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Phase resonance method for nonlinear mechanical structures with phase locked loop control

The identification of nonlinear mechanical structures is still a field of active research. Several researchers applied the concept of nonlinear normal modes for numerical nonlinear modal analysis of mechanical structures. This method can also be used for experimental identification of mechanical structures; however, successful demonstration on highly nonlinear structures with multiple degrees of freedom for input and output are not state of the art. Phase locked loop control is one method for identifying nonlinear normal modes, but the theoretical foundation of this control is limited to single degree of freedom systems and phase estimation fails if the response of higher harmonics due to nonlinear behavior is significant. Hence, an inputoutput blending with a modal approach is used in order to extend the single-input, single-output into a multiple-input, multiple-output controller. Furthermore, phase estimation is improved with an adaptive least-squares sine fit. The proposed method has been implemented and tested on a laboratory structure, where a mode with highly nonlinear behavior has been extracted.

Introduction

In the field of experimental structural dynamics, experimental modal analysis (EMA) is the most common tool in order to characterize the dynamical behavior of mechanical structures. The results are used either to validate existing numerical models or to assemble equivalent dynamic models. Researchers try to extend this approach for nonlinear mechanical structures. A promising approach is the usage of so-called nonlinear normal modes [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamicist[END_REF]. However, this theoretical framework has been established only for numerical models. First attempts have been made in order to use this framework for experimental identification of mechanical structures, where two methods showed promising results on laboratory structures: namely control based continuation (CBC) [START_REF] Renson | Robust identification of backbone curves using control-based continuation[END_REF] and phase locked loop control (PLL) [START_REF] Peter | Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation[END_REF]. Both methods are based on pure harmonic excitation. CBC is a multiple-input, multiple-output (MIMO) method, which derives sensitivities experimentally in order to identify a nonlinear mode. On the other hand, PLL is a single-input, single-output (SISO) method, which estimates and controls a phase between two signals for identification of nonlinear modes. CBC utilizes methods from numerical schemes for experiments. Nonlinear equations usually are iterated until solution is found and each iteration needs sensitivity for the solution variable. CBC requires stationary response of a system for determining sensitivities; hence testing time can be long. The PLL controller however does not have this drawback, but it is limited to SISO systems. Also, phase estimation is not robust, if higher harmonics are involved. However, all nonlinear mechanical structures will respond with higher harmonics and have multiple degrees of freedom, i.e. are MIMO systems at least to a certain extent.

The question addressed hereafter, is whether PLL control can be extended to a MIMO control and if phase estimation can be more robust for signals including higher harmonics.

In the following, a blending approach is suggested in order to achieve a MIMO controller and an adaptive least squares sine fit is used for robust phase estimation. Then, the proposed method is applied to a laboratory structure with local nonlinearity in order to isolate a single nonlinear normal mode for measurement of socalled backbone curves and nonlinear magnitude response spectra.

Identification of Nonlinear Normal Modes

Linear normal modes are commonly used in order to describe and analyze dynamics of linear mechanical structures. Nonlinear normal modes are an attempt to extend the approach of linear normal modes to the nonlinear regime. However, nonlinear normal modes significantly differ to its linear counterpart. For example, deriving an analytical model for nonlinear systems is not as easy as with linear systems and comparison of results with numerical models is not as straightforward. Nevertheless, the concept of nonlinear normal modes theoretically also enables model updating and derivation of equivalent dynamic models. Also, so called backbone curves are an inherent part of this framework and nonlinear normal modes are able to describe complex dynamics of nonlinear systems.

The equation of motion for mechanical systems reads

[ ]{!" } + { (!, !" )} = {#} , (1) 
where [$] denotes mass matrix, {!} displacement vector, { (!, !" )} refers to state-dependent internal forces, which can be nonlinear, and {#} is the vector of external forces. If the external force in eq. ( 1) is set zero and the equation is solved for different energy levels, nonlinear normal modes are obtained. Energy levels can be expressed, e.g. as kinetic energy where the velocity vector is needed. In case of harmonic vibrations, energy is obviously increasing, if the displacement amplitude is increasing. Though, solving nonlinear differential equations analytically is almost impossible and numerical methods are used instead.

