∗ ≈ ∑r

i=1ωieξi . We consider that
the minimizer extraction succeeds when such an approximation of σ∗ is obtained within a given
threshold.

If the set of minimizers is finite and the moment relaxation (L2d(g))d∈N is exact for f then this
algorithm terminates. When this is not the case, it shall also terminates using approximate com-
putation. Indeed, increasing the degree k, we obtain better approximations of f ∗ and of a generic
element of L2d(Πg,±(f − f ∗))[2t] = conv(eξ1 , . . . ,eξr )

[2t].When a sufficiently good approximation of

a generic element of conv(eξ1 , . . . ,eξr )
[2t] is obtained, the minimizer extraction succeeds and Algo-

rithm 1 outputs an approximation of the minimizers {ξ1, . . . ,ξr } and the minimum f ∗. We will
illustrate it in Example 6.1.

5.3 Gradient, KKT and Polar ideals

Another approach which has been investigated to make the relaxations exact, is to add equality
constraints satisfied by the minimizers (and independent of the minimum f ∗) to a Polynomial
Optimization Program.

For global optimization we can consider the gradient equations (see [NDS06]): obviously
∇f (x∗) = 0 for all the minimizers x∗ of f on S = Rn. For constrained optimization we can con-
sider Karush–Kuhn–Tucker (KKT) constraints, adding new variables (see [DNP07]) or projecting
them to the variables X (Jacobian equations, see [Nie13a]). We shortly describe them.

Let g1, . . . , gr ,h1, . . . ,hs ∈ R[X] defining S = S (g,±h), and let f ∈ R[X] be the objective function.
Let Λ = (Λ1, . . . ,Λr ) and Γ = (Γ1, . . . ,Γs) be variables representing the Lagrange multipliers associated
with g and h. The KKT constraints associated to the optimization problem minf (x) : x ∈ S (g,±h)
are: 

∂f

∂Xi
−

r∑

k=1

Λ
2
k

∂gk
∂Xi
−

s∑

j=1

Γj

∂hj

∂Xi
= 0 ∀i

Λkgk = 0, hj = 0, gk ≥ 0 ∀j,k,
(6)

where the polynomials belong to R[X,Γ,Λ]. These are sufficient but not necessary conditions for
x∗ ∈ S being a minimizer.

For x ∈ S , we say that gi is an active constraint at x if gi(x) = 0. Let x∗ ∈ S and gi1 , . . . gik be
the active constraints at x∗. The KKT constraints are necessary if the Constraint Qualification
Condition (CQC) holds, that is, if ∇h1(x

∗), . . . ,∇hs(x
∗),∇gi1(x

∗), . . . ,∇gik (x
∗) are linearly independent

at the minimizer x∗ ∈ S (also called Linear Independence Constraint Qualification in [NW06, th.
12.1]). We cannot avoid the CQC hypothesis: for example if f = X1 ∈ R[X1] and g1 = X

3
1 ∈ R[X1],

then x∗ = 0 is a minimizer, but the KKT equations are not satisfied at x∗ = 0.
To avoid this problem we define the polar ideal. Observe from eq. (6) that, if KKT constraints

are satisfied at x and

• if gi is not an active constraint at x, then Λi = 0;

• if gi1 , . . . gik are the active constraints at x, then the gradients ∇f (x),∇h1(x), . . . ,∇hr (x),∇gi1(x),
. . . ,∇gik (x) are linearly dependent.

Definition 5.3. For f ,g1, . . . , gr ,h1, . . . ,hs ∈R[X] as before, the polar ideal is defined as follows:

J ≔ (h) +
∏

{a1,...,ak}⊂{1,...r}

(
(ga1 , . . . , gak ) +

(
rankJac(f ,h, ga1 , . . . , gak )

)
< s + k +1

)
.
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where
((
rankJac(f ,h, ga1 , . . . , gak )

)
< l

)
is the ideal generated by the l × l minors of the Jacobian

matrix Jac(f ,h, ga1 , . . . , gak ). The generators of J besides h are the product of active constraints and
the generators of rank ideals.

In this definition, we could replace the product of ideals by their intersection and the l × l minors
of the Jacobian matrices by polynomials defining the same varieties.

We prove that every minimizer belongs to VR(J).

Lemma 5.4. Let x∗ be a minimizer of f on S = S (g,±h). Then x∗ ∈ VR(J).

Proof. Since x∗ ∈ S , then x∗ ∈ VR(h).
If the CQC hold at x∗, then x∗ is a KKT point (see [NW06, th. 12.1]) and ∇f (x) =

∑
j γj∇hj(x) +∑

j λ
2
j∇gj(x) for some γj and λi in R. As λk = 0 if gk is not an active constraint, we have that

∇f (x∗),∇h1(x
∗), . . . ,∇hr (x

∗),∇gi1(
∗x), . . . ,∇gik (x

∗)

are linearly dependent, where gi1 , . . . gik are the active constraints at x∗. Thus x∗ ∈ VR(ga1 , . . . , gak )
and

(
rankJac(f ,h1, . . . ,hs , ga1 , . . . , gak )(x

∗)
)
< s+ k +1. This implies x∗ ∈ VR(J).

If the CQC do not hold at x∗ and gi1 , . . . , gik are the active constraints, then the gradients
∇h1(x

∗), . . . ,∇hs(x
∗) and∇gi1(x

∗), . . . ,∇gik (x
∗) are linearly dependent. This implies that∇f (x∗),∇h1(x

∗),
. . . ,∇hs(x

∗) and ∇gi1(x
∗), . . . ,∇gik (x

∗) are also linearly dependent, and we conclude as in the previous
case.

