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1 Inria, Université de Lille, CNRS, Laboratoire de mathématiques Painlevé
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Résumé. L’intérêt de l’apprentissage non supervisé est magnifié par la croissante
constante du nombre d’individus dans les échantillons. C’est en effet l’opportunité de
découvrir des informations autrefois inaccessibles. Néanmoins, une importante volumétrie
de données pose des difficultés relatives à des temps de calculs rapidement prohibitifs et
à la grande consommation d’énergie et des ressources matérielles. L’usage de données
regroupées (ou binned data) sur une grille adaptative pourrait répondre à ces questions
ayant trait à ce qu’on qualifierait aujourd’hui de green computing, sans pour autant nuire
à la qualité des estimations. Une 1ère approche est menée dans le cadre des mélanges
gaussiens univariés, comprenant une illustration empirique et des avancées théoriques.

Mots-clés. Apprentissage non supervisé, données regroupées, big data, green com-
puting.

Abstract. Popularity of unsupervised learning is magnified by the regular increase
of sample sizes. Indeed, it provides opportunity to reveal information previously out of
scope. However, the volume of data leads to some issues related to prohibitive calculation
times and also to high energy consumption and the need of high computational ressources.
Resorting to binned data depending on an adaptive grid is expected to give proper answer
to such green computing issues while not harming the related estimation issues. A first
attempt is conducted in the context of univariate Gaussian mixtures, included a numerical
illustration and some theoretical advances.
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1 Introduction

Assuming observations with values belonging to a real space X , binned data correspond
to a reduced dataset only containing the counts of observations in given regions of X .
In practice, binned data usually appear as soon as it is impossible to collect data with
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infinite precision. Thus, such regions are often imposed by the data collecting process
itself.

Binned data are so frequent that specific data analysis procedures are designed for
them, in particular when regions are too wide to neglect uncertainty they introduce in
comparison to the raw (but unavailable) dataset. For instance, in the univariate case
(X = R), McLachlan & Jones (1988) introduced a binned version of the EM algorithm
for estimating a univariate Gaussian mixture, whose employment was motivated by an
application on red blood cells where only binned and truncated data were available. In-
duced by a similar problem, Cadez et al. (2002) finally extended this algorithm to the
multivariate case.

In this work, we propose to use binned data with a different point of view. We
suppose to have a huge amount of raw data and our challenge is to save resources (usually
in terms of energy, time and computer memory) while preserving accuracy of the targeting
estimation process. The key idea we defend is to group original data in order to obtain
artificially binned ones. In this way, the size of the resulting dataset is automatically
reduced, avoiding too many computing efforts. We focus our attention on the univariate
Gaussian mixture estimation in this preliminary work, as a first important step to address
more complex situations in the future.

Here is an early numerical example to motivate our proposed “binned” strategy. It
illustrates the gain that could be expected in comparison to the classical subsampling
strategy usually used for reducing the data size. In this simulation a sample of n = 106

raw data i.i.d. arises from a univariate Gaussian mixture of three components (Figure 1a),
with density

f(x;θ) = 0.6φ(x;−1, 2) + 0.3φ(x; 1, 1) + 0.1φ(x; 0, 0.5),

where φ(·;µ, σ2) indicates the univariate Gaussian pdf with mean µ and variance σ2.
Binned data are created through a grid for which a tuning parameter corresponds to its
number of finite intervals limits, denoted here by R (more details on the grid will be given
later). An EM algorithm was performed respectively with different values of R (thus
different candidate binned datasets) and different values of m (thus different candidate
subsample datasets).
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Figure 1: (a) Density simulated (black line) with the ones of the three components (red,
green and blue lines); (b) Logarithm of Kullback-Leibler divergence from the true pa-
rameters for different values of R and m in function of the required computer memory
(logarithmic scale).

In Figure 1b it is possible to note that the loss of information (measured by the
Kullback-Leibler divergence) induced by binning is much lower than that obtained with
subsampling, even negligible if we use a grid moderately dense. This is in addition accom-
panied by an evident gain in terms of computer memory. Such promising results could
be also obtained (but not displayed here) concerning gain in terms of algorithm running
time or model selection behaviour.

The outline of the paper focuses on theoretical questionings to be addressed on uni-
variate binned data. It concerns essentially the grid properties: (1) model identifiability,
(2) estimates properties and (3) grid selection. We gradually consider these questions
firstly in the simplified univariate no mixture Gaussian case (Section 2) and secondly in
the univariate mixture Gaussian case (Section 3).

2 Preliminary work: a single univariate Gaussian

2.1 Notations

In the general case, we denote by x = (x1, . . . , xn), with xi ∈ X , a raw sample of n
observations and byG a grid that divides the space X intoR regionsRj, j = 1, . . . , R. We
denote also the resulting binned data vector by y = (y1, . . . , yR), where each component
is defined as

yj = #{xi ∈ Rj}, j = 1, . . . , R.
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In addition, it is assumed also that the raw sample arises from n continuous i.i.d. random
variables with parametric density f(x;θ), x ∈ X , indexed by a vector of parameter
θ, and that y follows a multinomial distribution M(n,p) with p = (p1, . . . , pR), where
pl =

∫
Rl
f(x;θ)dx.