If external forcing is set zero, the nontrivial solution describes free vibrations which are only dependent on the internal dynamics of the system and of course on initial conditions. Some methods extract modal data from experimental free decay response measurements, for example proposed by Stephan [START_REF] Stephan | Poles tracking of weakly nonlinear structures using a Bayesian smoothing method[END_REF]. Another method uses harmonic excitation and will be explained in the next section.

Phase resonance method

Phase resonance method is used for identification of modal parameters in the linear case or even in the weakly nonlinear case. The external forcing is adjusted such that internal damping forces are compensated. This may require simultaneous excitation at multiple degrees of freedom and manual adjustment of the excitation frequency and the excitation force amplitudes is necessary for tuning the modal excitation in order to isolate a single mode. The equation of motion then reduces to a conservative form. The linear equation of motion for harmonic excitation can be written as
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Proceeding this way, the system is forced to vibrate in a single normal mode as related to the corresponding undamped system. Assuming velocity proportional damping, the modal displacement response lags 90° to modal excitation force. It has been shown that this technique is in principle applicable to nonlinear systems with exact the same phase criterion [START_REF] Peeters | Dynamic testing of nonlinear vibrating structures using nonlinear normal modes[END_REF]. A similar method has been proposed in order to find nonlinear normal modes numerically. An approximate numerical solution approach for nonlinear differential equations is harmonic balance method. A Fourier series is chosen as ansatz for the periodic response of the system, so only conservative nonlinear normal modes can be computed. Each harmonic is then balanced within the nonlinear differential equation individually. However, if an additional force is included in order to compensate internal dissipation, the system will respond harmonically again [START_REF] Krack | Nonlinear modal analysis of nonconservative systems: Extension of the periodic motion concept[END_REF]. This is the extension of eq. ( 3) to nonlinear systems. However it is applied numerically and higher harmonics are also considered.

The method described herein takes advantage of the phase resonance criterion and utilizes a phase control, as proposed by Peter and Leine [START_REF] Peter | Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation[END_REF]. Nevertheless, PLL works for SISO systems only, whereas mechanical structures typically have many inputs and many outputs, i.e. are MIMO systems. Thus input blending is applied, which allows the reduction of MIMO systems to SISO systems as applied for example by Pusch et al [START_REF] Pusch | Aeroelastic Modeling and Control of an Experimental Flexible Wing[END_REF].

Phase locked loop

The essential requirement for resonance of a linear and a non-linear system is the fulfillment of the so called phase resonance criterion, which states a phase lag of 90° between response and force input, as seen in eq.

(3). This can be controlled using a so called PLL control. However, this method is limited to SISO systems. Figure 1 depicts the typical structure of PLL control, applied to mechanical system identification problems.

On the left hand side the mechanical test setup can be seen, consisting of the test structure, exciter and accelerometer. The right hand side shows PLL control as block diagram. In this case, the PLL control follows a phase input φc as specified by the test engineer. The control objective, i.e. φe = φ-φc,= 0 is achieved by adjustment of the excitation frequency ω. First, a response signal of the mechanical test setup, e.g. acceleration ! , is fed to a Phase Detector, which estimates the phase φ to a reference signal. This could be, for example, a measured force signal. A reference signal is given here by the controller as Constant Output Level Adapter (COLA) signal, i.e. an electrical drive signal with amplitude 1V and in the actual frequency of excitation. Then, a loop filter, generally implemented as a first order low pass filter, is smoothing the phase signal. Finally, the phase signal is compared to a commanded phase φc and the error φe is fed to a voltage controlled oscillator (VCO). Here, the excitation frequency ω is adjusted based on the error φe, such that the measured phase becomes the demanded phase. The process needs to be started with an initial frequency " # . The VCO gives a drive signal (DS), where the amplitude is chosen by the test engineer. The Shaker then translates the DS into a force F, in order to excite the structure, which responds with an acceleration ! . Each element of the control algorithm is explained in the next sections. 

