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Abstract

We investigate the problem of representation of moment sequences by measures in Polyno-
mial Optimization Problems, consisting in finding the infimum f ∗ of a real polynomial f on a
real semialgebraic set S defined by a quadratic module Q. We analyse the exactness of Moment
Matrix (MoM) relaxations, dual to the Sum of Squares (SoS) relaxations, which are hierarchies
of convex cones introduced by Lasserre to approximatemeasures and positive polynomials. We
show that the MoM relaxation coincides with the dual of the SoS relaxation extended with the
real radical of the support of the associated quadratic module Q. We prove that the vanishing
ideal of the semialgebraic set S is generated by the kernel of the Hankel operator associated to
a generic element of the truncated moment cone for a sufficiently high order of the MoM relax-
ation. When the quadratic module Q is Archimedean, we show the convergence, in Hausdorff
distance, of the convex sets of the MoM relaxations to the convex set of probability measures
supported on S truncated in a given degree. We prove the exactness of MoM relaxation when S
is finite and when regularity conditions, known as Boundary Hessian Conditions, hold on the
minimizers. This implies that MoM exactness holds generically. When the set of minimizers
is finite, we describe a MoM relaxation which involves f ∗, show its MoM exactness and pro-
pose a practical algorithm to achieve MoM exactness. We prove that if the real variety of polar
points is finite then the MoM relaxation extended with the polar constraints is exact. Effective
numerical computations illustrate this MoM exactness property.
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1 Introduction

Let f ,g1, . . . , gs ∈ R[X1, . . . ,Xn] be polynomials in the indeterminatesX1, . . . ,Xn with real coefficients.
The goal of Polynomial Optimization is to find:

f ∗≔ inf
{
f (x) ∈R | x ∈Rn, gi(x) ≥ 0 for i = 1, . . . , s

}
. (1)

that is the infimum f ∗ of the objective function f on the basic semialgebraic set S ≔ {x ∈Rn | gi(x) ≥
0 for i = 1, . . . , s }. It is a general problem, which appears in many contexts (e.g. real solution of
polynomial equations, . . . ) and with many applications. To cite a few of them: in combinatorics,
network optimization design, control, . . . See for instance [Las10].

To solve this NP hard problem, Lasserre [Las01] proposed to use two hierarchies of finite di-
mensional convex cones depending on an order d ∈N and he proved, for Archimedean quadratic
modules, the convergence when d →∞ of the optima associated to these hierarchies to the min-
imum f ∗ of f on S . The first hierarchy replaces non-negative polynomials by Sums of Squares
(SoS) and non-negative polynomials on S by polynomials of degree ≤ d in the truncated quadratic
module Qd(g) generated by g = {g1, . . . , gs}.

The second and dual hierarchy replaces positive measures by linear functionals ∈ Ld(g) which
are non-negative on the polynomials of the truncated quadratic module Qd(g). We will describe
more precisely these constructions in section 2.1.

This approach has many interesting properties (see e.g. [Las15], [Lau09], [Mar08]). But it also
raises a challenging question, of practical importance: Can the solution of (1) be recovered at a finite
order of these convex relaxations ? The aim is to recover the infimum f ∗ and, if this infimum is
reached, the minimizer set {ξ ∈ S | f (ξ) = f ∗}.

To answer this question, one can first address the finite convergence problem, that is when
the value f ∗ can be obtained at a given order of the relaxation(s). The second problem is the
exactness of the relaxations, which is the main topic of this paper. The Sum of Squares (SoS)
exactness is when the non-negative polynomial f − f ∗ belongs to the truncated quadratic module
Q2d(g) for some d ∈N. TheMoment Matrix (MoM) exactness is when an optimal linear functional
σ∗ ∈ L2d(g) for f is coming from a positive measure supported on S for some d ∈N. We are going
to investigate in details this MoM exactness property.

Several works have been developed over the last decades to tackle these problems. [Par02]
showed that if the complex variety VC(I ) defined by an ideal I generated by real polynomials is
finite and I is radical, then f − f ∗ has a representation as a sum of squares modulo I and the SoS
relaxation is exact. [Lau07] showed the finite convergence property if the complex variety VC(I ) is
finite, and a moment sequence representation property, if moreover the ideal I is radical. [Nie13b]
showed that if the semialgebraic set S is finite, then the finite convergence property holds for a
finitely generated preordering defining S . [LLR08] proved that if S is finite, the value f ∗ and
the minimizers can be recovered from moment matrices associated to the truncated preordering
defining S . In [Las+13], the kernel of moment matrices is used to compute a border basis of the
real radical ideal R

√
I when S = VR(I ) is finite. [Sch05a] proved that f − f ∗ is in the quadratic

module Q defining S modulo (f − f ∗)2 if and only if f − f ∗ ∈ Q and then the SoS relaxation is
exact. [Mar06], [Mar09] proved that under some regularity conditions on the minimizers, known
as Boundary Hessian Conditions (BHC), f − f ∗ is in the quadratic module and the SoS exactness
property holds. [NDS06], [DNP07] showed that adding gradient constraints when S = Rn or KKT
constraints when S is a general basic semialgebraic set, the SoS exactness property holds when
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the corresponding Jacobian ideal is radical. [Nie13a] showed that adding the Jacobian constraints,
the finite convergence property holds under some regularity assumption on the complex variety
associated to these constraints and on the compactness of S . In [Nie14], it is shown that BHC
imply finite convergence and that BHC are generic. [KS19] showed the SoS exactness property if
the quadratic module defining S is Archmedian and some strict concavity properties of f at the
finite minimizers are satisfied.

Though many works focussed on the SoS relaxation and on the representation of positive poly-
nomials with sums of squares, the MoM relaxation has been much less studied. It has interesting
features, that deserve a deeper exploration: the convex cones Ld(g) of truncated non-negative
linear functionals are closed; finite convergence can be decided by flat extension tests on mo-
ment matrices [CF98], [LM09]; finite minimizers can be extracted from moment matrices [HL05],
[Mou18]. On the other hand, exact SoS relaxations can provide certificates of positivity, which is
also interesting from a theoretical and practical point of view.

In this paper, we investigate the truncated moment relaxation from a new perspective, devel-
oping a theoretical and computational study of truncated positive linear functionals. We analyse
in details the properties of moment relaxations and present new results on the representation of
moments of positive linear functionals as moments of measures.

We first show in Theorem 3.9 that the MoM relaxation (L2d(g))d∈N dual to the SoS relaxation
(Q2d(g))d∈N is the same as the one associated to the quadratic module Q extended with the real
radical of the support ofQ. This yields the vanishing ideal of S as the ideal generated by the kernel
of the Hankel operator Hσ associated to a generic element σ ∈ L2d(g) for d sufficiently large (see
Theorem 3.16).

The second result concerns the convergence of truncatedmoment sequences. When the quadratic
module Q defining S is Archimedean, the optima of the SoS and MoM relaxations converge to the
minimum f ∗ of f on S [Las01]. We generalize this result in Theorem 3.19, showing that the convex

sets L(1)d (g) of linear functionals σ non-negative on Qd(g) such that σ(1) = 1 truncated in degree t
converge, in Hausdorff distance, to the probability measures supported on S truncated in degree
t, when d→∞.

Our main result on exact moment representations is given in Theorem 3.23. When S is finite
and the quotient by the support of Q is of dimension zero, we prove that the linear functionals in
Ld (g) truncated in a degree greater than twice the regularity of the points in S coincide with the
measures supported on S , that is the convex hull of the evaluations at the points of S . Moreover,
the ideal generated by the kernel of the Hankel operator of a generic element in Ld(g) is the
vanishing ideal of S .

We apply these results to Polynomial Optimization Problems, showing in Theorem 4.1 that
when the set S is finite, the MoM relaxation is exact if the quotient by the support of the quadratic
module Q is of dimension zero. This generalizes the results of [LLR08] on semi-definite moment
representations.

The main result on exactness is Theorem 4.8. We prove that when the Boundary Hessian
Conditions are satisfied, the MoM relaxation is exact. This generalizes the results on SoS exactness
proved in [Mar06], [Mar09]. It also shows that MoM exactness holds generically (Corollary 4.9).

When the set of minimizers is finite, we describe a MoM relaxation which involves f ∗, show
its MoM exactness (Corollary 4.10) and propose a practical algorithm to achieve MoM exactness
using approximate numerical computation. In Theorem 4.13, we prove that if the real variety of
polar points is finite then the relaxation extended with Jacobian constraints is MoM exact. This
generalizes the results of finite convergence and SoS exactness of the KKT and Jacobian relaxations
under regularity conditions, proved in [NDS06], [DNP07], [Nie13a].

The paper is structured as follows. In the next sections of the introduction, we define the
algebraic objects that we will use and recall their main properties. In Section 2, we describe in
details the notions of finite convergence and exactness for the Sum of Squares (SoS) and Moment
Matrix (MoM) relaxations. We give several examples showing how these notions are related. In
Section 3, we recall the properties of full moment sequences (Section 3.1), investigate the trun-
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cated moment sequence properties (Section 3.2), analyse the convergence of truncated moment
sequences (Section 3.3) and prove the moment representation property for a finite semialgebraic
set S (Section 3.4). Finally in Section 3.5 we describe the hierarchies of truncated moments and
kernels of generic elements. In Section 4, we apply these results to polynomial optimization prob-
lems on finite semialgebraic sets (Section 4.1), show that the MoM exactness property holds if
the Boundary Hessian conditions are satisfied (Section 4.2) and investigate Polynomial Optimiza-
tion Problems with a finite number of minimizers from a moment representation point of view
(Section 4.3). In Section 4.4, we define polar ideals and analyse the MoM exactness property of
the relaxation extended with these polar constraints. Examples of Polynomial Optimization Prob-
lems and numerical experimentations with the Julia package MomentTools.jl are presented in
Section 4.5.

1.1 Polynomials

We provide the basic definitions on real polynomials and refer to [Mar08] for more details. Let
R[X] ≔ R[X1, . . . ,Xn] be the R-algebra of polynomials in n indeterminates X1, . . . ,Xn. Let Σ2 =

Σ
2[X] ≔

{
f ∈ R[X] | ∃r ∈ N, gi ∈ R[X] : f = g21 + · · · + g2r

}
be the convex cone of Sum of Squares

polynomials (SoS). If A ⊂ R[X], Ad ≔ { f ∈ A | deg f ≤ d }. In particular R[X]d is the vector space of
polynomials of degree ≤ d.

We denote (h1, . . . ,hr ) ⊂ R[X] the ideal generated by h1, . . . ,hr ∈ R[X]. Q ⊂ R[X] is called
quadratic module if 1 ∈ Q, Σ2 ·Q ⊂ Q and Q +Q ⊂ Q. If in addition Q ·Q ⊂ Q, Q is preordering.
For Q ⊂ R[X], we define suppQ≔Q∩−Q. If Q is a quadratic module then suppQ is an ideal.

We say that a quadraticmoduleQ is finitely generated (f.g.) if ∃g1 . . . gl ∈R[X] : Q = Q(g1, . . . , gl )≔
Σ
2 +Σ

2 · g1 + · · · + Σ
2 · gl (it is the smallest quadratic module containing g1, . . . , gl ). We say that a

preordering O is finitely generated if ∃g1, . . . , gl ∈ R[X] : O = O(g1, . . . , gl ) ≔ Q(
∏
j∈J gj | J ⊂ {1, . . . , l})

(it is the smallest preordering containing g1, . . . , gl ).

For G ⊂ R[X], let Qt(G) ≔
{
s0 +

∑r
j=1 sjgj ∈ R[X]t | r ∈ N, gj ∈ G, s0 ∈ Σ

2
t , sj ∈ Σ

2
t−deggj

}
and

〈G〉t ≔
{ ∑r

i=1 fihi ∈R[X]t | r ∈N, hi ∈ G, fi ∈ R[X]t−deghi
}
.

