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Systems/Circuits

Differential Dynamics of Spatial Attention, Position, and
Color Coding within the Parietofrontal Network

Elaine Astrand, X Guilhem Ibos, Jean-René Duhamel, and X Suliann Ben Hamed
Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, 69675 Bron cedex, France

Despite an ever growing knowledge on how parietal and prefrontal neurons encode low-level spatial and color information or higher-level
information, such as spatial attention, an understanding of how these cortical regions process neuronal information at the population
level is still missing. A simple assumption would be that the function and temporal response profiles of these neuronal populations match
that of its constituting individual cells. However, several recent studies suggest that this is not necessarily the case and that the single-cell
approach overlooks dynamic changes in how information is distributed over the neuronal population. Here, we use a time-resolved
population pattern analysis to explore how spatial position, spatial attention and color information are differentially encoded and
maintained in the macaque monkey prefrontal (frontal eye fields) and parietal cortex (lateral intraparietal area). Overall, our work brings
about three novel observations. First, we show that parietal and prefrontal populations operate in two distinct population regimens for
the encoding of sensory and cognitive information: a stationary mode and a dynamic mode. Second, we show that the temporal dynamics
of a heterogeneous neuronal population brings about complementary information to that of its functional subpopulations. Thus, both
need to be investigated in parallel. Last, we show that identifying the neuronal configuration in which a neuronal population encodes
given information can serve to reveal this same information in a different context. All together, this work challenges common views on
neural coding in the parietofrontal network.
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Introduction
The neurons of the frontal eye fields (FEF) and the lateral intra-
parietal area (LIP) encode the spatial position of visual stimuli
(Bruce and Goldberg, 1985; Barash et al., 1991; Ben Hamed et al.,
1997, 2001, 2002; Ben Hamed and Duhamel, 2002), as well as the
spatial position of the locus of attention (Gottlieb et al., 1998;
Armstrong et al., 2009; Farbod Kia et al., 2011; Ibos et al., 2013;
Suzuki and Gottlieb, 2013; Astrand et al., 2014a). Accordingly,
the reversible inactivation of these functional cortical areas leads
to reliable deficits in the selection of visual information and spa-
tial attention orientation (Wardak et al., 2002, 2004, 2006; Liu et
al., 2010; Suzuki and Gottlieb, 2013). Despite this accumulated
knowledge, it is still unclear how these cortical regions process
neuronal information at the populational level. A simple as-
sumption would be that the functional neuronal populations
mirror the temporal response profiles of their individual cells.

However, recent studies indicate that this is not necessarily the
case and that the single-cell approach overlooks dynamic changes
in how information is distributed over the neuronal population
(Meyers et al., 2008, 2012; Barak et al., 2010; Crowe et al., 2010;
Kadohisa et al., 2013; Stokes et al., 2013).

Here, our focus is on how local cortical networks encode in-
formation in time. Schematically, information can be encoded by
a stationary neuronal population, i.e., by a population in which
the contribution of each of its individual cells and their intercon-
nection weights remain constant in time. As a result, a classifier
designed to extract information from the neuronal response of
this population at a given time point will reliably extract infor-
mation at any other time. Alternatively, information can be
encoded dynamically, i.e., by a population in which the contri-
bution of each of its individual cells and their interconnection
weights constantly change in time. As a result, a classifier de-
signed to extract information from the neuronal response of such
a population at a given time will not be able to extract this very
same information at other times. Averaged population response
profiles describing overall changes in spiking rate cannot distin-
guish these two distinct dynamic population regimens. We use a
time-resolved population pattern analysis to explore how spatial
position, spatial attention and color information are differen-
tially encoded and maintained in the primate prefrontal (FEF)
and parietal cortex (lateral intraparietal area; LIP). Overall, our
work brings about three novel observations. First, we show that
parietal and prefrontal populations operate in two distinct pop-
ulation regimens for the encoding of sensory and cognitive infor-
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mation: a stationary mode and a dynamic mode. Second, we
show that the temporal dynamics of a heterogeneous neuronal
population brings about complementary information to that of
its functional subpopulations. Thus, both need to be investigated
in parallel. Last, we show that identifying the neuronal configu-
ration in which a neuronal population encodes given informa-
tion can serve to reveal this same information in a different
context. All together, this work challenges common views on
neural coding in the parietofrontal network.

Materials and Methods
Surgical procedure and FEF and LIP mapping. All procedures were ap-
proved by the local animal care committee in compliance with the guide-
lines of the European Community on Animal Care. All experimental
procedures are identical to those described by Ibos et al., 2013. Briefly,
standard surgical procedures were used to place an MRI-compatible
head restraint device and two peek recording chambers were positioned
over the LIP and the FEF of one female (left hemisphere, Monkey M, 7
kg) and one male (right hemisphere, Monkey Z, 10 kg) monkey (Macaca
mulata; Wardak et al., 2004). Gas anesthesia was performed using Vet-
Flurane (0.5–2%) following an induction with Dormitor (medetomidine
at 0.85 mg/ml, 0.025 mg/kg and ketamine 1000: ketamine at 100 mg/ml,
7 mg/kg). Postsurgery pain was controlled with a morphine pain-killer
(Buprecare, buprenorphine at 0.3 mg/ml, 3 injections at 6 h intervals;
first injection at the beginning of the surgery, 0.01 mg/kg, i.m.) associated
with a nonmorphine pain killer (Tolfedine 4%: tolfenamic acid at 40
mg/ml; 4 mg/kg) and a full antibiotic coverage was provided (a long-
action large-spectrum antibiotic, Terramycine, oxytetracylcine at 200
mg/ml; one injection during the surgery and one 5 d later, 0.1 mg/kg,
i.m.). FEF sites were defined as the anterior bank of the arcuate sulcus

sites in which low-threshold microstimulations (�50 �A) evoked sys-
tematic eye movements. This characterization was confirmed by the
visuomotor response patterns on a classic memory-guided saccade task
at these sites (Bruce and Goldberg, 1985). Similarly, the LIP sites were
characterized based on their visuomotor responses in a memory-guided
saccade task (Gnadt and Andersen, 1988; Colby et al., 1996). In both
areas, we targeted the cortical positions at which evoked saccade ampli-
tude and visual or motor receptive field (RF) position ranged between
10° and 15°. Recordings on the main task started when neurons had
visual, saccadic, and/or delay responses in a memory-guided saccade
task. Our neuronal dataset can thus be considered as heterogeneous,
unbiased toward a certain functional type compared with other studies
(Premereur et al., 2011).

Behavioral task. The data analyzed in the present work were collected
while monkeys performed a cued target detection task based on a rapid
serial visual presentation (Fig. 1). It allowed to dissociate in time the
processes related to the orientation of attention from those related to
target detection (Ibos et al., 2009). In particular, the cue is a nonspatial
abstract cue that informs the monkeys in which visual hemifield they
should direct their attention. Briefly, the monkeys had to fixate a central
point on the screen throughout each trial. Two streams of visual objects
were presented, one in the visual receptive field of the neuron being
recorded and the other in the contralateral hemifield. The visual streams
corresponded to a rapid succession of 150 ms long visual items with no
intervening blanks. The two streams were presented with a 300 ms offset
(2 stimuli) one with respect to the other. The first stream was randomly
presented either inside or outside of the receptive field of the neuron
being recorded. The cue, which in turn instructed the monkeys of the
position of the target, was always presented in the first stream of stimuli,
300 – 600 ms following second-stream onset (2– 4 stimuli). The cue could

Figure 1. Task description. The experimental procedure is a cued-target detection based on a dual rapid serial visual presentation paradigm (Yantis et al., 2002, Ibos et al., 2009). The monkey is
required to maintain its gaze on the central fixation point all throughout the trial. A first stream of stimuli, that is a succession of visual stimuli every 150 ms, is presented either within (as here) or
opposite the fixation point from the cell’s receptive field (RF). Three hundred milliseconds later, a second stream appears opposite the first stream from the fixation point. One-hundred and fifty, 300,
or 450 ms (here, 300 ms) following the second-stream onset, a cue is presented within the first stream. This cue can be a green stay cue indicating to the monkey that the target has an 64% probability
to appear within this very same stream or a red shift cue (as here), indicating that the target has a 64% probability to appear within the opposite stream. On 80% of the trials, the target is presented
150, 300, 600, or 900 ms from cue onset. On 80% of these target trials (64% of all trials), the target location is correctly predicted by the cue (valid target, as here). On 20% of these target trials (16%
of all trials), the target location is incorrectly predicted by the cue (invalid target). On the remaining 20% of trials, no target is presented (catch trials), so as to discourage false alarms. The target is
composed of just one horizontal and one vertical spatial cycle, whereas distractor items are composed of up to six horizontal and vertical spatial cycles. The monkey is rewarded for responding by a
bar release, between 150 and 750 ms following target presentation, and for holding on to the bar when no target is presented. B, Individual neuron selectivity to the instructed position of attention
(Bi) and to cue position (Bii) in time, as measured from an receiver operating characteristic (ROC) analysis, and (Biii) difference in attention and position index in time. This difference serves to classify
the cells into cue position cells (dark gray shading), cue identity cells (intermediate gray shading), and attention cells (light gray shading). See text for details. B was adapted from Ibos et al., 2013.
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be green (or red, respectively), predicting that the target would appear in
the same (or other, respectively) stream. In the following, the green cue
will be called a “Stay” cue and the red cue a “Shift” cue. The monkey had
to combine the information related to the physical attributes of the cue
(its location and identity) to find out where the target was likely to ap-
pear. The monkey had to release a lever to report the presence of the
target. The target could appear 150, 300, 600, or 900 ms following the cue,
so as to avoid automatic responses. A maximum of 17 visual items was
presented on each trial. In 67% of the trials, the target appeared in the
instructed stream (valid trials), in 17% of the trials, it appeared in the
opposite stream (invalid trials), and in 16% of the trials it did not appear
at all (catch trials) to discourage systematic responses. The monkeys were
rewarded for releasing the lever 150 –750 ms following target onset on
valid and invalid trials and holding it on catch trials. Invalid trials were
used to check that the monkey used the predictive information provided
by the cue to optimize its behavior (Ibos et al., 2013). Sessions in which
this was not the case were discarded from the analysis.

