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Abstract

Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is
related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout
performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the
non-human primate frontal eye fields (FEF): the spatial position of a visual cue, and the instructed orientation of the animal’s
attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the
interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal
cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a
regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-
linear artificial neural network estimator, a non-linear naı̈ve Bayesian estimator, a non-linear Reservoir recurrent network
classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the
orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers
did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the
subject’s behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear
estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders.
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Introduction

Decoding neuronal information is an important analysis tool in

neuroscience both as a means to understand how neural

information is distributed and multiplexed over large populations

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], and as a means to

drive neuroprosthetic effectors [12], [13], [14], [15]. In this

framework, classifiers are used to define the most probable state of

a given variable (the position of a stimulus in space, the direction of

the intended motor plan etc.), given the observed instantaneous

simultaneous activity of a neuronal population. Above-chance

decoding accuracy indicates that the neuronal population contains

reliable information about the variable of interest, whether its

individual neurons also do or not.

In order to optimize their prediction, all classifiers define a

decision boundary in the space of the variable of interest (2-D space

for stimulus position or movement goal, n-class discrete space for

stimulus or movement classification), using a training set of data, i.e.

a set of neuronal population activities matched with the actual

experimental condition that they correspond to. The accuracy of

the decoders is then evaluated on a testing set of data, corresponding

to neuronal population activities from an independent sample.

Accuracy is calculated as the percentage of correct predictions

provided by the classifier. The shape and properties of the decision

boundary varies across classifiers. Linear classifiers will set

hyperplane boundaries while non-linear classifiers will set complex

non-planar boundaries. Flexible decision boundaries will maximize

the separation of the training neuronal population response as a

function of the decoded variable, including irrelevant idiosyncratic

noise patterns specific of this training data. This over-fitting of the

decision boundary will result in a poor generalization on new testing

data (see [16], [17]). In contrast, a too simple decision boundary,

such as a hyperplane, may often fail to account for a non-linear

encoding of the variable of interest by the recorded neuronal

population.

Most classifiers have been developed in the fields of statistics and

machine learning. As a result, their mathematical properties are

well understood. Early studies have formalized the use of major

classifiers to the readout of continuous variables (such as position

in space, orientation etc.) from neuronal population activities [18],

[19]. However, in the face of real data, the sensitivity with which

information is extracted from neuronal activity will depend on

several factors. In particular, a given neuronal population may not
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encode with the same reliability and discrimination power all the

variables it represents (e.g. a sensory information as compared to a

cognitive information). As a result, classification sensitivity will

depend both on the general response properties of the neuronal

population being targeted and on the variable being decoded. The

decoding sensitivity will also depend on the classifier being used as

well as on the adequacy of the classifier with the experimental

constraints. Several studies have used two or more decoders at

reading out neuronal population activities (e.g. [20], [1], [2], [5]),

without however pursuing a systematic comparison of their

performance and how it is affected by the properties of the

experimental data. In the following, we compare the readout

performance of six commonly used classifiers operating on monkey

frontal eye fields (FEF) spike signals, as a function of the size of the

neuronal population, the number of training trials, and the

balance in the data. The classifiers fall into three general decoder

classes: probabilistic decoders, linear decoders and non-linear

decoders. The classifiers we focus on are classifiers that have been

used or proposed to decode neuronal population activities (non-

exhaustive selection). These are a regularized optimal linear

estimator, in its explicit formulation (regularized OLE, [12]) or in its

linear artificial neural network approximation (ANN OLE, [1],

[2]), a non-linear artificial neural network estimator (ANN NLE,

[1], [2]), a non-linear naı̈ve Bayesian estimator (Bayesian, [21];

please note that the naı̈ve Bayesian estimation is formally

equivalent to a Maximum likelihood classification) and a non-

linear support vector machine classifier (SVM, [4]). A non-linear

Reservoir recurrent network classifier (Reservoir, [22]) has also been

tested because of its potential interest in decoding variables that

have a specific organization in time. The general architecture and

properties of these classifiers are described in the methods section.

We will compare how these decoders read out two distinct types

of information available in FEF neuronal population responses.

The first decoded variable corresponds to the position at which an

initial stream of visual stimuli is presented. This information is

exogenously driven by the environment (the presentation of the

visual streams) and is robustly represented in the FEF [23], [24].

The second variable corresponds to the interpretation of the

instruction held by the cue and the corresponding attention

orientation signal. This information is endogenously driven in that

it corresponds to the output of internal cognitive computations

performed on lower level exogenous characteristics of the cue

(here, position and color). Such endogenous attentional informa-

tion is known to build up in the FEF [4], [25] and to influence

lower visual areas, thanks both to feedback [26] and feedforward

connections [27], [28].

In summary the present work pursues two objectives: 1)

investigate whether endogenously driven neuronal information

can be decoded with the same performance as exogenously driven

neuronal information, and 2) identify the classifier that performs

best at decoding neuronal information as a function of the

experimental factors (neuronal population properties, subject’s

behavior and number of trials).

Methods

Ethical statement
All procedures were in compliance with the guidelines of

European Community on animal care (European Community

Council, Directive No. 86–609, November 24, 1986). All the

protocols used in this experiment were approved by the animal care

committee (Department of Veterinary Services, Health & Protec-

tion of Animals, permit number 69 029 0401) and the Biology

Department of the University Claude Bernard Lyon 1. The

animals’ welfare and the steps taken to ameliorate suffering were

in accordance with the recommendations of the Weatherall report,

‘‘The use of non-human primates in research’’. The study involved

two Rhesus maccaca (a male, 10 kg, age 7 and a female, 7 kg, age 6), a

standard in electrophysiological studies. The animals were housed

in twin cages (2 m2 by 2 m height in total). The twin cages could be

separated in two individual cages or on the opposite, connected to

form a unique housing for a pair of monkeys thus offering the

monkeys a socially enriched environment. This last configuration

was the norm. Twin cages communicated with a larger play cage

(461.562 m3) to which the monkeys were granted access on days

on which they were not involved in experiments. Light was switched

on and off at fixed hours (on: 7.30 a.m and off: 8 p.m), all year

round. Monkeys had free access to food pellets. They were also

given fresh fruits and nuts. All cages were enriched with mirrors,

hanging ropes, water pools, balls and foraging baskets. No

procedure that might cause discomfort or pain was undertaken

without adequate analgesia or anesthesia. In particular, each

monkey underwent a single surgical session under gas anesthesia

(Vet-Flurane à 0.5–2%) during which a craniotomy was made over

the left (resp. right) prefrontal cortex for monkey Z (resp. M) and

peek recording chambers were implanted to allow access to the FEF

with microelectrodes. Post-surgery pain was controlled with a

morphine pain-killer (Tamgesic, 0.01 mg/kg i.m.) and a full

antibiotic coverage was provided (long action Tamgesic 100, one

injection during the surgery and one 5 days later, 0.1 mg/kg, i.m.).

The general health status of the animals was monitored every day by

competent and authorized personal. In agreement with the 3R

‘reduction’ recommendation, the two animals involved in the

present study were enrolled later in another experiment.

Description of the neurophysiological database
Behavioral task. The data analyzed in the present work

were collected while monkeys performed a cued target detection

task based on a rapid serial visual presentation (figure 1, see also

[25], [29]). It allowed to dissociate in time the processes related to

the orientation of attention from those related to target detection

[30]. In particular, the cue was a non-spatial abstract cue that

informed the monkey in which hemifield it should direct its

attention. Briefly, the monkey had to fixate a central point on the

screen throughout each trial. Two streams of visual objects were

presented, one in the visual receptive field of the neuron being

recorded and the other in the contralateral hemifield. One of the

streams included a cue which instructed with a certain probability

the position of the target. The cue could be green (resp. red),

predicting that the target would appear in the same (resp. other)

stream. In the following, the green cue will be called a Stay cue and

red cue a Shift cue. The monkey had to combine the information

related to the physical attributes of the cue (its location and its

color) to find out where the target was likely to appear. The

monkey had to release a lever to report the presence of the target.

