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Abstract: The non-structural protein NS1 of influenza A viruses is an RNA-binding protein of which
its activities in the infected cell contribute to the success of the viral cycle, notably through interferon
antagonism. We have previously shown that NS1 strongly binds RNA aptamers harbouring
virus-specific sequence motifs (Marc et al., Nucleic Acids Res. 41, 434–449). Here, we started
out investigating the putative role of one particular virus-specific motif through the phenotypic
characterization of mutant viruses that were genetically engineered from the parental strain WSN.
Unexpectedly, our data did not evidence biological importance of the putative binding of NS1 to this
specific motif (UGAUUGAAG) in the 3′-untranslated region of its own mRNA. Next, we sought
to identify specificity determinants in the NS1-RNA interaction through interaction assays in vitro
with several RNA ligands and through solving by X-ray diffraction the 3D structure of several
complexes associating NS1′s RBD with RNAs of various affinities. Our data show that the RBD
binds the GUAAC motif within double-stranded RNA helices with an apparent specificity that may
rely on the sequence-encoded ability of the RNA to bend its axis. On the other hand, we showed
that the RBD binds to the virus-specific AGCAAAAG motif when it is exposed in the apical loop
of a high-affinity RNA aptamer, probably through a distinct mode of interaction that still requires
structural characterization. Our data are consistent with more than one mode of interaction of NS1′s
RBD with RNAs, recognizing both structure and sequence determinants.

Keywords: influenza A virus; non-structural NS1; RNA; RNA-protein interaction; 3D structure

1. Introduction

With 3–5 million severe cases and an excess mortality of 290–650 thousand deaths per year [1,2],
influenza viruses remain one of the major infectious threats to human health. In addition to this
seasonal disease burden, the sporadic human cases of infection with avian influenza viruses (mainly
H5N1 and H7N9) are a reminder of the pandemic potential of these emerging viruses if ever they
acquired the ability to transmit between humans. Due to the limits of vaccination strategies targeting
the mutation-prone influenza viruses, antiviral therapies are still a valid option, notably for the
treatment of severe influenza-related respiratory infections, in both seasonal and pandemic influenza.

While the first generation of influenza antivirals, adamantanes, have become obsolete due to the
acquired resistance of the currently circulating viruses [3], neither the neuraminidase inhibitors nor the
recently approved viral-polymerase inhibitor baloxavir marboxil [4,5] are safe from the development
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of resistances [6]. As a consequence, there is a pressing need to enrich our assortment of antivirals,
both to improve our preparedness against future pandemics and to design combination therapies that
are less prone to the emergence of resistances.

Several viral proteins could be targeted by novel antiviral compounds that could be used alone
or in combination. One of the most promising targets is the influenza virus non-structural protein
1 (NS1) [7]. Encoded by the smallest of the eight viral genome segments, NS1 is a multifunctional
RNA-binding protein, which is considered the main weapon of the virus to antagonize the innate
immune response of the host and to ensure viral replication in a hostile anti-viral environment [8].
This 230-residue protein is highly expressed in the infected cell, where it exhibits several pro-viral
activities [9,10]. Its homodimeric RNA-binding domain (RBD, amino-acids 1–73) interacts with several
RNAs, including viral mRNAs [11–15], while its Effector Domain (ED, amino-acids 80–202) is a
non-obligate dimer that interacts with several cellular proteins. A linker region connecting the two
structured domains [16,17] confers plasticity to the quaternary structure, while the C-terminal tail
(amino-acids 202–230) has the properties of an intrinsically disordered peptide region [17]. While the
effector domain is to some extent dispensable for the biological activities of NS1 [14,18], the RBD plays
an essential role in several activities that require the interaction of NS1 with viral and non-viral RNAs.
This is best illustrated by the total loss of pathogenicity conferred by the alanine substitution of Arg38
and Lys41, the two main residues involved in binding of RNAs by NS1 [19].

In agreement with its cellular protein partners that have been identified in systematic
searches [20–23], NS1 inhibits several pathways involved in the interferon activation and antiviral
state [24] and also blocks the processing and nucleo-cytoplasmic export of host mRNAs [21,25].
However, when performing its RNA-related biological activities, NS1 may be selective, either towards
some virus-derived RNAs or towards some subset of host cell RNAs, depending on the presence of
sequence or structure determinants. Indeed, a systematic crosslink-based search revealed that NS1
preferentially binds introns in a subset of mRNAs, including that of the retinoic-acid induced gene
RIG-I [26]. On the other hand, the dsRNA-binding property of NS1 was shown to be required for its
inhibition of helicase DHX30 in that it is mediated by a dsRNA that is bound by both proteins [27].
The sequence and structure elements that control the interaction or determine its biological consequences
are for the most part unknown. In a previous work [13] we have shown that NS1 binds in vitro with
high affinity to RNA aptamers harboring virus-specific RNA motifs. Two conspicuous virus-specific
motifs were identified: AGCAAAAG, which is strictly conserved at the 5′end of the virus-derived
positive-strand RNAs, and UGAUUGAAG, which is highly conserved in the 3′untranslated region
(3′UTR) of NS1′s own mRNA. We also showed that NS1 strongly interacts with double-stranded (ds)
RNAs containing the GUAAC motif.

In the present work, we first investigated the role of one particular putative NS1-binding site in
the 3′UTR of its own mRNA through the phenotypic characterization of mutant viruses that were
genetically engineered from the parental strain WSN. In a complementary approach, we explored the
hypothesis that NS1 may recognize the virus-specific motifs or the GUAAC motif through specific
modes of interaction that might be distinct from what was described for the published structures of
NS1-dsRNA complexes [28,29]. To identify such a specific NS1-RNA interaction that could represent a
promising target of novel antiviral drugs, we purified a large variety of RNA-binding domains (RBDs)
that were representative of NS1′s sequence diversity. Through in vitro interaction assays, we analyzed
the contribution of structure and sequence determinants in a series of aptamer-derived RNAs. Finally,
we solved the crystal structure of several complexes, associating NS1′s RBD with dsRNAs of high and
low affinity.
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2. Materials and Methods

2.1. Rescue of Recombinant Influenza Viruses

Wild-type (WT) and NS mutants of virus A/WSN/1933 (H1N1) were generated by reverse genetics
using the 12-plasmid reverse genetics system [30] kindly provided by Ervin Fodor (University of Oxford,
Oxford, UK). Mutations in the NS segment-plasmid were introduced by site-directed mutagenesis
using the QuikChange II site-directed mutagenesis kit (Agilent, Santa Clara, CA, USA) according to
the manufacturer’s protocol. The recombinant viruses were rescued by reverse genetics as described
previously [31]. The presence of the desired sequence alterations in the amplified viruses was verified
by sequencing their NS gene segment using reverse transcription (RT)-PCR.

2.2. Cells, Infections, Virus Titration, and Multicycle Growth Kinetics

HEK293T cells were maintained in Dulbecco’s modified Eagle medium supplemented with 10%
fetal calf serum, 2 mM L-glutamine, 100 IU/mL penicillin, and 100 mg/mL streptomycin. Madin-Darby
canine kidney (MDCK) cells and A549 cells were grown in Eagle’s minimal essential medium (EMEM)
supplemented with 7.5% fetal calf serum. For virus growth kinetics, subconfluent monolayers of
MDCK in 75cm2-flasks were virus-infected at a multiplicity of infection of 0.001 PFU/cell. Following
1 h of adsorption at 37 ◦C, the cells were further incubated in serum-free DMEM containing 1 µg of
TPCK-treated trypsin (Worthington Biochemicals, Lakewood, NJ, USA). Samples of supernatants that
were taken at the indicated times were subsequently titrated by plaque assays on MDCK cells [32].

2.3. Immunodetection of NS1 and NP

Subconfluent monolayers of A549 cells in 24-well plates were virus-infected at a multiplicity of
infection of one PFU/cell. At the indicated times, cells were lyzed in 100 µl of Laemmli buffer and
an aliquot was used for electrophoretic separation and immunoblot detection using the NS1- and
NP-specific polyclonal rabbit antisera (anti-NP PA5-32242, Thermo Fischer Scientific, Waltham, MA,
USA) and the ECL-system detection (Advansta, San Jose, CA, USA).

2.4. Minigenome Assay

Eukaryotic expression vector pCIwt-NS1 encoding wt-NS1 was constructed by sub-cloning its
coding sequence between the XhoI and NotI sites of the pCI plasmid (Promega, Madison, WI, USA).
In order to prevent production of spliced mRNAs, splice-donor and splice-acceptor sites were both
invalidated by point mutations [33]. Substitutions within NS1 (R38A-K41A) were introduced using
the QuikChange II site-directed mutagenesis kit. Subconfluent HEK293T cells in 24-well plates (one
technical triplicate for each condition) were transfected using the FuGENE (Promega, Madison, WI,
USA) reagent with the expression vectors of the four viral polymerase subunits (PB1, PB2, PA, and
NP) and the pPolI-NS-Renilla encoding the chimeric minigenome (consisting of the NS genome
segment with NS1′s Open Reading Frame (ORF) replaced by the Renilla Luciferase ORF), along with
the pCI-NS expression vector (or empty vector as a control). The pCMV-Firefly plasmid (Promega)
was used as control for transfection efficiency. Twenty-four hours post-transfection, cells were lysed
and the activities of the two luciferases were measured using the Dual-luciferase reporter assay
system (Promega) and a GloMax-Multi microplate luminometer (Promega). The minireplicon-driven
Renilla-luciferase activity was normalized with respect to the activity of the Firefly luciferase, which
was used as a transfection control.

2.5. RNA Probes and Proteins

All RNA probes used in binding experiments were purchased from Eurogentec (Belgium).
AWFC01 and ZKO* RNA probes used in crystal structure investigations were purchased from
Dharmacon (Open Biosystem, Horizon Discovery, Waterbeach, UK) (Figure S1).
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The nucleotide sequences of RBDs (aa 1-73) were either PCR-amplified with appropriate primers
from the cDNAs of the corresponding viruses or purchased as synthetic genes (Eurogentec, Liege City,
Belgium), then cloned into the NdeI-BamHI sites of the expression vector pET15b(+) DNA (Novagen,
Merck, Germany). The R38A-K41A double substitution was introduced using the QuikChange kit
(Agilent, Santa Clara, CA, USA). In addition, the full-length NS1 sequence of the avian H7N1 virus
was purchased as a synthetic gene cloned into the SpeI-BamHI sites of expression vector pGEX-5X-1
DNA (Genscript, Piscataway, NJ, USA).