Neural recordings. Recordings were performed using both single tung-
sten electrodes (Frederick Haer) and platinum/tungsten tetrodes
(Thomas Recording). Electrodes were lowered with two independent
NAN electrode microdrives placed over each recording chamber. Elec-
trophysiological signals were amplified and spikes were digitized at
20,000 Hz with National Instruments cards (Plexon) and experimental
control was achieved by custom data acquisition software. Single units
were identified offline using Offline Sorter software (Plexon).

Cell populations. The spiking activity of 131 FEF neurons and 87 LIP
neurons were recorded in independent recording sessions from two ma-
caque monkeys. Of these, 123 FEF neurons and 80 LIP neurons were
characterized as task dependent. The neurons of these two neuronal
populations have previously been characterized based on the specific
pattern of activity evoked in the 300 ms following cue presentation (Ibos
et al., 2013).

Cue-related cells. Briefly, cue-related cells were defined as those cells in
which activity changed significantly with respect to the baseline following
cue presentation (multiple successive bin-wise ANOVAs on the number
of spikes in 2 adjacent 100 ms time windows in steps of 1 ms, p � 0.01 for
at least 30 of 35 ms in the time interval between 30 and 300 ms following
cue onset). Cue-related cells responded to at least one of the four possible
cue configurations (Shift or Stay cue, inside or opposite the RF).

Neuronal selectivity to cue position and to spatial attention allocation.
The selectivity of each of these cue-related cells to cue position or spatial
attention allocation can be assessed using a receiver operator character-
istic (ROC) nonparametric analysis that provides a qualitative estimation
of the degree of overlap of two distributions of firing rates regardless of
any specific a priori about normality or homoscedasticity (Green and
Swets, 1966; Swets, 2014). Specifically, we calculated, for each cue-related
cell, and at each 1 ms time step, a ROC value comparing, in the 100 ms
window centered on this time step, the trial-by-trial spike counts for the
following: (1) a cue located in the receptive field versus outside (Fig. 1Bi)
and (2) attention oriented toward the receptive field versus outside (Fig.
1Bii). ROC values could vary �0.5. For the sake of clarity, these values
were rectified so that the ROC values in time varied between 0.5 and 1
(Ibos et al., 2013 shows additional details).

Classification of cue-related response profiles. Because cells with a strong
response to a single specific cue, for example a shift cue to the left, can
contribute both to the coding of a left cue and to the coding of attention
to the right, we further used a bootstrap analysis to compute an attention
index in time (�(attention contra � attention ipsi)/(attention contra �
attention ipsi)�) and a position index in time (�(position contra � posi-
tion ipsi)/(position contra � position ipsi)�). We then calculated the
difference between these attention and position indices (IAP; Fig. 1Biii)
and assessed the statistical significance of this difference using a permu-
tation test (Ibos et al., 2013). Cells with a positive significant IAP were
classified as “attention neurons” (Fig. 1B, light gray shading), cells with a
negative significant IAP were classified as “position neurons” (Fig. 1B,
dark gray shading). The remaining cells were classified as “cue identity
cells” (Fig. 1B, intermediate gray shading). A subset of neurons in FEF
(n � 21) and in LIP (n � 4) reliably encoded the final position of atten-
tion, although providing no information about cue location or cue color

(Ibos et al., 2013). These cells discriminated between cues instructing
attention toward the receptive field (e.g., for a neuron with a contralateral
receptive field: contralateral Stay cues and ipsilateral Shift cues) and cues
instructing attention away from the RF (e.g., for a neuron with a con-
tralateral RF: ipsilateral Stay cues and contralateral Shift cues). Further-
more, in FEFs, 40 cells reliably encoded the color of the cue and 11 cells
reliably encoded the position of the cue. In LIPs, 27 cells reliably encoded
cue identity (its color) and nine cells reliably encoded the position of the
cue. In the present paper, we compare dynamical population informa-
tion coding, both in the entire neuronal population and in the specific
neuronal populations described in this section.

Data preprocessing. For each cell and each trial, the spiking data were
smoothed by averaging the spiking activity over 100 ms sliding windows
(resolution of 1 ms). This window width corresponds to a tradeoff be-
tween performance and decoding speed, as narrower filtering windows
result in a lower performance, whereas wider filtering windows decreases
temporal resolution (Farbod Kia et al., 2011; Astrand et al., 2014a). The
neuronal populations were constructed by concatenating the cells of
interest (all cells, cue position cells, cue identity cells or attention cells).
Trials in which the delay between cue and target was equal to 150 and 300
ms were excluded from the analysis so as to avoid any confound between
cue and target processing. The available number of trials varied from one
cell to the other (alignment on first visual stream, FEF: mean � 148 trials,
standard deviation (SD) � 54; LIP: mean � 163 trials, SD � 79; align-
ment on cue, FEF: mean � 40 trials, SD � 12; LIP: mean � 41 trials,
SD � 19). For each cell, 40 trials were randomly selected per condition
(first-stream position, cue identity, cue position, and spatial position of
attention). For a minority of cells, some trials were randomly duplicated
to achieve the requirement of 40 trials per condition. Although this trial
duplication procedure can potentially induce an artificial inflation of
performance, this has little impact on the present work as we are analyz-
ing general temporal dynamic patterns rather than comparing across
condition absolute performance rates. In addition, 95% confidence in-
tervals for performance statistical significance are defined using a ran-
dom permutation procedure (see Nonparametric random permutation
tests, below). This procedure is expected to adjust the confidence inter-
vals to the biasing effects of trial duplication, thus further minimizing the
impact of this duplication. This random selection of 40 trials per cell was
repeated 10 times, thus defining 10 different population activity seeds (of
�131 to the power of 40 possible FEF population activities, respectively,
87 to the power of 40 possible LIP population activities). Each seed
corresponded to a 3D matrix, with a first dimension corresponding to the
number of cells in the population of interest, a second dimension corre-
sponding to the number of trials (here 40) and a third dimension corre-
sponding to the time around the event of reference (the cue or first visual
stream onset). Thus cell {i–k} of this 3D seed matrix corresponded to the
smoothed estimate of the response of neuron i, on trial j, and time stamp
k. Note that these population responses are free of the correlations that
would be found in simultaneous recordings.

Neural decoder. To quantify the amount of information in the data, a
regularized linear regression was applied. This procedure minimizes the
mean square error for equation C � W � R, where R is the time course of
the neuronal response of each of the n neurons of the population of interest
for each of the t available trials, W is the synaptic weights that adjust the
contribution of each cell to the final readout and is as a consequence a 1 by n
vector, and C is a 1 by t vector, the sign of the elements of which describes the
two possible classes taken by the binary variable of interest.

The first approach is to inverse the above equation as W � C � R †,
noting R † the Moore–Penrose pseudoinverse of R. Determination of R †

was done on a subset of the data (Atrain� training dataset) and the resultant
W matrix was applied to solve C � R � W on the rest of the data (Atest �
testing dataset). As the Moore–Penrose pseudoinverse leads to overfitting,
we used a Tikhonov-regularized version of it: this solution minimizes the
compound cost norm (W � R � C)� � � norm( W), where the last term is
a regularization term added to the original minimization problem. The
scaling factor � was chosen to allow for a good compromise between
learning and generalization (Astrand et al., 2014a).

Classification studies often use a linear discriminant analysis (LDA). It
is important to note that even though LDA and multilinear regression
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analysis (used here) are based on distinct classification procedures, in the
case of two-class classification problems, LDA and linear regression are
formally identical. Indeed, LDA relies on Bayes theorem and assumes
the following: (1) that the conditional probability density functions of
the input variables (i.e., the neuronal response) to have normal distribu-
tions and (2) that the class covariances are identical. Under these as-
sumptions, the two-class problem can be expressed as a linear
discriminant function c � w� C r� � b, which is identical to the equation
used in a linear regression (Duda et al., 2000). As a result the only differ-
ence between LDA and the classification procedure used here is the use of
a regularization term which we have previously shown to improve clas-
sification accuracy (Astrand et al., 2014a).

Decoding procedure. We trained the classifier on 70% of the trials and
tested it on the remaining 30% of the trials so that the testing is per-
formed on a naive set of trials, never experienced by the classifier (Ben
Hamed et al., 2003, 2007). During training, the decoder was simultane-
ously presented with single-trial population activities (corresponding to
the observed inputs) and the state of the decoded variable (correspond-
ing to the associated outputs: visual stream on the left or on the right/Red
or Green cue/Cue on the left or on the right/Attention instructed
to the left or to the right). During testing, the decoder was presented with
the test set and produced its guess for the state of the decoded variable.
The readout performance on each decoding run corresponds to the
percentage of trials on which the classifier provided the correct guess
for the state of the decoded variable. This training/testing procedure
was repeated for each data seed (i.e., 10 times in all) to yield an average
readout performance.