Theorem 5.5. Let Q = Q(g,±h) and J = (h′) be the polar ideal, where h′ ⊂ R[X] is a finite set of
generators. If VR(J) is finite then the moment relaxation (L2d(g,±h′))d∈N is exact.

Proof. Minimizers belongs to VR(J) by Lemma 5.4. Then MoM exactness follows from Theo-
rem 5.1.

The assumption in [NDS06], [DNP07] and [Nie13a] for finite convergence and SoS exactness
are smoothness conditions or radicality assumptions on the associated complex variety. Our con-
dition for MoM exactness is of a different nature, since it is on the finiteness of the real polar
variety (see Example 6.4).

Notice that by taking equations h′ such that (h′) = R
√
J instead of generators of J , we have

the same MoM relaxation (by Lemma 3.10 and following remark). Then the SoS exactness prop-
erty under the (real) radicality assumption implies SoS exactness for the extended relaxation
(Q2d(g,h

′))d∈N.

6 Examples

We give some examples where we compute the minimumand the minimizers for some POP, which
MoM relaxation is exact. Computations were performed with the Julia package MomentTools.jl2

using the SDP solver Mosek, based on an interior point method.

Example 6.1 (Motzkin polynomial). We find the global minimizers of the bivariate Motzkin poly-
nomial f = x4y2 +x2y4 −3x2y2 +1. This is an example of a (globally) positive polynomial which is
not sum of squares (and then the SoS relaxation cannot be exact). Its minimum is f ∗ = 0 and the
four minimizers are (±1,±1) ∈ R2 (see [Rez96]).

v0, M = minimize(f, [], [], X, 4, Mosek.Optimizer)

Here f ∗MoM,4 ≈ v0 = −1.23437 · 10−10, but we cannot recover the minimizers: exactness does not
hold. We add the constraint f − f ∗MoM,4 = 0 to find them, i.e. use Ld (±(f − f ∗MoM,4)).

2https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
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v1, M = minimize(f, [f-v0], [], X, 4, Mosek.Optimizer)

Here the new optimum if v1 ≈ 1.84908 · 10−10. In this case the approximation of the minimum is
of the same order as before, but we can recover the minimizers by Corollary 5.2:

w, Xi = get_measure(M)

We obtain the following approximation of the 4 minimizers:

ξ1 = (1.0000009448913,1.00000094519956) ξ2 = (1.00000094499890,−1.00000094499890)
ξ3 = (−1.0000009448913,1.00000094499890) ξ4 = (−1.000000945184,−1.00000094519956).

Example 6.2 (Robinson form). We find the minimizers of the Robinson form f = x6 + y6 + z6 +
3x2y2z2 − x4(y2 + z2)− y4(x2 + z2)− z4(x2 + y2) on the unit sphere h = x2 + y2 + z2 −1. The Robinson
polynomial has minimum f ∗ = 0 (globally and on the unit sphere), and the minimizers on VR(h)
are: √

3

3
(±1,±1,±1),

√
2

2
(0,±1,±1),

√
2

2
(±1,0,±1),

√
2

2
(±1,±1,0).

BHC are satisfied at every minimizer (see [Nie14, ex. 3.2]) and we can recover the minimizers by
Theorem 4.4.

v, M = minimize(f, [h], [], X, 5, Mosek.Optimizer)

w, Xi = get_measure(M)

Here f ∗MoM,5 ≈ v = −1.27211 ·10−7 and the minimizers with positive coordinates are (all the twenty
minimizers are found):

ξx: 0.577351068999 8.81247793064010−12 0.707107158043 0.707107157553
ξy: 0.577351069076 0.707107158048 1.27172944612510−13 0.707107157555
ξz: 0.577351066102 0.707107158048 0.707107158042 2.47877120134010−9

Example 6.3 (Gradient ideal). We compute the minimizers of Example 2.12.Let f = (X4Y 2+X2Y 4+
Z6 − 2X2Y 2Z2) + X8 + Y 8 + Z8 ∈ R[X,Y ,Z]. We want to minimize f over the gradient variety

VR
(
∂f
∂X
,
∂f
∂Y
,
∂f
∂Z

)
.

v, M = minimize(f, differentiate(f,X), [], X, 4, Mosek.Optimizer)

w, Xi = get_measure(M, 2.e-2)

The approximation of the minimum f ∗ = 0 is v = −1.6279 · 10−9, and the decomposition with a
threshold of 2 · 10−2 gives the following numerical approximation of the minimizer (the origin):

ξ = (2.976731510689691 10−17;−9.515032317137384 10−19;3.763401209219283 10−18).

Example 6.4 (Singular minimizer). We minimize f = x on the compact semialgebraic set S =
S (x3 − y2,1− x2 − y2). The only minimizer is the origin, which is a singular point of the boundary
of S . Thus BHC do not hold. The regularity conditions for the Jacobian and KKT constraints are
not satisfied, but the real polar variety is finite. Adding the polar constraints, we have an exact
MoM relaxation. We can recover an approximation of the minimizer from the MoM relaxation of
order 5:
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v, M = polar_minimize(f, [], [x^3-y^2,1-x^2-y^2], X, 5, Mosek.Optimizer)

w, Xi = get_measure(M, 2.e-3)

The approximation of the minimum f ∗ = 0 is v = −0.0045, and the decomposition of the moment
sequence with a threshold of 2 · 10−3 gives the following approximation of the minimizer (the
origin):

ξ = (−0.004514367348787526,2.1341684460860045 10−21).

The error of approximation on the minimizer is of the same order than the error on the minimum
f ∗.
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