For a sequence of polynomials g ≔ g1, . . . , gs we define Πg ≔
∏
j∈J gj : J ⊂ {1, . . . , t} and ±g ≔

g1,−g1, . . . , gr ,−gr . Observe that Qt(g,±h) = Qt(g) + 〈h〉2⌊ t2 ⌋ and Qt(Π(g,±h)) = Qt(Πg,±h). Notice

that 〈h〉t ⊂ (h)t and Qt(g) ⊂ Q(g)t, but (unluckily) these inclusions are strict in general. Finally if

A ⊂ R[X] we define S (A) ≔
{
x ∈ Rn | f (x) ≥ 0 ∀f ∈ A

}
. In particular we denote S (g) =

{
x ∈ Rn |

g(x) ≥ 0 ∀g ∈ g
}
(the basic semialgebraic set defined by g). If Q = Q(g), notice that S (g) = S (Πg) =

S (Q). We denote by Pos(S) = {f ∈R[X] : ∀x ∈ S,f (x) ≥ 0} the cone of positive polynomials on S .

1.2 Linear functionals

We describe the dual algebraic objects and refer to [Mou18] for more details. For σ ∈ (R[X])∗ =
{σ : R[X]→ R | σ is linear }, we denote 〈σ |f 〉 = σ(f ) the application of σ to f ∈ R[X]. Recall that
(R[X])∗ � R[[Y]]≔ R[[Y1, . . . ,Yn]], with the isomorphism given by:

(R[X])∗ ∋ σ 7→
∑

α∈Nn

〈
σ |Xα〉 Y

α

α!
∈R[[Y]],

where {Yαα! } is the dual basis to {Xα}, i.e.
〈
Yα

∣∣∣Xβ
〉
= α!δα,β. With this basis we can also identify

σ ∈ (R[X])∗ with its sequence of coefficients (σα)α , where σα ≔ 〈σ |Xα〉. We will consider Borel
measures with support included in S ⊂ Rn, denoted as M(S), as linear fuctionals, i.e. M(S) ⊂
(R[X])∗. In this case the sequence (µα)α associated with a measure µ is the sequence of moments:
µα =

∫
Xα dµ. MoreoverM(1)(S) will denote the Borel probability measures supported on S . We

recall a version of Haviland’s theorem [Mar08, th. 3.1.2]: if σ ∈ (R[X])∗, then σ ∈ M(S) if and
only if ∀f ∈ Pos(S), 〈σ |f 〉 ≥ 0. In particular we are interested in evaluations: if ξ ∈ Rn then

eξ (f ) =
〈
eξ

∣∣∣f
〉
=
∫
f deξ = f (ξ) for all f ∈R[X].
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If σ ∈ (R[X])∗ and g ∈R[X], we define the convolution of g and σ as g ⋆ σ ≔ σ ◦mg ∈ (R[X])∗ (i.e.
〈g ⋆ σ |f 〉 = 〈σ |gf 〉 ∀f ) and the Hankel operator Hσ : R[X]→ (R[X])∗, g 7→ g ⋆ σ . If σ = (σα)α and
g =

∑
α gαX

α then g ⋆ σ = (
∑
β gβσα+β)α ; the matrix Hσ in the basis {Xα} and {Yαα! } is Hσ = (σα+β)α,β.

Notice that g ⋆ σ = 0 ⇐⇒ Hg⋆σ = 0.

We say that σ is positive semidefinite (psd) ⇐⇒ Hσ is psd, i.e. 〈Hσ (f )|f 〉 =
〈
σ
∣∣∣f 2

〉
≥ 0 ∀f ∈R[X]

(see [Sch17] or [Mar08] for basic properties of psd matrices).
If σ ∈ (R[X])∗ then σ [t] ∈ (R[X]t)

∗ denotes its restriction to R[X]t (and same for σ ∈ (R[X]r)
∗, r ≥

t); moreover if B ⊂ (R[X])∗ then B[t] ≔ {σ [t] ∈ (R[X]t)
∗ | σ ∈ B } (and same for B ⊂ (R[X]r)

∗, r ≥ t).
If σ ∈ (R[X]t)

∗ and g ∈ R[X]t, then g ⋆ σ ≔ σ ◦mg ∈ (R[X]t−degg )
∗. If σ ∈ (R[X])∗ (or σ ∈ (R[X]r)

∗,

r ≥ 2t), then we define Ht
σ : R[X]t → (R[X]t)

∗, g 7→ (g ⋆ σ)[t]. We have (g ⋆ σ)[2t] = 0 ⇐⇒ Ht
g⋆σ =

0. Notice that, if s ≤ t, we can identify the matrix of Hs
σ with the submatrix of Ht

σ indexed by
monomials of degree ≤ t.

Let A ⊂ R[X] (resp. A ⊂ R[X]t). We define A⊥ ≔
{
σ ∈ (R[X])∗ | 〈σ |f 〉 = 0 ∀f ∈ A

}
(resp. A⊥ ≔{

σ ∈ (R[X]t)
∗ | 〈σ |f 〉 = 0 ∀f ∈ A

}
). Notice that σ ∈ 〈h〉⊥t (resp. (h)⊥) if and only if (h ⋆ σ)[t−degh] =

0 ∀h ∈ h (resp. h ⋆ σ = 0 ∀h ∈ h).
For G ⊂ R[X]t we define:

Lt(G) = {σ ∈ (R[X]t)
∗ | ∀q ∈ Qt(G) 〈σ |q〉 ≥ 0 }

Equivalently σ ∈ Lt(G) if and only if 〈σ |s〉 ≥ 0 ∀s ∈ Σ2
t and 〈σ |sf 〉 ≥ 0 ∀f ∈ G,∀s ∈ Σ2 : deg f s ≤ t.

For the non truncated version we write L(A). Notice that if Q = Q(g) then L(g) = L(Q) (resp.
Lt(g) = Lt(Qt(g))) is the dual convex cone to Q (resp. to Qt(g)), see [Mar08, sec. 3.6]: L(g) = Q∨
and Lt(g) = Qt(g)∨. We give to R[X] and (R[X])∗ the locally convex topology defined as follows.
If V = R[X] or V = (R[X])∗ and W ⊂ V is a finitely dimensional vector subspace, W is equipped
with the Euclidean topology. We define U ⊂ V open if and only if U ∩W is open in W for every
finitely dimensional vector subspaceW . By conic duality: Q = L(g)∨ and Qt(g) = Lt(g)∨. If A ⊂ V ,
we denote by cone(A) the convex cone generated by A, by conv(A) its convex hull and by 〈A〉 its
linear span.

1.3 Nullstellensatz and Positivestellensatz

We refer to [BCR98] and [Mar08] for real algebra and geometry. An ideal I is called real (or real
radical) if a21 + · · ·+ a2s ∈ I ⇒ ai ∈ I ∀i. We define the real radical of an ideal I as:

R
√
I ≔{ f ∈ R[X] | ∃h ∈N, s ∈ Σ2 f 2h + s ∈ I } (2)

={ f ∈ R[X] | ∃k ∈N, s ∈ Σ2 f 2
k
+ s ∈ I }. (3)

Definition (2) is the classical one, and it is equivalent to (3), that will be more convenient in the
paper. The real radical of I is the smallest real ideal containing I . If Q is a quadratic module and
I is an ideal, we say that I is Q-convex if ∀g1, g2 ∈ Q, g1 + g2 ∈ I ⇒ g1, g2 ∈ I . Then I is a real ideal
if and only if I is radical and Σ

2-convex.
Minimal primes lying over suppQ are Q-convex (see [Mar08, prop. 2.1.7]), and thus Σ

2-
convex. Prime ideals are radical, thenminimal primes lying over suppQ are real. Then

√
suppQ =

R
√
suppQ.
If I ⊂ R[X] is an ideal, we denote by V (I ) its (complex) variety, and we define VR(I )≔ V (I )∩Rn.

Moreover, if S ⊂ Rn we denote I (S) its (real) vanishing ideal.
We recall the description of the Zariski closure of basic semialgebraic sets.

Theorem 1.1 (Real Nullstellensatz, [Mar08, th. 2.2.1], [BCR98, cor. 4.4.3]). Let S = S (g) be a basic
semialgebraic set. Then I (S) = R

√
suppO(g). In other words, f = 0 on S ⇐⇒ ∃h ∈N : − f 2h ∈ O(g).

In particular, S (g) is empty if and only if −1 ∈ O(g) (and thus R[X] = O(g)), and if I is an ideal

then I (VR(I )) =
√
supp(Σ2 + I ) = R

√
I .
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If S ⊂ Rn, we denote by Pos(S) the convex cone of non-negative polinomials on S : Pos(S) ≔
{ f ∈R[X] | f (x) ≥ 0 ∀x ∈ S }.

We say that a quadratic module Q is Archimedean if ∃ 0 ≤ r ∈ R : r − ‖X‖2 ∈ Q. Notice that
if Q is Archimedean then S (Q) is compact. By [Wö98] (see also [Mar08, th. 6.1.1]) for a finitely
generated preordering O = O(g), S (g) is compact if and only if O is Archimedean.

When S is compact, one can obtain an Archimedean quadratic module from Q(g) by adding a
generator gM =M −‖X‖2 ≥ 0, forM big enough or by adding all the products of the gi ’s, replacing
the generators g by Πg.

The importance of Archimedean quadratic modules is illustrated by Schmüdgen/Putinar’s
characterization of strictly positive polynomials, and their solution of the moment problem (see
theorem 3.1).

Theorem 1.2 (Schmüdgen / Putinar Positivestellensatz,[Sch91] [Put93]). Let S (g) be a basic semi-
algebraic set and suppose that Q(g) Archimedean. If f > 0 on S (g) then f ∈ Q(g).

As a corollary one can prove that, if Q is Archimedean, then Q = Pos(S).

1.4 Finite varieties, interpolation polynomials and bases

Now we move to interpolator polynomials, a tool which will be often used in the proofs.
Consider a finite set of points Ξ = {ξ1, . . . ,ξr} ∈ Cn. It is well known that it admits a family of

interpolator polynomials. Such a family (ui) ⊂ C[X] is by definition such that ui(ξj ) = δi,j . The
minimal degree ι(Ξ) of a family of interpolator polynomials is called the interpolation degree of Ξ.

Let I (Ξ) = {p ∈ C[X] | p(ξi) = 0 ∀i ∈ 1, . . . , r } be the complex vanishing ideal of the points Ξ.
The Catelnuovo-Mumford regularity of an ideal I (resp. Ξ) is maxi (degSi − i) where Si is the i

th

module of syzygies in a minimal resolution of I (resp. I (Ξ)). Let denote it by ρ(I ) (resp. ρ(Ξ)).
Since a family of interpolator polynomials (pi ) is a basis of C[X]/I (Ξ), the ideal I (Ξ) is gen-

erated in degree ≤ ι(Ξ) + 1 and ρ(Ξ) ≤ ι(Ξ) + 1. A classical result [Eis05, th. 4.1] relates the
interpolation degree of Ξ with its regularity, and the minimal degree of a basis of C[X]/I (Ξ). This
result can be stated as follows, for real points Ξ ⊂ Rn:

Proposition 1.3. Let Ξ = {ξ1, . . . ,ξr } ⊂ Rr with regularity ρ(Ξ). Then ι(Ξ) = ρ(Ξ)− 1, the minimal de-
gree of a basis of R[X]/I (Ξ) is ρ(Ξ)−1 and there exists interpolator polynomials u1, . . . ,ur ∈ R[X]ρ(Ξ)−1.

We say that h = {h1, . . . ,hs} is a graded basis of an ideal I if for all p ∈ I , there exists qi ∈ R[X]
with deg(qi) ≤ deg(p)−deg(hi) such that p =

∑s
i=1 hi qi . Equivalently, we have for all t ∈N, 〈h〉t = It .