Dynamic information coding analysis. The decoding procedure de-
scribed above defines the linear function that best accounts for the rela-
tionship between the population response and the variables of interest at
a given time step. This linear function thus reflects the weighted contri-
bution of each neuron to the output variable and captures how the pop-
ulation is encoding the information of interest at this specific time stamp.
A stationary population is expected to continue encoding the informa-
tion of interest at other time stamps with this very same specific config-
uration. On the opposite, in a population encoding given information
dynamically, the linear function linking the population response to the
variable of interest is expected to change as a function of time. To distin-
guish between stationary and dynamic information coding within the
target neuronal populations defined above (see Cell populations), we
used a full-cross temporal classification analysis, which defined the opti-
mal decoder at each time step on a subset of the available trials (training
trials) and evaluated the decoder’s performance on the remaining trials
(testing trials) at all other time stamps. We limited the procedure to every
10 ms, a temporal resolution sufficient to capture the encoding dynamics
without loss of information (as the spiking data were smoothed by aver-
aging the activity over 100 ms sliding windows). As a result, the classifi-
cation performance at all time stamps is free of potential within-trial
cross-temporal correlations. When decoding cue properties, the train-
and test-windows ranged from the cue onset (0 ms) to 600 ms following
cue onset, thus covering the delay period before target presentation.
During this period, monkeys interpreted the cue and oriented their at-
tention to the most probable target location. Trials on which the target
appeared 150 or 300 ms following cue presentation were thus excluded
from the analysis. When decoding first visual stream position, the train-
window ranged from first visual stream onset (0 ms) to 600 ms after first
visual stream onset and the test-window ranged from 100 ms before first
visual stream onset to 600 ms after first visual stream onset. Second visual
stream onset was presented 300 ms following first visual stream onset, in
the opposite hemifield.

Because this paper primarily focuses on how a given variable is dynam-
ically encoded in time, it is important to understand the impact of dif-
ferent changes in the neuronal response characteristics onto the decision
boundary of a linear regression classifier model. Figure 2 illustrates the
impact on the decision boundary and the classification rate of three
different changes in neuronal response characteristics: a change in (1) the
baseline firing rate, (2) the difference in spike-rate between two stimuli
(i.e., selectivity), and (3) the signal-to-noise ratio of the neuronal re-
sponse (i.e., the reliability). A change in the average firing rate of the

neurons impacts the localization of the hyperplane in the n-dimensional
neuronal response space, but not the classification rate (Fig. 2A; the solid
line boundary obtained for a given baseline response of neuron 2 and the
dashed line boundary obtained following a change in this baseline re-
sponse, define the same number of false classification elements). As a
result, when the average neuronal firing rates change in time (due to a
change in the sensory environment or in the cognitive requirements of
the task), a hyperplane defined at a given moment in time does not
necessarily apply at other times, leading to a dynamic temporal encoding
pattern. Likewise, an increase (respectively, a decrease) in neuronal se-
lectivity leads to a change in the definition of the weights thus changing
the localization of the hyperplane as well as to an increase (respectively, a
decrease) of the correct classification rates (Fig. 2B). As a result, when
neuronal selectivity changes in time, a hyperplane defined at a given
moment in time no more applies at other times, also leading to a dynamic
temporal encoding pattern. In contrast, a change in the signal-to-noise
ratio of the neuronal response does not impact the localization of the
decision boundary hyperplane, though such a change does impact clas-
sification rates, higher signal-to-noise ratios (Fig. 2C, sharp colors) lead-
ing to higher correct classification rates than lower signal-to-noise ratios
(Fig. 2C, lighter colors). As a result, correct classification rates highly
correlate with the cell’s response reliability. In addition, the weights de-
fined at a given moment in time still apply at other times, though a partial
drop in correct classification rates will be observed (Fig. 2C; King and
Dehaene, 2014), leading to stationary temporal encoding patterns (see
last result section for a data-driven perspective on the relationship be-
tween the population temporal dynamics and the underlying individual
neuronal responses).

Nonparametric random permutation tests. To determine the chance
level against which to discuss the reported decoding performance, we
defined a 95% confidence interval performance limit as follows. Using a
sampling with replacement procedure, we randomly reassigned, for each
cell, the condition label of each trial (thus a stay to the left cue trial could
randomly become any of a stay to the right, shift to the left or shift to the
right cue trial, or remain a stay to the left cue trial). This resulted in 40
randomly assigned new trials per condition per cell. The performance
with which the variable of interest could be predicted from the activity of
this random population was then calculated. This procedure was re-
peated 100 times, for each of the 10 data seeds, thus yielding a 1000 data
point distribution of chance classification performance at each time
stamp. The classification performance of a given classifier on real non-

Figure 2. Impact of changes in the neuronal response characteristics onto the decision
boundary of a linear regression classifier model, when discriminating between the population
response to a Class 1 stimulus or to a Class 2 event. A, Change in average firing rate, while the
neuronal response selectivity s to Classes 1 and 2 remain constant. B, Change in the neuronal
selectivity from s1 to s2, whereas reliability remains constant. C, Change in the neuronal reli-
ability, while the neuronal response selectivity s and the average firing rate remain constant.
The response firing rate of neuron 1 to class 1 (in blue) or Class 2 events (in red) is plotted against
the response firing rate of neuron 2 to the same events. Each star represents the combined
response of the neurons to a given event. The circles are centered on the mean response of each
neuron to each class, the radius of the circles corresponding to the neuron’s SD. Sharp colors
represent the neuronal responses before the change in response. Lighter colors represent the
neuronal responses following the change in response. The decision boundary before (respec-
tively, after) the change in neuronal response is represented by a solid black line (respectively,
dashed black line).
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permuted data were considered significant when it fell in the 5% upper
tail of its corresponding chance performance distribution (nonparamet-
ric random permutation test, p � 0.05). Though chance levels were in-
dependently calculated for each classifier at each time stamp, it turns out
that these chance levels had a very small variability (mean � 65,8%, SD �
2,3%) and the results did not change if we considered an average chance
level calculated over all possible decoders and time stamps.

Classification of temporal coding population patterns. This classification
is based on the full cross-temporal dynamic analysis described above. For
each train time (x-axis), the total time in milliseconds following cue onset
during which the classification performance of a classifier tested on all
other time points ( y-axis) is above the 95% confidence interval is calcu-
lated (see Figs. 3E, 5 E, F, 6E). When analyzing cue-related coding, the
temporal dynamics of the neuronal populations of interest is defined as
follows: (1) dynamic populations are populations for which the total
time above the 95% confidence interval never exceeds, for any of the
defined classifiers, twice the size of the smoothing window (i.e., neuronal
populations that do not have a reliable coding of the information of
interest throughout two independent adjacent 100 ms time windows);
(2) stationary populations are populations for which the total time above
the 95% confidence interval is �400 ms (i.e., sustained over �90% of the
analysis time window, bearing in mind an average cue-related response
latency of 100 ms); and (3) transiently stationary populations are popu-
lations for which the total time above the 95% confidence interval falls

between these two thresholds (i.e., between 200 and 400 ms). When
analyzing first-stream-related coding, the thresholds to define stationary
and transient population dynamics are adjusted to take into account the
fact that first and second-stream onsets are separated by only 300 ms. In
this case, stationary populations are thus defined as populations for
which the total time more than the 95% confidence interval is �260 ms
(i.e., sustained over the entire first stream to second-stream time interval,
bearing in mind an average cue-related response latency of 40 ms). Neu-
ronal populations with total time more than the 95% confidence interval
�260 ms are characterized as transient.

Results
Neurons encode different variables dynamically. For example, a
visuomotor neuron will first respond to the onset of a visual
stimulus, as well as around saccade execution. In the present
paper, we question a different issue, namely, how stable is the
temporal code with which a given functional neuronal popula-
tion represents a specific variable (here, the location of a stable
visual stream and the position, attention and color cue-related
information during the cue-to-target interval) and how this code
relates to the underlying individual neuronal responses. Specifi-
cally, the aim of this study is to compare the temporal dynamics
with which attention, position, and color are encoded by prefron-

Figure 3. Temporal dynamics of spatial attention signals. Full cross-temporal classification analysis on the entire FEF population (A), the entire LIP population (B), the attention-specific FEF
subpopulation (C), and the non-attention FEF subpopulation (D). A–D, Classifiers configured to optimally classify spatial attention from population activities are defined at every time step within
600 ms following cue onset and before target presentation (x-axis, thick black line: cue presentation, from 0 to 150 ms). The performance of each of these classifiers is tested on independent
population activities during the same time interval (y-axis, thick black line: cue presentation, from 0 to 150 ms). This performance is represented in a color code, cyan representing chance
classification, yellow to red scales representing above chance classification rates and blue scales representing below chance classification rates. Ninety-five percent classification confidence interval
limits, as assessed by a nonparametric random-permutation test, are represented by a dark gray contour. E, Time above the 95% confidence interval for classifiers configured to optimally classify
spatial attention from the neuronal population activities defined at the different training times, for the entire LIP population (red), the entire FEF population (dark blue), the attention-selective FEF
population (intermediate blue), and the non-attention-selective FEF population (light blue). F, Average classification confidence ( p values) over the diagonal �10 ms with which spatial
attention is extracted at each time from cue onset, by a classifier trained at the same time step (A–D, gray shaded cross-section F). The dashed line corresponds to the 95% confidence
interval limit. Colors as in E.
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tal and parietal neuronal populations, during a cued-target de-
tection task. We thus focus on the time interval between cue and
target presentation, during which the monkeys oriented their
attention to one of two streams. By task design, cue position and
cue color alone are completely uninformative about target loca-
tion. The monkeys had to combine both information to correctly
orient their attention toward the location at which the target had
the highest probability to appear: both a red (shift) cue on the left
and a green (Stay) cue on the right instructed spatial attention on
the right while both a red (shift) cue on the right and a green
(Stay) cue on the left instructed attention on the left. Accordingly,
their behavioral performance is higher when the target appears at
the predicted location (80% of the target trials) than when it
appears at the unpredicted location (20% of the target trials):
reaction times are shorter on valid trials than on invalid trials
(Monkey M: 457 vs 480 ms, p � 0.001; Monkey Z: 414 vs 422 ms,
p � 0.01), and detection rates are higher (Monkey M: 79.6 vs
62.9%, p � 0.001; Monkey Z: 66.8 vs 62.4%, p � 0.001; Ibos et al.,
2013 shows a detailed behavioral analysis).

