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Unajusted Langevin algorithm with multiplicative noise: Total
variation and Wasserstein bounds

Gilles Pagès ∗ and Fabien Panloup †

December 18, 2020

Abstract

In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic
diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More
precisely, the objective of this paper is to control the distance of the standard Euler scheme with
decreasing step (usually called Unajusted Langevin Algorithm in the Monte-Carlo literature) to
the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and
under uniform ellipticity assumptions on the diffusion coefficient, we establish (or improve) such
bounds for Total Variation and L1-Wasserstein distances in both multiplicative and additive and
frameworks. These bounds rely on weak error expansions using Stochastic Analysis adapted to
decreasing step setting.

1 Introduction

Let pXtqtPr0,T s be the unique strong solution to the stochastic differential equation (SDE)

dXt “ bpXtqdt` σpXtqdWt (1.1)

starting at X0 where W is a standard Rq-valued standard Brownian motion, independent of X0, both
defined on a probability space pΩ,A,Pq, where b : Rd Ñ Rd and σ : Rd ÑMpd, q,Rq (dˆq-matrices
with real entries) are Lipschitz continuous functions. The process pXtqtě0 is a Markov process and we
denote by Pµ its distribution starting from X0 „ µ. Let L “ LX denote its infinitesimal generator,
defined on twice differentiable functions g : Rd Ñ R by

Lg “ pb|∇gq ` 1

2
Tr
`

σ˚D2g σ
˘

,

where p .|. q denotes the canonical inner product on Rd, D2g denotes the Hessian matrix of g and Tr
denotes the Trace operator.

Let pγnqně1 be a non-increasing sequence of positive steps. We consider the Euler scheme of the
SDE with step γn ą 0 starting from X̄0 “ X0 defined by

X̄Γn`1 “ X̄Γn ` γn`1bpX̄Γnq ` σpX̄ΓnqpWΓn`1 ´WΓnq, n ě 0. (1.2)
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where Γn “ γ1 ` ¨ ¨ ¨ ` γn. We define the genuine (continuous time) Euler scheme by interpolation as
follows: let tP rΓk,Γk`1q.

X̄t “ X̄Γk ` pt´ ΓkqbpX̄Γkq ` σpX̄ΓkqpWt ´WΓkq. (1.3)

If we set t “ Γk on the time interval rΓk,Γk`1q, the genuine Euler scheme appears as an Itô
process solution to the pseudo-SDE with frozen coefficients

dX̄t “ bpX̄tqdt` σpX̄tqdWt. (1.4)

It will be convenient in what follows to introduce

Nptq “ min
 

k ě 0 : Γk`1 ą t
(

“ max
 

k ě 0 : Γk ď t
(

. (1.5)

The process pXtqtě0 is a pathwise continuous homogeneous Markov process with transition semi-
group Ptpx, dyq “ PpXx

t P dyq, t ě 0, and infinitesimal generator L reading on all C2 functions
g : Rd Ñ R,

Lg “ pb |∇gq ` 1
2Tr

`

σ˚D2gσ
˘

.

The Euler scheme is a discrete time non-homogeneous Markov process with transitions

P̄Γn,Γn`1px, dyq “ P̄γn`1px, dyq

where the probability transition P̄γpx, dyq reads on Borel test functions

P̄γg “ E g
`

x` γgpxq `
?
γσpxqZ

˘

, Z „ N p0; Idq. (1.6)

and
pΓq ” pγnq non-increasing, lim

n
γn “ 0 and

ÿ

ně1

γn “ `8. (1.7)

Then γ1 “ supně1 γn and we will denote indifferently this quantity by }γ} or γ1 depending on the
context.

It is well-known that for a twice continuously differentiable function V : Rd Ñ R` such that
e´V P L1

R`pR
d, λdq (λd Lebesgue measure on Rd), then for every σP p0, 1s

νσpdxq “ Cσe
´
V pxq

σ2 λdpdxq with Cσ “
´

ż

Rd
e´

V pxq

σ2 λdpdxq
¯´1

is the unique invariant distribution of the Langevin (reversible) Brownian SDE

dXt “ ´∇V pXtqdt`
?