Recombinant proteins were overproduced in Rosetta2-(DE3) bacteria in auto-induction
medium [34]. Bacteria were grown at 37 ◦C until reaching an OD600 value of 0.6, then 20 h at
18 ◦C with agitation (200 rpm). Bacteria were harvested by centrifugation and stored at −20 ◦C as a dry
pellet in a 50 mL polypropylene tube.

Bacterial pellets were gently thawed on ice and resuspended in 45 mL of buffer containing 20 mM
Hepes pH 7.6, 500 mM NaCl, and 5 mM Imidazole. The bacteria were lyzed by a 30 min-incubation at
30 ◦C with 0.75 mg/mL of lysozyme, followed by three freeze/thawing cycles and five 1 min sonication
cycles (amplitude 0.4, five pulses per second). The lysate was clarified by a 80 min centrifugation
(19,000× g, 4 ◦C). The cleared lysate was applied onto a metal affinity-chromatography column (HisTrap
FF, GE Healthcare, Chicago, IL, USA). Untagged proteins were eliminated through successive washes
with (i) 10 column-volumes (cv) of wash buffer (20 mM Hepes pH 7.6, 500 mM NaCl) containing 5 mM
Imidazole, (ii) 10 cv of wash buffer containing 20 mM Imidazole, and (iii) 10 cv with (20 mM Hepes pH
7.6, 2 M NaCl). His-tagged proteins were eluted by slow application of 10 cv of wash buffer containing
200 mM Imidazole. Fractions containing recombinant proteins (as verified by SDS-PAGE) were loaded
onto a POROS HS20-cation exchange chromatography column (Applied Biosystems, Foster City, CA,
USA) and eluted by a linear NaCl gradient (20 mM Hepes pH 7.6, 1 M NaCl). Elution fractions
containing the protein of interest were concentrated (Amicon®Ultra 10K, Millipore, Burlington, MA,
USA) to a 10 mL final volume with successive cold-centrifugations (15–20 min at 5.000 g) before His-tag
cleavage at 4 ◦C during 16 h in 20 mM Tris-HCl pH 8.4, 150 mM NaCl, and 2.5 mM CaCl2 by 1:100
molar ratio of thrombin (Millipore, Burlington, MA, USA). The resulting proteolysate was applied onto
a benzamidin column (GE Healthcare) to eliminate thrombin. Recombinant proteins were applied onto
a HisTrap FF (GE Healthcare) and eluted with 5 cv of 20 mM Hepes pH 7.6, 500 mM NaCl, and 5 mM
Imidazole. Untagged proteins were separated by size-exclusion chromatography onto a Superdex 75
column (GE Healthcare) equilibrated in 20 mM Hepes pH 7.6 and 500 mM NaCl. Fractions of the
elution peak of the protein of interest were pooled and concentrated as described previously and stored
at −80 ◦C.

Bacterial pellets containing the fusion proteins GST-RBD and GST-NS1 (H7N1) were resuspended
in 45 mL of PBS containing 1% Triton X-100 and 1 mM PMSF and the bacteria were lyzed as
described above. The cleared lysate was applied onto a glutathione-affinity chromatography column
(GSTrap FF, GE Healthcare). Unbounded proteins were eliminated by washing with 10 cv of PBS.
The fusion protein was eluted with 10 cv of 50 mM Tris pH 8 and 10 mM reductive form of
Glutathione. Elution fractions containing GST-fusion proteins (as checked by SDS-PAGE) were pooled
and concentrated as described previously. The concentrated GSTrap elution fraction was then loaded
onto a size-exclusion chromatography column (Superdex S200 or S75 for GST-NS1 and GST-RBD,
respectively, GE Healthcare) equilibrated in 25 mM Tris HCl pH 7.6, 5% Glycerol, 1 M NaCl, 0.1 mM
TCEP. The elution fractions containing the fusion protein were concentrated as described previously
and stored at −80 ◦C. The homogeneity of all purified proteins was assessed by SDS-PAGE and by
MALDI-TOF mass spectrometry.

2.6. Electrophoretic Mobility Shift Assays (EMSA)

5′-[32P]-labelled RNA probe (0.1 nM) was incubated at 4 ◦C for 30 min with indicated amounts of
protein in a 20 µL-reaction mixture (10 mM Tris-HCl, 1 mM EDTA, 0.1% bovine serum albumin,
10% glycerol, 50 mM NaCl, pH 8, 4 µM of yeast tRNA (Sigma-Aldrich)). RNA species were
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separated by electrophoresis (14V/cm at 4 ◦C) through a non-denaturing 10% polyacrylamide gel
(29:1 acrylamide:bisacrylamide) in TBE buffer. Gels were subsequently dried and exposed for
autoradiography. RNA species (free and bound to protein) were quantified using the Typhoon-FLA
9500 imager (GE Healthcare) and ImageQuant software, version TL v.8.1. Triplicate EMSA titration
experiments were used to extract the dissociation constant KD [35]. The binding curves were fitted
using a non-linear regression logistics function (Hill’s equation, Y = [A2 + (A1−A2)]/[1 + (x/x0) p] with
software Origins, version 9.0.0 (OriginLab, Northampton, MA, USA).

For competition experiments with unlabeled RNA competitors, radiolabeled AWFC01 (0.1 nM)
was first incubated for 30 min with a limiting concentration of the indicated RBD (close to its KD value).
Subsequently, increasing concentrations of competitor were added and the mixture was incubated for
an additional 30 min at 4 ◦C. The reaction mixtures were then separated by EMSA. Triplicate EMSA
competition experiments were used to extract the apparent half-maximal effective concentration
(EC50app) for the dissociation of the preformed AWFC01/RBD complex. After EMSA quantification,
EC50app was determined by fitting the dose-response curves using the same equation as above.

2.7. X-ray 3D Structure Determination

Prior to crystallization, H7N1 NS1-RBD protein (wtH7N1-RBD) was concentrated to 10 mg/mL
using Amicon 10 K ultrafiltration devices (Millipore) in last purification buffer. Initial crystallization
screening was performed with a Mosquito liquid handler (STP Labtech Ltd., Royston, UK) using
Morpheus, JCSG+, Wizard Classic, and Wizard Cryo kits from Molecular Dimensions Ltd. and the
AmS04 kit from Qiagen. Diffraction-quality crystals appeared in Morpheus condition 2.5 (100 mM
Hepes/MOPS pH 7.5, 8% ethylene glycol, and 30% P550MME-PEG20K) after few days and were
flash-frozen directly into liquid nitrogen. Then, 100 K X-ray diffraction data were collected at PROXIMA
2 beamline (SOLEIL, Paris, France) and processed using XDS [36] and AIMLESS [37]. The 3D structure
was determined at 1.93Å resolution by molecular replacement with Phaser [38] of the Phenix suite [39]
and using PDBid 1AIL as a search model. The atomic model was refined using phenix.refine and
manually improved using COOT [40]. Concerning the structures of H7N1-RBD/RNA complexes,
double strand RNA (dsRNA) were prepared in 10 mM Tris, 1 mM EDTA pH 8.0, and 500 mM NaCl by
mixing the two complementary single strand RNA synthesized and purified at Dharmacon, heating
for 2 min at 90 ◦C and then being cooled down overnight to 4 ◦C. Freshly purified H7N1-RBD was
mixed with dsRNA at a molar ratio of 1:1.1 and incubated for 30 min at 4 ◦C. Initial crystallization
screening was realized as indicated for the H7N1-RBD protein alone. Crystals of the complex of
wild type H7N1 NS1-RBD protein and AWFC01 dsRNA (wtH7N1-RBD/AWFC01) were obtained in
Wizard Classic condition 2.26 (100 mM CHES pH 9.5 and 30% PEG400) and double mutant R38AK41A
H7N1 NS1-RBD protein with AWFC01 dsRNA complex (aaH7N1-RBD/AWFC01 RNA) crystallized
in Wizard Cryo condition E3 (100 mM sodium phosphate/citric acid pH 4.2, 200 mM ammonium
sulfate and 40% ethylene glycol). After little optimization of AmSO4 kit condition 10, crystals of wild
type H7N1 NS1-RBD protein bound to ZKO* dsRNA (wtH7N1-RBD/ZKO*) grew in 2 M ammonium
sulfate and 200 mM ammonium nitrate. Then, 100 K X-ray diffraction data were collected at PROXIMA
2 beamline (SOLEIL, France) and processed using XDS [36] AIMLESS [37]. The 3D structures of
wtH7N1-RBD/AWFC01, aaH7N1-RBD/AWFC01, and wtH7N1-RBD/ZKO* were determined at 1.75Å,
1.90 Å, and 2.30 Å resolution, respectively, by molecular replacement with Phaser [38] of the Phenix
suite [39] and using PDBid 2ZKO as a search model. The atomic model was refined using phenix.refine
and manually improved using COOT [40]. The 3D structures described here were deposited at the
Protein Data Bank under access numbers 6SW8 (wtH7N1-RBD), 6SX0 (wtH7N1-RBD/AWFC01), 6SX2
(R38A-K41A-H7N1-RBD/AWFC01) and 6ZLC (wtH7N1-RBD/ZKO*). Data collections and refinement
statistics are listed in Table S1. For the apo H7N1-RBD structure, residues 1 to 73 of the protein
construct were visible in the electron density maps as well as three 1,2-ethanediol and one partial
polyethylene glycol molecules. For the wtH7N1-RBD/AWFC01 complex, RBD residues E72 and T73
and RNA basepair G1:C19 could not be positioned by lack of electron density due to mobility, but
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six partial polyethylene glycol molecules and one CHES molecule could be located. Concerning the
aaH7N1-RBD/AWFC01 complex, only residue T73 was missing and nine 1,2-ethanediol molecules
were assigned. Lastly, RBD chain A residues −3 to 73 and RBD chain B residues 1 to 72, the whole
double stranded RNA, as well as three sulfate ions and four nitrate ions were visible in electron density
maps for the wtH7N1-RBD/ZKO* complex. Molecular graphics images were produced using UCSF
Chimera [41]. RNA structure analysis was carried out using Curves+ [42]. RNA-Protein interactions
were analyzed using the SNAP program of the 3DNA package [43].