Using a full cross-temporal classification analysis, we analyze
how a classifier designed to readout the information of interest
(respectively, the instructed position of attention, cue position or
cue color) from the activity of a given neuronal population at a
given time following cue presentation, succeeds in reading out
the information encoded by the same neuronal population at
other times, on novel neuronal population response activities. In
other words, we dissociate the time windows used for training
and testing the classifier, so as to identify how the neural code
changes with time. This procedure is applied independently
on prefrontal (FEF) and parietal (LIP) neuronal population
responses.

Temporal dynamics of spatial attention signals
The attention-related temporal dynamics depends on the
functional population
We first explore the dynamics of spatial attention encoding in LIP
(Fig. 3A) and FEF (Fig. 3B) neuronal populations, irrespectively
of whether individual cells are selectively involved in spatial at-
tention orientation or not. Neuronal activities are aligned on cue
presentation (time 0 ms). Each plot represents, in a color code,
the accuracy with which a classifier trained at a given time point
(x-axis), correctly predicts the spatial position of attention as
instructed by the cue, from the neuronal population response at
all possible timings in the cue-to-target interval (y-axis). Impor-
tantly, this prediction procedure is performed on trials that have
not been used to define the initial classifier, thus ensuring that
classification rates are not biased by persistent temporal patterns
that could be embedded in spike trains. Correct classification
rates are color-coded from cyan (50% correct) to dark red
(100%). Ninety-five percent confidence intervals in classification
rates are defined using a nonparametric random permutation test
(dark gray contours, see Materials and Methods).

In area LIP, maximum classification rates are observed along
the diagonal (Fig. 3A), indicating that a classifier that optimally
extracts spatial attention signals from the LIP population re-
sponse at a given time cannot successfully readout this informa-
tion at other times. This is a signature of a dynamic encoding of
spatial attention by the LIP population. Precisely, significant in-
formation about the spatial allocation of attention can be ex-
tracted from 81 to 477 ms following cue onset, though maximum
classification rates are observed between 202 and 321 ms. In
agreement with this dynamic encoding of attention by LIP neu-
rons, the total time following cue onset during which the classi-

fication performance of a given classifier is above the 95%
confidence interval never exceeds 200 ms (Fig. 3E, red curve; see
Materials and Methods for details). In contrast, the FEF appears
to encode spatial attention with a relatively more stationary neu-
ronal network. Indeed, for the entire FEF population, a classifier
constructed to extract this information at a given time success-
fully classifies the allocation of spatial attention from neuronal
population responses at other times (Fig. 3B). Specifically, FEF
encodes spatial attention as early as 114 ms following cue onset
and up to target presentation. Two functionally distinct epochs of
stationary spatial attention encoding can be identified in this
interval: an initial epoch running from 114 to 242 ms, and a late
epoch running from 242 to 537 ms, possibly suggesting a transi-
tion in the FEF neuronal network �250 ms, resulting from either
the output of local computations within the FEF or distal influ-
ences from other cortical regions. This can be described as a
transiently sustained encoding of attention by FEF neurons, the
total time following cue onset during which the classification
performance of a given classifier is above the 95% confidence
interval ranging between 200 and 400 ms (Fig. 3E, dark blue
curve; see Materials and Methods for details).

To test this hypothesis, we further analyzed the temporal dy-
namics of spatial attention encoding in two complementary FEF
subpopulations: (1) the cells that are individually involved in
spatial attention processing as defined by a nonparametric statis-
tical test (Fig. 3C, see Materials and Methods and Ibos et al., 2013
for details on how these cells are identified) and (2) the remaining
non-attention-selective FEF cells (Fig. 3D; note that this cannot
be performed for area LIP because only four attention selective
cells could be identified; Ibos et al., 2013). Extremely distinct
temporal dynamics can be identified in these two FEF subpopu-
lations. Indeed, the FEF attention-selective cells encode spatial
attention signals as early as 71 ms following cue onset, and they
do so in a neuronal network configuration that remains remark-
ably stationary in time from an average of 143 ms following cue
onset up to target presentation (Fig. 3C). This corresponds to a
sustained encoding of attention by FEF attention-selective neurons,
the total time following cue onset during which the classification
performance of a given classifier is above the 95% confidence inter-
val being �400 ms (Fig. 3E, intermediate blue curve, see Materials
and Methods). In contrast, dynamic spatial attention signals pro-
gressively arise in the non-attention-selective FEF subpopulation
between 298 and 432 ms following cue onset, up to target presen-
tation (Fig. 3D). The total time following cue onset during which
the classification performance of a given classifier is �95% con-
fidence interval remains �200 ms, thus defining a dynamic en-
coding of spatial attention (Fig. 3E, light blue curve; see Materials
and Methods). As the temporal dynamics of spatial attention
encoding in each of these two functional FEF subpopulations, as
well as in the entire FEF population appear unrelated one to the
other, these observations possibly suggest distal influences from
other cortical regions onto specific FEF functional cell types,
though this would need to be verified experimentally.

Although this analysis describes a clear functional difference
between LIP, FEF, and FEF functional subpopulations, it does
not allow to clearly identify the neuronal population in which
attentional signals initially arise. In Figure 3F, we represent the
confidence (p value; assessed by nonparametric random permu-
tation test) with which spatial attention signals can be readout
from the different populations of interest as a function of time
from cue onset (the dashed line representing the 95% confidence
interval). This analysis calculates the average confidence with
which a classifier, defined at a specific time from cue onset, reads
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out attention-related information in new trials, at the same time
(averaged over 10 ms, along the diagonal; Fig. 3A–D, gray-shaded
cross-sections, F). It thus captures both dynamic and stationary
spatial attention encoding patterns. Because statistical signifi-
cance thresholds may vary from one subpopulation to the other,
this representation better captures temporal coding differences
than the mere plot of the decoding performance along the diag-
onal. Spatial attention signals arise first both in the attention-
related FEF population (Fig. 3F, intermediate blue; significance
reached at 75 ms) and in the LIP population (Fig. 3F, red; signif-
icance reached at 75 ms), shortly followed by the entire FEF pop-
ulation (Fig. 3F, dark blue; significance reached at 110 ms). The
FEF nonattention population has a later onset, classification per-
formance reaching significance only transiently at 394 ms and
more persistently at 430 ms (Fig. 3F, light blue). Thus, despite the
fact that the FEF and LIP spatial attention signals as assessed from
the entire populations are different in nature (stationary vs dy-
namic), they reach significance in both populations at the same
time. This can possibly suggest a common input or a mutual
interaction between the two cortical regions.

Local network dynamics and functional tagging
Following first visual stream presentation, early in the trial, a
preferential response to the onset of this event can either be in-
terpreted as a coding of its spatial position or as a coding of the
orientation of spatial attention toward this specific spatial loca-
tion (or as a coding of both spatial position and spatial attention).
Indeed, by construct, the cue is always presented in the first visual
stream of stimuli, and the second stream remains irrelevant up to
cue interpretation. As a result, the monkey can be expected to
orient its attention toward this early visual event and maintain it
there, including when the second stream of visual stimuli is pre-
sented. We have however, no behavioral marker supporting this
hypothesis, and several alternatives could be at play. For example,
attention could be stable on the first visual stream up to cue onset.
Attention could be on the first visual stream up to cue onset, but
momentarily disrupted by second visual stream onset. Attention
could be on first visual stream following its onset than move onto
second visual stream at its onset. Attention could be divided onto
both streams. Last, attention could be unfocused, the prior infor-
mation about cue position provided by the first stream being
unnecessary, given the high visual salience of the cues (red and
green against gray distracters). The question we are asking here is
whether the specific configuration of the neuronal population

when encoding spatial attention following cue presentation can
serve as an unambiguous signature or tag of spatial attention
processes at other times in the task, in particular following first
visual stream presentation. As in the previous section, we use a
full cross-temporal classification analysis to address this ques-
tion. Specifically, we train a classifier at different times following
cue onset (Fig. 4A–C; x-axis) and we measure the performance
with which each of these classifiers is able to predict spatial atten-
tion signals following first and second-stream onsets (Fig. 4A–C;
y-axis). Although no information about spatial attention can be
extracted following first-stream presentation from the entire LIP
neuronal population (Fig. 4A), precise spatial attention informa-
tion can be read out from the entire FEF neuronal population
(Fig. 4B) and the attention-selective FEF neuronal population
(Fig. 4C). Specifically, a classifier defined to extract spatial atten-
tion from the FEF neuronal population between 180 and 265 ms
following cue onset, is able to reliably readout spatial attention
allocation at 67 ms following first-stream onset and up to second-
stream presentation (Fig. 4B). Following second-stream onset,
readout performance reverses, departing from 50% chance clas-
sification, without however reaching significance. The same ob-
servations hold when the classifier is defined on the 458 – 600 ms
postcue response activities, though overall readout performance
is lower. In contrast, a classifier defined on the 265– 458 ms post-
cue response activities cannot successfully extract any spatial at-
tention information from the population response following
stream onset. This supports the hypothesis that several functional
populations coexist within the FEF, each encoding spatial atten-
tion in a stationary way over several hundred milliseconds: the
earliest (and to a lesser extent, the latest) FEF neuronal subpop-
ulation accounts both for early cue-related attention orientation
signals and attention orientation signals to the first stream of
stimuli; on the contrary, the intermediate FEF neuronal subpop-
ulation does not account for attention orientation signals to the
first stream of stimuli. In comparison, the FEF attention-selective
neuronal population contributes both to encoding spatial atten-
tion signals following cue presentation and following first-stream
onset (Fig. 4C). All neuronal populations (including LIP) show a
drop in the available spatial attention signals following second
visual stream onset, though this drop does not reach significance.
This analysis brings about two major observations. First, we dem-
onstrate spatial attention orientation signals early on in the task,
despite their temporal co-occurrence with spatial position sig-

Figure 4. Spatial attention signals following first-stream onset. Cross-temporal analysis classification analysis between postcue spatial attention related signals (x-axis, thick black line: cue
presentation, from 0 to 150 ms) and post-first-stream onset spatial attention-related signals ( y-axis, first-stream onset: arrow at 0 ms; second-stream onset: arrow at 300 ms), for the LIP entire
population (A), the FEF entire population (B), and the FEF attention-selective population (C). All else as in Figure 3.
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nals. Second, we demonstrate that second-stream onset disrupts
these attentional signals, most probably correlating with the au-
tomatic attentional capture induced by this salient sensory event
(as is the case for first-stream presentation).