The target appeared on 80% of the trials. The remaining 20% no

target trials were catch trials that served to discourage the monkeys

from making false alarms. In target trials, the target appeared

either 150 ms, 300 ms, 600 ms or 900 ms following the cue. In

80% of these trials (64% of all trials), the target appeared in the

instructed stream (valid trials). In the remaining 20% target trials

(16% of all trials), it appeared in the opposite stream (invalid trials).

The monkey was rewarded for releasing the lever 150 to 750 ms

following target onset on valid and invalid trials and holding it on

catch trials. Invalid trials were used to check that the monkey used

the predictive information provided by the cue in order to guide its

behavior. Sessions in which this was not the case were discarded

from the analysis.

Decoding Population Sensory and Cognitive Signals
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Cell population. The spiking activity of 131 frontal eye field

(FEF) neurons was recorded from two macaque monkeys. All

procedures were approved by the local animal care committee in

compliance with the guidelines of the European Community on

Animal Care (cf. [25] for details). These cells were subjected to

individual statistical analysis. Amongst them, a subset of neurons

(n = 21) reliably encoded cue instruction while apparently provid-

ing no information about cue location or cue color (see [25] for

details). These cells thus encoded the final position of attention,

discriminating between cues instructing attention towards the

receptive field (contralateral Stay cues and ipsilateral Shift cues) and

cues instructing attention away from the receptive field (ipsilateral

Stay cues and contralateral Shift cues). In the following, we will be

comparing the performance of several classifiers at decoding the

position of the initial visual stream of stimuli (exogenously driven

visual information) to their performance at decoding the final

position of attention instructed by the cue (endogenously driven

cognitive information). The exogenous information was decoded

using the entire FEF neuronal population while the endogenous

information was decoded using either the entire population or the

subset of cue instruction cells. This allows us to make two

comparisons. Firstly, we can compare the decoding performance

for exogenous versus endogenous information using the entire FEF

neuronal population, secondly we can compare the decoding

performance of endogenous information between the entire FEF

neuronal population and the subset of cells that we previously

identified as significantly modulated by the variable of interest.

Decoding procedure
Data pre-processing. For each cell and each trial, the

spiking data was smoothed by averaging the spiking activity over

100 ms sliding windows (temporal resolution of 1 ms). This

window width corresponds to a trade-off between performance

and decoding speed, as narrower filtering windows result in a

lower performance while wider filtering windows increase the

delay of real-time decoding [29]. The 131 cells were combined to

form a single neuronal population. To decode the first flow

position, both correct and error trials were used, because the cells’

response to this exogenous event does not depend on the monkey’s

engagement in the task. As a result, an average of 295 trials

(s.d. = 107) was available per cell. In contrast, only correct trials

were used to decode the position of attention, as error trials can

arise from an improper orientation of attention. In addition, unless

otherwise stated, trials in which the target appeared 150 ms after

the cue were excluded from the data set to avoid a confound

between cue- and target-encoding. As a result, fewer trials were

available (mean = 112 trials, s.d. = 33). For each cell, 60 trials were

randomly selected per condition (First flow on the left, First flow

on the right, Attention instructed to the left and Attention

instructed to the right). For most cells, these trials corresponded to

a random subset of all the available trials per condition. For a

minority of cells, some trials were randomly duplicated to achieve

the requirement of 60 trials per condition. Since this can

potentially induce an artificial inflation of decoding performance,

we conducted random permutations following the exact same

procedure as described in the data pre-processing section, in order

to define the actual chance level; decoding performance was

systematically compared to this chance level. Single trial responses

were randomly combined across the entire neuronal population in

order to create 60 virtual population responses to each event of

interest. This procedure, defining a seed population activity, was

repeated 20 times, thus defining 20 different population activity

seeds (out of more than 131 to the power of 60 possible population

activities, thus limiting the potential inflation induced by the

duplication of some trials). Note that these population responses

are free of the correlations that would be found in simultaneous

recordings.

General cross-validation procedure. Visual and attention-

related signals do not have the same temporal dynamics and their

mean response peaks at different latencies from event onset. For

both variables, the decoding was performed around this peak

response. As a result, when decoding the position of the initial

visual stream, we trained the classifiers on the smoothed activity

observed at 125 ms following visual stream onset (i.e. on the 100

bin centered at 125 ms). When decoding the instructed position of

attention, we trained the classifiers on the smoothed activity

observed at 245 ms following visual stream onset (i.e. on the 100

bin centered at 245 ms). These timings correspond to the timing of

the peak neuronal response to each specific event as estimated in

Ibos et al. [25]. Due to a more complicated architecture, the

Figure 1. Task description. The experimental procedure is a cued-
target detection based on a dual rapid serial visual presentation (RSVP)
paradigm. The monkey is required to maintain its gaze on the central
fixation point all throughout the trial. A first stream of stimuli, that is a
succession of visual stimuli every 150 ms, is presented either within (as
here) or opposite the fixation point from the cell’s receptive field. Three
hundred milliseconds later, a second stream appears opposite the first
stream from the fixation point. Three hundred, 450 or 600 ms (here,
300 ms) following the second stream onset, a cue is presented within
the first stream. This cue can be a green stay cue indicating to the
monkey that the target has a high probability to appear within this very
same stream or a red shift cue (as here), indicating that the target has a
high probability to appear within the opposite stream. On 80% of the
trials, the target is presented 150, 300, 600 or 900 ms from cue onset.
On 80% of these target trials (64% of all trials), the target location is
correctly predicted by the cue (valid target, as here). On 20% of these
target trials (16% of all trials), the target location is incorrectly predicted
by the cue (invalid target). On the remaining 20% of trials, no target is
presented (catch trials), so as to discourage false alarms. The target is
composed of just one horizontal and one vertical spatial cycle, while
distractor items are composed of up to 6 horizontal and vertical spatial
cycles. The monkey gets rewarded for responding by a bar release,
between 150 and 750 ms following target presentation, and for holding
on to the bar when no target is presented.
doi:10.1371/journal.pone.0086314.g001
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reservoir was trained using data from a time-window of 75 ms

around these training references.

We trained the classifiers on 70% of the data (84 trials) and

tested them on the remaining 30% of the data (remaining 36 trials)

so that the testing is performed on a naı̈ve set of trials, never

experienced by the classifier. During training, the decoders were

simultaneously presented with single-trial population activities

(corresponding to the observed inputs) and the state of the decoded

variable (corresponding to the associated outputs: Visual stream on

the left or on the right or Attention instructed to the left or to the

right). During testing, the decoders were presented with the

successive test sets centered on a window of 100 ms around the

time at which training was performed (i.e. one test set every 1 ms

in this window) and produced their guess for the state of the

decoded variable. The readout performance on each decoding run

is then calculated by averaging the performance produced by the

100 successive testing sets (1 ms resolution) and corresponds to the

percentage of trials on which the classifier provided the correct

guess for the state of the decoded variable. This procedure was

chosen to ensure that the final readout performance reflects a

robust pattern of activity. This training/testing procedure was

repeated for each data seed (i.e. 20 times in all, cf. data pre-

processing section) to yield an average readout performance, using

the exact same randomly constructed training/testing datasets for all

decoders. Testing the decoders on a set of predefined seeds allows

to discuss their readout performance independently of data

variability.

Random permutation tests. Randomized permutation tests

were performed for each classifier and for each analysis using the

exact same procedure as above, after assigning, for each cell,

randomized condition labels to each trial (using a random

sampling with replacement procedure). This procedure, repeated

50 times, for each of the 20 data seeds, yielded the distribution of

chance performance of each classifier. This distribution was thus

constructed with 1000 data points. The readout performance of a

given classifier was considered as significant when it fell in the 5%

upper tail of its corresponding chance performance distribution

(non-parametric random permutation test, p,0.05).