For p ∈ R[X] and I an ideal of R[X], let λdeg(p) be its homogeneous component of highest
degree, that we call the initial of p, and let λdeg(I ) = ({λdeg(p) | p ∈ I}) be the initial of I . A family
h = (h1, . . . ,hs) is a graded basis of the ideal I = (h1, . . . ,hs) iff λdeg(I ) = (λdeg(h1), . . . ,λdeg(hs)). For
more properties of graded bases, also known as H-bases, see e.g. [Mac16].

A graded basis of an ideal I = (h) can be computed as a Grobner basis using a monomial
ordering ≺, which refines the degree ordering (see e.g. [CLO15]). It can also be computed as a
border basis for a monomial basis of least degree of R[X]/I (see e.g. [MT05]).

The degree of a graded basis of an ideal I is bounded by its regularity ρ(I ) (see e.g. [BS87]).
For a set of points Ξ = {ξ1, . . . ,ξr}, the ideal I (Ξ) has a graded (resp. Grobner, resp. border) ba-

sis of degree equal to the regularity ρ(Ξ). The minimal degree of a monomial basis B of R[X]/I (Ξ)
is ι(Ξ) = ρ(Ξ)− 1. Such a basis B can be chosen so that it is stable by monomial division.

Proposition 1.4. Let Ξ = {ξ1, . . . ,ξr } ⊂ Rn, I = I (Ξ) its real vanishing ideal and let ρ = ρ(Ξ) the

regularity of Ξ. For t ≥ ρ − 1, σ ∈ I⊥t if and only if σ ∈ 〈e[t]ξ1 , . . . ,e
[t]
ξr
〉. Moreover if t ≥ 2(ρ − 1) and

σ ∈ Lt(It) then σ ∈ cone(e
[t]
ξ1
, . . . ,e

[t]
ξr
).
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Proof. Let u1, . . . ,ur ∈ R[X]t be interpolation polynomials of degree ≤ ρ − 1 ≤ t (Proposition 1.3).
Consider the sequence of vector space maps:

0→ It →R[X]t
ψ
−→ 〈u1, . . . ,ur〉 → 0

p 7→
r∑

i=1

p(ξi)ui ,

which is exact since kerψ = {p ∈ R[X]t | p(ξi) = 0} = It . Therefore we have R[X]t = 〈u1, . . . ,ur〉 ⊕ It .
Let σ ∈ I⊥t . Then σ̃ = σ −∑r

i=1 〈σ |ui〉e
[t]
ξi
∈ I⊥t is such that 〈σ̃ |ui〉 = 0 for i = 1, . . . , r. Thus,

σ̃ ∈ 〈u1, . . . ,ur〉⊥ ∩ I⊥t = (〈u1, . . . ,ur〉 ⊕ It)⊥ = R[X]⊥t , i.e. σ̃ = 0 showing that I⊥t ⊂ 〈e
[t]
ξ1
, . . . ,e

[t]
ξr
〉. The

reverse inclusion is direct since It is the space of polynomials of degree ≤ t vanishing at ξi for
i = 1, . . . , r.

Assume that t ≥ 2(ρ−1) and that σ ∈ Lt(It). Then σ ∈ I⊥t and
〈
σ
∣∣∣p2

〉
≥ 0 for any p ∈R[X]⌊ t2 ⌋. By

the previous analysis,

σ =
r∑

i=1

ωie
[t]
ξi

As
〈
σ
∣∣∣u2i

〉
= ωi ≥ 0 for i = 1, . . . , r, we deduce that σ ∈ cone(e[t]ξ1 , . . . ,e

[t]
ξr
).

2 Finite Convergence and Exactness

We describe now the Lasserre SoS and MoM relaxations [Las01], and we define the exactness prop-
erty. Hereafter we assume that the minimum f ∗ of the objective function f is always attained on
S , that is: Smin

≔ {x ∈ S | f (x) = f ∗ } , ∅.

2.1 Polynomial optimization relaxations

We define the SoS relaxation of order d of problem (1) as Q2d(g) and the supremum:

f ∗SoS,d ≔ sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
. (4)

When necessary we will replace g by Πg (that is Q(g) by O(g)).
We want to define the dual approximation of the polynomial optimization problem. We are

interested in an affine hyperplane section of the cone Ld(g):

L(1)d (g)≔
{
σ ∈ Ld(g) | 〈σ |1〉 = 1

}
.

We will use the notation L(1)(g) in the infinite dimensional case. The convex set L(1)d (g) is also
called the state space of (R[X]d ,Qd(g),1) (see [KS19]). The pure states are the extreme points of
this convex set.

With this notation we define the MoM relaxation of order d of problem (1) as L2d(g) and the
infimum:

f ∗MoM,d ≔ inf
{
〈σ |f 〉 ∈R | σ ∈ L(1)2d (g)

}
. (5)

When necessary we will replace g byΠg (that is Q(g) by O(g)). We are interested, in particular,
in the linear functionals that realize the minimum. We easily verify that f ∗SoS,d ≤ f

∗
MoM,d ≤ f ∗.

When Smin
, ∅, the infimum f ∗MoM,d is reached since L(1)d (g) is closed.

Definition 2.1. Let f ∈ R[X] and f ∗ denote its minimum on S (g). We define the set of functional
minimizers as:

Lmin
2d (g)≔

{
σ ∈ L(1)2d (g) | 〈σ |f 〉 = f

∗ }.
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Notice that Ld(g) is the cone over L(1)d (g), since for σ ∈ Ld(g) we have 〈σ |1〉 = 0⇒ σ = 0 (see

[Las+13, lem. 3.12]), and σ ∈ Ld(g) , 0 implies 1
〈σ |1〉σ ∈ L

(1)
d (g) We introduce two convergence

properties that will be central in the article.

Definition 2.2 (Finite Convergence). We say that the SoS relaxation (Q2d(g))d∈N (resp. the MoM
relaxation L2d(g))d∈N has the Finite Convergence property for f if ∃k ∈N such that for every d ≥ k,
f ∗SoS,d = f

∗ (resp. f ∗MoM,d = f
∗).

Notice that if the SoS relaxation has finite convergence then the MoM relaxation has finite
convergence too, since f ∗SoS,d ≤ f

∗
MoM,d ≤ f ∗.

Definition 2.3 (SoS Exactness). We say that the SoS relaxation (Q2d(g))d∈N is exact for f if it has
the finite convergence property and for all d big enough, we have f − f ∗ ∈ Q2d(g) (in other words
sup = max in the definition of f ∗SoS,d ).

For the moment relaxation we can ask the (stronger) property that every truncated functional
minimizer is coming from a measure:

Definition 2.4 (MoM Exactness). We say that the MoM relaxation (L2d(g))d∈N is exact for f on the
basic closed semialgebraic set S if:

• it has the finite convergence property;

• for every k ∈ N big enough, for d = d(k) ∈ N big enough, every truncated functional mini-
mizer is coming from a probability measure supported on S , i.e. Lmin

2d (g)[k] ⊂M(1)(S)[k].

If not specified, S will be the semialgebraic set S = S (g) defined by g.
MoM exactness may be considered as a particular instance of the so called Moment Problem

(i.e. asking if σ ∈ R[X]∗ is coming from a measure) or of the Strong Moment Problem (i.e. asking
that the measure has a specified support). More precisely, MoM exactness can be considered as a
Truncated Strong Moment Property (since we are considering functionals restricted to polynomials
up to a certain degree).

We recall results of strong duality, i.e. cases when we know that f ∗SoS,d = f ∗MoM,d , that will be
using. See also Proposition 3.10.

Theorem 2.5 (Strong duality). Let Q = Q(g) be a quadratic module and f the objective function. Then:

• if suppQ = 0 then ∀d: f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Qd(g)) and f
∗
SoS,d = f ∗MoM,d[Mar08,

prop. 10.5.1];

• if there exists 0 ≤ r ∈ R : r − ‖X‖2 ∈ Qd(g) then f ∗SoS,d = f
∗
MoM,d [JH16].

We recall that we are assuming Smin
, ∅ (in particular f ∗ is finite: otherwise it may happen

that f ∗SoS,d = −∞). Notice that if strong duality holds, then SoS finite convergence is equivalent to
MoM finite convergence.

2.2 Examples and counterexamples

In this section, we give examples showing how these notions are (not) related.

No finite convergence. The first example shows that SoS relaxations for polynomial optimiza-
tion on algebraic curves do not have necessarily the finite convergence property.

Example 2.6 ([Sch00]). Let C ⊂ Rn be a smooth connected curve of genus ≥ 1, with only real points
at infinity. Let h = {h1, . . . ,hs} ⊂ R[X] such that I = I (C) = (h). Then there exists f ∈ R[X] such that
the SoS relaxation Q2d(±h) and the MoM relaxation L2d(±h) have no finite convergence and are
not exact.
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Indeed by [Sch00, Theorem 3.2], there exists f ∈ R[X] such that f ≥ 0 on C = S (±h), which is
not a sum of squares in R[C] = R[X]/I . Consequently, f < Σ2[X] + I = Q(±h). As f ≥ 0 on C, its
infimum f ∗ is non-negative and we also have f − f ∗ < Q(±h).

As I = suppQ(±h) is real radical, using Proposition 3.10 we deduce that Qd(±h) is closed, that
there is no duality gap and that the supremum f ∗SoS,d is reached. Thus if the SoS relaxation has
finite convergence then f − f ∗ ∈ Q2d(±h) for some d ∈N. This is a contradiction, showing that the
SoS and the MoM relaxations have no finite convergence and cannot be SoS exact for f .

In dimension 2, there are also cases where the SoS and MoM relaxations cannot have finite
convergence or be exact.

Example 2.7 ([Mar08]). Let g1 = X3
1 −X2

2 , g2 = 1 −X2. Then S = S (g) is a compact semialgebraic
set of dimension 2 and O(g) is Archimedean. We have f = X1 ≥ 0 on S but X1 < O(g) (see [Mar08,
Example 9.4.6(3)]). The infimum of f on S is f ∗ = 0. By theorem 2.5, Qd(Πg) is closed, the
supremum f ∗SoS,d is reached and strong duality holds. Assume that f ∗SoS,d = f ∗MoM,d = f ∗ = 0 for
d ∈ N big enough, then f − f ∗ = f ∈ O(g): but this is a contraction. Therefore, the relaxations
Q2d(Πg) and L2d(Πg) cannot have finite convergence and be thus cannot be exact for f = X1.

The next example shows that non-finite convergence and non-exactnesss always happen in
dimension ≥ 3.

Example 2.8. Let n ≥ 3. LetQ be an Archimedean quadratic module generated by g1, . . . , gs ∈R[X]
such that S (Q) ⊂ Rn is of dimensionm ≥ 3. IfQ is reduced, i.e. if suppQ = R

√
suppQ (in particular

this happens if suppQ = 0 or if m = n, i.e. S (Q) is of maximal dimension), then there exists
f ∈ R[X] such that the SoS relaxation (Q2d(g))d∈N and MoM relaxation (L2d(g))d∈N do not have
the finite convergence property (and thus are not exact).

Indeed by Proposition 3.10 f ∗SoS,d = f
∗
MoM,d for d big enough and the supremum f ∗SoS,d is reached.

By [Sch00, Prop. 6.1] for m ≥ 3, Pos(S (Q)) )Q. So let f ∈ Pos(S (Q)) \Q and let f ∗ be its minimum
on S (Q). Suppose that f − f ∗ ∈Q, then f ∈Q+ f ∗ =Q, a contradiction. Then the SoS and the MoM
relaxations do not have the finite convergence property (and they are not exact).

Remark. The reduceness condition in Example 2.8 is not restrictive: if Q is a quadratic module
then Q + R

√
suppQ is reduced (see [Sch05b, lemma 3.16]) and S (Q) = S (Q + R

√
suppQ).

SoS exactness, no MoM exactness.