3. Results

3.1. Biological Relevance of the UGAUUGAAG Motif

Our previous SELEX approach [13] identified two virus-specific RNA motifs in the NS1-binding
aptamers, corresponding to short sequence motifs that are highly conserved in the virus-derived RNAs
of positive polarity. The AGCAAAAG motif (here named motif A, Figure 1), which in the complementary
RNA is part of the U12 sequence that makes up the viral polymerase promoter, is strictly conserved
at the 5′end of all influenza A viruses complementary RNAs. At the same time, the UGAUUGAAG
motif (here named motif B) is highly conserved in the 3′UTR of NS1′s mRNA (Figure 1). We first
attempted to assess the biological relevance of the second motif, considering that for the first motif its
well-established, prominent role in the viral cycle precluded a proper evaluation of its NS1-related role
by mutagenesis of the viral genome. The UGAUUGAAG motif (or more generally UGRUUGAAG)
is highly conserved in the 3′UTR of NS1′s mRNA, 14 nucleotides downstream of NS1′s stop codon.
It corresponds to nucleotides 236–244 of Nuclear Export Protein (NEP)’s Open Reading Frame (ORF).
In addition, a similar UGCUUGAAG motif (or less stringently, URYUUGAAG) is also present at the
3′end of the 3′UTR (nt 317–325 of NEP ORF). Strikingly, with about 2–4 occurrences in each NS-segment
positive-strand RNA and a ratio of observed/expected frequency of 13.82, UUGAAG is the second
most frequent six-letter word (AAUGGA is the first, at 14.93) in the nucleotide sequences of influenza
A virus NS segments (~74,000 nucleotide sequences downloaded from the Influenza Virus Resource,
available online: https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database,
accessed on 12 august 2020), representing about 63 million six-letter words).

On the basis of (i) the identification of the B motif by the SELEX approach, combined with (ii) the
high conservation of its two copies (B and D) in the 3′UTR of NS1′s mRNA, we reasoned that NS1
could specifically interact with these motifs in its own mRNA and thereby regulate its translation.
Accordingly, mutations in one of these motifs would be expected to alter both the synthesis of NS1
and the viral phenotype. We therefore introduced mutations in the NS-segment of virus A/WSN/33
and rescued the mutant viruses by reverse genetics. We modified either of the two UGRUUGAAG
and URYUUGAAG motifs (i.e., B and D, respectively) in the 3′UTR of NS1, along with a third site,
named C, that we used as a control. We were cautious as to not change the amino-acid sequence of
NEP since motifs B, C, and D encompass the codons of amino-acids that belong to the α-helices C1 and
C2 of the C-terminal part of NEP and are critical to its tertiary and quaternary structure as well as to its
interactions with matrix protein M1 [44].

All seven possible combinations of mutants were rescued, along with the wild-type virus. They all
grew to similar titers on MDCK and their replication potential was similar to that of the wild-type
virus, as shown by a multicycle growth assay in MDCK cells (Figure 2a). Their plaque phenotype was
also undistinguishable from that of the wt virus (Figure S2). Further, we monitored the accumulation
of viral proteins NS1 and NP in A549 cells that were infected with either the wt virus, single mutant B,
or triple mutant BCD and noticed no difference between the three viruses regarding the accumulation
of the two viral proteins (Figure 2b).

https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
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Figure 1. The non-structural (NS) segment and the mutated B, C, and D motifs. (a) The NS segment,
showing the NS1 and NEP ORFs (NEP in orange; NS1 in green and yellow for the RBD and ED,
respectively), with arrows indicating the positions of the A, B, C, and D motifs. Vertical bars = 100
nucleotides. (b) nucleotide conservation of NEP’s Open Reading Frame (ORF). The open reading frames
of NEP from all human H1, H2, and H3 viruses were aligned and the nucleotide conservation (sliding
window of 7 nucleotides) was plotted along the length of the ORF. The dotted lines highlight the relatively
high conservation of motifs B, C, and D. (c) nucleotide sequence of the wt and mutated motifs, with the
B and D motifs in green. The underlined UGA is the stop codon of NS1. The three sites are highlighted,
with the mutated nucleotides underlined. Below are the three mutated motifs. The amino-acid sequence
of NEP (shown above with L79, S93, and L106) remains unchanged. All possible combinations of
mutants were rescued (i.e., single mutants B, C, and D; double mutants BC, BD, and CD; and the triple
mutant BCD).

As an additional attempt to examine whether NS1 could somehow modulate the fate of the
NS-viral genomic segment, we set up a “minireplicon” assay where NS1′s Open Reading Frame
(ORF) in the NS-segment of WSN was replaced by that of the Renilla Luciferase. In this system
based on the transfection of HEK293T cells, the normalized Renilla Luciferase signal reflects the
replication, transcription, and translation of the chimeric “NS-Renilla”segment. We compared four
such NS-Renilla segments, where the 3′UTR of NS1 corresponded to the wt sequence or to either of
the three single-mutant sequences with the B, C, or D mutations. More specifically, we examined to
what extent the transient co-expression of (wild-type) NS1 could impact the reporter signal (i.e., the
replication, transcription, or translation). As shown in Figure 3, we repeatedly observed that transient
co-expression of NS1 increased the minireplicon-signal by four- to six-fold compared to the signal
measured with the same chimeric NS-Renilla segment in the absence of NS1. Similar foldchange
ratios were observed with the four NS-Renilla segments, i.e., the foldchange was independent of
the particular 3′UTR. Taken together, our data indicate firstly that NS1 dramatically increases the
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minireplicon efficiency, i.e., at least one of the three steps consisting of replication, transcription, or
translation. Secondly, because this effect was observed regardless of the presence of the putative
NS1-binding motifs in the 3′UTR of NS1 mRNA, it is unlikely that the putative binding, if any, of NS1
to the 3′UTR of its own mRNA has any relevance in the viral cycle.
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Figure 2. Multicycle growth curve of the three single mutants and of the triple mutant (a) MDCK cells
that were infected with the indicated viruses (multiplicity of infection = 10−3 PFU/cell). Viral titers
were measured in the supernatants that were collected at 6 h, 12 h, 24 h, 48 h, and 72 h post-infection.
(b) Accumulation of NS1 and NP in virus-infected cells. A549 cells in a 24-well plate were infected
(one PFU/cell), then lysed at the indicated times post-infection. Proteins in the lysates (2% of the
100 µL-lysate) were separated through SDS-PAGE, then transferred to a nylon membrane. NS1 and
NP were revealed through immunoblot, using polyclonal rabbit antisera (anti-NP PA5-32242, Thermo
Fischer Scientific).
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Figure 3. Modulation by NS1 of the activity of wt and mutated minigenomes HEK293T
cells were transfected with the expression vectors of the polymerase subunits and the chimeric
minigenome-expression plasmid, along with the NS1-expression vector (or empty vector as a control
(-), or mutated-NS1-expression vector (mut)). Further, 24 h post-transfection, the activity of the Renilla
Luciferase in the transfected cell lysate was measured and normalized relative to that of the Firefly
luciferase activity. The normalized renilla activities were then expressed relative to that measured
in empty-vector transfected cells (no NS1-condition). Each dot is the geometric mean of a technical
triplicate in a given experiment (n = two independent experiments).
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3.2. Functional and/or Structural Insights into the NS1-RNA Interactions

3.2.1. Minimal Structure of Selected Aptamers for Efficient Recognition by NS1

SELEX-identified aptamers DM01 and DM03 [13] have been selected for their interaction with a
mixture of recombinant NS1 proteins representative of its two alleles A and B (from H5N1 and H7N1
viruses, respectively). These aptamers harbour one or two copies of the double-stranded motif GUAAC,
along with a virus-specific sequence motif that is present in the apical loop of the long double-stranded
hairpin, i.e., the AGCAAAAG motif in DM01 and the UGAUUGAAG motif in DM03 (corresponding
to motifs A and B, respectively, in Figure 1). In order to identify the minimal RNA determinants
required for binding, we first sought to identify shorter aptamer derivatives that still kept a high
affinity for the RBD. Towards that aim, we designed two medium-length synthetic RNAs, DM01-midi
and DM03-midi, that were derived from the 80-nt RNA-aptamers DM01 and DM03, respectively, along
with shorter RNAs (DM01-short and DM03-short, respectively), consisting of the terminal hairpin of
these aptamers encompassing the virus-specific motif. Their ability to form stable complexes with
RBD were assessed through an electrophoretic mobility shift assay (EMSA) with the purified allele
B-RBD (H7N1) (Table 1 and Figure S3).

Table 1. Binding of RBD of NS1 from H7N1 to native and truncated RNA aptamers.

Name nt Sequence / 2D Structure Length (nt) RBD Binding Reference

DM01
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G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

81 ++++ [13]

DM01-midi
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5’-GGGCGAAUUCGAGCCUCAAGUAACCACAUGAGUUACAGCAAAA
G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

50 ++++ this work

DM01-short
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G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

30 + / - - - this work

DM01-mot A
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5’-GGGCGAAUUCGAGCCUCAAGUAACCACAUGAGUUACAGCAAAA
G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

8 - this work

DM03
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G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

81 ++++ [13]

DM03-midi
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5’-GGGCGAAUUCGAGCCUCAAGUAACCACAUGAGUUACAGCAAAA
G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

50 ++++ this work

DM03-short
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5’-GGGCGAAUUCGAGCCUCAAGUAACCACAUGAGUUACAGCAAAA
G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG

32 + / - - - this work

DM03-mot B
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5’-GGGCGAAUUCGAGCCUCAAGUAACCACAUGAGUUACAGCAAAA
G||| || || ||| |||||| ||||||||||| ||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGUACUCAAUGU-GUCCA

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

5’-GGAGUUACAGCAAAA
G||||||||| ||

3’-CCUCAAUGU-GUCCA

5’-AGCAAAAG

5’-GGGCGAAUUCGAGCCUCAAGUAACAACUCGUCAUAGGUCACUU
||| || || ||| ||||||| ||||||||| |||

3’-UCUC-CU--AGG/CGG\C/UCAUUGUCGGGCAGUAUGAAGUUA
G

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

5’-CCGUCAUAGGUCACUU
|||||||| |||

3’-GGCAGUAUGAAGUUA
G

5’-UGAUUGAAG 9 - this work

While the medium-size dsRNAs DM01-midi and DM03-midi kept their binding properties (Table 1
and see below), the short RNAs DM01-short and DM03-short, which lacked the terminal GUAAC motif
close to the free blunt end of their dsRNA structure, interacted poorly with the RBD. RNA-protein
complexes with a shifted mobility were observed only at very high concentrations of the RBD (>2 µM),
indicating a very low affinity (Figure S2). The two very short single-stranded RNAs consisting of
only the 8- or 9-nt virus-specific sequence motifs (motifs A and B in DM01 and DM03, respectively)
yielded no observable complex, even at the highest concentration of the RBD. Taken together, these
data suggest that the duplex part of the hairpin RNA must extend at least over about 20 base pairs
and must contain at least one GUAAC/CAUUG motif close to the blunt end of the dsRNA. Further,
at least under the stringent binding conditions that we used, none of the virus-specific motifs that were
identified by the SELEX approach showed a measurable, nanomolar-range affinity for the RBD in their
isolated form.
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3.2.2. Major Contribution of the RBD in the Recognition of DM01-Midi and DM03-Midi