2σdWt (1.8)

where pWtqtě0 is d-dimensional standard Brownian motion.
A first application of this property is to devise an approximate simulation method of ν “ ν1 “

C´1
1 e´V ¨ λd by introducing the above Euler scheme with decreasing step (1.2) with b “ ´∇V and

σpxq “
?

2σ. Coupled with a Metropolis-Hasting speeding method, this simulation procedure is
known as the Langevin algorithm whereas in absence of such an additional procedure it is known as the
Unadjusted Langevin Algorithm (ULA) extensively investigated in the literature since the 1990’s (see
e.g. [Pel96], [MP96]) and more recently in a series of papers, still in the additive setting, motivated by
applications in machine learning (in particular in Bayesian or PAC-Bayesian statistics). Among others,
we refer to [DM17, Dal17, MFWB19] and to the references therein.
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A second application is to directly consider, σ being fixed a real number (or possibly a matrix of
Mpd, d,Rq) the Euler scheme

X̄σ
Γn`1

“ X̄σ
Γn ´ γn`1∇V pX̄σ

Γnq ` σ
?
γn`1Zn`1 (1.9)

where pZkqkě1 is an N p0, Idq-distributed i.i.d. sequence as a perturbation by an evanescent Gaussian
white noise of a gradient descent

xn`1 “ xn ´ γn`1∇V pxnq

aiming at minimizing the potential V . Then

rX̄σ
Γns

TV
ÝÑ νσ as σ Ñ 0 and νσ

weakly
ÝÑ δx˚

if argminRdV “ tx
˚u (or νσ is asymptotically supported by argminRdV when simply finite). So simu-

lating (1.9) on the long run provides sharper and sharper information on the localization of argminRdV .
In fact making σ “ σn slowly vary in a decreasing way to 0 at rate plog nq´1{2 makes up a simulated
annealing version of the above perturbed stochastic gradient procedure. This stochastic optimization
procedure has been investigated in-depth in [GM93] with, as a main result, the convergence in proba-
bility of X̄σn

Γn
toward the (assumed) unique minimum x˚ of V under various assumptions on the step

γn and the invertibility of the Hessian of V at x˚.
For much more general multidimensional diffusions, say Brownian driven here for convenience, of

the form (1.1) with infinitesimal generator L satisfying an appropriate mean-reverting drift (typically
LV ď β ´ αV a, a P p0, 1s for some Lyapunov function V ), it is a natural problem of numerical
probability to have numerical access to its invariant distribution ν (when unique). Taking full advantage
of ergodicity, this can be achieved by introducing the weighted empirical measure

ν̄npω, dξq “
1

Γn

n
ÿ

k“1

γkδX̄Γk´1
pωqpdξq, n ě 1,

where pX̄Γkqkě0 is given by (1.2) (and the Brownian increments are simulated by a Rq-valued white
noise pZkqkě1 with WΓk`1

´WΓk “
?
γk`1Zk, k ě 1. A.s. weak convergence, convergence rate and

deviation inequalities depending on the rate of decay of the step γn have been extensively investigated
in a series of papers in various settings, including the case of jump diffusion driven by Lévy processes
(see [LP02], [LP03], [Pan08b], [Pan08a], [Lem05], [Lem07], [HMP20], etc). One specificity of inter-
est for applications of this method is that no ellipticity is required to establish most of the main results.
This turns out to be crucial for Hamiltonian systems or more generally for mean-reverting SDEs with
more or less degenerate diffusion coefficients.

However, in presence of ellipticity, it is a quite natural question to tackle the total variation (TV) and
L1-Wasserstein (rates of) convergence of rX̄Γns toward the (necessarily) unique invariant distribution
ν when σ is uniformly elliptic, but not constant. In particular, one aim of this paper is to check whether
or not the VT and L1-Wasserstein (or Kantorovich-Rubinstein) rates of convergence remain unchanged
in such a more general setting. Moreover, considering such diffusions with non constant σ will deeply
impact the methods of proof since, among others, it is e.g. no longer true that the one step Euler scheme
with step γ ą 0 and the underlying diffusion at time t “ γ have equivalent distributions.