Example 2.9. We want to find the global minimum of f = X2
1 ∈ R[X1, . . . ,Xn] = R[X] for n ≥ 3. Let

d ≥ 2, X′ = (X2, . . . ,Xn) and σ ∈ Ld(Σ2[X′]) such that σ <M(Rn−1)[d]. Such a linear functional exists
because when n > 2 there are non-negative polynomials in R[X′] which are not sum of squares,
such as the Motzkin polynomial (see [Rez96]). As Qd(Σ2[X′]) is closed, such a polynomial can
be separated from Qd(Σ2[X′]) by a linear functional σLd(Σ2[X′]), which cannot be the truncation
of a measure (i.e. Σ2[X′] does not have the truncated moment property). Define σ : h 7→ 〈σ |h〉 =
〈σ |h(0,X2, . . . ,Xn)〉. We have σ ∈ L(Σ2[X]) since σ ∈ L(Σ2[X′]). Obviously 〈σ |f 〉 = 0 = f ∗ (the
minimum of X2

n ), f − f ∗ = X2
1 ∈ Σ

2 and the SoS relaxation is exact. Since σ is coming from a
measure if and only if σ is coming from a measure, the MoM relaxation cannot be exact.

The previous example generalizes easily to quadratic modulesQ with supp(Q) , {0}, which do
not have the (truncated) moment property, i.e. there exists σ ∈ Ld(Q) such that σ <M(S (Q))[d].
Taking f = h2 with h ∈ supp(Q), h , 0, we have 〈σ |f 〉 = 0 = f ∗ and the MoM relaxation cannot be
exact since σ <M(S (Q))[d], while the SoS relaxation is exact (f − f ∗ = h2 ∈Q).

SoS finite convergence, MoM exactness.

Example 2.10. Let f = (X4Y 2 + X2Y 4 + Z6 − 2X2Y 2Z2) + X8 + Y 8 + Z8 ∈ R[X,Y ,Z]. We want to

optimize f over the gradient variety VR
(
∂f
∂X
, ∂f
∂Y
, ∂f
∂Z

)
which is zero dimensional (see [NDS06]). By

Theorem 4.1 the MoM relaxation is exact, and by Corollary 4.4 the SoS has the finite convergence
property. But the SoS relaxation is not exact, as shown in [NDS06].
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Table 1: Summary of convergence results.

Expl. SoS f. c. SoS ex. MoM f. c. MoM ex. m

2.6 NO NO NO NO 1

2.7 NO NO NO NO 2

2.8 NO NO NO NO ≥ 3

2.9 YES YES YES NO ≥ 3

2.10 YES NO YES YES 0

2.11 YES NO YES YES 0

Example 2.11. Let f = X1. We want to find its value at the origin, defined by ‖X‖2 = 0. As proved
in [Nie13b] there is finite convergence but not exactness for the SoS relaxation. By Theorem 4.1
the MoM relaxation is exact.

We summarize the previous examples in Table 1 in terms of the properties of finite conver-
gence (SoS f.c. and MoM f.c.) exactness (SoS ex. and MoM ex.) and the dimension m of the
semialgebraic set S .

3 Geometry of Moment Representations

We give a description of the moment linear functionals in the full dimensional and truncated case.

3.1 Infinite moment representations

With our setting, the classical moment problem can be stated as follows: given σ ∈ R[X]∗, when
there exists µ ∈M(Rn) such that:

∀f ∈R[X] 〈σ |f 〉 =
∫
f dµ .

Haviland’s theorem (see [Mar08, th. 3.1.2] and [Sch17, th. 1.12]) says that this happens if and
only if σ is positive on positive polynomials. Since checking this is a computationally hard task,
then it is interesting to find (proper) subsets of positive polynomials that have the same property,
chosen in such a way that checking this conditions is easy. Important results in this direction are
theorems of Schmüdgen and Putinar.

Theorem 3.1 ([Sch91],[Put93]). Let Q be an Archimedean finitely generated quadratic module and

S = S (Q). Then L(Q) =M(S) = cone(eξ : ξ ∈ S).

This theorem solves the moment problem in the Archimedean (compact) case. Notice that
M(S (Q)) depends only on S = S (Q) and not on the generators of Q. In particular, if Q and Q′ are
Archimedean and S (Q) = S (Q′) then L(Q) = L(Q′).

If we have a generic measure µ ∈ M(S), i.e. which is nonzero on any nonzero polynomial on
S , obviously its support is equal to S : suppµ = S . We want to generalize this property to lin-
ear functionals which are not necessary coming from measures. In particular we want to recover
informations about the semialgebraic set S = S (g) from linear functionals σ ∈ L(g). We are inter-
ested in generic elements σ∗ ∈ L(Q), that we characterize in terms of the the kernel of the Hankel
operator (see also Proposition 3.15).

Definition 3.2. We say that σ∗ ∈ L(Q) is generic if kerHσ ∗ ⊂ kerHσ ∀σ ∈ L(Q).

Proposition 3.3. Let I be an ideal of R[X] and σ∗ ∈ L(I ) be generic. Then kerHσ ∗ =
R
√
I .
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Proof. Notice that if x ∈ VR(I ) then ex ∈ L(I ). Moreover kerHex = I (x). This implies:

kerHσ ∗ ⊂
⋂

x∈VR(I )
kerHex =

⋂

x∈VR(I )
I (x) = I (VR(I )) =

R
√
I ,

where the last equality is the Real Nullstellenstatz, Theorem 1.1.
By definition, I ⊂ kerHσ ∗ . Since kerHσ ∗ is a real radical ideal (see [Las+13, prop. 3.13]) we

have R
√
I ⊂ kerHσ ∗ =, which proves that kerHσ ∗ =

R
√
I .

Proposition 3.3 generalizes to quadratic modules as follows.

Proposition 3.4. Let Q be a quadratic module, S = S (Q) and σ∗ ∈ L(Q) be generic. Then
√
suppQ ⊂

kerHσ ∗ ⊂ I (S). Moreover if Q is Archimedean then kerHσ ∗ = I (S).

Proof. As in the proof of Proposition 3.3, we get:

kerHσ ∗ ⊂
⋂

x∈S
kerHex =

⋂

x∈S
I (x) = I (S).

Now observe that suppQ ⊂ kerHσ ∗ by definition. Since kerHσ ∗ is a real radical ideal (see [Las+13,
prop. 3.13]), then R

√
suppQ ⊂ kerHσ ∗ .

For the second part, if Q is Archimedean, then by Theorem 3.1 L(Q) =M(S). In particular
σ∗ is a measure µ ∈ M(S) supported on S : ∀f ∈ R[X], 〈σ∗|f 〉 =

∫
f dµ. Let h ∈ I (S) and f ∈ R[X].

Then:

〈σ∗|f h〉 =
∫
f hdµ =

∫
0dµ = 0,

i.e. h ∈ kerHσ ∗ , which proves the reverse inclusion.

Now we describe L(Q) without the Archimedean hypothesis (compare with Theorem 3.1).

Lemma 3.5. Let Q be a quadratic module. Then L(Q) = L( R
√
suppQ +Q). In particular for any ideal

I ⊂ R
√
suppQ we have L(Q) = L( R

√
I +Q).

Proof. Since
√
suppQ ⊂Q (see [Mar08, th. 4.1.2]), we have

√
suppQ +Q ⊂Q +Q =Q. Then:

L(Q) = L(Q) ⊂ L(
√
suppQ +Q) ⊂ L(Q).

Since R
√
suppQ =

√
suppQ (see Section 1.3) we have L( R

√
suppQ+Q) = L(

√
suppQ+Q) = L(Q).

Remark. Lemma 3.5 shows that, even if the semialgebraic set is not compact, we can replace any
ideal in the description of the semialgebraic set with its real radical. In particular, since I (S (g)) =
R
√
O(g) (by Theorem 1.1), we have L(O(g)) = L(O(g) + I (S (g))).
The inclusion Q +

√
suppQ ⊂Q can be strict, as shown by the following example.

Example 3.6 ([Sch05a, ex. 3.2], [Sch05b, rem. 3.15]). Let Q = Q(1−X2 −Y 2,−XY,X −Y,Y −X2) ⊂
R[X,Y ]. Notice that S = S (Q) = {0} and that, since Q is Archimedean, Q = Pos({0}). In this case
suppQ = (0) and I (S) = suppQ = (X,Y ), and thus Q +

√
suppQ (Q.

3.2 Truncated moment representations

Now we prove the corresponding results in the truncated case. For a finitely generated quadratic
module Q = Q(g) ⊂ R[X], we denote Q[k] = Qk(g).

Definition 3.7. Let Q = Q(g) be a finitely generated quadratic module. We define Q̃ =
⋃
dQd(g) =⋃

dQ[d].
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Notice that Q̃ depends a priori on the generators g of Q: we will prove that Q̃ is a finitely
generated quadratic module and that it does not depend on the particular choice of generators.

Moreover notice that Q ⊂ Q̃ =
⋃

d

Q[d] ⊂
⋃

d

Q[d] = Q, but these inclusions may be strict as we will

see.

Lemma 3.8. Let Q = Q(g) and J = R
√
suppQ. Then for every d ∈ N there exists k ≥ d such that

Jd ⊂ Q[k].

Proof. Let m be big enough such that ∀f ∈ J = R
√
suppQ =

√
suppQ we have: f 2

m ∈ suppQ (if√
J = (h1, . . . ,ht) and h

ai
i ∈ I , we can take m such that 2m ≥ a1 + · · · + at). Let f ∈ Jd with deg f ≤ d.

Then f 2
m ∈ suppQ[k′] ⊂Q[k′ ] for k

′ ∈N big enough. Using the identity [Sch05b, remark 2.2]:

m− a = (1− a
2
)2 + (1− a

2

8
)2 + (1− a4

128
)2 + · · ·+ (1− a

2m−1

22
m−1 )

2 − a2
m

22
m+1−2 ,

substituting a by −mfε and multiplying by ε
m , we have that ∀ε > 0, f + ε ∈Q[k] for k =max{k′ ,2md}

(the degree of the representation of f + ε does not depend on ε). This implies that f ∈ Q[k].

We can now prove the main result of this section.

Theorem 3.9. Let Q = Q(g) be a finitely generated quadratic module and let J = R
√
suppQ. Then

Q̃ = ∪d∈NQ[d] = Q + J and supp Q̃ = J . In particular, Q̃ is a finitely generated quadratic module and
does not depend on the particular choice of generators of Q.

Proof. By [Mar08, lemma 4.1.4]Q[d]+ Jd is closed in R[X]d , thus Q[d] ⊂Q[d]+ Jd . Taking unions we

prove that Q̃ ⊂Q + J .
Conversely by Lemma 3.8 for d ∈ N and k ≥ d ∈ N big enough, Jd ⊂ Q[k]. Then, we have

Q[d] + Jd ⊂Q[k] +Q[k] ⊂Q[k] +Q[k] ⊂Q[k]. Taking unions on both sides gives Q + J ⊂ Q̃.

Finally supp Q̃ = supp(Q + J) = J by [Sch05b, lemma 3.16].

Remark. We proved that Q̃ =Q + R
√
suppQ, and thus in Example 3.6 we have that Q̃ (Q. We also

have supp Q̃ = R
√
suppQ so that if suppQ is not real radical then Q ( Q̃. Example 2.11 is such

a case where suppQ , R
√
suppQ. We notice that, by Theorem 3.9 and [Sch05b, th. 3.17], if Q is

stable1 then Q̃ =Q.

As a consequence we have no duality gap when suppQ is real radical. This generalizes the
condition suppQ = 0 in Theorem 2.5.

Proposition 3.10. Let Q = Q(g) be a finitely generated quadratic module. If R
√
suppQ = suppQ then

for any d ∈N, Qd(g) = Qd(g) is closed and Q̃ = Q. Moreover for any f ∈ R[X] such that f ∗ > −∞ we
have that f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Q2d(g)) and there is no duality gap: f ∗SoS,d = f

∗
MoM,d .