We next assessed the interaction of DM01-midi and DM03-midi with the full-length protein NS1
and we chose to perform these experiments with the allele B NS1 from the avian H7N1 virus. Because
the mature full-length protein was observed to precipitate even at moderate concentrations, these
assays were performed with the fusion protein GST-NS1 or with GST-RBD as a control. Up to 100 nM
of protein GST-RBD was observed to quantitatively titrate the two RNAs in a C1 complex, which likely
corresponds to the binding of one GST-RBD molecule per RNA molecule (Figure 4). With DM01-midi at
1000 nM of GST-RBD, C1 was replaced by a second complex C2 (Figure 4a), likely of 2:1 stoichiometry,
while under the same conditions, no additional complex was observed with DM03-midi (Figure 4b).
This suggests that DM01-midi contains an additional determinant (not present in DM03-midi) that is
recognized by a second GST-RBD, dependent on the binding of the first molecule. When GST-RBD
was replaced by GST-NS1 in similar binding experiments, we observed that both RNAs formed a C’1
complex. In this case, however, not only for DM01-midi but also for DM03-midi, the C’1 complex was
itself partially or completely replaced by a C2′ complex in the presence of higher concentrations of
GST-NS1. This indicates that the formation of the low-mobility complexes (C2 and/or C’2), likely of 2:1
stoechiometry, required the presence of NS1′s effector domain for DM03-midi, while the RBD alone
was sufficient in the case of DM01-midi.
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Figure 4. Binding of the RBD and full-length NS1 to DM01-midi and DM03-midi Radiolabeled
DM01-midi (a) or DM03-midi (b) were incubated with increasing concentrations of GST-RBD or
GST-NS1 full-length (H7N1). Free-dsRNAs and complexes were separated as described in Materials
and Methods. C1 and C2 indicate the RBD:RNA complexes of 1:1 and 2:1 stoechiometry, respectively,
while similarly, C’1 and C’2 indicate the NS1:RNA complexes of 1:1 and 2:1 stoechiometry.

GST is known to be able to dimerize [45] and this property could favor the binding of several
GST-NS1 molecules to the DM01-midi and DM03-midi RNAs. We therefore repeated our EMSAs using
the native, untagged H7N1-RBD. The two RNAs were almost completely titrated by low nanomolar
amounts of RBD (Figure 5). As was observed with GST-RBD, untagged RBD formed a unique
C1 complex with DM03-midi, while at least two discrete complexes C1 and C2 were formed with
DM01-midi. It is likely that the C1 complex observed with the two RNA probes corresponds to a 1:1
complex, associating one RBD dimer and one RNA molecule. The additional C2 complex that was
observed only with DM01-midi was formed as soon as the RBD concentration reached 2 nM, even before
the free RNA probe was completely titrated in C1. The quantification of EMSA suggests that C2 results
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from the facilitated binding of a second RBD to the 1:1 RBD:RNA C1 complex (Figure 5c). Above 20 nM
of RBD, the apparent abundance of C2 remained relatively constant (around 30%), while C1 was
progressively replaced by a C2′ complex, of which its diffuse and intermediate electrophoretic mobility
gradually shifted towards that of the C2 complex. While its reduced electrophoretic mobility is
indicative of a RBD:RNA stoichiometry above 1:1, the smeared appearance of C2′, along with the fact
its position (its relative shift) is concentration-dependent, suggests that the C2′ and C1 complexes
are in dynamic equilibrium during electrophoresis, with their relative amounts being reflected by the
position of C2′. Taken together, these data suggest that as soon as the RBD concentration reaches 2 nM,
a second RBD molecule binds to the preformed C1 to yield two distinct complexes of 2:1 RBD:RNA
stoechiometry. Among these complexes, about 30% consist of the stable C2 complex, while the unstable
one C2′ is in dynamic equilibrium with the 1:1 complex C1.Viruses 2020, 12, x FOR PEER REVIEW 11 of 27 

 

 
Figure 5. Interaction of DM01-midi and DM03-midi with the native H7N1-RBD Indicated 
radiolabeled RNA probes were incubated with increasing concentrations of RBD and the resulting 
reaction mixtures were analyzed by EMSA as described in Materials and Methods. (a,b) 
Representative gel autoradiographs obtained with DM01-midi and DM03-midi, respectively. (c) The 
relative intensities of the bands corresponding to the C1, C2, and C2′ complexes formed with DM01-
midi were quantified and plotted as a function of the RBD concentration. 

3.2.3. Contribution of the AGCAAAAG and GUAAC Motifs to the Interaction 

The different behaviors of the RBD towards DM01-midi and DM03-midi suggest that while both 
RNAs harbor a high affinity binding site that allows the formation of the 1:1 RBD:RNA ratio 
complexes C1, DM01-midi harbors an additional determinant that uniquely allows the formation of 
complexes C2 and C2′. The two RNAs share the long double-stranded structure as well as the 
terminal GUAAC motif, which together could form the high-affinity binding site. In addition, DM01-
midi harbors a second GUAAC motif, close to the apical loop that also contains the virus-specific 
motif A (AGCAAAAG). In order to investigate the role played by each of these features, we designed 
and assessed the binding of DM01-mod1 and DM01-mod2, two hairpin RNAs derived from DM01-
midi (Figure 6). DM01-mod1 conserved the virus-specific A motif while its dsRNA structure no 
longer contained the two GUAAC motifs. Conversely, DM01-mod2 kept the two GUAAC motifs but 
its A motif was replaced by an unrelated sequence. 

 
Figure 6. Comparative binding of RBD to DM01-midi, DM01-mod1, and DM01-mod2. The indicated 
radiolabeled RNA probes were incubated with increasing concentrations of H7N1-RBD and the 
incubation mixtures were analyzed by EMSA as described in Materials and Methods. 

RBD formed C2-like complexes with DM01-mod1, which harbors the AGCAAAAG motif, albeit 
only at high concentrations, while there was no discrete band corresponding to the C1 complex. 
Instead of C1, we observed a large smear (Figure 6). This suggests that RBD forms, with DM01-mod1 
which harbors the AGCAAAAG motif, unstable C1-like complexes that dissociate during 
electrophoresis. Very differently, with DM01-mod2, which harbors the two GUAAC motifs, RBD at 

C1
C2’
C2

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

DM01-midi

free
RNA

5’-GGUAACAACUCGUCAUAGGUCACUU
||||||| ||||||||| |||

3’-CCAUUGUCGGGCAGUAUGAAGUUA
G

DM03-midi

c

0 0.2
3 0.6
9

2.1 6.2 18
.6

55 16
8

50
0 [RBD]

nM 0 0.2
3

0.6
9

2.1 6.2 18
.6

55 16
8

50
0

ba

0.1 1 10 100 1000
0

20

40

60

80

RBD (nM)

[R
B
D/
D
M
01
-m

id
i]
co
m
pl
ex

(%
)

C1

C2

C2'

5’-GGUAACCACAUGAGUUACAGCAAAA
G|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGU-GUCCA

DM01-midi

0 1 10 10
0

50
0

0 1 10 10
0

50
0

0 1 10 10
0

50
0

5’-GGUAACCACAUGAGUUACGACUGUC
C|||||| ||||||||||| ||

3’-CCAUUGUCGUACUCAAUGC-GAAUU

DM01-mod2

5’-GACUUGCACAUGAUCGUGAGCAAAA
G|||||| ||||||||||| ||

3’-CUGAACUCGUACUAGCACU-GUCCA

DM01-mod1

[RBD]
nM

C1
C2’
C2

free
RNA

Figure 5. Interaction of DM01-midi and DM03-midi with the native H7N1-RBD Indicated radiolabeled
RNA probes were incubated with increasing concentrations of RBD and the resulting reaction
mixtures were analyzed by EMSA as described in Materials and Methods. (a,b) Representative
gel autoradiographs obtained with DM01-midi and DM03-midi, respectively. (c) The relative intensities
of the bands corresponding to the C1, C2, and C2′ complexes formed with DM01-midi were quantified
and plotted as a function of the RBD concentration.

3.2.3. Contribution of the AGCAAAAG and GUAAC Motifs to the Interaction

The different behaviors of the RBD towards DM01-midi and DM03-midi suggest that while both
RNAs harbor a high affinity binding site that allows the formation of the 1:1 RBD:RNA ratio complexes
C1, DM01-midi harbors an additional determinant that uniquely allows the formation of complexes C2
and C2′. The two RNAs share the long double-stranded structure as well as the terminal GUAAC motif,
which together could form the high-affinity binding site. In addition, DM01-midi harbors a second
GUAAC motif, close to the apical loop that also contains the virus-specific motif A (AGCAAAAG).
In order to investigate the role played by each of these features, we designed and assessed the binding
of DM01-mod1 and DM01-mod2, two hairpin RNAs derived from DM01-midi (Figure 6). DM01-mod1
conserved the virus-specific A motif while its dsRNA structure no longer contained the two GUAAC
motifs. Conversely, DM01-mod2 kept the two GUAAC motifs but its A motif was replaced by an
unrelated sequence.

RBD formed C2-like complexes with DM01-mod1, which harbors the AGCAAAAG motif, albeit
only at high concentrations, while there was no discrete band corresponding to the C1 complex. Instead
of C1, we observed a large smear (Figure 6). This suggests that RBD forms, with DM01-mod1 which
harbors the AGCAAAAG motif, unstable C1-like complexes that dissociate during electrophoresis.
Very differently, with DM01-mod2, which harbors the two GUAAC motifs, RBD at low concentrations
(1–10 nM) formed C1 complexes, while at the 100 and 500 nM concentrations, unstable C2-like
complexes of reduced mobility were observed. This last observation suggests that the presence of a
loop of which its 2D structure is close to that present in DM01-midi and DM01-mod1 could facilitate
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the fixation of a second molecule on the preformed complex C1. However, because it lacks the viral
sequence AGCAAAAG, this loop cannot form a stable C2 complex in the presence of moderate
concentrations of RBD. Additionally, higher concentrations of the RBD induce the formation of unstable
C2′ complexes that steadily dissociate during electrophoresis and yield the fuzzy band.
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Figure 6. Comparative binding of RBD to DM01-midi, DM01-mod1, and DM01-mod2. The indicated
radiolabeled RNA probes were incubated with increasing concentrations of H7N1-RBD and the
incubation mixtures were analyzed by EMSA as described in Materials and Methods.