Temporal dynamics of spatial position signals
In addition to encoding spatial attention, both LIP and FEF also
encode spatial position. In the following, we will first analyze how
the spatial position of a visual stimuli is encoded following first-
stream presentation by both the entire FEF and LIP neuronal
populations and by their respective cue position selective neuro-
nal populations (i.e., cells that are individually involved in the
coding of the spatial position of the cue as defined by a nonpara-
metric statistical test; see Material and Methods and Ibos et al.,
2013 for details on how these cells are identified). Then we will
analyze how cue position information is encoded during the cue
to target interval. Last, we will analyze how spatial position signals
at a given time in the task can serve to extract spatial position
information at other times. This is achieved thanks to a cross-
temporal classification analysis that runs from first visual stream
onset to 600 ms following cue onset. Because the interval between
second-stream onset and cue presentation is variable (300, 450,
or 600 ms), the early cross-temporal analysis is aligned on first-
stream onset, whereas the latter analysis is aligned on cue onset,
on both the training and testing axes.

Spatial position signals following visual stream onsets
As expected due to the fact that FEF neurons have strong visual
responses to stimuli presented in their RFs, the entire FEF (Fig.
5A, bottom left) and the cue-position selective FEF (Fig. 5C, bot-
tom left) populations strongly encode the spatial position of the
first visual stream. This encoding starts as early as 52 ms for the
entire population position signals and 67 ms for the cue-position
selective subpopulation signals and decoding performance re-
mains high up to the presentation of the second stream of stimuli.
At this point, decoding performance reverses and drops below
the lower 95% confidence interval limit, indicating a reliable en-
coding of second-stream position (which, by task design is lo-
cated on the opposite visual field from the first stream). These
two populations (entire FEF and cue-position selective FEF) thus
encode spatial position within a stationary neuronal network that
remains active up to cue presentation, as the total time following
first-stream onset during which the classification performance of
a given classifier is more than the 95% confidence interval being
�260 ms (Fig. 5E, blue curves; see Materials and Methods). At
this point, it is important to understand what the decoding per-
formances reported in Figure 5A,C are actually reflecting.
Indeed, in theory, if the FEF contained two independent popula-
tions, one coding a visual stream to the left and the other one a
visual stream to the right, we would obtain a stable coding of the
first visual stream as well as an independent stable coding of the
second visual stream. In this case, a classifier trained to decide
whether a stimulus has been presented to the left, for example,
will continue to provide this decision even when a stimulus is
presented to the right. This is however not what we observe. The
reason for this is the following. In the present dataset, the re-
sponse of both FEF and LIP cells are modulated by the presenta-
tion of a contralateral stimulus (as expected from the fact that
their receptive fields are described as contralateral, FEF: Bruce
and Goldberg, 1985; LIP: Ben Hamed et al., 2001, at best includ-
ing a small portion of the ipsilateral perifoveal visual field, LIP:
Ben Hamed et al., 2001), but also to an ipsilateral, eccentric stim-
ulus (the streams are presented at an eccentricity ranging between

10° and 15°). This ipsilateral coding of visual information in these
higher order visual areas does not necessarily correspond to an
enhanced neuronal response, but often to an inhibitory response
(Gregoriou et al., 2009, their Fig. 1b) interfering with a sustained
response to a contralateral stimulus (Ibos et al., 2013, their Fig. 2).
It is not clear whether this ipsilateral representation in the FEF
and LIP is task dependent (e.g., present only when the tasks in-
volves coordinated processes across both hemifields or not). As a
result, the neuronal populations encoding contralateral and ipsi-
lateral stimuli are not independent. This means that, out of a
classifier perspective, the same neurons will contribute to the
decoding of an ipsilateral or contralateral visual stimulus irre-
spectively of the order in which they are presented and irrespec-
tively of whether only one stimulus is presented or not. The
decoder used in this section is not trained on deciding whether a
visual stimulus is present or not but rather, to discriminate be-
tween stimuli presented to the right or to the left. When the
decoder is trained on detecting either: (1) the presence of a visual
stimulus, whether to the right and on to the left (i.e., irrespec-
tively of its position) or (2) the presence of visual stimulus to the
left or to the right, then we obtain a sustained high classification
accuracy from first-stream onset up to the end of the trial (spe-
cifically, a stable representation of a left stimulus is achieved at
�300 ms when the first stream is presented to the left and at �500
ms when the second stream is presented to the left, data not
shown). The classification procedure presented in Figure 5 re-
quires the decoder to decide whether a visual stimulus is present
on the right or on the left. When two stimuli are present, one on
the right (respectively on the left) and the other on the left (re-
spectively on the right), then the decoder’s decision changes into
which stimulus has the strongest representation. This is precisely
what can be seen in Figure 5 (bottom left plots). For example, a
classifier trained on activities recorded 200 ms following first-
stream onset, correctly identifies the location of the first stream
following its presentation. On second-stream presentation, its
classification drops below the lower 95% confidence interval
(two-tail nonparametric random permutation test), indicating
that this classifier is deciding that a stimulus is now present
opposite from the first stream. In other words, this decoder’s
decision is driven by the populations’ response to abrupt second-
stream onset more than it is to the now stable first-stream onset,
possibly due to the fact that stable visual stimuli have a lower
visual salience, associated with a weaker cortical representation
(Gottlieb et al., 1998).

A closer analysis of the temporal dynamics of these two FEF
populations suggests that two successive coding patterns are at
play. An initial pattern remains stationary between 52 and 155 ms
(for the entire FEF population, 67 and 158 ms, respectively, for
the selective position subpopulation) and provides a reliable pre-
diction of the spatial position of both the first and second streams
early on following their onsets. This pattern most probably re-
flects the transient phasic ON of the FEF neurons at the presen-
tation of a visual stimulus within their RF. A second encoding
pattern emerges at 155 ms (respectively, 158 ms) and remains
stationary for up to second stream, possibly reflecting the tonic
response of the FEF neurons to the presentation of a sustained
visual stream within their receptive field. This dual encoding pat-
tern is more pronounced in the dynamics of the cue-position FEF
population than in the entire FEF population. Overall, the LIP
neuronal population follows the same dynamical encoding pat-
tern as observed for the FEF, with an early population encoding
phase of both first and second-stream positions, and a later pop-
ulation encoding pattern specifically reflecting the spatial posi-
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Figure 5. Temporal dynamics of spatial position signals. Full cross-temporal classification analysis on the entire FEF population (A), the entire LIP population (B), the position-specific FEF
subpopulation (C), and the position-specific LIP subpopulation (D). A–D, Left, Bottom, Classifiers configured to optimally classify spatial position of first stream from population activities are defined
at every time step within 600 ms following first-stream onset and before cue presentation (x-axis, black line with 0 ms onset: first-stream presentation; black line with 300 ms onset: second-stream
presentation). The performance of each of these classifiers is tested on independent population activities during the same time interval (y-axis, black line with 0 ms (Figure legend continues.)
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tion of a persistent visual event (Fig. 5B, bottom left). However,
the total time following first-stream onset during which the clas-
sification performance of a given classifier is above the 95% con-
fidence interval never reaches 260 ms, indicating a dynamic
coding of first-stream position (Fig. 5E, red curves; see Materials
and Methods). LIP appears to encode this information less reli-
ably than the FEF, possibly reflecting the fact that the representa-
tion of these visual elements are actively suppressed from the
salience map at this time in the task (Gottlieb et al., 1998). Sur-
prisingly, the encoding of spatial position by the position-
selective LIP population (as defined by their selectivity to cue
position; Fig. 5D, bottom left) is extremely poor, hardly reaching
significance �100 ms following first-stream presentation. This
suggests that, in LIP, the coding of the spatial position of visual
streams and that of the cue is achieved by only partially overlap-
ping neuronal population codes. The horizontal bands observed
in Figure 5D are difficult to relate to the temporal structure of the
neuronal population responses. A possibility is that this reflects a
stable population activity pattern that can be weakly detected at
many training time points (explaining the spread of decoding
accuracy along the x-axis) but that is maximal in amplitude just
after the cue offset (explaining the limited range along the y-axis).
In other words, this would reflect the fact that neuronal firing
rates maintain a fixed proportional relation but scale up just after
cue offset and then down in unison.