Proof. Let I = suppQ. By hypothesis,
√
I = I so that Q̃ = Q. By [Mar08, lemma 4.1.4], Q[d] + Id

is closed. As suppQ[d] ⊂ Id is a closed finite-dimensional subspace of Id , we also have that Q[d] +

suppQ[d] = Q[d] is closed. Therefore we have Ld(g)∨ = Q∨∨[d] = Q[d] = Q[d], from which we deduce

that there is not duality gap, by classical convexity arguments, as follows.

If f ∈ R[X] such that f ∗ > −∞, then
{
λ ∈ R | f − λ ∈ Q2d(g)

}
is bounded from above. Since

Q2d(g) is closed f
∗
SoS,d = sup

{
λ ∈R | f −λ ∈ Q2d(g)

}
is attained. If f ∗SoS,d < f

∗
MoM,d , then f − f

∗
MoM,d <

Q[d]. Thus there exists a separating functional σ ∈ L(1)d (g) such that
〈
σ
∣∣∣f − f ∗MoM,d

〉
< 0, which

implies that 〈σ |f 〉 < f ∗MoM,d in contradiction with the definition of f ∗MoM,d . Consequently, f
∗
SoS,d =

f ∗MoM,d .

1Q(g) is stable if ∀d ∈N there exists k ∈N such that Q(g)∩R[X]d =Qk(g)∩R[X]d .
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We describe now relations between the truncated parts of Ld(g).

Lemma 3.11. Let J = R
√
suppQ(g). If (h) ⊂ J , degh ≤ d, then ∃k ≥ d:

Lk(g)[d] ⊂ Ld(g,±h) ⊂ Ld (g).

In particular Lk(g)[d] ⊂ Ld(±h).

Proof. By Lemma 3.8, 〈h〉d ⊂ (h)d ⊂ Qk(g) for some k ≥ d. Let h ∈ h and f ∈ R[X]d−degh. Then

±f h ∈ Qk(g), and for σ ∈ Lk(g), we have
〈
σ [d]

∣∣∣f h
〉
= 〈σ |f h〉 = 0, i.e. Lk(g)[d] ⊂ Ld(g,±h). The other

inclusion Ld(g,±h) ⊂ Ld(g) follows by definition.

Remark. Lemma 3.11 says that the MoM relaxation (L2d(g))d∈N is equivalent to the MoM relax-
ation (L2d(g,±h))d∈N, where (h) = R

√
suppQ(g). Since supp(Q(g) + (h)) = suppQ̃ = (h) is a real

radical ideal, we can apply Proposition 3.10 to it: then the MoM relaxation (L2d(g))d∈N is equiva-
lent to the SoS relaxation (Q2d(g,±h))d∈N.

Lemma 3.11 is an algebraic result, in the sense that suppQ(g) may be unrelated to the geometry
S (g) that it defines. If some additional conditions hold (namely if we have only equalities, or a
preordering, or a small dimension), it can however provide geometric characterizations that will
be useful in Section 4.

Corollary 3.12. Suppose that S (g) ⊂ VR(h). Then for every t0 ≥ degh there exists t1 ≥ t0 such that:

Lt1(Πg)[t0] ⊂ Lt0(±h).

In particular this holds when (h) = I (S (g)).

Proof. S (g) ⊂ VR(h) if and only if R
√
(h) ⊂ I (S (g)) = R

√
suppQ(Πg) by Theorem 1.1. Then we can

apply Lemma 3.11.

Corollary 3.13. Let Q = Q(g). Suppose that S (g) ⊂ VR(h) and dim
R[X]

suppQ ≤ 1. Then for every t0 ≥
degh there exists t1 ≥ t0 such that:

Lt1(g)
[t0] ⊂ Lt0(±h).

In particular this holds when (h) = I (S (g)).

Proof. We prove it as Corollary 3.12, using [Mar08, cor. 7.4.2 (3)] instead of Theorem 1.1.

With the characterization of Q̃ we can now describe the kernel of Hankel operators associated
to truncated moment sequences, in analogy to the infinite dimensional case analyzed in Propo-
sition 3.4. First we recall the definition of genericity in the truncated setting and equivalent
characterizations.

Definition 3.14. We say that σ∗ ∈ Lk(g) is generic if rankHk
σ ∗ =max{rankHk

η | η ∈ Lk(g)}.

This genericity can be characterized as follows, see [Las+13, prop. 4.7].

Proposition 3.15. Let σ ∈ L2k(g). The following are equivalent:

(i) σ is generic;

(ii) kerHk
σ ⊂ kerHk

η ∀η ∈ L2k(g);

(iii) ∀d ≤ k, we have: rankHd
σ =max{rankHd

η | η ∈ L2k(g)}.

Remark. By Proposition 3.15 notice that ∀d ≤ k, if σ∗ ∈ L2k(g) is generic then (σ∗)[2d] is generic in
L2k(g)[2d]. In particular, kerHd

σ ∗ ⊂ kerHd
η ∀η ∈ Lk(g).

We are now ready to describe the kernel of generic elements.

13



Theorem 3.16. Let Q = Q(g) and J = R
√
suppQ. Then there exists d,t ∈ N such that for σ∗ ∈ Ld(g)

generic, we have J = (kerHt
σ ∗).

Proof. Let t ∈N such that J is generated in degree ≤ t, by the graded basis h = {h1, . . . ,hs}. From
Lemma 3.8 we deduce that there exists d ∈N such that J2t ⊂ Qd(g). Let σ∗ ∈ Ld(g) generic.

We first prove that J ⊂ (kerHt
σ ∗). By Proposition 3.15 we have kerHt

σ ∗ =
⋂
σ∈Ld (g)kerH

t
σ . Then

it is enough to prove that Jt ⊂ kerHt
σ for all σ ∈ Ld(g).

By Lemma 3.11 Ld (g)[2t] ⊂ L2t(±h) ⊂ 〈h〉⊥2t. Then ∀f ∈ Jt = 〈h〉t , ∀p ∈ R[X]t , ∀σ ∈ Ld(g), we

have f p ∈ 〈h〉2t and
〈
σ [2t]

∣∣∣f p
〉
= 0. This shows that Ht

σ (f )(p) =
〈
(f ⋆ σ)[t]

∣∣∣p
〉
= 〈σ |f p〉 = 0, i.e.

f ∈ kerHt
σ .

Conversely, we show that (kerHt
σ ∗) ⊂ J for σ∗ generic in Ld(g). Since J = supp Q̃ = supp

⋃
jQj (g)

(by Theorem 3.9) it is enough to prove that kerHt
σ ∗ ⊂ suppQd(g) = suppLd(g)∨.

Let f ∈ kerHt
σ ∗ =

⋂
σ∈Lk(g)kerH

t
σ (we use again Proposition 3.15) and let σ ∈ Ld(g). Then

〈σ |f 〉 =
〈
(f ⋆ σ)[t]

∣∣∣1
〉
= Ht

σ (f )(1) = 0. In particular f ∈ Ld(g)∨. We prove that −f ∈ Ld(g)∨ in the

same way. Then f ∈ suppQd(g), which proves that kerHt
σ ∗ ⊂ supp Q̃ = J .

As a corollary of this theorem we have the following result: there exists d,t ∈ N such that
R
√
(h) = (kerHt

σ ∗) for σ
∗ ∈ Ld(±h) generic. The particular cases of zero dimensional ideals were

investigated in [Lau07], [LLR08], [Las+13].
The geometric corollary of this theorem is the following:

Corollary 3.17. Let O = O(g) and S = S (g). Then there exists d,t ∈ N such that for σ∗ ∈ Ld(Πg)
generic, we have I (S) = (kerHt

σ ∗).

Proof. Apply Theorem 3.16 and Theorem 1.1.

3.3 Convergence of moments

Lasserre [Las01] proved that, if Q(g) is an Archimedian quadratic module, then limd→∞ f
∗
MoM,d =

f ∗, i.e. the minimum of the truncated moment relaxation is close to the evaluation f ∗ of f at the
minimizers. We will show that this happens because truncated linear funcionals are indeed close
to measures.

We first recall a compactness property for measures with compact support.

Lemma 3.18. Let S ⊂ Rn be compact. ThenM(1)(S)[k] is compact.

Proof. Every truncated linear functional coming from a measure is coming from (finite) sums of
evaluations, see [Sch17, th. 1.24]. ThenM(1)(S)[k] is the image of S under a continuous map, so
that it is compact.

Theorem 3.19. Let Q = Q(g) be an Archimedean quadratic module and S = S (g). Then ∀d:
∞⋂

k=d

Lk(g)[d] =M(S)[d].

Moreover:
lim
k→∞

dH(L
(1)
k (g)[d],M(1)(S)[d]) = 0,

where dH denotes the Hausdorff distance.

Proof. Since Lk(g)[d] = cone(L(1)k (g)[d]) andM(S (g))[d] = cone(M(1)(S)[d]), it is enough to prove:

∞⋂

k=d

L(1)k (g)[d] =M(1)(S)[d].
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The inclusion
⋂∞
k=d L

(1)
k (g)[d] ⊃M(1)(S)[d] is direct.

Conversely, suppose that τ ∈ L(1)k (g)[d]\M(1)(S)[d]. We want to prove that ∃h ∈N : τ < L(1)h (g)[d].
By [Sch17, th. 17.6], as τ is not coming from ameasure supported on S , there exists f ∈ Pos(S)d

such that 〈τ|f 〉 < 0. Let ε > 0 such that 〈τ|f 〉 < −ε. Now, f +ε > 0 on S (g) and by Theorem 1.2 there

exists h ≥ d such that f + ε ∈ Qh(g). Then ∀σ ∈ L
(1)
h (g):

〈
σ [d]

∣∣∣f + ε
〉
= 〈σ |f + ε〉 ≥ 0⇒

〈
σ [d]

∣∣∣f
〉
≥ −ε,

and thus σ [d]
, τ, i.e. τ < L(1)h (g)[d], which is a contradiction. We deduce the reverse inclusion

which concludes the proof of the first point.
For the second part, we proceed by contradiction. If the distance is not going to zero, then

∀k ∈ N ∃τk ∈ L
(1)
k (g)[d], with dH(τk ,M(1)(S)[d]) = ε > 0 (using the fact that L(1)k (g)[d] is convex).

Since M(1)(S)[d] is compact (see Lemma 3.18), the set of points at distance ε from M(1)(S)[d] is
compact too. Then up to restricting to a subsequence, we can assume that τk has limit τ ∈ (R[X]d)

∗,

and dH(τ,M(1)(S)[d]) = ε by continuity. But since L(1)k (g)[d] are closed and τk ∈ L
(1)
h (g)[d] for k ≥ h,

then τ ∈⋂∞k=d L
(1)
k (g)[d] =M(1)(S)[d], which is a contradiction to dH(τ,M(1)(S)[d]) = ε > 0.

Remark. Notice that sinceM(1)(S)[d] is compact, this proves that L(1)k (g)[d] is also compact.

As L(1)k (g)[d] ⊃ L(1)k (Πg)[d] ⊃M(1)(S)[d], we deduce the following result.

Corollary 3.20. If Q(g) is Archimedean then for d ∈N, lim
k→∞

dH(L
(1)
k (g)[d],L(1)k (Πg)[d]) = 0.

From a computational point of view Corollary 3.20 says that, in the Archimedean case, work-
ing with Ld(g) yields good numerical approximation of Ld(Πg).

It would be interesting to investigate the rate of convergence in Theorem 3.19. A possible
approach (on the polynomial SoS side) could be applying results from [NS07], where the degree
of Putinar representation is analyzed.

In Section 3.4 we will show that, in the case of a finite semialgebraic set, we need only a finite
number of steps in the intersection of Theorem 3.19.