Noteworthily, the ability to form a C2 complex with the DM01-midi probe was shared by all
the NS1 RBD proteins that we tested in this study, whilst only the C1 complex was observed with
DM03-midi (Figure S4). The distinct electrophoretic mobility of the complexes are consistent with the
divergent isoelectric points (pI) of the RBDs: for instance, the complexes made with the H5N1-RBD
(pI 6.11) are more acidic and therefore less shifted than those formed with the H7N1-RBD (pI = 8.00).
As expected, the double substitution R38A/K41A, either in the H7N1 or H5N1-origin RBD, abolished
their binding to both RNAs.

Consistent with all the observations, we can propose the following scenario for the binding
of RBD to DM01-midi. At subnanomolar RBD concentrations, RNA probes containing at least one
GUAAC/GUUAC motif in their double stranded part are stably recognized by a first RBD molecule
to form the C1 complex. In the 1–10 nM concentration range, a second RBD molecule binds to the
preformed C1 complex in a cooperative-like manner that likely involves the recognition of the viral
sequence (2:1 RBD:RNA ratio complex C2). Thus, the formation of a stable C2 complex intrinsically
depends on a stable C1 complex and is favored by the presence of the viral sequence AGCAAAAG in
the apical loop. The cooperative-like interaction with the AGCAAAAG motif is a property shared by
all NS1 RBDs.

3.2.4. AWFC01, a High-Affinity dsRNA Containing Two GUAAC Motifs

Our observations are consistent with the strong and preferential binding of the RBD to
double-stranded RNAs harboring at least one copy of the double-stranded motif GUAAC. In order to
establish the importance of this motif and of its location, we designed a series of short hairpin RNAs
harboring either zero, one, or two copies of the GUAAC duplex. In order to avoid the binding of a
second RBD molecule to the 1:1 complex of RBD with RNA, all RNA probes were designed with a
GAGA apical loop that is known to stabilize the double stranded structure of RNA hairpins [46].

Nanomolar concentrations of RBD formed a unique 1:1 RBD:RNA ratio complex (C1-like)
with shDM02-GAGA and shDM03-GAGA, both harboring two GUAAC motifs (Figure 7). Of the
two short RNAs that contained only one GUAAC motif, a strong interaction was observed only
with shDM06-GAGA, which harbored this motif at the blunt end of the hairpin RNA. In contrast,
shDM05-GAGA, which harbors the unique GUAAC motif in the immediate vicinity of the GAGA
loop, was not recognized by RBD in the nanomolar concentration range. Altogether, these data show



Viruses 2020, 12, 947 13 of 25

that the RBD binds the GUAAC motif provided that the latter is readily accessible, being positioned
at the free blunt end of the dsRNA, while contrariwise, its proximity with the apical loop probably
hinders its accessibility or unfavorably alters its shape. Based on this rationale, we designed a model
double-stranded RNA made up by the annealing of two synthetic RNA molecules of the same sequence.
This synthetic palindromic dsRNA, named AWFC01 (Figure 7), harbors one GUAAC motif at each of
its blunt ends and is perfectly symmetric thanks to a central uracil nucleotide that stabilizes the RNA
duplex by forming a non-canonical U*U Hoogsteen base pair [47].Viruses 2020, 12, x FOR PEER REVIEW 13 of 27 
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Figure 7. Importance of the number and position of the GUAAC motifs. The indicated radiolabeled
RNAs were incubated with increasing concentrations of the H7N1-RBD, then analyzed by EMSA as
described in Materials and Methods. Bottom: secondary structure of AWFC01, with its central U*U
Hoogsteen base pair. The double-stranded GUAAC motif (blue) is emphasized and oriented by the
horizontal arrow.

As expected, all wild type RBDs tested in this study recognized AWFC01 and formed a stable
C1-like complex in a nanomolar range of protein concentrations (Figure 8a,b for H5N1- and H7N1-RBD,
respectively). The dissociation constants extracted from EMSA titration experiments (Figure S5 and
Table 2), with KD values between 0.83 and 3.7 nM, place AWFC01 as the NS1 best dsRNA ligand
described to date.

Table 2. Dissociation constant of various RBDs for AWFC01 KD values were extracted from three
independent EMSA titration experiments (Figure S5). NA is for “non-applicable”.

RBD. KD (nM)

H7N1 0.83 ± 0.03
H7N1 R38A-K41A NA (>50 µM)

H5N1 0.98 ± 0.04
H5N1 R38A-K41A NA (>100)

H7N9 3.1 ± 0.1
H3N2 3.7 ± 0.1

H17N10 1.5 ± 0.1
pdmH1N1 2.05 ± 0.02
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Figure 8. Binding of RBD to AWFC01 (a,b) Comparative EMSA titration experiments of AWFC01
by the wild type (wt) and the double mutant R38A-K41A RBD from H5N1 and H7N1, respectively.
Radiolabeled AWFC01 was incubated in standard conditions with increasing concentrations of wild
type or double mutant RBD in standard conditions and analyzed by EMSA. Representative gel
autoradiographs are shown.

Surprisingly, the negative impacts of the double substitution (R38A-K41A) were very different
for the H5N1 and H7N1 RBDs. Under the stringent binding conditions that we used, the mutant
H7N1-RBD was unable to form a stable complex with AWFC01 (Figure 8b, right panel). At a ~50 µM
RBD concentration, 50% of the RNA probe was titrated in unstable complexes that yielded a large
smear by EMSA (data not shown). On the other hand, while the double substitution of the H5N1-RBD
also dramatically reduced its affinity for RNA, a 400 nM concentration of protein was sufficient to
titrate 50% of AWFC01 in several distinct complexes (Figure 8a, right panel). These were even more
shifted than that formed with the wild type RBD. Their reduced mobility cannot result solely from
the different isoelectric points of the wt (pI 6.11) and mutated (pI 5.23) proteins and we surmise that
the complexes made with the mutant RBD are less compact. Further, the existence of three distinct
complexes could originate either from a structural heterogeneity of the mutant protein or from distinct
modes of interaction.

We also compared AWFC01 to the dsRNAs that were evaluated above (i.e., shDM02-GAGA,
shDM03-GAGA, shDM05-GAGA, shDM06-GAGA, DM01-midi, and DM03-midi) as regards their
affinity for the RBD. We also included in this comparison the model dsRNA that we named “ZKO”,
the palindromic RNA duplex that was used to solve the crystal structure (PDBid 2ZKO) of H1N1-RBD
bound to RNA [28]. To that end, we set up “competition EMSAs”, where increasing amounts of the
unlabeled competitor RNAs were added after the incubation of radiolabeled AWFC01 with the protein
(H5N1 or H7N1 RBD). After quantification of the free and bound fractions of the labeled AWFC01, we
calculated the apparent half-maximal Effective Concentration (EC50app), expressed as the concentration
of competitor required to shift the fraction of bound AWFC01 from 50% to 25%. As indicated by its
very low EC50app values (Figure S6 and Table 3), AWFC01 is among the best ligands for the two RBDs
that we used. Although three of our dsRNAs also showed similarly low EC50app values (shDM03,
shDM02, and shDM06), they do not have the high symmetry of AWFC01. As for ZKO, its high EC50
value suggests a far lower affinity for the RBD.
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Table 3. EC50app for the dissociation of [AWFC01/RBD] by cold RNA competitors. EC50app were
determined from dose-response curves as described in Materials and Methods. A representative
experiment is shown in Figure S6.

RNA Competitor EC50app (nM)

2D-structure Name H5N1 H7N1
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3.3. Structural Basis of NS1′s Interaction with Model dsRNA AWFC01

In spite of the fact that AWFC01 harbored neither of the virus-specific motifs, both its symmetry
and its high affinity for the RBDs prompted us to choose it for our subsequent structural characterization.
While essentially all of the RBDs that we purified yielded high quality crystals when crystallized alone,
we chose to solve the structure of the avian H7N1 RBD alone and in complex with AWFC01. In parallel
and for the sake of comparison, we also crystallized and solved the structure of two other complexes:
AWFC01, with the mutant H7N1 RBD harboring the double substitution R38A-K41A and the slightly
modified ZKO*-RNA, with the wt RBD. Table S1 (Suppl. Data) summarizes the X-ray data collection
and refinement statistics.

The X-ray structure of recombinant wild type H7N1 NS1 RBD (residues 1–73) was solved to 1.93 Å
resolution. While it is the first structure that is representative of the RBD of allele B-NS1, its organization
is identical to that of the other RBD structures available, forming a symmetric C2 homodimer shaped
by three interlocking α-helices from each monomer. Helices α1 (residues S3-M24) and α2 (A30 to
L50) are oriented in an antiparallel fashion, whereas helix α3 (L54-K70) sits perpendicular to helix
α1 (Figure 9a). The dimerization interface, with an area of 1189Å2, involves 43% of the monomer
residues, which are engaged in 15 H-bonds, including 4 salt bridges (PISA server). Superimposition
of all available models shows that the six helices are positioned the same way (Figure S7a) and that
only small structural divergences occur at the ends of the polypeptide chains. Most of the interfacing
residues are located in helices α1 and α3 and in the turn between α1 and α2 (Figure S7b). Three highly
conserved residues of α2 helix (F32, R35, and R46) are involved in the stabilization of the dimer, with
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R35 being engaged in a salt bridge with D12. Invariant residues R35, R37, R38, and K41, which are
involved in RNA binding, adopt different conformations when comparing all the apo RBD homodimers
(Figure S8a). Nonetheless (as seen in Figure 9b), the RNA binding interface formed by helices α2 and
α2* of the homodimer seems to be well preserved on H7N1. This 3D structure also shows several
ligands bound to the RBD, originating from the crystallization buffers. Three 1,2-ethanediol and one
partial polyethylene glycol molecules have been assigned in a groove formed by helices α3 and α3*.
Interestingly, another partial polyethylene glycol molecule is located in a nonpolar pocket found
underneath the RNA binding channel at the RBD molecular two-fold axis (between helices α2 and
α2*), making an H-bond with the side chain of R46(A). This arginine residue was also found to contact
a malonate ion and a succinic acid molecule in the structure of H1N1 (PDB 3M8T) and H5N1 RBD
(3F5T, [48]), respectively.
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Figure 9. 3D X-ray structure of wild type H7N1 NS1 RBD Ribbon representation of H7N1 NS1 RBD 
monomer (a) and homodimer (b), with chain A in dark cyan; chain B in salmon. (c) Ligplot 
representation of the dimer interfacing residues (with chains A and B colored as in b, and atoms 
colored in black, red and blue for carbon, oxygen and nitrogen atoms, respectively). 