Such investigations also have applied motivations since in the blossoming literature produced by
the data science community to analyze and improve the performances of stochastic gradient procedures,
non-constant matrix valued diffusion coefficients σpxq are introduced in such a way (see [MCF15a]
and the references therein with in view Hamiltonian Monte Carlo, [LCCC15a] among others) that
the invariant distribution is unchanged but the exploration of the state space becomes non-isotropic,
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depending on the position of the algorithm or the value of potential function to be minimized with the
hope to speed up its preliminary convergence phase.

As mentioned above we mainly focus on the so-called multiplicative setting i.e. when the diffusion
coefficient is state dependent, which is new in this field to our best knowledge. However we also show
how to refine our methods of proof (see below) in order to derive improved rates in the additive setting
(when σ is constant). The results significantly improve those obtained e.g. in [DM17] or in [Dal17]
in terms of pγnqně1 and seem quite consistent with more recent works (by totally different methods)
like [MFWB19] (see Remark 2.4 for details).

Let us be more specific about our results and methods. We start from some assumptions on the
diffusion (1.1) itself, mainly the exponential rate of confluence (in TV) of the distributions rXx

t s and
rXy

t s as t Ñ `8, combined with a classical uniform ellipticity and boundedness assumptions on
the diffusion coefficient σ (see Section 2.1). We then discuss in Section 2.3 practical criterions which
imply such a convergence rate, typically a non-uniformly dissipative setting, involving the infinitesimal
generator of two-point motion process. In particular this mean-reverting assumption is much less
stringent than its uniform counterpart also known as contraction or (exponential) pathwise confluence
property since only needs to hold outside a compact set.

Under these assumptions, we obtain in the multiplicative (uniformly elliptic) setting (see Theo-
rem 2.1):

– Opγ1´ε
n q, for every εP p0, 1q, for the TV -distance (if b and σ are C6),

– O
`

γn logp1{γnq
˘

for the W1-distance (if b and σ are C4),

and, in the additive case (see Theorem 2.2 e.g. if b is C3):
– Opγnq for both the TV -distance and the W1-distance .

Our method of proof mostly relies on Numerical Probability and Stochastic Analysis techniques
developed for diffusion processes since the 1980’s, adapted to both decreasing step and the long run
frameworks. Namely, we carry out an in-depth analysis of the weak error of the one step Euler scheme
(bounded) Borel and smooth functions, with a a special case in the latter case to the dependence of the
resulting rate with respect to the regularity of the function. Then we rely on the regularizing properties
of the semi-group of the underlying diffusion through an extensive use of Bismut-Elworthy-Li (BEL)
identities and their resulting upper-bounds (see [Bis84, EL94]). To deal with (non-smooth) bounded
Borel functions we call upon the Malliavin Calculus machinery adapted to the decreasing step setting
relying, among others, on recent papers by Bally, Caramellino and Poly (see [BC19, BCP20]) which
make these methods more accessible.

Our global strategy of proof (initiated by [TT90, BT96]) relies either on a partial (for TV-distance in
the multiplicative case) or a full domino decomposition of the error to be controlled, formally reading
in our long run behaviour as follows (here for the full one)

|E fpX̄x
Γnq ´ EfpXx

Γn

‰

“
ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ P̄γnfpxq ´ PΓnfpxq
ˇ

ˇ

ď

n
ÿ

k“1

ˇ

ˇ

ˇ
P̄γ1 ˝ ¨ ¨ ¨ P̄γk´1

`

P̄γk ´ Pγk
˘

PΓn´Γkfpxq
ˇ

ˇ

ˇ
.

Depending on the nature of the distance and σ we will subdivide the above sum in two or three
partial sums and analyze them using the various tools briefly described above. The paper is organized as
follows. Section 2 is devoted to the assumptions, the main results and the applications. In Section 3 we
first provide some background on our main tools, especially on Stochastic Analysis (BEL, weak error
by Malliavin calculus, having in mind that most background and proof are postponed in Appendices A
and C and, in a second part of the section, we analyze in-depth the weak error of the one-step Euler
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scheme with in mind the strong specificity of our long run problem. In Section 4, we provide proofs
for our main convergence results.