Phase detector

The Phase detector extracts a constant phase signal from two oscillating signals. Different phase detectors exist for real time application. The easiest way is multiplication of input and output signal, followed by a low pass filter. However, if both signals are contaminated with higher harmonics, results can be significantly biased. So called Co-Quad analyzers have been used with the phase resonance method for the extraction of the amplitudes of real part (coincident) response and imaginary part (quadrature) response with respect to the COLA signal. The phase is then computed with the inverse tangent function. Again, if the response signal has higher harmonics, coefficients might be biased. Another method is the usage of discrete Fourier transform. Super and sub harmonics possess orthogonality property. This means that within Fourier transform higher harmonics should not affect fundamental harmonics. But, if the time window is not chosen adequately leakage occurs which leads to wrong phase estimation. Least squares fit of harmonics (LSF) is more robust and has similar properties to Fourier transform; therefore this is used in the following. Three different phase detectors, which have been already used for PLL in context of identification of mechanical systems are depicted in Figure 2 and will be explained and assessed in the following. 

Mixer

The mixer applies sign function to reference and response, as used by Scheel et al. for PLL control [START_REF] Scheel | A phase resonance approach for modal testing of structures with nonlinear dissipation[END_REF]. For modal analysis, reference would be force measurement and as response signal often acceleration measurement is chosen. If both signals are in phase, the resulting signal is +1 for a whole period. Averaging over one period result in +1. If both signals are 180° out of phase, the signal is -1 for a whole period, thus averaging over one period result in -1. If the signals are 90° out of phase, the resulting signal is -1 for half the period and +1 for the other half of one period. The average is thus 0. Hence, the averaged signal gives a value between -1 and +1 which is proportional to phase lag. The averaging is undertaken with a first order low pass filter. The transfer function of a low pass filter is characterized as
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where ! & is the cut off frequency. This frequency should be lower than the fundamental frequency of interest. The phase angle between the signal and the averaged signal z is

' = *90°+, -90°, (6) 

Co-Quad analyzer

Co-Quad analyzers have been widely used in PRM, when digital signal processing was not available. This phase estimator has been used by Denis et al. for PLL control [START_REF] Denis | Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form[END_REF]. Let us consider the response signal as follows:
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Multiplying this with the COLA signal and after some rearranging yields

(3 " +sin(!2) -4 " +cos(!2)) cos(!2) = 3 " +sin 5 6 7 !28 - 6 7 4 " - 6 7 4 " cos(7!2) (8) 
As one can see, the multiplied signal consists of three parts. First, one signal exist with half the fundamental frequency, which is proportional to the quadrature part. Second, one signal exist with double the fundamental frequency, which is proportional to the coincident part. And third, a constant part which is also proportional to the coincident part. If a low pass filter is applied to the signal, only the constant term remains. Both coefficients are identified separately with sine signal as COLA signal and with cosine as COLA signal.

If both coefficients A1 and B1 are extracted, the phase can be computed as

tan = ! " # " (9) 

Least squares harmonics fit

This method also extracts the coefficients of the signal according to eq. ( 7) in order to find the phase. The discrete Fourier transform computes the coefficients for a range of frequencies. And another useful property in this context is the orthogonality of fundamental harmonic with higher harmonics. Higher harmonics will not affect coefficients of harmonics under consideration. However, fast Fourier transform -a fast implementation of the discrete Fourier transform -only works on discrete frequencies, which depend on the sample rate and the length of the signal recordings. Furthermore, leakage effects must be considered if an analyzed window is not an integer-multiple of the period of the fundamental harmonic. It has been reported that least squares computation of the coefficients A1 and B1 by curve-fitting of the harmonic or even periodic signals is more robust, provided that the fundamental frequency ω of the signals is known a priori. Starting with eq. ( 7), coefficients A1 and B1 can be solved in a least squares manner.
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with # = sin/01 2 ; ! = cos/01 2 and ,-= ,-/1 2 [START_REF] Stéphan | AIRBUS Beluga XL state-of-the-art techniques to perform a Ground Vibration Test campaign of a large aircraft[END_REF] Another parameter needed to be chosen for this estimator is the number of samples N taken for the least squares estimate. The matrix in eq. ( 10) is built with COLA signals, possibly of different harmonics, which ensures the estimate at frequency of excitation. Then eq. ( 10) is solved with Moore-Penrose inverse of the rectangular coefficient matrix. For this simple case of two coefficients, the equation can be solved analytically. Finally, both coefficients results as ratio between data vector on the right hand side and coefficient matrix. If numerator and denominator are filtered separately, the division cancels the delaying effect of the low pass filter to some extent. The low pass filter is still used, since the measured signal can be contaminated with noise.