To get insight into the sequence-specific recognition of the double stranded RNA by the RBD, 
we solved, at 1.75 Å resolution, the crystal structure of the complex associating the wild type H7N1-
RBD to the AWFC01 duplex (wtH7N1-RDB/AWFC01, Figure 10). The overall structure of the RBD in 
the complex is identical to that found in the apo form, with minor side chain rearrangements at the 
binding interface of helix α2 residues R37, R38, and K41 (Figure S7). In RBD chain A, the sidechain 
of R38 adopted two alternative conformations that were clearly distinguished in electron density 
maps. In the first conformation (“a” in Table 4), R38 makes two hydrogen bonds with the side chain 

Figure 9. 3D X-ray structure of wild type H7N1 NS1 RBD Ribbon representation of H7N1 NS1
RBD monomer (a) and homodimer (b), with chain A in dark cyan; chain B in salmon. (c) Ligplot
representation of the dimer interfacing residues (with chains A and B colored as in b, and atoms colored
in black, red and blue for carbon, oxygen and nitrogen atoms, respectively).

To get insight into the sequence-specific recognition of the double stranded RNA by the RBD, we
solved, at 1.75 Å resolution, the crystal structure of the complex associating the wild type H7N1-RBD
to the AWFC01 duplex (wtH7N1-RDB/AWFC01, Figure 10). The overall structure of the RBD in the
complex is identical to that found in the apo form, with minor side chain rearrangements at the binding
interface of helix α2 residues R37, R38, and K41 (Figure S7). In RBD chain A, the sidechain of R38
adopted two alternative conformations that were clearly distinguished in electron density maps. In the
first conformation (“a” in Table 4), R38 makes two hydrogen bonds with the side chain of D39(A) and
a third hydrogen bond with one strand of the RNA, between atoms R38(A).N(η2) and U7(C).OP1.
In the second conformation (“b” in Table 4), the side chain of R38 sits in the middle of the RNA
minor groove; it interacts with its symmetrically related residue and simultaneously contacts the
phosphate groups of U7 nucleotides from the two strands (U7(C).OP1 and U7(D).OP2 atoms) and
the phosphate group (OP1 atom) of C6 nucleotide from chain D (Table 4, columns 2 and 3). In RBD
chain B, R37 side chain also adopts two conformations: in the first one, it interacts only with D34,
while in the second one, it sits closer to the RNA, making H-bonds with the O2′ atom of U7(D) and
with D34. The H7N1 RBD sits almost parallel to the dsRNA helix axis and overlays the minor and
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the major grooves of the duplex. The assembly buries 1173.8 Å2 of the RNA solvent-accessible area
(17.1% of the total) and 1156.7 Å2 for the RBD (14.1% of the total). In the complex, the RNA keeps its
A-form conformation but a curvature of about 20◦ is observed, stretching along base pairs 8 and 9 at
one end of the duplex (Figure 10b). As shown in Table 4, all direct interactions between the H7N1
RBD and AWFC01 occur via phosphate/amino acid and sugar/amino acid H-bonds and none through
base recognition. The sequence-specificity of the H7N1 RBD for AWFC01, which we observed in the
preceding biochemistry experiments, could not easily be explained by the 3D structure of the complex.
Of note, like in the apo-structure, we also identified in the structure of the wtH7N1-RBD/AWFC01
complex a partial PEG molecule that almost completely filled the pocket found underneath the RNA
binding channel.
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Figure 10. Overall structure of the complex between the wild type H7N1 NS1 RBD protein and the
AWFC01 RNA (a) 3D structure of the wtH7N1-RBD/AWFC01 complex. The dsRNA axis calculated
using Curves+ is represented as an orchid stick. (b) Plot of dsRNA axis bend versus base pair, calculated
for wtH7N1-RBD/AWFC01 (pink), aaH7N1-RBD/AWFC01 (cyan), wtH7N1-RBD/zko* (orange), and
2ZKO (grey) complexes, relative to the canonical A-form dsRNA (dashed line). The secondary structure
of AWFC01 is depicted below.
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Table 4. Hydrogen bonds between protein and RNA.

wt-RBD / AWFC01 aa-RBD / AWFC01 wt-RBD / ZKO * 2ZKO
RBD chain A RBD chain B RBD chain A RBD chain B RBD chain A RBD chain B RBD chain A RBD chain B

Atom 1 dist. Atom
2 dist. Atom

2 dist. Atom
2 dist. Atom

2 dist. Atom
2 dist. Atom

2 dist. Atom
2 dist. Atom

2
Amino-acid / phosphate H-bonds

H(-1) N 3.37 U19(C)OP1

R38 N(ε) 2.92 (b) C6(D)OP1 2.76 C6(C)OP1 3.18 G6(D)OP1 2.98 G6(C)OP1 3.47 G6(D)OP1 3.42 G6(C)OP1
R38 N(η1) 3.23 (b) C6(D)OP1
R38 N(η1) 2.99 (b) U7(D)OP2 2.88 U7(D)OP1 2.59 C7(C)OP1 2.77 C7(D)OP1 2.76 C7(C)OP1 2.76 C7(D)OP1
R38 N(η2) 3.26 C6(C)OP1 3.18 G6(D)OP1 3.16 G6(C)OP1 3.43 G6(D)OP1 3.35 G6(C)OP1

R38 N(η2) 2.32 (a)
2.27 (b) U7(C)OP1 3.06 U7(C)OP2 2.96 C7(D)OP2 2.77 C7(C)OP2 2.83 C7(D)OP2 2.87 C7(C)OP2

S42 O(γ) 2.87 A5(D)O3’ 2.91 A5(C)O3’

Amino-acid / ribose H-bonds

S1 O(γ) 2.49 U17(C)O2’

P31 O 3.71 C6(C)O2’ 3.61 C6(D)O2’ 3.59 C6(C)O2’ 3.54 C6(D)O2’ 3.63 G6(C)O2’ 3.69 G6(D)O2’ 3.67 G6(D)O2’

R35 N(η1) 3.54 C6(C)O2’ 3.66 C6(D)O2’ 3.55 C6(C)O2’ 3.51 C6(D)O2’ 3.44 G6(C)O2’ 3.38 G6(D)O2’ 3.14 G6(C)O2’ 3.22 G6(D)O2’
R37 N(η) 3.43 (a) U7(D)O2’
T49 O(γ) 3.19 A4(D)O2’ 3.17 A4(C)O2’ 3.00 A4(D)O2’ 3.11 A4(C)O2’ 2.81 C4(D)O2’ 3.10 C4(C)O2’ 2.82 C4(D)O2’ 2.80 C4(C)O2’

T49 O(γ) 3.01 A4(D)O4’ 3.06 A4(C)O4’ 3.08 A4(D)O4’ 2.96 A4(C)O4’ 2.99 C4(D)O4’ 2.94 C4(C)O4’ 3.03 C4(D)O4’ 3.03 C4(C)O4’

*: a and b (second and fourth columns) refer to the two alternative conformations that were observed for the R38 and R37 side chains. The shaded cells highlight the distinctive asymmetry
in the structure of the complex wt-RBD/AWFC01. C or D after the nucleotide number refer to nucleotide chains C and D.
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In order to search for complementary clues for the apparent sequence specificity of the H7N1
RBD for AWFC01, we solved the 3D structures of two other complexes: (i) R38A-K41A double mutant
H7N1 RDB with AWFC01 (aaH7N1-RBD/AWFC01) and (ii) wild type H7N1 RBD, with the slightly
modified nonspecific RNA “ZKO*” (wtH7N1-RBD/ZKO*). The dsRNA that Cheng et al. used to solve
their structure [28] was slightly modified by removing its terminal, unpaired nucleotides. While the
two complexes crystallized in different conditions and space groups, noteworthy similarities were
observed (Figures S8 and S9) with low rmsd values of 0.33 Å for the proteins and 0.71 Å for the RNA.
When comparing by superimposition the structures of the three RBD-RNA complexes, subtle structural
differences were identified, mainly for the RNA molecule. Relative to the wtH7N1-RBD/AWFC01
complex, the RNAs in complexes aaH7N1-RBD/AWFC01 and wtH7N1-RBD/ZKO* differ by rmsd
values of 2.00 Å and 2.21 Å, respectively, whereas the difference is much smaller as regards the
RBD (rmsd of 0.26 Å and 0.33 Å, respectively, Figure S10). We observed the same difference when
comparing the wtH7N1-RBD/AWFC01 complex to the 2ZKO complex, with rmsd values of 2.10 Å
for the RNA phosphodiester backbone atoms and 0.45 Å for the protein main chain atoms. Since the
main differences occurred at the RNA level, we used CURVES+ [42] to dissect and compare the nucleic
acid conformations in the different complexes (Figures S11 and S12). Surprisingly, this revealed that
in the high affinity dsRNA (AWFC01), the RNA axis is bent in a non-symmetrical fashion, whereas
in the two other complexes (aaH7N1-RBD/AWFC01 and wtH7N1-RBD/ZKO*), the RNA axis bend
is distributed symmetrically from the centre of the duplex (Figure 10b). For AWFC01, axis bending
is at a maximum between the seventh and eighth basepair at one end of the duplex, right after the
GUAAC sequence. At this position, the minor groove is less wide and deep than that at the other side
of the dsRNA, while the opposite is seen for the major groove. This peculiar asymmetry results from a
corresponding asymmetry in the network of amino-acid/nucleotides hydrogen bonds. As highlighted
in Table 4 (shaded cells), several hydrogen bonds in the wt-RBD/AWFC01 complex are distinctively
asymmetric, compared to their equivalents in the other structures: for instance, the η1 nitrogen atom
of R38(chain A) interacts with the OP2 atom of U7(chain D) and contrary to the expected symmetrical
relation that is observed in the other structures, the η1 nitrogen atom of R38(chain B) also interacts
with U7 of the same chain D, this time with the OP1 atom. A similar relation is observed with the η2
nitrogen of R38 and U7 of chain C. As a consequence, the seventh nucleotide of both chains of the
dsRNA are pulled by these interactions, bending its axis and skewing its shape.