Classifiers
Optimal Linear Estimator (OLE). The linear regression

(figure 2a–b) minimizes the mean square error for the following

equation C = W*R, where R is an n by t matrix of Rij, n being the

number of cells in the neuronal population of interest, t the

number of available trials and Rij the neuronal response of cell i in

the population, on trial j; C is a 1 by t vector, the sign of the

elements of which describes the two possible classes taken by the

binary variable of interest and W is a 1 by n vector corresponding

to the synaptic weights that adjust the contribution of each cell to

the final readout. This procedure defines a linear boundary

between data points sampled from two independent distributions

(figure 3a). As a result, such an estimator is optimal provided the

neuronal output of the population activity is a linear sum of the

inputs. This assumption appears to be a general property of

neuronal populations (see [19], [31], [32], [1], [2], who suggest

that neurons could form a set of basis functions encoding real-

world variables). Such a linear decoding can be achieved in two

ways:

Regularized Explicit function (R. OLE). The first approach is to

inverse the above equation as W = C *R{, noting R{ the Moore-

Penrose pseudo-inverse of R. R{ was determined on a subset of the

data (Figure 2a, Atrain = training dataset) and the resultant W
matrix was applied to solve C = R * W on the rest of the data

(Atest = testing dataset). As the Moore-Penrose pseudo-inverse

leads to overfitting, we used a Tikhonov-regularized version of

it: this solution minimizes the compound cost norm(W*R – C)+
l*norm(W), where the last term is a regularization term added to

the original minimization problem [33]. The scaling factor l was

chosen to allow for a good compromise between learning and

generalization. Its precise value was optimized for each analysis as

this value depended on the population size and number of training

trials (see [34] for the l optimization procedure).

Artificial Neural Network (ANN OLE). To estimate the penalty

(or benefits) of training artificial neural networks, we compared the

formal OLE solution described above with the performance of a

one-layer feed-forward network with as many units in the input

layer as in the FEF cell population of interest, one unit in the

output layer reflecting the class of the binary variable of interest

and a hyperbolic tangent transfer function (see Figure 2b, [1], [2]).

Training was performed using a quasi-Newton back-propagation

that defines the weight vector W which minimizes the square

distance between the estimate of the state of the variable of interest

and its actual value. To prevent overfitting, a regularization

procedure was used. This procedure modifies the initially chosen

network performance function (the mean of sum of squares of the

network errors) by adding an additional regularization term. The

regularization term consists of a weighted mean of the sum of

squares of the network weights and biases. As a result, the modified

performance function msereg becomes: msereg = l*mse +
(12l)*msw, where mse is the mean square error and msw is the

mean square weight. The factor l sets the performance ratio

between the mean square error and the mean square weight.

Here, equal weight was given to both the mean square error and

the mean square weights (l= 0.5) as this value yielded the highest

decoding performances. The sign of the classifier output described

the possible states of the variable of interest (21 and 1).

Non Linear Artificial Neural Network Estimator (ANN

NLE). The OLE described above cannot, by definition, capture

non-linear processes, which might be at play in prefrontal cortical

regions and/or during cognitive endogenous processes. We thus

decided to implement a non-linear estimator. If the ANN NLE

outperformed the ANN OLE, this would support the presence of

non-linear neuronal information processes. The ANN NLE is

implemented similarly to the ANN OLE above, except that a

second layer is added to the network architecture in order to

capture potential hidden non-linearities in the neuronal popula-

tion response. This additional hidden layer has half as many units

as the input layer (Figure 2c). Such a two-layer network

architecture draws a non-linear boundary between data points

sampled from two independent distributions (figure 3b).

Bayesian classifier. We used a Gaussian naı̈ve Bayes

classifier [35], [36] which directly applies Bayes’ theorem

(Figure 2d) to calculate the conditional probability that the

population response, R is of class Ck: P(Ck|R). Cells are ‘‘naı̈vely’’

assumed statistically independent. Bayes’ theorem can be written

for cell n as follows:

P(CkjRi)~
P(Ck) � P(RijCk)

P(Ri)
ðeq:1Þ

P(Ri) can be ignored, since it is constant and independent of Ck.

P(Ck) is also constant across the different classes by design (the two

classes are equi-probable). As a result

P(CkjRi)~aP(RijCk) ðeq:2Þ

Decoding Population Sensory and Cognitive Signals
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where a is constant across the different classes Ck. If the

components Ri of R are independent,

P(CkjR)~aP
n

i~1
P(RijCk)

and the Bayesian classifier is optimal, in the sense that it

intrinsically minimizes the misclassification rate. Indeed, misclas-

sification is minimized if and only if the response R is assigned to

the class Ck for which the P(Ck|R) is maximum [37]. As a result,

the Bayesian decoding procedure amounts to using fk(R) =

P(R|Ck) as discriminant function. We estimated the conditional

probability density of the neuronal response Ri of a given neuron

P(Ri|Ck), given a stimulus class Ck, as a Gaussian distribution,

taking as parameters the mean and the standard deviation of the

neuron’s response across trials. The resulting Bayesian classifier

draws a quadratic non-linear boundary between data points and

takes into account the variance structure of the input distributions

(figure 3c, distinct-variance Gaussian Bayesian model). This is

equivalent to a discrete maximum likelihood method in that it

calculates, for each trial, the probability of each class and chooses

the class that presents the highest probability.

Reservoir Computing. We used a specific class of recurrent

neural networks derived from Reservoir computing. In such a design,

the dynamics of the neurons of the reservoir map the input onto a

higher dimensional space, thus unveiling potential hidden

Figure 2. Decoders. (A) Regularized OLE, the training step is a simple regularized linear regression. (B) Optimal Linear Estimator (ANN OLE),
implemented as a one-layer feedforward artificial neural network. The input layer has one unit per FEF cell and receives instantaneous population
neuronal activities. The output layer contains 1 unit. Training involves optimizing the weights using a Levenberg-Marquardt backpropagation
algorithm and a hyperbolic tangent transfer function. (C) Non-Linear Estimator (ANN NLE), implemented as a 2-layer feedforward artificial neural
network. The network architecture only differs from the OLE by an additional hidden layer with n/2 units, n being equal to the number input units. (D)
Bayesian decoder, applying Bayes’ theorem to calculate the posterior probability that state i is being experienced given the observation of response r.
(E) Reservoir decoding. The decoder has one input unit per FEF cell and one output unit. Fixed connections are indicated by dotted arrows and
dynamical connections are indicated by full arrows. The reservoir contains 200 units. The recurrent connections between them are defined by the
training inputs. A simple linear readout is then trained to map the reservoir state onto the desired output. (F) Support Vector Machine (SVM), the
LIBSVM library (Chih-Chung Chang and Chih-Jen Lin, 2011) was used (Gaussian radial basis function kernel so as to map the training data into a
higher dimensional feature space). The transformed data is then classified with a linear regressor and training is performed with a 5-fold cross-
validation. For all decoders, the sign of the output corresponds to the two possible states of the variable being decoded.
doi:10.1371/journal.pone.0086314.g002
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contingencies. The simple readout process is then trained to map

the overall state of the neuronal reservoir onto the desired output

[38], [39]. Because of the higher dimensionality mapping achieved

by the reservoir, such a recurrent neuronal network is expected to

yield a better read out performance than a simple direct linear

mapping (OLE) between the input and the desired output. In

particular, it allows to segregate the data points sampled from two

independent distributions thanks to a non-linear boundary that

minimizes the mean square error in the higher dimensionality

space the input data is projected on. Specifically, we used a

recurrent neural network (RNN, figure 2e) with fixed connections

and a readout layer that reads the activity of all neurons in the

RNN [40]. All parameters specific to the reservoir were set with a

grid-search procedure prior to the decoding experiments in order

to optimize the decoding performance. This procedure consisted

in testing the decoding performance of the reservoir over a large

set of parameters and selecting those parameters that maximize

correct classification. Due to heavy and time costly computations,

these parameters (number of nodes, transfer function, scaling

factor, input sparseness, reservoir sparseness, spectral radius, time

constant and regularization parameter) were optimized only for

full population- and trial-sizes. For all analyses, unless otherwise

stated, the nonlinear optimal reservoir contained 500 analog nodes

without transfer function. The fixed connections between the input

units and the reservoir were randomly generated from a uniform

distribution between 0 and 1 and scaled with a factor of 1021.2 in

order to balance how strongly the reservoir is driven by the input

data. This optimal reservoir had no interconnections between its

nodes. The nodes were initially set as leaky integrator, but

optimization of their time constant revealed that the network

performs better without leaky integration. As a result, such a

reservoir is equivalent to a completely non-dynamic neural

network using independent non-linear transformations to calculate

the decoding performance. A Tikhonov regularization procedure

was chosen in order to avoid overfitting. The readout layer

performs an explicit linear regression between the activity of the

neurons within the RNN and the desired output.
Reservoir with memory. Recurrent networks like the