Comparison of phase detectors

A test case is introduced and the three phase detectors from the previous sections are benchmarked. First, only one fundamental harmonic is considered, then, a third harmonic is added. All phase estimators are applied on the given signal and estimated phases are compared. The response is modelled as ,-= ' ( sin/012 3 ' 4 sin/5012 3 ) ( cos/012 3 ) 4 cos/5012 3 6 .

Also, white noise v with variance of 0.01 is added to the signal to study the robustness of the methods. Parameters for both test cases are summarized in Table 1 and depicted in Figure 3. As one can see, the third harmonic is significant. Sample time for simulation is chosen as 1ms. Two of the three methods estimate coefficients of harmonics, which also allows extraction of mode shapes during test. The identified coefficients are compared with the theoretical values. Figure 4 depicts the evolution of the coefficients. Theoretical values are marked with thick solid lines. The Co-Quad analyzer finds correct values for both cases. The time needed until the identified coefficients converge is due to the low pass filter dynamics. In case 2 with an additional higher harmonic, the coefficient of the cosine term is oscillating more in comparison as compared to case 1. The LSF estimates in both cases correct coefficients and also converges faster. This is due to the fact that the filter is applied to numerator and denominator, such that the filter effect is cancelled out to a certain extend. For both estimators, the same filter characteristics are chosen. Also the coefficients estimated by LSF are not oscillating. This also depends on the chosen segment length for the LSF estimator. If fewer values are chosen for the estimator, it will also start to oscillate but still converge faster than Co-Quad Analyzer. If no higher harmonics exist, very short segment is needed for LSF. In case of only one fundamental harmonic, it is seen that phase is estimated correctly. Nevertheless, an oscillation around the theoretical value is seen. If higher harmonics are considered, we see similar behavior. But the phase does not correspond to the theoretical value anymore. The dash dotted line shows the Co-Quad analyzer. Also in this case the phase is estimated correctly and corresponds to the theoretical value. In contrast to the sign estimator it also estimates the correct phase if a higher harmonic is contained in the signal. Interestingly, the phase converges faster than the estimation of coefficients. The reason is the same as for the faster convergence of LSF estimator for the coefficients. Also the inverse tangent is computed as fraction. So the filter applied to both coefficients cancels itself to some extent. However, it also oscillates around the true value, although less than the sign estimator. The least squares sine fit estimates in both cases the theoretical value correctly and does not oscillate. In case of an additional higher harmonics, it takes more time for convergence. The advantage of the sign estimator is, however, that the phase between input and output is estimated, whereas the other two methods allow only phase measurement to a reference signal. Since the exciter also represents a dynamical system, there is potentially a phase lag between drive signal and force signal. In order to overcome this drawback, the phase between drive signal and force signal needs to be estimated in addition. With this estimate, the phase difference can then computed as difference between phase lag from response to COLA signal and force to COLA signal.

In conclusion, the LSF phase detector performs best. The phase is estimated correctly, even if higher harmonics are considered and the resulting phase is not oscillating. However, in terms of convergence, the Co-Quad Analyzer seems to be a little faster. Whereas the mixing algorithm does not detect the correct phase, if higher harmonics are in the measured signal. So, PLL control used herein is equipped with LSF phase detector. Note that a feedback through the mechanical system and phase detector exists, but is not depicted here. The left side shows a block diagram, where the phase error φe is given as input to a PI controller. From the phase error φe a frequency increment Δω is computed as output which is added to the initial frequency ω0. This resulting frequency is integrated for computing a phase Θ, which is used as input for a cosine function. The output is a cosine wave with adapting oscillation frequency and is used as drive signal DS for the exciters. The amplitude of this signal can be adjusted as desired by the test engineer. The diagram on the right side shows the input-output characteristic for this VCO. If the phase error increases, the oscillating frequency is increased and if the phase error is negative, the initial frequency is reduced. This algorithm adapts the frequency until the desired phase lag is reached. The control presented so far is only capable of controlling SISO systems. However, mechanical structures are always MIMO systems. One approach to overcome this is input output blending, as implemented by Pusch et al. [START_REF] Pusch | Aeroelastic Modeling and Control of an Experimental Flexible Wing[END_REF]. Several inputs are blended into a single virtual signal. This is one variant of the well-known modal control, where a modal coordinate is used as virtual signal. This variable is then controlled and a virtual output, e.g. modal force, is generated which needs to be distributed over different physical inputs. For this control method, the transformation from physical to modal coordinates is needed. During this investigation, a linear modal model has been derived from low level excitation. We assume that the mode shapes do not significantly change in this case. Even though this is a crude assumption and mode shapes may change e.g. with amplitude level, this form of input-output blending is still quite useful to transform physical responses into "almost modal" responses where one response is significantly higher than the others [START_REF] Boswald | Non-linear identification of multi-degree of freedom systems using the restoring force surface method[END_REF]. Nevertheless, further investigations are necessary in order see impact of wrong mode shapes as input blend. With a prior linear identification, the input output blending parameters are set. Figure 7 shows the suggested control law. A modal force is additionally estimated, so that phase lag between virtual input and virtual output can be computed.