Closer inspection of the protein-RNA interactions did not allow us to reveal sequence-related
features that would account for the specificity and high-affinity of the RBD-AWFC01 interaction.
As shown in Table 4, essentially four amino-acids formed a network of hydrogen bonds with either
the phosphate groups or the ribose of the RNA backbone, with no sequence-specific bonds involving
the nucleobases. Apart from the peculiarities of the hydrogen bonds involving the three nitrogen
atoms of R38 (discussed above), the H-bond network is symmetric and involves the oxygen atom of
P31, the γ oxygen atom of T49, and the η1 nitrogen of R35, which consistently make hydrogen bonds
with O2′ of nucleotide 6 (P31), O2′ and O4′ of nucleotide 4 (T49), and O2′ of nucleotide 6 (R35 N(η1)).
Interestingly, according to molecular dynamics simulations [49], P31 at the N-terminus of alpha-helix 2
is at the centre of the most flexible region in the RBD.

4. Discussion

In this work, we set out to investigate the importance of three distinct sequence and structure motifs
in the interaction of influenza A virus NS1 with RNAs. These motifs were previously identified through
an in vitro SELEX approach in which two recombinant proteins NS1, representative of its two alleles,
were used to iteratively select high-affinity synthetic RNAs [13]. They included the double-stranded
motif of sequence GUAAC, along with two sequence motifs of undetermined structure that are strictly
or highly conserved in influenza virus A-derived positive strand RNAs: AGCAAAAG, which is strictly
conserved at the 5′-end of all complementary RNAs and UGAUUGAAG, which is highly conserved in
the 3′-UTR of NS1 mRNA, fourteen nucleotides downstream of NS1′s stop codon.
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We first investigated the biological relevance of one of the two virus-specific motifs in various
steps of the virus cycle. We considered it unrealistic to attempt to rescue mutant viruses with a mutated
AGCAAAAG motif since it would be impossible to disentangle the putative NS1-related impacts from
the expected impacts any such mutation in the viral polymerase promoter would have on the viral
cycle. We therefore limited our in vivo approach to the study of viruses harboring mutations in the
conserved motif UGAUUGAAG within the 3′UTR region of NS1′s mRNA. In addition and for the
sake of comparison, we also mutated two other highly conserved motifs in the 3′UTR region of NS1′s
mRNA, including the very similar sequence UGCUUGAAG, which is present at the distal end of this
long 3′UTR. These mutations did not change the peptide sequence of NEP. All three single-mutant WSN
viruses harboring either of these three mutated motifs (mutB, mutC, and mutD) were readily rescued
and their phenotype in cultured cells was undistinguishable from that of the wt-virus. Furthermore,
viruses harboring all three mutated sites also exhibited a wild type phenotype, as assessed (i) by the
kinetics of multicycle virus growth and (ii) by the kinetics of viral protein (NS1 and NP) accumulation
in mutant virus-infected cells. We also attempted to evaluate whether NS1 could modulate the activity
of the viral polymerase on a “minireplicon” consisting of the NS genome segment where NS1′s ORF
was replaced by that of the Renilla luciferase and whether mutations in the B, C, or D motifs could alter
the replication, transcription, or translation of this minigenome. Indeed, we consistently observed that
NS1 dramatically increased the activity of the viral polymerase (4-fold to 6-fold increase). However,
this polymerase-enhancing activity of NS1 was equally observed, with the minireplicons harboring
either of the B, C, or D mutation, thus ruling out any major role of these motifs in this observed activity.
Moreover, even when the minireplicon system was complemented with the R38A-K41A NS1 rather
than with wt-NS1, the enhancing activity was still observed, albeit to a lower level. This suggests that
the polymerase-enhancing activity does not rely solely on the RNA-binding ability of the RBD. Indeed,
several studies had shown that NS1 interacts with the viral polymerase [50], most likely through a
direct interaction of its RBD with the viral nucleoprotein [51]. It should be highlighted, however, that
the read-out of the minireplicon system (i.e., the Renilla luciferase activity) results from at least three
activities combined: (i) replication and (ii) transcription of the minigenome by the viral polymerase,
along with (iii) translation of the viral-like mRNA. Therefore, it is likely that the observed effects of NS1
on that system combine the enhanced activity of the viral polymerase with the increased translation
of the viral-like mRNA, which has been demonstrated by several studies [14,52,53]. Taken together,
although our data confirm the important activity of NS1 in the viral cycle (notably in relation with
the viral polymerase and the translation of viral mRNAs), they provide no evidence for our initial
hypothesis that NS1′s binding to the 3′UTR of its own mRNA could be critical to the viral cycle.

In spite of the apparently negligible relevance of the putative interaction of NS1 with the B motif, we
stress that we could not assess, in the context of the viral cycle, the biological relevance of its interaction
with motif A, i.e., the AGCAAAAG motif at the 5′end of all virus-derived RNAs of positive-polarity.
These two virus-specific motifs probably represent only a fraction of the putative NS1-binding motifs
in viral or cellular RNAs and indeed, a systematic search showed that NS1 preferentially binds intronic
sequence motifs in a subset of host cell mRNAs including that of the retinoic-acid induced gene
RIG-I [26], resulting in decreased processing of pre-mRNAs and a reduced expression. This illustrates
the view that the high concentration of NS1 in the infected cell [19], combined with its presence in
several subcellular compartments, allows it to interact, with a broad range of affinities, with several
RNAs that could represent the targets of its biological activities. We therefore chose to study in depth
the determinants that allow a given RNA to interact with NS1, starting from the RNA aptamers that
had been selected previously through the SELEX approach.

We first showed that the RBD preferentially interacted with unbranched dsRNA structures with
a minimal length of about 20 base pairs. While we observed no high-affinity interaction of the RBD
with short single-stranded RNAs consisting only of the two 8 nt- or 9 nt- virus-specific sequence
motifs, our data show that the RBD, by itself, was able to interact with the AGCAAAAG motif with
no obvious involvement of the effector domain. This sequence-specific interaction was observed to
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occur cooperatively on a preformed 1:1 RBD:RNA ratio complex, associating one RBD bound to the
dsRNA structure of aptamer derivative DM01-midi. We hypothesize that this first interaction induces
a structural change in the dsRNA that propagates to its apical loop, thereby facilitating the binding of a
second RBD to this apical loop containing the AGCAAAAG motif. Such a behavior was not observed
in the other aptamer derivate, but in that case, we observed that the effector domain was required for a
cooperative-like behavior and we surmise that the ED specifically recognizes the second virus-specific
motif, UGAUUGAAG, or contributes at its RBD recognition. The structural dynamic of full-length
NS1, especially regarding the relative orientation of its two domains [16,17], could also be involved
in this cooperative RNA binding between NS1 molecules and the RBD in the solution could exist
in equilibrium between different conformations that are non-equivalent for the cooperative binding
to RNA.

We then chose to focus on the interaction of NS1 with the double-stranded structure. Altogether,
our experiments had shown that an optimal interaction with the RBD required the presence of the
GUAAC motif positioned close to the free blunt end of the dsRNA. We especially addressed the
question, what mechanism could allow the RBD to specifically recognize this sequence, given the
non-specificity that is generally observed in dsRNA-binding proteins? Such a lack of specificity is
notably observed in the B2 protein of Flock House virus [54], which like NS1, interacts with dsRNA
through two antiparallel alpha-helices of the same sequence (PDB 2AZ2). Indeed, there is a notorious
paradox in the sequence recognition within double-stranded RNAs since the nucleobases are not
easily accessible [55,56] and most of the interactions involve either the phosphodiester backbone or
the 2′-hydroxyl groups of the ribose moiety. In order to elucidate this point, we designed AWFC01,
a model double-stranded RNA of perfect symmetry containing a central U*U Hoogsteen base pair.
We showed the very high affinity of this model dsRNA for the RBD and determined the structure of
three RBD-dsRNA complexes, including two with AWFC01. Unexpectedly, the high symmetry of both
the secondary structure of AWFC01 and the 3D structure of the RBD did not result in a corresponding
symmetry of the dsRNA 3D structure in the complex. Instead, we observed a pronounced asymmetry
in the network of hydrogen bonds that links the dsRNA to the RBD, owing to the position of residue
R38 in polypeptide chain A. This skewed network pulls the seventh nucleotide of the two RNA chains,
thereby locally bending its axis and skewing the overall shape of the dsRNA. This probably constitutes
an important determinant in the sequence-specific recognition of the dsRNA. The A-form helix of the
dsRNA can undergo subtle conformation changes that alter its shape and it is believed that sequence
specificity in dsRNAs often relies on recognition of shape [56,57], which in itself can be dependent on
the underlying sequence of the dsRNA. We hypothesize that the affinity of the dsRNA-RBD interaction
is dramatically increased by the altered shape of the RNA or more precisely, by the sequence-dependent
predisposition to adopt this given shape.

Besides allowing us to propose an explanation to the sequence specificity within dsRNAs, our
structure and the distinctive bending of the dsRNA axis suggests that the RBD interaction can indeed
alter the conformation of the dsRNA (although we did not solve the structure of the RNA alone).
This conformational change likely can propagate in RNAs with more complex structures and as
discussed above, this could result in aptamer-derived DM01-midi in the cooperative binding to the
virus-specific sequence in its apical loop, through a necessarily distinct binding mode. We stress that
our study was performed with a bacterially-expressed NS1, while several studies have shown that
NS1 can be modified post-translationally, notably by phosphorylation at several sites including serine
48 and threonine 49 in its RNA-binding interface [58–61]. It was also shown that phosphorylation
of threonine 49 abolished the anti-interferon activity of NS1 and slightly reduced its RNA-binding
activity [60]. Phosphorylation of Ser 48 and Thr 49 in the infected cell could therefore provide an
optional switch that modulates the RNA-binding capacity of NS1, adding a layer of complexity in the
dynamic network of NS1-RNA interactions in the infected cells.