NOTATIONS. – The canonical Euclidean norm of a vector x “ px1, . . . , xdq P Rd is denoted by
|x| “ px2

1 ` ¨ ¨ ¨ ` x
2
dq

1{2.
– N “ t0, 1, . . .u and N˚ “ t1, 2, 3, . . .u.
– }A} “ rTr pAA˚qs1{2 denotes the Fröbenius (or Hilbert-Schmidt) norm of a matrix A P Mpd, q,Rq
where A˚ stands for the transpose of A˚ and Tr denotes the trace operator of a square matrix.
– Spd,Rq denotes the set of symmetric dˆ d square matrices and S`pd,Rq the subset of non-negative
symmetric matrices.
– }a} “ supně1 |an| denotes the sup-norm of a sequence panqně1.

– For f : Rd Ñ R, rf sLip “ supx‰y
|fpxq´fpyq|
|x´y| .

– For a transition Qpx, dyq we define rQsLip “ supf, rf sLipď1rQf sLip.
– rXs denotes the distribution of the random vector X .
– an — bn means that there are positive real constants c1, c2 ą 0 such that c1 an ď bn ď c2 an.
– For every x, yP Rd, px, yq “

 

ux` p1´ uqy, uP p0, 1q
(

. One defines likewise rx, ys, etc.

– Wppµ, µ
1q “ inf

!

`ş

|x´ y|pπpdx, dyq
˘1{p

, πP Pµ,νpRdq
)

denotes the Lp-Wasserstein distance

between the probability distributions µ and µ1 where Pµ,νpRdq stands for the set of probability distri-
butions on pRd ˆ Rd,BorpRdqb2 with respective marginals µ and ν.
– }µ}TV “ sup

 ş

fdµ, f : Rd Ñ R, Borel, }f}sup ď 1
(

where µ denotes a signed measure on
pRd,BorpRdqq.

2 Main Results

2.1 Assumptions

In whole the paper, we assume b and σ Lipschitz and satisfying the strong mean-reverting assumption

pSq: There exists a positive C2-function V : Rd Ñ p0,`8q such that

lim
|x|Ñ`8

V pxq “ `8, |∇V |2 ď CV and sup
xPRd

}D2V pxq} ă `8 (2.10)

and there exist some real constants Cb ą 0, α ą 0 and β ě 0 such that:

(i) |b|2 ď CbV and σ is bounded (e.g. in Fröbenius norm), (ii)
`

∇V |b
˘

ď β ´ αV.

Remark 2.1. ‚ Note that pSq implies that V attains a minimum v ą 0.
‚ Note that since σ is bounded, piiq is equivalent to the existence of α ą 0 and β ě 0 such that

LV ď β ´ αV.

‚ Let us also remark that (2.10) implies that V is a subquadratic function, i.e. there exists a constant
C ą 0 such that V ď Cp1` | . |2q.

Under pSq, it is classical background (see e.g. [EK86]) that the diffusion pXtqtě0 (in fact its semi-
group pPtqtě0) has at least one invariant distribution ν i.e. such that νPt “ ν, t ě 0. Furthermore,
Assumption pSq implies stability of the diffusion and of its discretization scheme by involving long-
time bounds on polynomial (and exponential) moments of V pXtq and V pX̄Γnq. Such properties are
recalled in Proposition D.1.
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In all the main results of the paper, we will also assume that the diffusion coefficient σ satisfies the
following uniform ellipticity assumption:

pE`qσ2
0
” Dσ0 ą 0 such that @xP Rd, σσ˚pxq ě σ2

0Id in S`pd,Rq. (2.11)

This uniform ellipticity assumption implies that, when existing, the invariant distribution is unique
(see e.g. [Pag01] among others).
Finally, we suppose that exponential decrease of the semi-group pPtqtě0 of the diffusion holds in
Wasserstein distance:
pHWq: There exists t0 ą 0 and positive constants c and ρ such that for every t ě t0,

@x, yP Rd, W1prX
x
t s, rX

y
t sq ď c|x´ y|e´ρt.

This second condition also reads on Lipschitz functions f : Rd Ñ R:

rPtf sLip ď ce´ρtrf sLip.