Spatial position signals during the cue to target interval
How the entire FEF (Fig. 5A, top right) and the cue-position
selective FEF (Fig. 5C, top right) populations encode the spatial
position of the cue following cue presentation is time dependent.
During the initial 192 ms following cue onset, the spatial position
of the cue is encoded dynamically, the configuration of the neu-
ronal network encoding this variable changes at each time step.
From 192 to 410 ms following cue onset (respectively from 190 to
430 ms for the position selective subpopulation), a transiently
stationary encoding pattern of spatial position can also be seen, in
both FEF populations, the configuration of the neuronal network
encoding cue position remains stable over �200 ms. After 400 ms
following cue onset, the entire FEF population appears to fall
back again into a dynamic encoding, whereas the position selec-
tive subpopulation interrupts its encoding of cue position after
480 ms. In the parietal cortex, stationary spatial signals appear
earlier. Indeed, in the entire LIP population, a stationary config-
uration of the neuronal population reliably encoding spatial po-
sition can be seen from 100 to 368 ms (Fig. 5B, top right). Later on
in the cue to target interval, spatial position is encoded dynami-
cally. The encoding of the spatial position of the cue in the posi-

tion selective LIP population remains stationary from as early as
28 –288 ms (Fig. 5D, top right). This particular decoding pattern
suggests that the position selective subpopulation in LIP encodes
the cue position in a stationary manner with a network configu-
ration centered on 190 ms following cue presentation. In contrast
with what is seen for both FEF populations, no early dynamic
encoding of cue position can be seen in either LIP populations. If
this signal corresponds to a partial dynamic coding of attention to
first-stream position in anticipation of cue presentation, then
such an attentional signal is absent from LIP. In both the entire
LIP and cue position selective LIP populations, the total time,
following cue onset during which the classification performance
of a given classifier is above the 95% confidence interval, never
reaches 200 ms, indicating a transiently sustained coding of this
information (Fig. 5F; see Materials and Methods). A similar pat-
tern is observed in the corresponding FEF populations, though
the total classification time above the 95% confidence interval
exceeds 200 ms, thus fitting our criteria for a transiently sustained
encoding of cue position.

Within-task stability of spatial position signals
Up to now, we have described spatial position signals in both the
FEF and LIP following either visual stream presentation or cue
presentation. Here, we investigate whether the same local neuro-
nal networks are recruited to encode the spatial position of both
these events. In other words, we ask the question of whether the
position of the visual stream and that of the cue are encoded by
the same neuronal networks. To do this, we quantify the classifi-
cation performance with which spatial position signals can be
readout following cue onset, using classifiers optimized to extract
spatial position signals at all times following first-stream presen-
tation, both by the entire FEF (Fig. 5A, top left) and LIP (Fig. 5B)
populations and by their position-specific subpopulations (Fig.
5C, FEF; Fig. 5D, LIP). We also quantify the classification perfor-
mance with which spatial position signals can be read out follow-
ing first-stream presentation, using classifiers optimized to
extract spatial position signals at all times following cue onset,
both by the entire FEF and LIP populations and by their position-
specific subpopulations (Fig. 5A–D, bottom right). Classifiers de-
fined between 92 and 418 ms (between 135 and 427 ms for the
position selective subpopulation) following cue onset achieve a
statistically significant performance at classifying visual stream
position, both from the entire and from the position-selective
FEF population (Fig. 5A,C, bottom right). For both these FEF
populations, this spatial position encoding is stationary, though
this feature is more striking for the position-specific FEF popu-
lation. On this population, the reverse operation, consisting in
defining classifiers on the response of this population to first-
stream onset, also succeeds to extract cue position information,
and reveals a very similar stationary temporal encoding pattern
(Fig. 5C, bottom right). The entire FEF population response fol-
lowing first-stream onset hardly allows to predict cue position
during the cue to target interval (Fig. 5A, top left), contrasting
with the fact that, as described above, the population response
following cue onset reliably allows to predict first-stream posi-
tion (Fig. 5A, bottom right). This suggests that the classifier cap-
tures additional components following first-stream position that
do not contribute to the encoding of cue position. In LIP, a com-
mon neuronal local network configuration encoding first-stream
position from the cue position configuration network (LIP cue
position-selective subpopulation: 69 ms, Fig. 5D, bottom right;
all LIP: 57 ms, Fig. 5B, bottom right) and cue position from the
first-stream position configuration network (LIP cue position

4

(Figure legend continued.) onset: first-stream presentation; black line with 300 ms onset:
second-stream presentation). Left, Top, Classifiers configured to optimally classify spatial posi-
tion of cue from population activities are defined at every time step within 600 ms following
first-stream onset and before cue presentation (x-axis, black line with 0 ms onset: first-stream
presentation; black line with 300 ms onset: second-stream presentation). The performance of
each of these classifiers is tested on independent population activities during 600 ms following
cue onset, aligned on cue onset (y-axis, thick black line: cue presentation, from 0 to 150 ms).
Right, Bottom, Same as above, x-axis, thick black line: cue presentation, from 0 to 150 ms;
y-axis, black line with 0 ms onset: first-stream presentation, black line with 300 ms onset:
second-stream presentation. Right, Top, Same as above, x-axis and y-axis: thick black line: cue
presentation. E, Time above the 95% confidence interval for classifiers configured to optimally
classify stream position from the neuronal population activities defined at the different training
times, for the different neuronal populations (colors as in A–D). F, Time above the 95% confi-
dence interval for classifiers configured to optimally classify cue position from the neuronal
population activities defined at the different training times. All as in E.
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selective subpopulation: 159 ms, Fig. 5D,
top left; all LIP: 128 ms, Fig. 5B, top left)
can be identified in both the entire and the
position-selective LIP populations. Over-
all, in strong contrast with what can be
seen in the FEF, LIP does not appear to use
the same neuronal configuration to en-
code cue position and first-stream
position.

Temporal dynamics of color signals
In this last section, we use the same full
cross-temporal classification analysis as
described above to analyze how cue color
is encoded by areas LIP and FEF (Fig. 6).
Both areas encode this information dynam-
ically, as reflected by the fact that classifica-
tion rates more than the 95% confidence
interval are achieved along the diagonal,
irrespectively whether the entire FEF and
LIP neuronal populations are considered
(Fig. 6A and B, respectively), or only the
color-specific cells, as identified by a para-
metric statistical test (Fig. 6C,D; Ibos et
al., 2013 shows details on the cell classifi-
cation procedure). Notably, significant
correct classification rates are observed in
the entire LIP population very early follow-
ing cue onset (54 ms; Fig. 6B), whereas only
a transient encoding of cue color can be seen
at 198 ms in the LIP color-selective popu-
lation (Fig. 6D). In comparison, the tem-
poral dynamics of color-coding are very
similar between the entire and the color-
specific FEF populations, information
about this variable arising at 151 ms for
the entire population and at 155 ms for
the color selective subpopulation. Ac-
cordingly, in all of the populations of in-
terest, the total time, following cue onset
during which the classification perfor-
mance of a given classifier is more than the
95% confidence interval, never reaches
200 ms, indicating a transient coding of
color information (Fig. 6E; see Materials
and Methods).

Effect of population size on temporal
dynamics
The functional differences observed be-
tween the FEF and LIP populations and
their respective subpopulations in the
coding of spatial attention, position or color, could actually be
due to a difference in the population size. To test this, we per-
formed full cross-temporal classification analyses to decode spa-
tial attention from the entire FEF and LIP neural populations,
with population sizes ranging between 20 and 131 in steps of 20
for the FEF, and between 20 and 87 in steps of 20 for LIP. For the
FEF, an additional population size of 87 was tested so as to pro-
vide a direct comparison with the actual LIP entire population.
For a given population size, the neurons were randomly drawn
from the entire population and the full cross-temporal classifica-
tion analyses was performed as previously. This procedure was

repeated 10 times to produce an average full cross-temporal clas-
sification analyses per population size. We show that, although
population size affects the time of significance onset of spatial
attention encoding by the population, the core dynamics (sta-
tionary versus transient) is minimally effected by population size,
both in the FEF (Fig. 7A, top row) and in LIP (Fig. 7A, bottom
row). Specifically, when a classifier is trained onto a window cen-
tered on the 250 ms postcue (235–265 ms; Fig. 7B, left, red
curves) or on the 350 ms postcue (300 – 400 ms; Fig. 7B, right, red
curves) of LIP populations of increasing sizes, significant decod-
ing of spatial attention is consistently achieved only for small

Figure 6. Temporal dynamics of color signals. Full cross-temporal classification analysis on the entire FEF population (A), the
entire LIP population (B), the color-specific FEF subpopulation (C), and the color-specific LIP subpopulation (D). E, Time above the
95% confidence interval for classifiers configured to optimally classify cue identity from the neuronal population activities defined
at the different training times, for the different neuronal populations (colors as in A–D). All as in Figure 3.
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windows of testing time, centered around the training time, sup-
porting a transient encoding of spatial attention. In contrast, for
the FEF, significant decoding of spatial attention is consistently
achieved longer windows of testing time (Fig. 7B, blue curves),
supporting a stationary encoding of spatial attention. This is
more marked when the classifier is trained on a late time window
(300 – 400 ms; Fig. 7B, right, blue curves) than on an earlier time
window (235–265 ms; Fig. 7B, right, blue curves). As a result, the
description of transient or stationary processes is minimally im-
pacted by population size. In contrast, the amplitude of decoding
performance as well as it the latency of significance onset is af-
fected by population size (Astrand et al., 2014a provides a de-
scription of population size onto decoding performance).