While keeping in mind that the high-affinity ligands are not always optimal for the biological
function [62], we acknowledge that our data do not provide direct evidence as to the biological
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relevance of these sequence-specific interactions of NS1 with RNAs and do not support the importance
of the putative interaction of NS1 with its own mRNA. However, our structural and biochemical data,
combined with the known abundance of NS1 in the infected cell, support the view that NS1, through
its RBD, can interact by more than one single mode of binding and with a broad range of affinities,
with several distinct RNAs in the infected cell. As we have hypothesized previously [13], NS1 could
compete with spliceosomal protein U1C in its interaction with the U1-mRNA duplex at the splice
donor site [63,64], owing to its preferential recognition of the GUAAC motif. Further, the specific
recognition of the AGCAAAAG motif most likely plays an important role in the viral cycle [14,52],
although we found no suitable system to evaluate it in the viral context. Nevertheless, because of the
biological importance of this interaction, we believe that it would be worthwhile to solve the structure
of NS1 interacting with the viral motif AGCAAAAG. Indeed, in spite of its low affinity, the interaction
of the RBD that we observed with aptamer-derived DM01-short (Figure S3) is a promising hint as
to the possibility of solving the structure of such a complex and hopefully unveiling a new mode of
interaction of NS1 with RNAs.
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recognition of AWFC01 by various RBDs; Figure S6: EC50app for the displacement of the preformed RBD/AWFC01
by other RNA probes; Figure S7: Comparison of H7N1 NS1 RBD with allele A RBDs; Figure S8: RNA binding
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Figure S1: RNA probes used in this study 14 
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Figure S2: plaque phenotype of the mutant viruses. The viruses were titrated by plaque 18 
assays on MDCK cells, as described by Matrosovich et al., Virol J 2006, 3, 63. 19 
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Figure S3. Comparative titration of DM01-short, DM01-MotA, DM03-short and DM03-MotB by 24 
RBD 0.1 nM of each 5’-[32P]-RNA probe was incubated alone (lane 1) or with 40, 80, 160, 320, 640, 25 
1280, 2560 and 5120 nM of purified RBD of NS1 (H7N1) in standard conditions. The incubation 26 
mixtures were subsequently analyzed by EMSA as described in Materials and Methods section. 27 
Representative gel autoradiography are shown. 28 

 29 

Figure S4. Comparative binding properties of selected RBDs with DM01-midi and DM03-midi (a) 30 
Alignment of the peptide sequences of the RBDs that were used. (b) The labeled RNAS were incubated 31 
with 20 nM of the indicated RBDs (AA indicates the R38A-K41A substitution). The incubation 32 
mixtures were subsequently analyzed by EMSA as described in Materials and Methods. 33 
Representative gel autoradiographies are shown.  34 
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Figure S5. Titration curves obtained for the recognition of AWFC01 by various RBDs Radiolabeled 36 
AWFC01 was incubated in standard binding conditions with increasing concentrations of the NS1 37 
RBD from various virus origins. The incubation mixtures were subsequently analyzed by EMSA, as 38 
illustrated in Figure 8. Dissociation constant (KD) determined from titration experiments for each RBD 39 
were extracted from three dose-response curves. Under the conditions used, the RBD concentration 40 
needed for half-maximal RNA binding is very close to KD. KD values are shown in Table 2. 41 

 42 
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 43 

Figure S6. EC50app for the displacement of the preformed RBD/AWFC01 by other RNA probes 44 
Radiolabeled AWFC01 (0.1 nM) was pre-incubated (30 min. at 4°C) with 1 nM or 2 nM of NS1 RBD 45 
from H5N1 or H7N1, respectively. Subsequently, unlabeled competitors were added (0, 0.5, 1, 2.5, 3, 46 
3.5, 4, 8 and 16 nM for AWFC01, DM01-midi, DM03-midi, shDM02-GAGA, shDM3-GAGA and 47 
shDM06-GAGA; or 0, 10, 20, 40, 80, 160, 320, 640, 1280 and 2560 nM of shDM05-GAGA and ZKO). 48 
After a further 30min-incubation, reaction mixtures were analyzed by EMSA in standard conditions. 49 
(a) Representative EMSA autoradiography of the dissociation of NS1 RBD from H5N1 bound to 50 
AWFC01 by increasing ZKO concentrations. (b) Dose response curves obtained with AWFC01 and 51 
ZKO as RNA competitors. The apparent half maximal effective concentration (EC50app) of RNA 52 
competitors which induces 50% dissociation of the preformed AWFC01 / RBD complex were extracted 53 
from these curves . EC50app was determined from at least three independent experiments and shown 54 
in Table 3.  55 

 56 

 57 

 58 

 59 
 60 
 61 



Viruses 2020, 12, x FOR PEER REVIEW 6 of 11 

W a c q u i e z  e t  a l .  S u p p l .  D a t a  P a g e  6 | 11 
 

 62 
Table S1. X-ray data collection and refinement statistics 63 

 64 
 65 

 

a 𝑅merge =    𝐼ℎ ,𝑖 −   𝐼 ℎ  𝑖ℎ   𝐼ℎ ,𝑖𝑖ℎ  where <I>h is the mean intensity of the symmetry-equivalent reflections. 

b 𝑅work =    𝐹𝑜  −  𝐹𝑐   ℎ   𝐹𝑜  ℎ , where Fo and Fc are the observed and calculated structure factor amplitudes, respectively, for reflection h. 

c Rfree is the R value for a subset of 5% of the reflection data, which were not included in the crystallographic refinement.  
 

 

 Data collection statistics 

 wtH7N1-RBD wtH7N1-RBD 

/ AWFC01 

aaH7N1-RBD 

 / AWFC01 

wtH7N1-RBD 

/ ZKO* 

  Radiation source SOLEIL PROXIMA 2 SOLEIL PROXIMA 2 SOLEIL PROXIMA 2 SOLEIL PROXIMA 2 

  Wavelength (Å) 0.98009 0.98009 0.98009 0.98010 

  Spacegroup P3121 P212121 P212121 P41212 
  cell dimensions: a, b, c (Å) 83.83, 83.83, 68.53 49.78, 60.40, 87.40 40.69, 102.04, 102.70 103.60, 103.60, 102.21 

  Resolution range (Å) 49.83-1.93 (1.97-1.93) 43.26-1.75 (1.78-1.75) 45.87-1.90 (1.94-1.90) 46.33-2.30 (2.38-2.30) 
  Total observations 239136 (9353) 177791 (10027) 179050 (11970) 336777 (34004) 

  Unique reflections 21170 (1030) 27291 (1481) 34557 (2202) 25358 (2431) 

  Completeness (%) 100.0 (100.0) 99.9 (100.0) 99.9 (100.0) 100.0 (100.0) 

  Multiplicity  11.3 (9.1) 6.5 (6.8) 5.2 (5.4) 13.3 (14.0) 

  Rmerge
a (%) 7.8 (109.0) 4.9 (141.0) 4.3 (106.5) 8.6 (225.3) 

  Average I/ (I)  15.9 (1.6) 16.7 (1.1) 16.3 (1.3) 18.8 (1.1) 
  CC1/2 (%) 99.9 (70.4) 99.9 (57.1) 99.9 (48.1) 99.9 (55.3) 

Refinement and model statistics 

  Resolution range (Å) 49.83-1.93 43.26-1.75 37.80-1.90 46.33-2.30 

  Number of reflections used 21170 27229 34486 25302 

  Rwork 
b / Rfree 

c (%) 17.6/19.3 17.3/20.4 16.8/19.2 19.1/22.1 
  Average B values (Å2)     

    All atoms 54.36 42.07 50.05 67.29 

    Protein chain A atoms 51.50 39.10 39.74 63.15 
    Protein chain B atoms 56.67 39.54 43.45 61.32 

    RNA chain C atoms - 43.28 60.93 73.73 

    RNA chain D atoms - 43.77 63.08 73.90 
    Ethane-1,2-diol atoms 86.20 - 56.67 - 

    Polyethylene glycol atoms 66.33 63.74 - - 

    Sulfate atoms - - - 137.81 
    Nitrate atoms - - - 94.87 

    Water atoms 51.16 45.56 49.77 58.57 

Root mean square deviation from ideality     

    Bond lengths (Å) 0.020 0.005 0.005 0.004 

    Bond angles (°) 1.500 0.818 0.778 0.667 

Ramachandran analysis (% of residues)     
Favoured regions / Allowed regions / 

Outliers 

99.3/0.7/0.0 100.0/0.0/0.0 100.0/0.0/0.0 99.3/0.7/0.0 

  Number of atoms     
    Protein chain A 591 561 579 595 

    Protein chain B 587 572 569 570 

    RNA chain C - 388 399 399 
    RNA chain D - 391 399 399 

    Ethane-1,2-diol 12 - 36 - 
    Polyethylene glycol 14 67 - - 

    Sulfate - - - 10 

    Nitrate - - - 16 
    Water 66 156 158 56 

PDB code 6SW8 6SX0 6SX2 6ZLC 
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Figure S7. Comparison of H7N1 NS1 RBD with allele A RBDs (a) Superimposition of NS1 RBD 3D 67 
structures with corresponding root mean square deviation values (rmsd) and primary sequence 68 
identity. (b) Primary structure of NS1 RBD of known 3D structures (open circles = interfacing residues; 69 
black triangles = interfacing residues making inter-chain H-bonds). 70 

 71 

 72 

 73 

H1N1 H3N2 H5N1 H17N10 H18N11

H7N1

PDB id 3M8A 1AIL 3F5T 5BXZ 5BY1

Sequence Identity (%) 68 67 65 59 56

Rmsd (Å) 0.63 0.47 1.05 1.42 2.18

a

b α1 α2 α3
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 74 

Figure S8. RNA binding interface of NS1 RBD (a) Conserved positively charged residues of H7N1 75 
RBD α2 helix. (b) Electrostatic potential surface. 76 

 77 

Figure S9. Conserved positively charged residues of the RNA binding interface (a) Superimposition 78 
of apo wtH7N1 RBD (dark cyan) and wtH7N1-RBD/AWFC01 complex (orchid). (b) Superimposition 79 
of wtH7N1-RBD/AWFC01 (dark cyan), aaH7N1-RBD/AWFC01 (dark red), wtH7N1-RBD/ZKO* 80 
(goldenrod) and 2ZKO (light gray) complexes. 81 
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 83 

Figure S10. Comparison of the protein backbones in the structure of the three RBD-RNA 84 
complexes Superimposed are the alpha carbon backbones of the complexes wtH7N1-RBD/AWFC01 85 
(dark cyan), aaH7N1-RBD/AWFC01 (dark red) and wtH7N1-RBD/ZKO* (goldenrod) complexes. 86 

wtH7N1-RBD/AWFC01

aaH7N1-RBD/AWFC01

wtH7N1-RBD/ZKO’
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 87 

Figure S11. RNA structural parameters from Curves+ Plots of base pair-axis, intra-base pair 88 
parameters and inter-base pair parameters versus RNA base pair for wtH7N1-RBD/AWFC01 (pink), 89 
aaH7N1-RBD/AWFC01 (cyan), wtH7N1-RBD/ZKO (orange) and 2zko (grey) complexes. 90 
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 92 

Figure S12. RNA structural parameters from Curves+ (continuation of Figure S10) (a) RNA 93 
backbone bond torsion angles. (b) RNA grooves width and depth. 94 

 95 

 

© 2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 
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