reservoir have been used to process temporal information such

as time series. Here, we wanted to test whether the reservoir could

extract temporal information embedded in the data and provide a

stationary decoding performance that memorizes the decoded

event for a longer period of time. To do this, new parameters were

set in a grid-search manner (as described above) in order to

optimize the decoding performance for a training window of

70 ms to 500 ms after cue onset. The non-linear dynamic

reservoir contained 500 analog nodes with a hyperbolic tangent

transfer function. The fixed connections between the input units

and the reservoir were randomly generated from a uniform

distribution between 0 and 1 and the scaling factor was set to

1023.8. There were no interconnections between the nodes within

the reservoir and the time constant was set to 55. These

parameters created a non- dynamic reservoir that, because of

the high time constant, uses previous time-steps to extract

information. The readout layer performed an explicit linear

regression between the activity of the neurons within the RNN and

the desired output.
Support vector machine (SVM). The basic SVM can be

considered as a non-probabilistic binary linear classifier that maps

the inputs in space so as to maximize the separation between the

inputs of the two classes ([41], figure 2f). The input data is

nonlinearly mapped to a higher-dimensional feature space and

then separated by a maximum margin hyperplane. Generally, this

maximum margin hyperplane corresponds to a non-linear decision

boundary in the input space, defined by the following equation

(Eq3)

d(~RR:p)~sign(
Xt

j~1
CjajSw(Rj):w(Rp)Tzb) ðeq:3Þ

where d(~RR:p)is the decision on the test neuronal population

response ~RR:p; t is the total number of training trials; the class labels

Cj M {21,+1} and represent the states of the binary output

variable during training; aj represents a set of t constants that

define the SVM optimal solution for the training set; the input

data vector ~RR:jrepresents the population neuronal response on trial

j. The decision boundary is fully defined by a subset of training

samples, the so-called support vectors, but is never explicitly

calculated. Mercer’s theorem states that for each continuous

positive definite function, K(x, y), there exists a mapping W such

that K(x, y) equals the dot-product, ,W(x),W(y). for all x, y M Rn.

Mercer’s theorem allows to learn the relationship between x and y
in the feature space without an explicit estimation of the mapping

function W, by simply using a kernel function; this makes the

support vector machine efficient for operating in a high-

dimensional feature space [42], [43]. The architecture of the

SVM decoder we use here is presented on figure 2f (LIBSVM

library, Gaussian kernel implantation, [44], http://www.csie.ntu.

edu.tw/̃cjlin/libsvm). Note that we used a SVM design with a

Gaussian kernel, K(x,y) = exp(2c||x2y||2). Overall, because

the input data is projected onto a higher-dimensional feature

space, SVM allows segregating the data points sampled from two

independent distributions thanks to a non-linear boundary

(figure 3d). A grid search procedure (calculating decoding

Figure 3. Decision boundaries for the different classifiers. Each
plot represents the activity of a hypothetical cell 1 as a function of the
activity of hypothetical cell 2, on successive trials, in response to a
stimulus 1 (circles) or 2 (squares). a) Optimal linear estimator; b) non-
linear estimator; c) naive Bayesian. The dotted ellipsoids (Bayesian)
correspond to the probability-density fitted Gaussian distributions of
the cells’ activities for each stimulus; d) SVM with Gaussian kernel (RBF)
and Reservoir. In the case of SVM, the dotted line corresponds to the
margin around the decision boundary.
doi:10.1371/journal.pone.0086314.g003
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performance over a range of cost and gamma SVM parameters)

was performed, for each set of train data, prior to the decoding

procedure, in order to find the SVM parameters that maximize

decoding performance. This was done using a 5-fold cross-

validation procedure so as to minimize over fitting. Specifically,

each training set was randomly divided into 5 parts. One part was

retained for testing the model while the other 4 parts were used for

the training of the grid search procedure. This procedure was

repeated 5 times so that each part is used exactly once to evaluate

the selected parameters.

Results

Though the mathematical properties of the classifiers consid-

ered in the present work are well described, how they behave and

how they differ when applied to real neuronal population activities

has not been investigated this far. In particular, no study has

directly questioned how their performance is affected by actual

biological noise in the data, and how it differs between sensory and

cognitive signals. In the following, we examine the performance of

different classifiers and their dependency on several parameters

that often turn out to be crucial in the context of single cell

recording experiments. We first compare the decoders’ perfor-

mance as a function of the variable being decoded (visual/

exogenous versus attentional/endogenous). We then evaluate the

dependency of each decoder on the number of available training

trials and the number of available cells. Last, we quantify the

impact of unbalanced training samples, i.e. samples with unequal

number of trials for each decoded class.

Who’s best? Comparing readout performance across
classifiers

A straightforward measure of how well a decoder extracts

information from population neuronal activities is its readout

performance, i.e. its correct classification rate. We thus compared

the average performance of each classifier (SVM, Reservoir,

regularized OLE, Bayesian, ANN OLE and ANN NLE) over 20

successive decoding runs (each performed on a distinct data set, cf.

data seeds in the methods section) when decoding either the

position of the first visual flow (figure 4a, light gray bars), or the

instructed position of attention (figure 4a, dark gray bars) from the

whole FEF population (n = 131). The different classifiers did not

perform equally well and this, irrespectively of whether the

position of the first visual flow or the instructed position of

attention was being decoded (2-way repeated measure ANOVA,

Variable x Classifier, Classifier main factor, p,0.001, figure 4a). A

Bonferroni post-hoc analysis indicated that the SVM, the regularized

OLE, the Reservoir and the ANN OLE significantly outperformed the

Bayesian and the ANN NLE (p,0.001) both when decoding position

of the first visual flow (p,0.01) and the instructed position of

attention (p,0.001).

However the 95% confidence interval (as estimated by a non-

parametric random permutation test, p,0.05, cf. methods) that

served as a decision boundary for significantly above chance

performance varied from one decoder to the other. We calculated,

for each classifier, its performance relative to this 95% confidence

upper limit (figure 4b). As was the case for the absolute readout

performance, the relative readout performance also varied across

classifiers (2-way repeated measure ANOVA, Variable x Classifier,

Classifier main effect p,0.001, figure 4b). Here, a Bonferroni

post-hoc analysis indicated that only the SVM and the regularized

OLE significantly outperformed the other classifiers (p,0.001)

both when decoding the position of the first visual flow (p,0.05)

and the instructed position of attention (p,0.001, accompanied

here by the reservoir and the ANN OLE). This difference between the

absolute performance and the present relative performance

analyses was due to the higher 95% confidence limit of the

Reservoir and the ANN OLE as compared to that of the SVM and the

regularized OLE.

Who’s best? Comparing the readout performance for
endogenously driven vs. exogenously driven neuronal
information

The next question we sought to answer is whether the

performance of classifiers on exogenous information is predictive

of their performance on endogenous information. We thus

compared the performance of the different classifiers at decoding,

from the whole FEF population, either the spatial position at

which the first stream was presented (exogenous, figures 4a–b,

light gray bars) or the position at which attention was instructed by

the cue (endogenous, figures 4a–b, dark gray bars). All decoders

(SVM, Reservoir, regularized OLE, Bayesian, ANN OLE or ANN NLE)

provided both a better absolute and relative readout of the

exogenous variable as compared to the endogenous variable (2-

way ANOVA, Variable x Classifier, Variable main factor, p,

0.001, figures 4a–b). Specifically, the average absolute decoding

performance of first stream position over all decoders (mean

= 93.0%, s.e. = 5.2%) was 16 percent higher than the average

absolute decoding performance of the instructed position of

attention (mean = 77.0%, s.e. = 1.6%). Likewise, the average

relative decoding performance of first stream position over all

decoders (mean = 33.8%, s.e = 1.8%) was also 16 percent higher

than the average relative decoding performance of the instructed

position of attention (mean = 17.7%, s.e = 1.8%).