Relationship between the population temporal dynamics and
the underlying individual neuronal responses
The following section analyzes how neuronal selectivity and reli-
ability impact the population temporal dynamics. For the sake of
space, this analysis is only performed on spatial attention encod-
ing by the different populations of interest. However, the same
observations hold for the encoding of cue position and cue color.
Response selectivity of an individual neuron to spatial attention is
defined as the difference in its spiking rate when attention is
oriented to the visual stream generating maximal responses as
compared with the nonpreferred visual stream. Figure 8A repre-
sents the average selectivity of the FEF attention-selective cells
(intermediate blue), the entire FEF population (dark blue), and
the entire LIP population (red). The statistical a significance of
the rise in selectivity of attention-related information in each
of the populations of interest is assessed as follows. Multiple Wil-
coxon tests are performed at every 10 millisecond, comparing the
distribution of spike-rate differences across the population from
�50 to �50 ms around this time point (obtained from a sam-
pling, with replacement, of 40 trials from each of the spatial
attention condition, repeated 20 times) to the distribution of
spike-rate differences during a baseline interval running from
�50 to �50 ms around the cue. Only statistical differences that
persisted with a p � 0.05 for �100 ms (10 successive time points)
were considered as statistically significant. As can be expected
from the very definition of the attention-selective cells, their av-
erage selectivity is higher than that of the other two populations.
This average populational selectivity, however, only partially ac-
counts for the differences in the dynamics of spatial attention
coding. Indeed, both the entire FEF and LIP populations have

similar average selectivities but notably, different temporal dy-
namics, the first being transiently sustained while the second is
transient (it is to be noted here, that we do not discuss changes in
average firing rates as seen in the previous section, because these
are assumed to be constant during the cue to target interval;
cue-related changes in response strength are thus fully captured
by the neuronal selectivity measure). To further relate the tem-
poral dynamics of each neuronal population to the response pat-
terns of its individual neurons, we identified, for each training
time (sampled every 10 ms), the two cells with the highest absolute
contribution to the final readout of the classifier at each time step
(i.e., highest �wi � ri�), for the entire FEF population (Fig. 8B1i), the
FEF attention selective population (Fig. 8B2i) and the entire LIP
population (Fig. 8B3i; note that we have considered the two top-
contributing cells at each time step, for the sake of the readability
of the figures, each cell being identified by a distinct color/shape
code; however, the same qualitative observations still hold if one
considers the top 5 or top 8 contributing cells, see below and Fig.
8C; also note that because individual cells can be among the 2
top-contributing cells at several time points during the cue to
target time interval, the total number of cells fulfilling the top-
contribution criterion is higher than this criterion, though upper
bounded by the population size). This analysis reveals that these
“top contributing” cells have a sustained contribution in time for
both FEF populations, whereas this is not the case in LIP. Specif-
ically, the top-contributing FEF cells to the population coding of
attention do so for an average 227 ms (n � 9). An average con-
tribution of 273 ms (n � 8) can be seen for the FEF attention-
selective cells, and a contribution of only 185 ms for the LIP cells
(n � 13). This observation still holds true when more top-
contributing cells are included in the analysis. Specifically, Figure
8Ci, represents the average contribution-time of top-contributing
cells, as a function of the number of top-contributing cells crite-
rion. The second data point along the x-axis corresponds to a
criterion of two top-contributing cells, and thus summarizes the
observations reported in Figure 8Bi. Because individual cells can
be considered as top-contributing cells at several time points (Fig.
8Bi, for a number of top-contributing cells criterion of 2), the
total number of cells fulfilling the top-contribution criterion
(Fig. 8Ci, right, y-axis) is higher than this criterion (x-axis) but
upper bounded by the size of the population of interest. When a
two-way unbalanced ANOVA is applied, taking as dependent
variable the duration of contribution of single neurons to the
decoder and as factors the population of interest (LIP all, FEF all,

Figure 7. Temporal dynamics as a function of population size. A, Full cross-temporal classification analysis for decoding the position of spatial attention on populations of different size, drawn
randomly from the entire FEF population (A, top row) or from the entire LIP population (A, bottom row). B, Decoding performances in time, from cue onset to 00 ms into the cue to target interval,
for each population (FEF, blue shades; LIP, red shades) and each population size (color as in A), for two fixed training windows (B, left, 235–265 ms postcue; B, right, 300 – 400 ms postcue). Statistical
significance is indicated, for each plot by a thicker line plots.
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or FEF attention) and the number of top-contributing cells cri-
terion, a significant main population of interest effect can be
noted (p � 0.000001). A post hoc analysis indicates that the du-
rations of contribution of the FEF attention-selective and the FEF
entire populations are significantly higher than the durations of
contribution of the entire LIP population (p � 0.001). At the
level of the entire neuronal populations, a strong correlation is
observed between the duration of the individual cell contribution
(i.e., �wi � ri�) to the overall decoding and the time during which
the cell is selective for spatial attention position (FEF all: r 2 �
0.39, p � 0.001; FEF attention-selective: r 2 � 0.71, p � 0.001, LIP
all: r 2 � 0.40, p � 0.001, where the interval of selectivity is de-
fined, for each cell of a given population, as the time during which
its selectivity is above its mean selectivity during a 200 –50 ms
baseline before cue presentation �3 SD). A strong correlation is
also observed between the duration of the individual cell contri-
bution to the overall decoding and the time during which it is
reliably selective for spatial attention position (FEF all: r 2 � 0.40,
p � 0.001; FEF attention-selective: r 2 � 0.67, p � 0.001, LIP all: r 2

� 0.32, p � 0.01, where the interval of reliability is defined as the
time during which the cell’s reliability is below p � 0.05). To
further relate this observation to the individual cell responses,
we calculated, for each of the top-contributing cells (Fig.
8B1i, BB2i, B3i; identified by a color/shape code), their spatial
attention-related selectivity in time (Fig. 8B1ii, B2ii, B3ii), as
well as the associated p value in time (nonparametric random
permutation test, as an indicator of signal-to-noise ratio; Fig.
8B1iii,B2iii,B3iii). A visual inspection of these plots suggests that
attention-related selectivity and the associated reliability is more
sustained in the FEF attention-selective top-contributing cells,
than in the FEF entire population top-contributing cells, than in
the LIP entire population top-contributing cells. Confirming this
qualitative assessment, for the entire FEF population, the top-
contributing cells to the population coding of attention have a
selectivity that is, on average, sustained over 111 ms, associated
with a reliability that is, on average, sustained over 97 ms. For the
FEF attention-selective population, the top-contributing cells
are, on average, selective (218 ms) and reliable (184 ms) over
longer time periods. In comparison, the top-contributing LIP
cells are, on average, selective (101 ms) and reliable (88 ms) over
shorter time periods. This still holds true when more top-
contributing cells are included in the analysis [Selectivity: Fig.
8Cii, two-way unbalanced ANOVA, taking as dependent variable

the duration of selectivity of single neurons and as factors the
population of interest (LIP all, FEF all, or FEF attention) and the
number of top-contributing cells criterion, significant popula-
tion of interest main factor, p � 0.000001; Reliability: Fig. 8Ciii,
two-way unbalanced ANOVA, taking as dependent variable the
duration of reliability of single neurons and as factors the popu-
lation of interest (LIP all, FEF all, or FEF attention) and the num-
ber of top-contributing cells criterion, significant population of
interest main factor, p � 0.000001]. A post hoc analysis indicates
that the durations of significant selectivity (respectively, reliabil-
ity) of the FEF attention-selective population are significantly
higher than the durations of significant selectivity (respectively,
reliability) of the entire FEF population (p � 0.001; respectively,
p � 0.001) and of the entire LIP population (p � 0.001; respec-
tively, p � 0.001). In addition, the durations of significant reli-
ability of the entire FEF population is also significantly higher
than the durations of significant reliability of the entire LIP pop-
ulation (p � 0.001). Overall, this analysis indicates a strong cor-
relation between the overall population dynamics and the
properties of the underlying cells, sustained temporal coding re-
lying on cells with sustained selectivity and reliability, whereas
dynamic temporal coding emerges from cells with more tran-
sient, short temporal selectivity and reliability periods. It is, how-
ever, important to note that only three of the top-contributing
cells in the attention-selective population are also identified as
top-contributing cells in the entire FEF analysis, indicating that
the contribution of a given cell to the temporal decoding does not
only depend on its individual response characteristics, but also on
how these responses compare with the overall population activity
[i.e., to 	 (wi � ri)].

Together, we have provided theoretical and empirical evi-
dence indicating that dynamic classification patterns arise when
the underlying individual neurons are selective and/or have vary-
ing firing rate patterns to the variable of interest for only short
time durations. In contrast, sustained temporal population cod-
ing patterns are obtained when the individual cells have more
sustained patterns of selectivity, though the reliability of the se-
lectivity of these responses may vary in time.

Discussion
We describe two distinct population regimens for the encoding of
sensory and cognitive information in the parietal and prefrontal
cortex: a stationary mode, in which a stable neuronal configura-
tion encodes the information of interest, irrespectively of the
response pattern of its individual elements, and a dynamic mode,
in which the information of interest is encoded by a neuronal
configuration, the elements and weight coefficients of which rap-
idly change with time. In addition, we show that analyzing the
temporal dynamics of a heterogeneous neuronal population does
not suffice to properly capture the neuronal processes at play in a
given cortical area, and that its functional subpopulations should
also be interrogated. Last, identifying the neuronal configuration
in which a neuronal population encodes attention or position can
serve to reveal this same information at other time periods in the
task. These findings are discussed below.