In the specific case of this section, we suppose that the sample x ∈ Rn arises from
n i.i.d. univariate Gaussians N(µ, σ2) with density φ(·;µ, σ2). In any univariate context
like this, we consider a grid G composed by R points a1, . . . , aR such that we obtain a
vector y of R + 1 binned data where every observation yj is defined as (j = 0, . . . , R)

yj = #{xi : aj ≤ xi < aj+1},

while setting a0 = −∞ and aR+1 =∞.
We make also two additional hypotheses in Section 2.2.2 and 2.2.3. First, the variance

σ2 is known and equal to 1. Second, the grids considered are equispaced and symmetric
around µ. With these last regularity assumptions, the grids will be simply indexed by two
parameters which are the number of points R and the “starting” point a1. Consequently,
each grid will be denoted by G(a1, R).

2.2 Theoretical results

2.2.1 Identifiability

As discussed in Section 1, first of all, we are interested by a fundamental probabilistic
property which is identifiability of the Gaussian distribution, related to the binned nature
of available information. In that case, thanks to the monotonicity of the Gaussian cdf,
it is possible to prove the following proposition, that ensures identifiability under a slight
condition on R.

Proposition 2.1 Binned univariate normal models are identifiable for R ≥ 2.

2.2.2 Estimates properties

The second property is statistical. We note µ̂ba1,R the binned maximum likelihood esti-
mate (MLE) of µ obtained from the binned dataset y with an equispaced grid G(a1, R)
symmetric around µ, and µ̂MLE the MLE of µ obtained from the raw dataset x. Good
statistical properties of µ̂ba1,R are assured by the following proposition:

Proposition 2.2 µ̂ba1,R is asymptotically unbiased and lima1,R→∞ V ar(µ̂
b
a1,R

) = V ar(µ̂MLE).

2.2.3 Grid selection

The question of grid selection is fundamental in our work since its main originality is to
estimate an optimal one. In this purpose, we are first interested to access the relative
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values of the two tuning parameters of the grid (a1 and R) to obtain the optimal grid from
a variance estimates point of view. The next proposition states that a1 should decrease
at least at logarithmic rate with regards to R (and vice versa). Figure 2 graphically
illustrates this fact by comparing the established lower bound and the true optimal value.

Proposition 2.3 The sequence a
(R)
1 = maxa1<µ

V ar(µ̂MLE)

V ar(µ̂bR,a1
)

is bounded below by the se-

quence a(R) = −2 logR + µ.
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Figure 2: Lower bound for the sequence a
(R)
1 = maxa1<0

V ar(µ̂MLE)

V ar(µ̂bR,a1
)

when µ = 0.

The previous statement will be useful to propose sensible grid candidates but the
question to select the best grid candidate is open. The following criterion, denoting by
V CR

a1
, is able to provide the best estimate µ̂ba1,R from the variance point of view, among

all the equispaced grids G(a1, R) symmetric around min(x)+max(x)
2

(which is asymptotically
equal to µ). Namely, the V CR

a1
criterion is defined by

maximizea1,RV C
R
a1 = maximizea1,R

R∑
i=0

(φ(ai, µ̂
b
R,a1

, 1)− φ(ai−1, µ̂
b
R,a1

, 1))2

Φ(ai, µ̂bR,a1 , 1)− Φ(ai−1, µ̂bR,a1 , 1)

and its asymptotic property is expressed in the following proposition:

Proposition 2.4 V CRa1 criterion is consistent, i.e. the probability of selecting the best G(a1, R)
grid tends to 1 when n→∞.

3 Ongoing work: univariate Gaussian mixtures

3.1 Notations

After having considered a single Gaussian, the next step is to consider the more complex case
where univariate Gaussian mixtures are involved. Thus, we assume now that each observation
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xi ∈ R (i = 1, . . . , n) arises from a univariate K-Gaussian mixture of density

f(x;θ) =

K∑
k=1

πkφ(x;µk, σ
2
k), πk > 0,

K∑
k=1

πk = 1,

in which µk denotes the mean of the k-th component, σ2k is its variance and θ is the vector
that contains all the parameters, thus θ = (π1, . . . , πK , µ1, . . . , µK , σ

2
1, . . . , σ

2
K). Moreover, as

the observations have real values like in the previous case, we can adopt the same notation for
the grids considered.

3.2 Theoretical results

3.2.1 Identifiability

In this general case we are able to set a sufficient condition that assures identifiability, which
is a consequence of Proposition 11.5 contained in Valiant (2012). It leads to the following
proposition.

Proposition 3.1 Mixtures of K Gaussian distributions for binned data are identifiable for R >
4K − 3.

3.2.2 Other properties as future work

The previous proposition is only a starting point for our research in this context. In fact we
are investigating the theoretical properties of the MLE for binned data and we are researching
some criteria allowing to select a grid candidate among a family of sensible grids candidates. We
expect that the estimates will have the same behaviour of those founded for the single Gaussian
situation, but, due to the more complex form of the densities involved, the mathematical tools
to be employed may be more advanced. Finally, once resolved this univariate case we will pass
to the multivariate one, where new challenges will appear. In particular, the question of the
number of non-empty bins when increasing the dimension will be addressed as a solution for
limiting the computer memory impact of binned data even in the multidimensional case.
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