Most of FEF neurons encode visual information, while only a

small proportion of cells encode the instructed position of attention

(16%, [25]). This could account for the higher performance

obtained at decoding the exogenous information as compared to

the endogenous information. Alternatively, this difference could be

due to a noisier encoding of endogenous variables by cortical

neurons as compared to how exogenous information is encoded

(or more broadly speaking, to different cortical encoding schemes

as a function of the variable being considered). In order to address

this issue, we performed two additional analyses: 1) we evaluated

the decoders’ performance at reading out the instructed position of

attention from a subset of FEF cells characterized by a statistically

significant cue-instruction related response (n = 21), and 2) we

evaluated the SVM’s performance at decoding the first visual

stream position from a random selection of 21 visual cells. We then

compared the performance a) between the two conditions

(population size hypothesis), and b) between the first condition

and when using the whole neuronal population (population

selectivity hypothesis).

Population size hypothesis. In order to test whether

population size fully accounts for the difference in performance

between the readout of first visual stream position and the readout

of the instructed position of attention, we proceeded as follows. We

identified, within the whole FEF population, the visually

responsive neurons (n = 111, significant visual modulation within

150 ms from first stream onset for 30 ms out of 25 ms, t-test, p,

0.05). We randomly selected 21 visual neurons from this pool of

111 visual neurons and we calculated the average performance of

the SVM at reading out the first visual stream position from this

small population over 20 successive decoding runs. This procedure

was repeated 20 times so as to have an estimate of the influence of

the cell sampling on the readout performance. Such a procedure

yields an absolute average readout performance of 79.5%

(s.e. = 0.2%; relative mean performance = 22.6%, s.e. = 0.19%
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figure 5, light gray bar). Both the absolute and relative average

readout performance of attention position from the cue-instruction

selective FEF cells fell within the range of readout performance of

first flow position from a random small FEF population(absolute

performance: p = 0.09, mean = 77.9%, s.e. = 0.90%; relative per-

formance: p = 0.53, mean = 22.0%, s.e = 0.92%, figure 5, dark

gray bar). The smallest readout performance of first visual stream

position obtained from the different random samples of FEF visual

cells was 65.9% while the highest performance was 92.9% (figure 5,

dotted line on light gray bar). This demonstrates that for small

populations, performance is highly dependent on the population

sample. This applies to the decoding of first visual stream position

and most probably also to the decoding of the instructed attention

location.

Population selectivity hypothesis. The readout perfor-

mance at decoding the instructed position of attention was

estimated from a subset of cells, individually encoding the final

cue instruction (21 cells). As for decoding the instructed position of

attention from the entire FEF population, all decoders did not

perform equally well (one-way ANOVA with repeated measures,

decoder main factor, p,0.001, figures 4a–b, medium gray bars). A

Bonferroni post-hoc analysis indicated that the SVM, the regularized

OLE, the reservoir, the ANN OLE and the Bayesian classifiers

outperformed the ANN NLE (absolute performance: p,0.001,

figure 4a; relative performance: p,0.05, figure 4b). In addition,

decoding the instructed position of attention from the whole FEF

population or from a selected subset of cells did not affect the

readout performance of all decoders in the same way (two-way

ANOVA, significant interaction between the two populations and

decoder main factors, p,0.001). A Bonferroni post-hoc analysis

revealed that this population effect is specific to the Bayesian decoder

both for the absolute and the relative performances (p,0.001,

figure 4a–b), the absolute readout performance of this classifier

being 9.0% higher when the decoding is performed on the selected

subset of cells than when it is performed on the entire the FEF

population.

Trade-off between population size and population
response sampling

Two parameters are expected to drastically influence readout

performance: population size (i.e. the number of cells which are

simultaneously being recorded from) and population response

sampling (i.e. the number of trials on which the training is

performed). In the following, we consider sequentially the impact

of each parameter in conjunction and then independently so as to

gain a better understanding of the contribution of each of these

Figure 4. Comparison of mean performance at reading out first stream position and spatial attention across classifiers. A) Absolute
readout performance. The dashed lines indicate the chance level for each condition, as estimated by a random permutation test (p,0.05). B) Readout
performance, relative to chance level. The flow position is decoded using all cells in the population (light gray). Spatial attention is decoded using all
cells in population (dark gray) or using only cells with significant individual attention-related responses (intermediate gray). The mean readout
performance and the associated standard error around this mean are calculated over 20 decoding runs. SVM = support vector machine, Res. =
reservoir, R. OLE = regularized OLE, Bay. = Bayesian, NLE = ANN non-linear estimator, OLE = ANN optimal linear estimator.
doi:10.1371/journal.pone.0086314.g004

Figure 5. Comparison of decoding flow onset (light gray) with
21 visual cells versus decoding spatial position of attention
(dark gray) with the 21 cells with significant individual
attention-related responses. The mean read-out performance
across 20 runs is showed with standard deviation around this mean.
The dotted line corresponds the maximum- and minimum performance
across 20 draws of 21 visual cells out of 111. The SVM classifier was
used. The mean readout performance and the associated standard error
around this mean are calculated over 20 decoding runs. Chance level is
defined using a random permutation procedure (p,0.05).
doi:10.1371/journal.pone.0086314.g005
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two parameters onto decoding performance. The ANN NLE was

excluded from all further analysis due to its extremely time costly

computations (,6 hours per data seed/run) combined with a

relatively poor readout performance (Regularized OLE/Bayesian:

less than 1 second per data seed per run; ANN OLE: less than 2

seconds per data seed per run; SVM/Reservoir: less than 3

seconds per data seed per run; note that these time estimates are

both dependent on the type of processor being used and on the

optimization of the computation scripts).

Population size and trial number trade-off. In order to further

explore the trade-off between trial number and population size

when decoding the instructed position of attention from randomly

selected FEF cells, we performed an additional analysis in which

we co-vary both parameters simultaneously. This analysis is

performed on the best performing classifiers, namely, the

regularized OLE (figure 6a), the SVM (figure 6b) and the reservoir

(figure 6c). On all plots, we indicate both the 65%, 70% and 75%

performance iso-contours (figure 6, black contours) and the 95%

confidence limits for significant readout (figure 6, gray contours).

Confirming our previous observations, the regularized OLE

achieved the best readout performance at all population sizes

and training trial number combinations. In particular, a 75%

absolute performance rate was achieved with as few as 60 cells and

as little as 40 training trials. The SVM came next, followed by the

Reservoir, although the latter appears to outperform the former

for small trial numbers and small population size.

Population size. The readout performance at decoding the

instructed position of attention from the entire FEF population

steadily increased as a function of population size for all decoders

(Figure 7a). For populations of less than 25 randomly selected FEF

neurons, SVM, Reservoir, regularized OLE and ANN OLE provided

equivalent readout success rates, outperforming the Bayesian

classifier. As the number of neurons in the population increased,

the SVM, the regularized OLE and the reservoir improved their

performances similarly whereas the ANN OLE improved with a

slower rate. The Bayesian was trounced by all the others and the

impact of increasing the population size onto its readout

performance was the lowest.

Absolute readout performances above the upper 95% confi-

dence limit are indicated, in figure 7a, by a thicker line. It is

interesting to note that the SVM and the regularized OLE had an

absolute performance significant with as few as 4 random FEF

cells. The reservoir achieved significant readout performances with 9

cells, whereas the Bayesian required 22 cells in the population.

When decoding was performed on the subset of attention

selective FEF cells (n = 21, figure 7b), the overall effect of

population size on readout performance was equivalent across

decoders, except for the fact that the regularized OLE improved with

a slightly slower rate as the population size increases (Figure 7b).