3.4 Moment representation of finite semialgebraic sets

In the case of a finite semialgebraic set we have an easy characterization of positive functionals.
Theorem 3.1 reads as follows: if Q is Archimedean and S (Q) = {ξ1, . . . ,ξr} is finite then L(Q) =
L(I (S (Q))) = cone(eξ1 , . . . ,eξr ).

We want to prove that this holds also for truncated positive functionals. We recall an auxiliary
lemma.

Lemma 3.21. Let I be a real radical ideal such that |VR(I )| < +∞. Then VC(I ) = VR(I ).

Proof. Let y ∈ VC(I ) \ VR(I ) and let ȳ be its conjugate. Since |VR(I )| < +∞ we can consider the
interpolator polynomial uy ∈C[X] such that:

uy(x) =


1 x = y

0 x ∈ VR(I )∪ {ȳ}.

Since uy = uȳ , we have uy +uȳ ∈ R[X] and uy +uȳ vanishes on VR(I ), i.e. uy +uȳ ∈ I (VR(I )) = I . But
(uy +uȳ)(y) = 1, then y < VC(I ).

We prove a strong moment property for ideals whose associated real variety is finite.

Theorem 3.22. Let I = (h) be a real radical ideal with finite variety: V (I ) = {ξ1, . . . ,ξr} ⊂ Rn. Let
ρ = ρ(ξ1, . . . ,ξr ) be the regularity of the points. Then there exits d ∈N such that ∀k ∈N
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• dimcone(eξ1 , . . . ,eξr )
[ρ−1+k] = r;

• Ld+k(±h)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

Proof. We start to prove the first point. Let Ξ = {ξ1, . . . ,ξr } = V (I ) and ρ = ρ(Ξ) be the regularity, t ≥
ρ − 1 and u1, . . . ,ur ∈ R[X]t interpolator polynomials of degree < ρ (see Proposition 1.3). Suppose

that a1e
[t]
ξ1

+ · · ·+ are
[t]
ξr

= 0. Then for any i ∈ {1, . . . , r}:

ai =
〈
aie

[t]
ξi

∣∣∣∣ui
〉
= −

〈∑

j,i

aje
[t]
ξj

∣∣∣∣∣∣∣∣
ui

〉
= 0.

For the second part, the inclusion cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k] ⊂ Ld+k(±h)[2(ρ−1)+k] is obvious. Let

us take d ≥ 2(ρ − 1) big enough such that 〈h〉d contains a graded basis h′ of degree ρ of I =
I (Ξ). Then we have I2(ρ−1)+k = 〈h′〉2(ρ−1)+k ⊂ 〈h〉d+k and Ld+k(±h)[2(ρ−1)+k] ⊂ L2(ρ−1)+k(±h′) =
L2(ρ−1)+k (I2(ρ−1)+k). By Proposition 1.4 for k ∈ N, L2(ρ−1)+k(I2(ρ−1)+k) = cone(eξ1 , . . . ,eξr )

[2(ρ−1)+k],

which proves the reverse inclusion and Ld+k (±h)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

Now we prove a theorem that is central in the paper. We generalize Theorem 3.22 to the case
of inequalities: finite semialgebraic sets enjoy a truncated strong moment property.

Theorem 3.23. Suppose that dim R[X]
suppQ(g) = 0. Then, S = S (g) = {ξ1, . . . ,ξr} is non-empty and finite

and there exists d ∈N such that ∀k ∈N:

Ld+k(g)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

where ρ = ρ(ξ1, . . . ,ξr ) is the regularity of S .

Proof. Let I = suppQ(g) and J = R
√
suppQ(g) =

√
suppQ(g). Since dim R[X]

J = dim R[X]
I = 0 we have

I (S (g)) = R
√
suppQ(g) = J by [Mar08, cor. 7.4.2 (3)]. Then dim R[X]

I (S(g)) = 0 and VR(J) = VR(I (S (g))) =
S (g) = {ξ1, . . . ,ξr } is finite.

We choose a graded basis h of J with degh ≤ ρ = ρ(ξ1, . . . ,ξr ), see Section 1.4. By Corollary 3.13
and Proposition 1.4, there exists d ∈N big enough such that for every k ∈N:

Ld+k(g)[2(ρ−1)+k] ⊂ L2(ρ−1)+k(±h) = L2(ρ−1)+k(I2(ρ−1)+k) = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

Since the converse inclusion is obvious, we prove that Ld+k(g)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

Remark. Notice that there exist examples with S (g) finite and dim
R[X]

suppQ(g) > 1, see Example 3.6.

However the hypothesis:

(i) dim
R[X]

suppQ(g) = 0; and

(ii) S (g) is finite and dim R[X]
suppQ(g) ≤ 1

are equivalent: (i) ⇒ (ii) is shown in the proof of Theorem 3.23, while (ii) ⇒ (i) follows from
I (S (g)) = R

√
suppQ(g) (see [Mar08, cor. 7.4.2 (3)]).

Corollary 3.24. Suppose that S (g) = {ξ1, . . . ,ξr} is non-empty and finite and let ρ = ρ(ξ1, . . . ,ξr) be the
regularity. Then there exists d ∈N such that ∀k ∈N:

Ld+k (Πg)[2(ρ−1)+k] = cone(eξ1 , . . . ,eξr )
[2(ρ−1)+k].

Proof. We combine Theorem 3.23 and Theorem 1.1 replacing g by Πg.

Related results were obtained in [LLR08] and [Las+13]. In particular Theorem 3.23 generalize
their setting, i.e. the case when the description of the quadratic module defines an ideal with
finite real variety. Theorem 3.23 gives a complete description of the truncated moment sequences
in terms of convex sums of evaluations at the points of the semialgebraic set.
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3.5 The truncated moment hierarchy

We summarize the relations between the truncated moment cones that we have seen. LetQ = Q(g),
S = S (g) and let h be a (graded) basis of J = R

√
suppQ. For d,t big enough, we have the following

inclusions:

Lt(g,±h) ⊃
(1)
Ld(g)[t] ⊃

(2)
Ld+1(g)[t] ⊃ . . . ⊃

∞⋂

d=t

Ld(g)[t] ⊃
(3)
L(Q)[t] ⊃

(4)
M(S)[t].

All these inclusions are obvious, except for (1) which is Lemma 3.11. In this section we analyzed
cases when these inclusions are equalities.

(1) is an equality if we can extend degree-t positive functionals on Qt(g) to degree-d positive
functionals on Qd(g), i.e. if Lt(g) = Ld(g)[t].

(2) is an equality if Q is stable: if Qt(g) = (Qd(g))t then Lt(g) = Ld(g)[t] (see [Mar08, ch. 4]).
(3) and (4) are equalities if Q is Archimedan, see Theorem 3.19.
(4) is an equality if L(Q) has the strong moment property (and this is the case when Q is

Archimedean, see Theorem 1.2). We cannot deduce that (3) is an equality with just strongmoment
property hypothesis.

Theorem 3.23 says that, if J defines a finite real variety, then all these inclusions are equalities.
Morever notice that, if Q is a reduced, Archimedean quadratic module with dimS ≥ 3, then we
cannot have finite convergence in general (see Example 2.8) and inclusions (2) are always proper:
(3) and (4) are equalities since Q is Archimedean, but there exists σ ∈ Ld (g)[t] \

⋂∞
e=tLe(g)[t] for all

d.
The situation is simplier if we consider generic linear funcionals and kernels of Hankel opera-

tors. If τ∗d ∈ Ld (g) and σ∗ ∈ L(Q) are generic, then:

J =
(a)

(kerHt
τ∗d
) =
(b)

(kerHt
τ∗d+1

) = . . . ⊂
(c)

(kerHt
σ ∗) ⊂

(d)
I (S).

(a) and (b) are Theorem 3.16. (d) is an equality ifQ is Archimedean, see Proposition 3.4. Inclusion
(c) can be proper, even in the Archimedean case: in Example 3.6 (kerHt

τ∗d
) = (0) but (kerHt

σ ∗) =

(X,Y ).

4 Applications to Polynomial Optimization

In this section, we consider the Polynomial Optimization Problem of minimizing f ∈ R[X] on a
basic semialgebraic set S = S (g) where g = {g1, . . . , gs} ⊂ R[X].

4.1 Finite semialgebraic set

Theorem 4.1. Let f ∗ denote the infimum of f on S = S (g) and let Q = Q(g). Suppose that dim R[X]
suppQ =

0. Then the moment relaxation (L2d(g))d∈N is exact. For t ∈N and d ≥ t
2 big enough,

Lmin
2d (g)[t] = conv(eξ1 , . . . ,eξl )

[t],

where {ξ1, . . . ,ξl} ⊂ Rn is the finite set of minimizers of f on S . Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξl ) and
σ ∈ Lmin

2d (g) is generic, then (kerHt
σ ) = I (ξ1, . . . ,ξl) is the vanishing ideal of the minimizers {ξ1, . . . ,ξl }

of f on S .

Proof. By Theorem 3.23) for t ≥ deg f and d ≥ t
2 , L2d(Πg)[t] = cone(eξ1 , . . . ,eξr )

[t]. Assume that the
minimizers of f on S = {ξl , . . . ,ξr } are {ξl , . . . ,ξl } (l ≤ r) so that f (ξi) > f

∗ if l < i ≤ r. Then for all

σ ∈ Lmin
2d (g), 〈σ |f 〉 =

〈
σ [t]

∣∣∣f
〉
= f ∗ =

∑r
i=1wif (ξi) is a convex sum of evaluations of f at the points of

the semialgebraic set S with
∑r
i=1wi =

〈
σ [t]

∣∣∣f
〉
= 1. We deduce that

∑r
i=1wi (f (ξi) − f ∗) = 0 so that
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if f (ξi) > f
∗ then wi = 0. Consequently σ [t] ∈ cone(eξi , . . . ,eξl )[t] and the first part of the theorem

follows.
Let us choose t ≥ ρ and d ≥ t big enough. We have shown that if σ ∈ Lmin

2d (g) then σ [2t] =
∑l
i=1ωi eξi with ωi ≥ 0. Let (ui)i=1,...,r be a family of interpolation polynomials at the points

ξl , . . . ,ξl of degree ≤ ρ − 1 (Proposition 1.3). As
〈
σ [2t]

∣∣∣u2i
〉
= ωi , ui ∈ kerHt

σ
if and only if ωi = 0.

Therefore a generic element σ ∈ Lmin
2d (g) is such that ωi > 0, since the kernel of Ht

σ is included in
all the other kernels.

For p ∈ I = I (ξl , . . . ,ξl) with deg(p) ≤ t, we have
〈
σ [2t]

∣∣∣p2
〉
=
∑l
i=1ωi p

2(ξi) = 0 so that p ∈ kerHt
σ .

Conversely, for p ∈ kerHt
σ ,

〈
σ [2t]

∣∣∣p2
〉
=
∑l
i=1ωi p

2(ξi) = 0, which implies that p(ξi) = 0 and p ∈ It .
This shows that kerHt

σ = It . As I is generated in degree ρ ≤ t, we have proved the second part of
theorem: (kerHt

σ ) = I .

Corollary 4.2. With the same notation, if S = S (g) is finite then the moment relaxation (L2d(Πg))d∈N
is exact. For t ∈N and d ≥ t

2 big enough,

Lmin
2d (Πg)[t] = conv(eξ1 , . . . ,eξl )

[t].

where {ξ1, . . . ,ξl } is the finite set of minimizers of f on S . Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξl) and
σ ∈ Lmin

2d (Πg) is generic, then (kerHt
σ ) = I (ξ1, . . . ,ξl) is the vanishing ideal of the minimizers {ξ1, . . . ,ξl }

of f on S .

Proof. It is a consequence of Theorem 4.1 and Theorem1.1, since if S (g) is finite then dim R[X]
suppO(g) =

dim
R[X]√

suppO(g)
= dim

R[X]
I (S(g)) = 0.

We consider now the case of finite semialgebraic set S = S (g,±h) defined with equations hwith
an associated finite real variety: |VR(h)| <∞.