Remark 2.2. ‚ In view of what follows, it is important to note that, under pE`qσ2
0
, pHWq induces a

similar contraction property for the total variation distance, that will denoted by pHTVq in the proofs
(see e.g. Proposition 4.1). In particular, this explains why the main results in TV-distance below are
stated under pHWq.

‚ If both b and σ are Lipschitz continuous and pHWq holds true, then it holds true from the origin t “ 0
with the same ρ up to a change of the real constant c. Thus, if f : Rd Ñ R is Lipschitz continuous,
then, for every tP r0, t0s and every x, yP Rd,

ˇ

ˇEfpXx
t q ´ fpX

y
t q
ˇ

ˇ ď rf sLipE|Xx
t ´X

y
t | ď Ct0,rbsLip,rσsLip

rf sLip|x´ y|

by standard arguments on the flow of the SDE (see e.g. [Pag18, Theorem 7.10]). One concludes by the
Kantorovich-Rubinstein representation of W1 using Lipschitz continuous functions (see e.g.[Vil09]).

‚ One also derives that pHWq is equivalent to

@ t ě 0, @ f : Rd Ñ R Lipschitz continuous, rPtf sLip ď ce´ρt|x´ y|rf sLip.

‚ Assumption pHWq is fulfilled in the uniformly convex/dissipative setting as established in Corol-
lary 2.3 later on. But it also holds when b is only strongly contracting outside a compact set (see
Corollary 2.4). When σ is constant, one can refer to [LW16] or [EGZ19] for bounds in Wasserstein
distance for diffusions.

2.2 Main results

To a non-increasing sequence of positive steps denoted γ “ pγnqně1 we associate the index

$ :“ lim
n

γn ´ γn`1

γ2
n`1

P r0,`8s.

This index is finite if and only if the convergence of γn to 0 is not too fast. To be more precise, if
γn “

γ1

na (a ą 0), $ “ 0 if 0 ă a ă 1 and $ “ 1
γ1

if a “ 1 and $ “ `8 if a ą 1. We are now in
position to state our main result.
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Theorem 2.1. Assume pE`qσ2
0

and pSq and pHWq with ρ ą $. Let ν be the (unique) invariant
distribution of pXtqtě0. Suppose that the step sequence pγnqně1 satisfies pΓq, that $ P r0,`8q and
ş

|ξ|νpdξq ă `8.

paq If b and σ are C4 with bounded derivatives, then

@n ě 1, W1prX̄
x
Γns, νq ď Cb,σ,γ,V ¨ γn

ˇ

ˇ logpγnq
ˇ

ˇϑpxq

where Cb,σ,γ is a constant depending only on b, σ, γ and ϑpxq “ p|x| ` 1q _ V 2pxq.

pbq If b and σ are C6 with bounded existing partial derivatives and if lim inf
|x|Ñ`8

V pxq{|x|r ą 0 for some

rP p0, 2s (resp. lim inf
|x|Ñ`8

V pxq{ logp1` |x|q “ `8), then, for every small enough ε ą 0, there exists a

real constant Cε “ Cε,b,σ,γ,V ą 0 such that

@n ě 1,
›

›rX̄x
Γns ´ ν

›

›

TV
ď Cε ¨ γ

1´ε
n ϑpxq

where ϑpxq “ V 8{rpxq P L1pνq (resp. ϑpxq “ eλ0V pxq P L1pνq for some λ0 P p0, λsup{2q where λsup

is defined in Proposition D.1pbq).

Remark 2.3. ‚ The parameter ρ does not appear in the above constants since ρ can be in turn consid-
ered as a function of b and σ. But the constant clearly depends on it. For the sake of readability, we
will sometimes omit the dependency in the next results. The main point is that these constants do not
depend on x.
‚ The proofs of the above bounds certainly rely on ergodic arguments but also on fine bounds on
the one-step weak error between the Euler scheme and the diffusion for non-smooth functions. In
particular, one important tool for the total variation bound is a one-step control of the weak error for
bounded Borel functions when the initial condition is an “almost” non-degenerated (in a Malliavin
sense) random variable (1). More precisely, this random initial condition is precisely an Euler scheme
at a given positive (non-small) time and pE`qσ2