As expected by their high attention-related information content,

adding an attention-cell to the population induced an average

increase of 0.76% on the readout performance (Figure 7b). This is

to be contrasted with the impact of a randomly selected cell onto

the overall population performance (0.17% increase in readout

performance, figure 7a).
Trial number. As for population size, the readout perfor-

mance at decoding the instructed position of attention from the

entire FEF population steadily increased as a function of the

number of available trials on which to train the decoders

(Figure 7c). However, all decoders did not behave equally in the

face of trial number. In particular, the regularized OLE

outperformed all other decoders at all values of training trial

number. This classifier actually reached significant decoding rates

with as few as 10 trials (thick green line, figure 7c). The

performance of the Reservoir, SVM and ANN OLE decoders

became statistically significant around 20 training trials and

stabilized for 30 trials or so (thick lines, figure 7c). While the SVM

achieved the best readout performance amongst these three, the

Bayesian decoder was outperformed by all the other classifiers at

all training trials number and required more than 35 trials to

achieve significant readouts.

When the decoding of instructed position of attention was

performed on the subpopulation of attention-selective FEF cells,

the impact of number of trials was drastically reduced (figure 7d).

Indeed, the regularized OLE, the SVM and the reservoir achieved

significant readout rates and are close to their maximum decoding

performance with as few as 15 cells. The rise to maximum

performance was slower for the ANN OLE and the Bayesian

classifiers, and here again, this latter decoder required more data

samples to achieve significant readouts (more than 30 trials).

Training sample balance
In an online-decoding environment, training is ideally per-

formed on a fixed number of past trials in reference with the

testing time-point. The assumption that these fixed trials equally

Figure 6. Decoding of spatial attention from the whole FEF population activities as a combined function of number of trials and
cells with (A) Regularized OLE, (B) SVM and (C) Reservoir decoders. The black contour lines correspond, from yellow to dark red regions, to
65, 70 and 75% of readout performance. The gray contour lines corresponds to chance level as calculated, at each point, by a random permutation
test (p,0.05). Smoothing with Gaussian kernel of 7. The readout performance is an average readout performance on 10 decoding runs. The
maximum possible number of training trials is 84 trials. The y-axes are truncated at 80 trials.
doi:10.1371/journal.pone.0086314.g006
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represent condition 1 (here, attention instructed to the left) and

condition 2 (attention instructed to the right) might actually be

violated, in particular due to a potential bias in the performance of

the subject, having a higher performance for one condition over

the other. Here, we explored the impact of such an imbalance in

the number of training trials for the two states of the variable of

interest (figure 8). The overall picture is that this imbalance incurs

a drop in average readout performance. This drop in performance

increased as the imbalance between the number of trials for the

two conditions increased. The rate at which the performance

decreased highly depended on the classifier. The Bayesian and the

ANN OLE performed best with a respective performance drop rate

of 3% and a 5% for a 50% imbalance in the data set (i.e. when one

class has half as many trials as the other class). Furthermore, the

Bayesian and the ANN OLE were the only classifiers for which

performance remained above the upper 95% confidence limit at

50% imbalance. In comparison, the SVM had an 18%

performance drop rate, the regularized OLE, a 28% performance

drop rate and the reservoir, a 30% performance drop rate. There

thus appears to be a trade-off between decoding performance in

ideal settings and resistance to actual real data biases as considered

here.

Memory
All previous decoding procedures relied on the estimation of the

readout performance from population activities averaged over

successive 100 ms windows, irrespectively of the response that was

produced by the population at previous time points. However,

recent evidence suggests that reverberating activities in local

neuronal populations allows to maintain as well as to accumulate

information in time [9], [45]. The specific Reservoir architecture

allows us to directly assess the impact of information maintenance

and accumulation over time by simply presenting the network with

training data sampled over a longer time interval (70–500 ms after

cue onset–figure 9, dark gray curve- versus 212–283 ms–figure 9,

light gray curve) while still testing over successive 100 ms intervals

(dark and light gray curves respectively, figure 9). In this analysis

the classifier is tested on all time points ranging from 70 to 500 ms

after cue presentation and each readout performance corresponds

to the exact performance for that time point (i.e. in contrast with

the previous measures, we do not average the readout perfor-

mance over a 100 ms window). In this analysis, trials in which the

target appeared 150 ms or 300 ms after cue onset have both been

excluded to avoid the potential confound between cue and target-

related activities. Readout performances above the upper 95%

Figure 7. Decoding spatial attention (A–B) as a function of cell population size and (C–D) number of trials available for training. In
(A) and (C), decoding is performed on the whole FEF cell population while in (B) and (D), decoding is performed only on the attention-related cells -
presented also in gray in (A). The mean readout performance is calculated over 20 decoding runs. Thick lines indicated values that are significantly
above chance as calculated using a random permutation test (p,0.05). SVM = support vector machine, Res = reservoir, Ex. OLE = explicit OLE, Bay.
= Bayesian, NLE = ANN non-linear estimator, OLE = ANN optimal linear estimator.
doi:10.1371/journal.pone.0086314.g007
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confidence limit are represented with a thick line. As expected,

taking into account a longer period of time when training the

reservoir network resulted in an increased decoding performance

throughout the post-cue period, that was sustained at a distance

from the cue (400–500 ms post-cue, dark gray curve). Taking into

account the temporal structure of the signals however lead to a 5%

drop in readout performance at the time of maximum attention-

related population activity (245 ms following cue onset). As a

result, this decoding approach is only interesting when the ability

to track the information over time is more important than

achieving maximum decoding performance.

Discussion

Our results suggest that endogenous information such as the

orientation of attention can be decoded from the FEF with the

same accuracy as exogenous visual information. In addition, all

classifiers did not behave equally in the face of population size and

heterogeneity, the available training and testing trials, the subject’s

behavior and the temporal structure of the variable of interest. In

most situations, the regularized optimal linear estimator and the

non-linear Support Vector Machine classifiers outperformed the

other tested decoders.

Decoding of endogenous information as compared to
exogenous information

Our decoders achieve, on average, a 19% higher performance

at decoding exogenous information (here, the position of the first

visual stream) from a heterogeneous FEF neuronal population, as

compared to endogenous information (here, the position of

attention instructed by the cue). These observations are in line

with a previous study also showing a higher accuracy at decoding

the position of a visual cue (SVM classifier, 100% accuracy, [4]) as

compared to decoding the position of attention away from cue

presentation (SVM classifier, 89% accuracy), from a heterogeneous

FEF population. In the current study, we further show that this

advantage at decoding exogenous over endogenous information is

constant across both linear and non-linear classifiers. This could be

due to the fact that FEF contains more visual-selective than

attention-selective cells (Cell selectivity hypothesis). Alternatively, it

could be that visual information is encoded in the FEF with a

higher reliability than attention-related information (Response

reliability hypothesis). While we cannot favor one possibility over

the other, both are worth considering.

Cell selectivity hypothesis. The frontal eye fields are known

to have strong, short latency visual responses [24], due to direct as

well as indirect anatomical projections from the primary visual

cortex V1 [46], [47]. Early studies report that up to 47% of FEF

neurons are visually responsive [48] while up to 80% of pre-

saccadic FEF neurons are also visually responsive [23]. In the

dataset used in the present work, FEF neurons were recorded on

the basis of their responsiveness to the key events of the cued-target

detection task. Eighty-four percent of these neurons had significant

neuronal responses to first visual stream onset (111 visual neurons

out of a total of 131 neurons).The frontal eye fields are also known

to be at the source of covert attention signals [49], [26]. And

indeed, FEF neurons have been shown to encode spatial attention

signals. The proportion of such FEF neurons varies from one study

to another, most probably due to the specificities of the behavioral

task being used. For example, in classical cued-target detection

tasks that allow to manipulate spatial attention, the spatial

mapping between the cue and the subsequent covert attentional

orientation changes. The cue can be a spatial cue, indicating that

attention should be held at the location where it is presented. In

this case, there is a direct mapping between the location of the cue

and the instructed position of attention and about half FEF

neurons are shown to represent this latter information (40.8% in

[50]; 51.8% in [4]). The cue can be a symbolic cue that requires to

be interpreted so that the instructed location of attention can be

extracted, for example, a central cue that instructs attention to the

right if of a specific type (e.g. red or right pointing arrow), and to

Figure 8. Impact of imbalance in the training set. The y-axis
represents the difference between the readout performance of a
balanced data set (same number of trials for each condition) and that of
an unbalanced data set (more trials in condition 1 than in condition 2).
The x-axis represents the degree of imbalance in training trial number
between the two conditions. The mean readout performance and the
associated standard error around this mean are calculated on 20
decoding runs. Thick lines indicated values that are significantly above
chance as calculated using a random permutation test (p,0.05). SVM =
support vector machine, Res = reservoir, R. OLE = regularized OLE,
Bay. = Bayesian, NLE = ANN non-linear estimator, OLE = ANN optimal
linear estimator.
doi:10.1371/journal.pone.0086314.g008