Corollary 4.3. If VR(h) is finite then the moment relaxation (L2d(g,±h))d∈N is exact. For t ∈N and
d ≥ t

2 big enough,

Lmin
2d (g,±h)[t] = conv(eξ1 , . . . ,eξl )

[t].

where {ξ1, . . . ,ξl } is the finite set of minimizers of f on S = S (g,±h). Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξl)
and σ ∈ Lmin

2d (g,±h) is generic, then (kerHt
σ ) = I (ξ1, . . . ,ξl) is the vanishing ideal of the minimizers

{ξ1, . . . ,ξl} of f on S .

Proof. Let Q = Q(g,±h). If |VR(h)| < ∞ then dim
R[X]
R
√
(h)

= 0. Since
√
suppQ = R

√
suppQ (see Sec-

tion 1.3) and (h) ⊂ suppQ, we have:

dim
R[X]

suppQ
= dim

R[X]
√
suppQ

= dim
R[X]

R
√
suppQ

≤ dim
R[X]
R
√
(h)

= 0.

Then the relaxation is exact by Theorem 4.1.

Applying strong duality we can also deduce finite convergence for the SoS relaxation.

Corollary 4.4. Under the assumptions of Theorem 4.1 (resp. Corollary 4.2, resp. Corollary 4.3) the
SoS relaxation:

f ∗SoS,d = sup
{
λ ∈ R | f −λ ∈ Q2d(g)

}

(resp. f ∗SoS,d = sup
{
λ ∈ R | f −λ ∈ Q2d(Πg)

}
,

resp. f ∗SoS,d = sup
{
λ ∈ R | f −λ ∈ Q2d(g,±h)

}
)

has the finite convergence property.
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Proof. For the quadratic module cases,Q(g) is Archimedean by [Mar08, cor. 7.4.3]. Then by strong
duality Theorem 2.5 the result follows.

For the preordering case, O(g) is Archimedean by [Wö98] (see also [Mar08, th. 6.1.1]). Then
by strong duality Theorem 2.5 the result follows.

Notice that, even if the SoS relaxation has the finite convergence property, it may not be SoS
exact as shown in Example 2.10 and Example 2.11.

4.2 Boundary Hessian Conditions

Boundary Hessian Conditions (BHC) are conditions on the minimizers of a polynomial f on a
basic semialgebraic set S introduced by Marshall in [Mar06] and [Mar09]. These conditions are
particular cases of the so called local-global principle, which allows one to prove global properties
of polynomials (e.g. f ∈Q) analyzing local properties (e.g. checking the BHC at the minimizers of
f on S (Q)). We refer to [Sch05a], [Sch06] and [Mar08, ch. 9] for more details. We introduce BHC
conditions following [Sch09].

Definition 4.5 (Boundary Hessian Conditions). Let V ⊂ Rn be a variety, and letQ be a finitely gen-

erated Archimedean quadratic module in R[V ] � R[X]
I (V )

(or equivalently Q + I (V ) is Archimedean

in R[X]). Let S = S (Q)∩V and f ∈ Pos(S). We say that the Boundary Hessian Conditions holds at
x ∈ V (f )∩ S if there exists t1, . . . , tm ∈Q such that:

• t1, . . . , tm are part of a regular system of parameters for V at x;

• ∇f (x) = a1∇t1(x) + · · ·+ am∇f (x), where ai are strictly positive real numbers;

• the Hessian of f restricted to V (t1, . . . , tm)∩V is positive definite at x.

When BHC holds, the minimizers are non-singular, isolated points and thus finite. It is proved
in [Mar09] that if BHC holds at every minimizer of f on S (g) then f ∈ Q(g), which implies that the
SoS relaxation f ∗SoS,d is exact. [Nie14] proved that the BHC at every minimizer of f , which hold
generically, implies the SoS finite convergence property.

In this section, we prove that, if the BHC hold, then the MoM relaxation is exact. We need
some preliminary lemmas.

Lemma 4.6. Let p,g ∈ R[X], k ≥ degp+degg and d ≥ 2k+degg . If σ = σ [d] ∈ Ld(g) then:
〈
σ [d]

∣∣∣p2g
〉
=

0 implies pg ∈ kerHk
σ .

Proof. Let h ∈ R[X]k and σ = σ [d] ∈ Ld(g). Since σ [d] is positive on Qd(g) and
〈
σ [d]

∣∣∣p2g
〉
= 0, then

∀t ∈R:
0 ≤

〈
σ [d]

∣∣∣(p + th)2g
〉
= t2

〈
σ [d]

∣∣∣h2g
〉
+2t

〈
σ [2d]

∣∣∣phg
〉
.

As a function of t the last expression is non-negative, and equal to 0 for t = 0. Then t = 0 must be a

double root, and thus
〈
σ [d]

∣∣∣phg
〉
=
〈
(f g ⋆ σ)[k]

∣∣∣h
〉
= 0 for all h ∈R[X]k. But this means pg ∈Hk

σ .

Lemma 4.7. Let f ∈ Ql(g). Then for k and d ≥ 2k big enough, if σ ∈ Ld(g) then: 〈σ |f 〉 = 0 if and only
if f ∈ kerHk

σ .

Proof. The if part is obvious.
For the only if part, we set g0 = 1 for notation convenience. Since f ∈ Ql(g), then f =

∑
i sigi ,

with si =
∑
j p

2
i,j and deg sigi ≤ l. Let d ≥maxi,j {2deg(pi,j ) + deg(gi)} and σ ∈ Ld(g). By hypothesis:

0 =
〈
σ [d]

∣∣∣f
〉
=
∑

i,j

〈
σ [d]

∣∣∣∣p2i,jgi
〉
,

which implies
〈
σ [d]

∣∣∣∣p2i,jgi
〉
= 0 for all i and j. Let ki,j and di,j be given from Lemma 4.6 (applied

to pi,j and gi). Let k
′ ≥ maxi,j {ki,j }. Then pi,jgi ∈ kerHk′

σ for all i and j which implies that p2i,jgi ∈
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kerH
k′−degpi,j
σ . Letting k = mini,j {k′ − degpi,j }, we finally get p2i,jgi ∈ kerHk

σ for all i and j, and

f =
∑
i,j p

2
i,jgi ∈ kerHk

σ .

Theorem 4.8. Let f ∈ R[X], Q = Q(g) be an Archimedean finitely generated quadratic module and as-
sume that the BHC hold at every minimizer of f on S = S (g). Then the moment relaxation (L2d(g))d∈N
is exact. For t ∈N and d,e ≥ t

2 big enough:

Lmin
2d (g)[t] = L2e(g,±(f − f ∗))[t] = conv(eξ1 , . . . ,eξr )

[t].

where {ξ1, . . . ,ξr } is the finite set of minimizers of f on S . Moreover, if d ≥ t ≥ ρ(ξ1, . . . ,ξr ) and σ∗ ∈
Lmin
2d (g) is generic, then (kerHt

σ ∗) = I (ξ1, . . . ,ξr) is the vanishing ideal of the minimizers of f on S .

Proof. We can assumewithout loss of generality that f ∗ = 0. For d,e big enough, if σ ∈ Lmin
2d (g) then

f ∈ kerHe
σ by Lemma 4.7. This implies that Lmin

2d (g)[2e] ⊂ L2e(g,±f ). Since the BHC hold, we know

that dim
R[X]

supp(Q+(f )) = 0 (see the proof of [Mar06, th. 2.3]). By Theorem 3.23 applied to L2e(g,±f ),
we have L2e(g,±f )[t] = conv(eξ1 , . . . ,eξr )

[t] for t ∈ N and e big enough. Since conv(eξ1 , . . . ,eξr )
[t] ⊂

Lmin
2d (g)[t] by definition, we proved the first part: up to restriction, functional minimizers are

coming from convex sums of evaluations at the minimizers of f .
The proof of the second part is equal to that of Theorem 4.1.

Remark. In Theorem 4.8 we use BHC to prove the following:

• f − f ∗ ∈Q (i.e. SoS exactness);

• dim R[X]
supp(Q+(f −f ∗)) = 0.

If the previous two conditions holds, the conclusions of Theorem 4.8 remain valid.

We show now that moment exactness holds generically. For polynomials f ∈ R[X]d and g1 ∈
R[X]d1 , . . . , gs ∈ R[X]ds , we say that a property holds generically (or that the property holds for
generic f ,g1, . . . , gs) if there exists finitely many nonzero polynomials φ1, . . . ,φl in the coefficients
of polynomials in R[X]d and R[X]d1 , . . . ,R[X]ds such that, when φ1(f ,g) , 0, . . . ,φl (f ,g) , 0, the
property holds.

Corollary 4.9. For f ∈R[X]d and g1 ∈R[X]d1 , . . . , gs ∈ R[X]ds generic, the moment relaxation (L2d(g))d∈N
is exact.

Proof. By [Nie14, th. 1.2] BHC hold generically. We apply Theorem 4.8 to conclude.

4.3 Finite minimizers

In this section, we consider Polynomial Optimization Problems for which the non-empty set of
minimizers is finite and we propose a strategy to recover them.

If the set ofminimizers is non-empty and finite, andwe know theminimum f ∗ of f on S = S (g),
by adding the equation f − f ∗ to the definition of the truncated quadratic module, we obtain a
quadratic module Q′ = Q(g,±(f − f ∗)), which defines the finite set S (Q′) of minimizers of f on S .
We can then apply the results of Section 4.1 to the relaxation (L2d(g,±(f − f ∗)))d or (L2d(Πg,±(f −
f ∗)))d .

Corollary 4.10. Let f ∈ R[X], Q = Q(g) be a finitely generated quadratic module. Assume that the
minimizers of f on S = S (g) are finite: {x ∈ S | f (x) = f ∗ } = {ξ1, . . . ,ξr }. Then for any t ∈N and d ≥ t

2
big enough:

L2d(Πg,±(f − f ∗))[t] = conv(eξ1 , . . . ,eξr )
[t].

Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξr ) and σ ∈ Lmin
2d (g,±(f − f ∗)) is generic, then (kerHt

σ ) = I (ξ1, . . . ,ξr)
is the vanishing ideal of the minimizers of f on S .
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In practice, the minimum f ∗ is usually not known. Since the computation of moment mini-
mizers σ∗ ∈ Lmin

d (g,±(f − f ∗)) is based on numerical Semi-Definite Program (SDP) solvers, we can

replace f ∗ by an approximate value, taking for instance f ∗MoM,d = inf
{
〈σ |f 〉 ∈ R | σ ∈ L(1)2d (g)

}
≤ f ∗

for d ∈N. Notice that if v < f ∗ then L(1)2d (g,±(f − v)) is empty since S (Πg,±(f − v)) is empty. If v is
not close to f ∗, the SDP solvers can detect the feasibility/infeasibility of the relaxation, that is if
Ld (Πg,±(f − v)) is empty or not.

Notice also that by [Wö98] (or [Mar08, th. 6.1.1]) O(g) is Archimedean if the semialgebraic
set is finite. If also Q(g) is Archimedean, since the SDP solvers perform approximate numerical

computations, and since lim
d→∞

dH(L
(1)
d (g)[k],L(1)d (Πg)[k]) = 0 for k big enough by Corollary 3.20, we

can also replace the relaxation associated to the preordering by the relaxation associated to the
quadratic module. This leads to the following algorithm for the computation of finite minimizers.

Algorithm 1: Finite Minimizers

input :d ∈N, f ,g1, . . . gr ∈ R[X]d such that f has a finite set of minimizers on S = S (g).
output :The minimizers {ξ1, . . . ,ξr} of f on S and f ∗ = infx∈S f (x).
k = ⌈d2⌉
repeat

Compute f ∗MoM,k = inf
{
〈σ |f 〉 ∈ R | σ ∈ L(1)2k (g)

}
.