Voltage Controlled Oscillator

Input-Output-Blending

Test setup

In order to test the proposed algorithm, an experimental setup has been prepared. A mechanical structure with nonlinear behavior, assembled of two components with a bolted joint, is tested. An additional mass is attached to the tip in order to reduce the eigenfrequencies of the system. Five accelerometers are used for control. Force is measured indirectly through electric current. The shaker for exciting the structure is suspended in all degrees of freedom. Figure 8 shows the test setup. On the right, a schematic sketch of the mechanical structure is seen. The dynamics is similar to a cantilever beam, with an additional mass on the tip in order to lower eigenfrequencies. In plane motion will activate nonlinearity between top and bottom part, which are connected by a bolted overlap joint. The underlying linear model for modal control is identified using a low level sine sweep excitation. All modes are well separated, so that only one mode is used. Also, only one exciter is placed at the tip of the structure, as input. 

Nonlinear magnitude spectra measurement

Three different methods for nonlinear magnitude spectra measurement have been conducted. First, sine sweep excitation has been applied. Second, stepped sine excitation has been used and third; PLL has been used, where phase was stepped from 10° to 135°, in order to capture the unstable branch. This has been repeated at different forcing amplitudes. The first two methods were also measured from high to low frequency, so called down sweep, and from low to high frequency, so called up sweep. PLL measurements are analyzed offline with least squares sine fit. In this case, least squares estimation is applied on the whole data set and not within a small time window, which makes analysis more robust.

Figure 9: Magnitude spectra measurement at highest force level for driving point Figure 9 presents the result for measurement of highest force level. The magnitude spectrum is shown for driving point. Sweep and stepped sine measurement are quite similar. There is clearly a difference between down and up sweep, as it is reported for nonlinear structures. The unstable branch is not captured, so a jump phenomenon occurs around 77 Hz. However, PLL is able to measure the unstable branch. This is due to clear mapping to amplitude and phase. As one can see in Figure 9, in the unstable branch, three amplitudes are possible for a single frequency. Figure 10 shows the relation between phase and amplitude which yield exactly one solution for each phase. In both Figures 90° phase lag between excitation force and acceleration response is marked with a diamond, at highest acceleration response. This shows the applicability of the phase resonance criterion from testing results also for the nonlinear case.

Figure 10: Amplitude over phase for PLL response measurement

Backbone curve

For measuring the impedance plot or also backbone curve, the phase for PLL control is set constantly to 90°. The input force is then slowly increased. Increasing force level will change phase lag between force and response, so that the control will adjust frequency. At each force level, amplitudes of response and force, as well as frequency are measured. The actual frequency can be either measured from VCO, as seen in Figure 6, or estimated from measured data.