Figure 9. Impact of memory on Reservoir decoding perfor-
mance on reading out the spatial position of attention. The light
gray curve and bars corresponds to a reservoir training on a window of
75 ms around 245 ms after cue onset (as in all previous figures). The
dark gray curve and bars corresponds to a reservoir training a larger
time window (from cue onset at 0 ms to 700 ms post-cue). Decoding is
performed on all FEF cell population activities. The bars show the mean
readout performance and the associated standard error around this
mean obtained by testing activities in a time window of 100 ms around
the time reference point for training (245 ms after cue onset, N = 20
decoding runs). The curves show the mean readout performance and
the associated standard error around this mean for each time point.
Thick lines indicated values that are significantly above chance as
calculated using a random permutation test (p,0.05).
doi:10.1371/journal.pone.0086314.g009
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the left if of another type (e.g. green or left pointing arrow). In this

case, the spatial location of the cue is irrelevant to define the final

position of the cue, while its identity is fully informative. Gregoriou

et al. [51] report that 44.7% of FEF neurons were modulated by

spatial attention in such a task. A more complex situation is the

one used in Ibos et al. [25], in which the spatial location and the

color of the cue are non-informative if considered separately, but

fully informative if combined. This complex transformation most

probably accounts for the lower proportion of attentional neurons

available in the present dataset (16%, 21 out of 131, [25]). Overall,

the proportion of visual and attentional FEF neurons thus appears

to vary from one study to another, depending on the specific tasks

being used and the associated recording biases.

Focusing on the present dataset (84% of visual cells and 16% of

attention-related cells), the better readout performance at decod-

ing the position of the first visual stream from the entire FEF

population as compared to the decoding of the instructed position

of attention could be due to the fact that more cells contribute to

the encoding of this visual event. Constrained by our FEF

neuronal sample, we cannot increase the proportion of FEF

attention selective cells to match that of visually selective cells.

However, we can select amongst the visually-selective cells a

random sub-sample of neurons matching the number of attention-

selective cells. As described in the cell drop-out analysis, decreasing

the size of the neuronal population being decoded from is expected

to have a drastic impact on the readout performance. This is

indeed what is observed (test performed selectively with the SVM

classifier, figure 5), though the decoding accuracy highly depends

upon the visually-selective cells composing the random sub-

sample: in 20 successive draws of a sub-sample of 21 visually-

selective cells, performance varied from as low as 65.9% to as high

as 92.9%. The readout performance at decoding the instructed

position of attention from the attention-selective cells lies within

this range. This suggests that the decoding accuracy of visual

information and attention information are comparable and that

another sample of attention-selective cells could have led to either

higher or lower performances than what we describe here.

Extrapolating over this observation, it should thus be possible to

achieve spatial attention allocation readout performances equal to

those obtained for first visual stream onset position, provided more

attention-selective cells are included in the neuronal population.

This will need to be confirmed experimentally.

Response reliability hypothesis. The observed differences

in performance at decoding first visual stream position versus the

spatial attention allocation could be due to the fact that the

encoding of endogenous variables is more susceptible to trial-to-

trial variability due to intrinsic factors such as motivation or

fatigue. The encoding of a sensory stimulus (as first visual stream

onset, here) is expected to be less affected by these intrinsic factors

unless its detectability is highly degraded. Supporting this

hypothesis, Cohen et al. [52], [53] show that, on a single trial,

the degree to which a neuronal V4 population encodes spatial

attention varies and is predictive of the overt behavioral

performance on that very same trial. In Farbod Kia et al. [29],

we demonstrate that, in the present task, part of the error trials

arise from a miss-encoding of attention orientation. Here, the run-

to-run variability in the decoding accuracy, each run consisting of

a different training/testing set of trials, reflects the trial-to-trial

variability with which a given variable is encoded by the neuronal

population. The decoding accuracy for the spatial position of

attention has a higher standard error than the decoding accuracy

for first stream position. This could be due to a genuine difference

in the trial-to-trial variability with which these two types of

information are encoded. It is however worth noting that, though

the cue-to-attention mapping required from the monkeys in the

present dataset is complex, the SVM achieves a readout

performance of 81.2% at decoding the spatial allocation of

attention from the entire FEF population. This performance is

relatively close to that achieved with the same classifier at decoding

the same information during a simpler task involving a direct

spatial mapping between cue position and attention allocation

(89%, [4]) from an FEF population composed of a higher

proportion of attention-selective cells (51.8%, in [4], vs. 16% in

the present study). This indicates that the proportion of attention-

selective cells in the neuronal population is not the only

determinant of performance and response variability needs to be

considered. Information redundancy across attention-selective

cells should also be taken into account. In the current study, as

well as in the Armstrong et al. study, single-neuron recordings

were achieved in independent sessions. Decoding from simulta-

neously recorded neuronal population activities in a single animal

is expected to uniformly improve readout performance for all

decoders due to a decrease in overall (inter-subject and inter-

session) data variability. However, the response of simultaneously

recorded neurons also shows an important degree of correlation

[54]. The impact of these correlations on the total information

conveyed by such a neuronal population is controversial [55],

[56], [57], [58], preventing a direct estimate of their net effect on

the decoding accuracy reported here. This needs to be borne in

mind when considering the present study.

Overall, our study suggests that endogenous information such as

covert attention orientation can be decoded from an appropriate

neuronal population with similar accuracy as exogenous informa-

tion such as the position of visual stimulus. Interestingly, and in

line with our present work, Gunduz et al. [59] show that the

spatial position of attention can also be decoded from larger

distributed neuronal populations in humans, as recorded from a

parieto-frontal ECoG matrix, with a performance of up to 48%

(chance = 33.3%, decoding being performed on the whole band

signal spectrum). This decoding accuracy is to be compared to the

performance at decoding attentional engagement (84.5%, chance

= 50%) and motor engagement (92.5%, chance = 50%). Roter-

mund et al. [60] decode the spatial position of attention, in non-

human primates, with a maximum accuracy ranging between 93%

(left/right hemisphere spatial attention allocation) and 99%

(spatial attention allocation to two close by positions within the

same hemisphere), from a large distributed neuronal population,

as recorded from an epidural ECoG matrix placed over the striate

and extra-striate visual cortex. Altogether, these different studies

and ours strongly support the idea that endogenous cognitive

information content can be decoded from population neuronal

activities.

The optimal classifiers
A general observation from our study is that the SVM, the

Regularized OLE, the Reservoir and the ANN OLE unambiguously

outperform the Bayesian and the ANN NLE. A link is often made

between reservoir computing and kernel machines [61], [62], in

particular because both techniques map the input data into a

higher-dimensional feature space. In the case of the Reservoir, this

mapping is performed explicitly by the reservoir neurons whereas

the SVM uses the so-called ‘‘kernel-trick’’ to avoid this costly

explicit computation. The Regularized OLE and the ANN OLE differ

significantly from these two classifiers because they only use a

simple hyperplane to separate the input data (i.e. they can only

classify linearly separable data). Even though these four classifiers

outperform the other classifiers, there are several other factors that

also need to be considered.
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Temporal structure in decoded feature. A major differ-

ence of reservoir computing is that it can depend on the recent

history of the input. Such a Reservoir allows to process information

that is explicitly coded in time. In contrast, the state of the other

classifiers only depends on the current input [63]. As a result, using

the Reservoir classifier is a better choice when decoding variables

with a specific temporal organization as is often the case with

spatial attention that moves around in time. Indeed, in such a

behavioral context as the one described here, attention needs to be

sustained in time from cue interpretation up to target detection.