Compute a generic element σ∗ ∈ L(1)2k (g,±(f − f
∗
MoM,k))

Extract of the minimizers ξ1, . . . ,ξr from Ht
σ ∗ for t ≤ k big enough.

k = k +1
untilminimizer extraction success
return the minimizers {ξ1, . . . ,ξr} and f ∗ = 〈σ∗|f 〉

Each loop of this algorithm requires two calls to SDP solvers. The first one is to compute

f ∗MoM,k on the convex set L(1)2k (g). The second one is to compute an interior or generic point σ∗ of

L(1)2k (g,±(f − f
∗
MoM,k)), using an interior point SDP solver.

The extraction ofminimizers from theHankelmatrixHt
σ ∗ is based on the algorithm of polynomial-

exponential decomposition of series described in [Mou18]. It involves numerical linear algebra
functions such as SVD, eigenvalue and eigenvector computation. It provides an approximation
of the linear functional σ∗ as a weighted sum of evaluations σ∗ ≈ ∑r

i=1ωieξi . We consider that
the minimizer extraction succeeds when such an approximation of σ∗ is obtained within a given
threshold.

If the set of minimizers is finite and the moment relaxation (L2d(g))d∈N is exact for f then this
algorithm terminates. When this is not the case, it shall also terminates using approximate com-
putation. Indeed, increasing the degree k, we obtain better approximations of f ∗ and of a generic
element of L2d(Πg,±(f − f ∗))[2t] = conv(eξ1 , . . . ,eξr )

[2t].When a sufficiently good approximation of

a generic element of conv(eξ1 , . . . ,eξr )
[2t] is obtained, the minimizer extraction succeeds and Algo-

rithm 1 outputs an approximation of the minimizers {ξ1, . . . ,ξr } and the minimum f ∗. We will
illustrate it in Example 4.14.

4.4 Gradient, KKT and Polar ideals

Another approach which has been investigated to make the relaxations exact, is to add equality
constraints satisfied by the minimizers (and independent of the minimum f ∗) to a Polynomial
Optimization Program.

For global optimization we can consider the gradient equations (see [NDS06]): obviously
∇f (x∗) = 0 for all the minimizers x∗ of f on S = Rn. For constrained optimization we can con-
sider Karush–Kuhn–Tucker (KKT) constraints, adding new variables (see [DNP07]) or projecting
them to the variables X (Jacobian equations, see [Nie13a]). We shortly describe them.
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Let g1, . . . , gr ,h1, . . . ,hs ∈ R[X] defining S = S (g,±h), and let f ∈ R[X] be the objective function.
Let Λ = (Λ1, . . . ,Λr ) and Γ = (Γ1, . . . ,Γs) be variables representing the Lagrange multipliers associated
with g and h. The KKT constraints associated to the optimization problem minf (x) : x ∈ S (g,±h)
are: 

∂f

∂Xi
−

r∑

k=1

Λ
2
k

∂gk
∂Xi
−

s∑

j=1

Γj

∂hj

∂Xi
= 0 ∀i

Λkgk = 0, hj = 0, gk ≥ 0 ∀j,k,
(6)

where the polynomials belong to R[X,Γ,Λ]. These are sufficient but not necessary conditions for
x∗ ∈ S being a minimizer.

For x ∈ S , we say that gi is an active constraint at x if gi(x) = 0. Let x∗ ∈ S and gi1 , . . . gik be
the active constraints at x∗. The KKT constraints are necessary if Linear Independence Constraint
Qualification (LICQ) holds, that is, if ∇h1(x

∗), . . . ,∇hs(x
∗),∇gi1(x

∗), . . . ,∇gik (x
∗) are linearly indepen-

dent at the minimizer x∗ ∈ S (see [NW06, th. 12.1]). We cannot avoid the LICQ hypothesis: for
example if f = X1 ∈ R[X1] and g1 = X

3
1 ∈ R[X1], then x

∗ = 0 is a minimizer, but the KKT equations
are not satisfied at x∗ = 0.

To avoid this problem we define the polar ideal. Observe from eq. (6) that, if KKT constraints
are satisfied at x and

• if gi is not an active constraint at x, then Λi = 0;

• if gi1 , . . . gik are the active constraints at x, then the gradients ∇f (x),∇h1(x), . . . ,∇hr (x),∇gi1(x),
. . . ,∇gik (x) are linearly dependent.

Definition 4.11. For f ,g1, . . . , gr ,h1, . . . ,hs ∈ R[X] as before, the polar ideal is defined as follows:

J ≔ (h) +
∏

{a1,...,ak}⊂{1,...r}

(
(ga1 , . . . , gak ) +

(
rankJac(f ,h, ga1 , . . . , gak )

)
< s + k +1

)
.

where
((
rankJac(f ,h, ga1 , . . . , gak )

)
< l

)
is the ideal generated by the l × l minors of the Jacobian

matrix Jac(f ,h, ga1 , . . . , gak ). The generators of J besides h are the product of active constraints and
the generators of rank ideals.

In this definition, we could replace the product of ideals by their intersection and the l × l minors
of the Jacobian matrices by polynomials defining the same varieties.

We prove that every minimizer belongs to VR(J).

Lemma 4.12. Let x∗ be a minimizer of f on S = S (g,±h). Then x∗ ∈ VR(J).

Proof. Since x∗ ∈ S , then x∗ ∈ VR(h).
If the LICQ hold at x∗, then x∗ is a KKT point (see [NW06, th. 12.1]) and ∇f (x) =

∑
j γj∇hj (x) +∑

j λ
2
j∇gj(x) for some γj and λi in R. As λk = 0 if gk is not an active constraint, we have that

∇f (x∗),∇h1(x
∗), . . . ,∇hr (x

∗),∇gi1(
∗x), . . . ,∇gik (x

∗)

are linearly dependent, where gi1 , . . . gik are the active constraints at x∗. Thus x∗ ∈ VR(ga1 , . . . , gak )
and

(
rankJac(f ,h1, . . . ,hs , ga1 , . . . , gak )(x

∗)
)
< s+ k +1. This implies x∗ ∈ VR(J).

If the LICQ do not hold at x∗ and gi1 , . . . , gik are the active constraints, then the gradients
∇h1(x

∗), . . . ,∇hs(x
∗) and∇gi1(x

∗), . . . ,∇gik (x
∗) are linearly dependent. This implies that∇f (x∗),∇h1(x

∗),
. . . ,∇hs(x

∗) and ∇gi1(x
∗), . . . ,∇gik (x

∗) are also linearly dependent, and we conclude as in the previous
case.

Theorem 4.13. Let Q = Q(g,±h) and J = (h′) be the polar ideal, where h′ ⊂ R[X] is a finite set of
generators. If VR(J) is finite then the moment relaxation (L2d(g,±h′))d∈N is exact.
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Proof. Minimizers belongs to VR(J) by Lemma 4.12. Then MoM exactness follows from Corol-
lary 4.3.

The assumption in [NDS06], [DNP07] and [Nie13a] for finite convergence and SoS exactness
are smoothness conditions or radicality assumptions on the associated complex variety. Our con-
dition for MoM exactness is of a different nature, since it is on the finiteness of the real polar
variety (see Example 4.17).

Notice that by taking equations h′ such that (h′) = R
√
J instead of generators of J , we have

the same MoM relaxation (by Lemma 3.11 and following remark). Then the SoS exactness prop-
erty under the (real) radicality assumption implies SoS exactness for the extended relaxation
(Q2d(g,h

′))d∈N.

4.5 Examples

We give some examples where we compute the minimumand the minimizers for some POP, which
MoM relaxation is exact. Computations were performed with the Julia package MomentTools.jl2

using the SDP solver Mosek, based on an interior point method.

Example 4.14 (Motzkin polynomial). We find the global minimizers of the bivariate Motzkin
polynomial f = x4y2 + x2y4 − 3x2y2 + 1. This is an example of a (globally) positive polynomial
which is not sum of squares (and then the SoS relaxation cannot be exact). Its minimum is f ∗ = 0
and the four minimizers are (±1,±1) ∈R2 (see [Rez96]).

v0, M = minimize(f, [], [], X, 4, Mosek.Optimizer)

Here f ∗MoM,4 ≈ v0 = −1.23437 · 10−10, but we cannot recover the minimizers: exactness does not
hold. We add f − f ∗MoM,4 = 0 to find them, i.e. use Ld(±(f − f ∗MoM,4)).

v1, M = minimize(f, [f-v0], [], X, 4, Mosek.Optimizer)

Here the new optimum if v1 ≈ 1.84908 · 10−10. In this case the approximation of the minimum is
of the same order as before, but we can recover the minimizers by Corollary 4.10:

w, Xi = get_measure(M)

We obtain the following approximation of the 4 minimizers:

ξ1 = (1.0000009448913,1.00000094519956) ξ2 = (1.00000094499890,−1.00000094499890)
ξ3 = (−1.0000009448913,1.00000094499890) ξ4 = (−1.000000945184,−1.00000094519956).

Example 4.15 (Robinson form). We find the minimizers of the Robinson form f = x6 + y6 + z6 +
3x2y2z2 − x4(y2 + z2)− y4(x2 + z2)− z4(x2 + y2) on the unit sphere h = x2 + y2 + z2 −1. The Robinson
polynomial has minimum f ∗ = 0 (globally and on the unit sphere), and the minimizers on VR(h)
are: √

3

3
(±1,±1,±1),

√
2

2
(0,±1,±1),

√
2

2
(±1,0,±1),

√
2

2
(±1,±1,0).

BHC are satisfied at every minimizer (see [Nie14, ex. 3.2]) and we can recover the minimizers by
Theorem 4.8.

v, M = minimize(f, [h], [], X, 5, Mosek.Optimizer)

w, Xi = get_measure(M)
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ξx: 0.577351068999 8.81247793064010−12 0.707107158043 0.707107157553
ξy: 0.577351069076 0.707107158048 1.27172944612510−13 0.707107157555
ξz: 0.577351066102 0.707107158048 0.707107158042 2.47877120134010−9

Here f ∗MoM,5 ≈ v = −1.27211 ·10−7 and the minimizers with positive coordinates are (all the twenty
minimizers are found):

Example 4.16 (Gradient ideal). We compute the minimizers of Example 2.11.Let f = (X4Y 2 +
X2Y 4+Z6−2X2Y 2Z2)+X8+Y 8+Z8 ∈ R[X,Y ,Z]. We want to minimize f over the gradient variety

VR
(
∂f
∂X
, ∂f
∂Y
, ∂f
∂Z

)
.

v, M = minimize(f, differentiate(f,X), [], X, 4, Mosek.Optimizer)

w, Xi = get_measure(M, 2.e-2)

The approximation of the minimum f ∗ = 0 is v = −1.6279 · 10−9, and the decomposition with a
threshold of 2 · 10−2 gives the following numerical approximation of the minimizer (the origin):

ξ = (2.976731510689691 10−17;−9.515032317137384 10−19;3.763401209219283 10−18).

Example 4.17 (Singular minimizer). We minimize f = x on the compact semialgebraic set S =
S (x3 − y2,1− x2 − y2). The only minimizer is the origin, which is a singular point of the boundary
of S . Thus BHC do not hold. The regularity conditions for the Jacobian and KKT constraints are
not satisfied, but the real polar variety is finite. Adding the polar constraints, we have an exact
MoM relaxation. We can recover an approximation of the minimizer from the MoM relaxation of
order 5:

v, M = polar_minimize(f, [], [x^3-y^2,1-x^2-y^2], X, 5, Mosek.Optimizer)

w, Xi = get_measure(M, 2.e-3)

The approximation of the minimum f ∗ = 0 is v = −0.0045, and the decomposition of the moment
sequence with a threshold of 2 · 10−3 gives the following approximation of the minimizer (the
origin):

ξ = (−0.004514367348787526,2.1341684460860045 10−21).
The error of approximation on the minimizer is of the same order than the error on the minimum
f ∗.
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