Attention is encoded in a stationary coding pattern in the
prefrontal cortex
In the cued-detection task used here, cue position and cue color
need to be combined for a correct prediction of target position.
This information is thus expected to be transiently represented in
these two areas. In contrast, the maintenance of spatial attention
at the target’s most probable location is expected to be repre-

4

Figure 8. Relationship between the population temporal dynamics and the underlying in-
dividual neuronal responses. A, Average population difference in attention-related response,
for the entire FEF population (dark blue, n � 131), FEF attention-selective cells (light blue, n �
21), and the entire LIP population (red, n � 87). Activities aligned on cue onset. The colored
straight lines show time-points when the selectivity is statistically different from the baseline
(see text for details). B, Relationship between classification weights and individual neuronal
response characteristics. Bi, Contribution to the readout of the classifier (as assessed by �weight
� response� of the top-two contributing cells, in time steps of 10 ms, for classifiers defined on the
entire FEF population (B1, horizontal), the FEF attention-selective population (B2, horizontal),
and the entire LIP population (B3, horizontal). Each cell is color- and shape-coded. The black
curves represent the average contribution over all cells. Bii, Attention selectivity in time (de-
fined as defined as the spike-rate difference between attention to the left vs right) of these
top-contributing cells. Biii, Attentional response reliability in time (defined as the p value of this
selectivity, as assessed by two-tail nonparametric random permutation tests) of these top-
contributing cells. C, Average contribution time as a function of the number of top-contributing
cell criteria, (Ci) to the readout of the classifier, (Cii) to attention selectivity, and (Ciii) to atten-
tional response reliability. Colors as in A. Continuous lines: average time (for selectivity: above
baseline �3 SD, for reliability: p � 0.05). Dashed lines: number of cells, as the top-contributing
cell criteria increases.
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sented in a stationary way. Accordingly, we describe a stationary
encoding of spatial attention by the prefrontal attention selective
cells, the response pattern with which this population encodes
spatial attention remaining constant throughout the cue-to-
target interval. This is interesting in two respects: (1) attention
related information is reliably represented in each of the prefron-
tal attention selective cells for durations shorter than the entire
cue to target time interval (Fig. 1B, top; Ibos et al., 2013) and (2)
the time at which spatial attention is represented varies from one
attention selective cell to the other (Fig. 1B). This indicates that
each of these cells contributes to the stationary population encod-
ing of attention, including at times in the cue-to-target interval
during which their individual response is not statistically signifi-
cant. This stationary population encoding of attention is specific
to the prefrontal cortex and cannot be found in the parietal cor-
tex, neither at the single-cell level (Figs. 1B, 8Bii), nor at the
population level in the entire LIP population (Fig. 3A).

Position is encoded in a stationary way but color is
encoded dynamically
The initial dynamic coding of cue position by the cue position
selective prefrontal cells rapidly shifts into a transiently stationary
population encoding pattern. This departs from the theoretical
expectation that no sustained encoding of cue position is re-
quired to perform the task. It also contrasts with the fact that
individual cells encode cue position transiently and indepen-
dently one from the other. Indeed, whereas this population en-
codes position in a stationary manner between 192 and 410 ms,
the median cue position response latencies in individual FEF cells
is 121 ms (Ibos et al., 2013), indicating that one-half of these cells
start firing before this time. A similar though earlier dynamic
population encoding of cue position can be found in the parietal
population (median LIP cue position response latencies � 117
ms; Ibos et al., 2013). This transiently stationary encoding pattern
of position is unexpected given the task structure. In comparison,
the coding of cue color by the prefrontal cue selective cells is fully
dynamic, the response profile of the cells encoding this informa-
tion changing from one instant in the task to the other. This
information is encoded between 151 and up to 400 ms. A similar
dynamic population encoding of cue color is found in the parietal
population, though this coding starts much earlier after cue pre-
sentation and continues up to 500 ms.

Stationary versus dynamic population coding
Overall, attention, position and color (respectively, position and
color) are represented simultaneously in the prefrontal cortex
(respectively, parietal cortex), though each of these variables is
encoded by different population patterns. Stationary population
coding involves a functional population in which the contribu-
tion of its individual coding elements is constant over time. In
contrast, dynamic population coding involves individual neu-
rons containing information on only short nonoverlapping time
scales. As a result, information is available at any time on only a
fraction of the population. Nonstationary population activity
profiles have been reported previously in several cortical areas
(Meyers et al., 2008; Crowe et al., 2010) including in the parietal
cortex (Barak et al., 2010) and the prefrontal cortex (Meyers et al.,
2012; Kadohisa et al., 2013; Stokes et al., 2013). In particular,
Crowe et al. (2010) propose that in the parietal cortex, task-
critical information is encoded dynamically while at the same
time, task-irrelevant information is encoded in stationary neuro-
nal codes. Although our observations in the parietal cortex pos-
sibly support this hypothesis (as we show a transiently stationary

encoding of spatial position, and a dynamic coding of attention),
they highlight the fact that temporal population codes might dif-
fer from one cortical region to another. Indeed, our results, as
well as the recent report by Stokes et al. (2013) indicate a station-
ary coding of task-relevant information in the prefrontal cortex.
Active mechanisms for sustaining working memory information
in local neuronal populations are proposed to be at play through
short-term plasticity mechanisms (Fujisawa et al., 2008; Mon-
gillo et al., 2008; Erickson et al., 2010). The same mechanisms
may also contribute to sustained spatial attention coding, as a
distinctive property of prefrontal cortex relative to other cortical
regions. Short-term plasticity could also be at the origin of dy-
namic population coding. Indeed constant inputs to a neuronal
population can result in time-dependent response patterns if the
membrane potentials and synaptic weights of its elements (the
hidden state of the neuronal population) are continuously
changing under the influence of the input pattern of activity
(Buonomano and Maass, 2009). Interestingly, simultaneous sta-
tionary and nonstationary temporal coding patterns within both
of the prefrontal and parietal cortex indicate that the putative
short-term plasticity mechanisms at play selectively and differen-
tially target specific functional subpopulations, possibly based on
a principle of common driving input (Nikoliç et al., 2007).

Information multiplexing
Single-cell recording studies usually target specific functional cell
categories. In contrast, studies that are interested in how neuro-
nal populations contribute to cognition do not operate an a priori
selection of cells. Our observations call for a mixed approach.
Indeed, the functional characterization of individual cells does
not fully account for the information in a given area (e.g., atten-
tion is encoded dynamically in LIP even though we fail to identify
a significant attention-selective cell population). Likewise, we
unveil a late population attention-related signal in the nonatten-
tion FEF population (Fig. 3D) that we fail to identify at the single-
cell level (Ibos et al., 2013). Conversely, the analysis of the FEF
and LIP temporal population coding patterns for attention, po-
sition, or color, though instructive in themselves, do not capture
the entire functional processes at play. Temporal population cod-
ing in both the entire populations and their respective functional
subpopulations bring about complementary observations. In
particular, it reveals that different task-relevant and task-
irrelevant information can be encoded in a given cortical area
through different temporal coding patterns. How this is achieved
at the neuronal level is still unclear. A parsimonious proposal
would be that each functional subpopulation could be under the
influence of distinct modulatory influences: different driving in-
puts, different neuromodulatory sensitivities, and different syn-
chronization influences.

Context dependence
A frequent assumption in neurophysiology is that cells encode
information irrespectively of time in the task and irrespectively of
the type of task. For example, a cell encoding the spatial position
of a visual item is expected to encode it in a similar way whatever
the context. A growing body of evidence indicates that cell-selectivity
is task dependent (Ben Hamed et al., 2002; Anton-Erxleben et al.,
2009). Our data clearly demonstrate that population codes are also
context-dependent. For example, parietal cue position cells
hardly contribute to the coding of visual stream position. In con-
trast, the entire parietal population encodes both visual stream
and cue position. Thus, the population code representing visual
stream position succeeds to capture information about cue posi-
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tion while the inverse is not true and individual cell-selectivities
fail to fully describe the functional contribution of a given area.
Last, this highlights the fact that a given population encodes given
information (here, position) in a context-dependent manner
(here, neutral visual stimulus vs a task-relevant visual item). Im-
portantly, these context-related influences are area dependent.
For example, in contrast with LIP, both the entire FEF and cue-
position populations encode cue position and visual stream using
the same neuronal pattern.

Importantly, the population code with which the prefrontal
attention-selective cells encode spatial attention orientation dur-
ing the cue-to-target interval also identifies potential spatial at-
tention signals during the pre-cue interval. These signals coexist
with spatial position signals. The fact that they are best identified
at this time in the task in a neuronal subpopulation that is
attention-selective (i.e., by definition, nonselective to position)
indicates that spatial attention population codes can serve to pin-
point attention-related processes at other times in the task and
possibly in other tasks involving spatial attention (for review, see
Astrand et al., 2014b for potential applications of this functional
tagging). It is, however, for now unclear whether dynamic coding
patterns are also deterministic across different task phases and
different tasks.
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dependent short-term assembly dynamics in the medial prefrontal cortex.
Nat Neurosci 11:823– 833. CrossRef Medline

Gnadt JW, Andersen RA (1988) Memory related motor planning activity in
posterior parietal cortex of macaque. Exp Brain Res 70:216 –220. Medline

GottliebJP,KusunokiM,GoldbergME (1998) Therepresentationofvisualsalience
in monkey parietal cortex. Nature 391:481–484. CrossRef Medline

Green C, Swets J (1966) Signal detection theory and psychophysics. New
York: Wiley.

Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency,
long-range coupling between prefrontal and visual cortex during atten-
tion. Science 324:1207–1210. CrossRef Medline

Ibos G, Duhamel JR, Ben Hamed S (2009) The spatial and temporal deploy-
ment of voluntary attention across the visual field. PloS One 4:e6716.
CrossRef Medline

Ibos G, Duhamel JR, Ben Hamed S (2013) A functional hierarchy within the
parietofrontal network in stimulus selection and attention control. J Neu-
rosci 33:8359 – 8369. CrossRef Medline

Kadohisa M, Petrov P, Stokes M, Sigala N, Buckley M, Gaffan D, Kusunoki M,
Duncan J (2013) Dynamic construction of a coherent attentional state
in a prefrontal cell population. Neuron 80:235–246. CrossRef Medline

King JR, Dehaene S (2014) Characterizing the dynamics of mental represen-
tations: the temporal generalization method. Trends Cogn Sci 18:203–
210. CrossRef Medline

LiuY,YttriEA,SnyderLH (2010) Intentionandattention:differentfunctionalroles
for LIPd and LIPv. Nat Neurosci 13:495–500. CrossRef Medline

Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T (2008) Dynamic
population coding of category information in inferior temporal and pre-
frontal cortex. J Neurophysiol 100:1407–1419. CrossRef Medline

Meyers EM, Qi XL, Constantinidis C (2012) Incorporation of new informa-
tion into prefrontal cortical activity after learning working memory tasks.
Proc Natl Acad Sci U S A 109:4651– 4656. CrossRef Medline

Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working mem-
ory. Science 319:1543–1546. CrossRef Medline
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