When this temporal aspect is taken into account by training the

Reservoir on single trial population responses sampled over a longer

post-cue interval (70–500 ms rather than 207–283 ms), the

decoding accuracy for the spatial attention orientation is

remarkably maintained over time. However, if the objective is to

achieve highest decoding performance, than simpler decoding

schemes appear to be more appropriate than Reservoir decoding.
Decoding speed-accuracy trade-off. Although the SVM,

Regularized OLE, Reservoir and ANN OLE perform equally well in an

optimal situation, it is important to note that the regularized OLE

appears to be more resilient to a limited number of trials.

Moreover, when both the number of available trials and cells in

the population are limited, the regularized OLE outperforms the SVM,

reservoir and ANN OLE. Last, when decoding speed becomes

critical, the Regularized OLE approach is the fastest.
Information within the neuronal population. Here, we

describe that the SVM, the Regularized OLE, the Reservoir and the ANN

OLE classifiers outperform the other classifiers when decoding a

given feature from a heterogeneous population containing both

feature-selective neurons and non-selective neurons. This repre-

sents an advantage in an online decoding perspective, as it

indicates that optimal readout performance can be achieved

without a prior selection of the neuronal population contributing

most to the feature of interest. If, for specific purposes, this

selection becomes crucial, it can be performed statistically, using

for example a single value decomposition approach (SVD, as in

[12]).
The subject’s behavior. Another critical aspect to take into

consideration is the behavior of the subject which can also

influence the choice of classifier. Indeed, if the subject presents a

difficulty to perform the task correctly and is for example biased

for one state of the feature of interest, then this produces an

imbalance in the training set that can lead to a decrease in the

performance. All classifiers do not behave equally in the face of

this imbalance. The Bayesian and the ANN OLE decoders appear to

be quite resilient to this factor, while the SVM, the Regularized OLE

and the Reservoir are strongly affected by an imbalance beyond 10

to 40%. While imbalance in the training data sample affects the

decoding performance of the SVM and of the Regularized OLE, we

have shown that these two classifiers are quite resilient to a drop in

trial number. As a result, they can still be considered as optimal in

the case of biased behavior, provided the training is performed on

a balanced subset of the data.

Number of feature states to be decoded. Support vector

machines were originally designed for binary classification [41]

and there is a lot of ongoing research on how to effectively extend

them to multiclass decoding. Up to now several methods have

been proposed where a multiclass SVM is constructed by using

many binary SVM classifiers. Generally, this results in a more

computationally expensive classifier [64]. The Regularized OLE, the

ANN OLE and the ANN NLE are by essence continuous classifiers

(as their output can take any value in a one-dimensional, two-

dimensional or n-dimensional space) but they can also be extended

to multiclass decoding by constructing several binary classifiers.

The Reservoir can easily be implemented in a multiclass decoding

problem thanks to an architecture that has the same number of

output neurons as the number of classes. Each output neuron then

represents one class, and the output neuron with the highest

activation is chosen as best guess on a given trial. It can also be

extended to a continuous n-dimensional decoder, reading out for

example the position of a given variable in space, thanks to two

output cells representing respectively the x- and y-coordinates.

The naı̈ve Bayesian classifier also naturally extends to multiclass

decoding since it calculates the probability of each class given a

certain response and then chooses the class with the highest

probability. It can be extended to a continuous n-dimensional

feature space within the Gaussian process regression framework

[65].

Author Contributions

Conceived and designed the experiments: SBH. Performed the experi-

ments: GI. Analyzed the data: EA PE GI. Contributed reagents/materials/

analysis tools: PE PB PFD. Wrote the paper: EA SBH.

References

1. Ben Hamed S, Page W, Duffy C, Pouget A (2003) MSTd neuronal basis

functions for the population encoding of heading direction. J Neurophysiol 90:
549–558.

2. Ben Hamed S, Schieber MH, Pouget A (2007) Decoding M1 neurons during

multiple finger movements. J Neurophysiol 98: 327–333.

3. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004)
Cognitive control signals for neural prosthetics. Science 305: 258–262.

4. Armstrong KM, Chang MH, Moore T (2009) Selection and maintenance of

spatial information by frontal eye field neurons. J Neurosci 29: 15621–15629.

5. Gu Y, Fetsch CR, Adeyemo B, Deangelis GC, Angelaki DE (2010) Decoding of
MSTd population activity accounts for variations in the precision of heading

perception. Neuron 66: 596–609.

6. Meyers EM, Qi X-L, Constantinidis C (2012) Incorporation of new information
into prefrontal cortical activity after learning working memory tasks. Proc Natl

Acad Sci USA 109: 4651–4656.

7. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T (2008) Dynamic
Population Coding of Category Information in Inferior Temporal and Prefrontal

Cortex. J Neurophysiol 100: 1407–1419.

8. Barak O, Tsodyks M, Romo R (2010) Neuronal Population Coding of
Parametric Working Memory. J Neurosci 30: 9424–9430.

9. Crowe DA, Averbeck BB, Chafee MV (2010) Rapid sequences of population

activity patterns dynamically encode task-critical spatial information in parietal
cortex. J Neurosci 30: 11640–11653.

10. Kadohisa M, Petrov P, Stokes M, Sigala N, Buckley M, et al. (2013) Dynamic

Construction of a Coherent Attentional State in a Prefrontal Cell Population.

Neuron, 80(1):235–46.

11. Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, et al. (2013) Dynamic

coding for cognitive control in prefrontal cortex. Neuron 78: 364–375.

12. Markowitz DA, Wong YT, Gray CM, Pesaran B (2011) Optimizing the
decoding of movement goals from local field potentials in macaque cortex.

J Neurosci 31: 18412–18422.

13. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal

structure in neuronal activity during working memory in macaque parietal

cortex. Nat Neurosci 5: 805–811.

14. Thomson EE, Carra R, Nicolelis MAL (2013) Perceiving invisible light through

a somatosensory cortical prosthesis. Nat Commun 4: 1482.

15. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, et al. (2012)
Reach and grasp by people with tetraplegia using a neurally controlled robotic

arm. Nature 485: 372–375.

16. Bishop C (2007) Pattern Recognition and Machine Learning. New York, NY,
USA: Springer.

17. Duda R, Hart P, Stork D (2000) Pattern Classification. 2nd ed. New York: John

Wiley and Sons.

18. Seung HS, Sompolinsky H (1993) Simple models for reading neuronal

population codes. Proc Natl Acad Sci USA 90: 10749–10753.

19. Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput
Neurosci 1: 89–107.

20. Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting

neuronal population activity by reconstruction: unified framework with
application to hippocampal place cells. J Neurophysiol 79: 1017–1044.

21. Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with

probabilistic population codes. Nat Neurosci 9: 1432–1438.

Decoding Population Sensory and Cognitive Signals

PLOS ONE | www.plosone.org 13 January 2014 | Volume 9 | Issue 1 | e86314



22. Jaeger H (2001) The ‘‘echo state’’ approach to analysing and training recurrent

neural networks. GMD Report 148, German National Research Center for
Information Technology.

23. Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons

discharging before saccades. J Neurophysiol 53: 603–635.
24. Bullier J, Schall JD, Morel A (1996) Functional streams in occipito-frontal

connections in the monkey. Behav Brain Res 76: 89–97.
25. Ibos G, Duhamel J-R, Ben Hamed S (2013) A functional hierarchy within the

parietofrontal network in stimulus selection and attention control. J Neurosci 33:

8359–8369.
26. Armstrong KM, Fitzgerald JK, Moore T (2006) Changes in visual receptive

fields with microstimulation of frontal cortex. Neuron 50: 791–798.
27. Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution

of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates
with the hierarchical rank and indicates the operation of a distance rule.

J Neurosci 20: 3263–3281.

28. Pouget P, Stepniewska I, Crowder EA, Leslie MW, Emeric EE, et al. (2009)
Visual and motor connectivity and the distribution of calcium-binding proteins

in macaque frontal eye field: implications for saccade target selection. Front
Neuroanat 3: 2.
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