Modal data of the described structure have also been analyzed with different methods with respect to the maximum measured amplitude, so it can be compared. Manual PRM has been used, as well as linearization procedure conducted at large GVTs [START_REF] Stéphan | AIRBUS Beluga XL state-of-the-art techniques to perform a Ground Vibration Test campaign of a large aircraft[END_REF] and pole tracking, proposed by Stephan et al. [START_REF] Stephan | Poles tracking of weakly nonlinear structures using a Bayesian smoothing method[END_REF]. Results are shown in Figure 11. PLL and PRM show very good agreement, as PLL is proposed as automatic PRM. Sweep down at different force levels and subsequent linear modal analysis with PSM is also in good agreement with PLL results. However, less data points are available. Curves shown in Figure 9 are fitted assuming a linear system, which is not true. MLMM [START_REF] El-Kafafy | Fast maximum-likelihood identification of modal parameters with uncertainty intervals: A modal model-based formulation[END_REF] implemented in Simcenter Testlab is used for modal identification. Preselected poles are used as initial guess and subsequently the error between synthesized FRF and measured FRF is minimized considering measurement noise. However, shape of linear FRFs and nonlinear FRFs can differ significantly. Identification for up sweep and down sweep yield a similar curve. Nevertheless, both measurement runs are estimating higher frequencies than other methods. Down sweeps are able to capture higher amplitudes in this case in accordance to Figure 9. Pole tracking needs decay curves in order to find frequency with respect to actual deflection. First steps are similar to PRM, then excitation is turned off, so that the structure is decaying. From this decay, frequency at each time step is tracked and linked to the actual amplitude. The identified frequencies are lower than the other estimates. All curves have the same shape, only a shift in frequency to higher or lower appears. Figure 12 shows PLL magnitude spectra measurements together with the PLL backbone measurement. The lower diagram depicts the phase response. For the backbone measurement, phase was constantly set to 90°. Magnitude spectra at 90° phase shift between input and output is again marked with a diamond. As one can see, response magnitude is highest at this point. Again, applicability of phase resonance criteria for nonlinear systems is confirmed for this test. The high level response measurement fits well with the backbone measurement, since the backbone curve fits well through the peaks of the individual response measurement.

For the low level response measurement, peak of response measurement and backbone curve are not well aligned. It is suspected that the mechanical structure has changed its properties during the measurement. Because phase resonance testing uses sine excitation, also with high amplitudes, energy input into the system is rather high. The interface at the jointed connection might change due to dry friction, such that interface forces are different. Also, with high energy input, temperature will also increase, which can affect the modal properties of the structure. For example pre-tension of the bolts can decrease with increasing temperature. Also changing contact properties, due to wear is possible. In order to investigate the temperature dependence, a high level excitation is applied for 20 minutes and phase is controlled to 90°. An additional temperature sensor has been glued at the jointed connection, so the temperature can be measured. During the test, the structure will heat up and eigenfrequency can change.

The PLL control is able to track the changing eigenfrequency, so that a temperature dependency of the eigenfrequency is found.

The temperature dependence is plotted in Figure 13. Temperature at the bolted interface heated up approximately from 24°C up to 30°C in 20 minutes. During this time, PLL adjusted the frequency from 77 Hz and decreased to 76.5 Hz. If excitation force is increased, temperature is increasing up to 30°C and frequency is dropping from 77 Hz to 76.5 Hz. One of the advantages of this method is the high amplitudes which can be measured due to high energy input into the system at a single frequency. This makes it interesting for large test objects. But one has to keep in mind that this high energy input also heats up the mechanical structure under investigation and might change its modal properties, at least if friction is the major source of nonlinearity. 

Conclusion

PLL control has been successfully applied to a nonlinear mechanical structure for modal analysis. In order to achieve this, two main contributions have been made. First, a robust phase estimation has been proposed, based on least squares sine fit and second, PLL control has been implemented as modal control, in order to allow multiple input and outputs. However, for the described example only one input has been used. Also blending vectors were assumed constant, which might be true for many cases, but also varying eigenvectors with increasing force amplitude have been reported. Thus, the influence of wrongly estimated mode shapes for modal control needs to be assessed. It would also be interesting to use force cell for direct force measurement in future tests.
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presents settings chosen for all phase detectors. The chosen length of the Fourier transform equals approximately one quarter of one period.

Table 1 :

 1 Test cases for phase detector according to eq.[START_REF] El-Kafafy | Fast maximum-likelihood identification of modal parameters with uncertainty intervals: A modal model-based formulation[END_REF] 

	Case / Hz ! I 7.8 0.2	0	3	0	86.2 0.01
	II	7.8	0.2	0	3	1	86.2 0.01
		Table 2: chosen parameter for phase detector
			Case	Sgn CQ LSF	
			' / Hz 0.5 0.5 0.5	
			( / -	-	-	64	
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