0
guarantees that the related Malliavin matrix is non-

degenerated with high probability but not almost surely (since the tangent process of the continuous-
time Euler scheme does not almost surely map into GLdpRq). This almost but not everywhere non-
degeneracy induces a cost which mainly explains that the bound in Theorem 2.1pbq is proportional to
γ1´ε and not to γ| logpγq|, as in the above claim paq. However, one could wonder about the optimality
of this bound and on the opportunity to get a bound in γ. Such a result could perhaps follow from
a sharper control of the probability of non-degeneracy of the Euler scheme but this appears as a non
trivial task, not achieved in [BCP20]. An alternative (used for instance in [Guy06]) is to base the
proof on parametrix-type expansions of the error between the density of the Euler scheme and that
of the diffusion obtained in [KM02]. But relying on such an alternative would require to adapt their
arguments to the decreasing step setting and to prove that the coefficients of the resulting expansion do
not depend on the considered step sequence (2). Solving this problem would yield a TV bound in γn
as can be checked from proof of the theorem.

Let us now turn to the so-called additive case, σpxq “ σ.

Theorem 2.2 (Additive case). Assume that b is C3 with bounded existing partial derivatives and
σpxq ” σ with σσ˚ definite positive. Assume pSq holds and $ P p0,`8q. If pHWq holds with

1This result is established in Theorem 3.7. Among other arguments, the related proof relies on recent Malliavin bounds
obtained in [BCP20].

2More precisely, the main result of [KM02] establishes existence of error expansions reading as polynomials (null at
0) of the step but, surprisingly, with coefficients still “slightly” varying with the step. Then the authors claim that such a
dependence can be canceled by further (non-detailed) arguments.
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ρ ą $ and
ş

|x|νpdxq ă `8, then there exists a real constant C “ Cb,σ,γ,V ą 0 such that for all
n ě 1,

W1prX̄
x
Γns, νq ď C ¨ γn ϑpxq and

›

›rX̄x
Γns ´ ν

›

›

TV
ď C ¨ γn

ˇ

ˇ log
`

γn
˘ˇ

ˇϑpxq

with ϑpxq “ p1` |x|q _ V apxq with a “ 2 for } ¨ }TV and a “ 3{2 for W1.

If, furthermore, lim inf |x|Ñ`8 V pxq{|x|
r ą 0 for some r P p0, 2s (resp. lim inf

|x|Ñ`8
V pxq{ logp1 `

|x|q “ `8), then there exists a real constant C “ Cb,σ,γ,V such that for all n ě 1,
›

›rX̄x
Γns ´ ν

›

›

TV
ď C ¨ γn ϑpxq

where ϑpxq “ V 2_ 1
r pxqP L1pνq (resp. ϑpxq “ eλ0V pxqP L1pνq for some λ0P p0, λsup{2q).

The Wasserstein bound is thus proportional to γn whereas the one in Total Variation is proportional
to γn logp1{γnq or to γn under a very slight additional assumption. Note that in our proof, passing from
γn logp1{γnq to γn, without adding smoothness assumptions on b, results from a sharp combination of
Bismut-Elworthy-Li formula and Malliavin calculus (see end of Subsection 4.3). This bound in Opγnq
is optimal (in Wasserstein or in TV-distance). Actually, explicit computations can be done for the
Ornstein-Uhlenbeck process which lead to lower-bounds proportional to γn. To be more precise, let us
consider the α-confluent centered Ornstein-Uhlenbeck process defined by

dXt “ ´αXtdt` σdWt, X0 “ 0,

where α, σ ą 0. Then, there exists cα ą 0 such that, for large enough n (see Section 4.6 for a proof),

›

›rX̄Γns ´ ν
›

›

TV
ě

1

200
min

´

1,
ˇ

ˇ

ˇ
1´

σ2
n

σ2{p2αq

ˇ

ˇ

ˇ

¯

ě cαγn.

Remark 2.4. Although, this paper is mainly concerned with the multiplicative setting, it is interesting
to compare our additive result in Theorem 2.1 with the literature. First, note that such bounds have
been extensively investigated in the literature. For instance, one retrieves TV -bounds in a somewhat
hidden way in works about recursive simulated annealing (see [GM91], [MP96]). But more recently,
many papers tackled this question, in decreasing or constant step settings with a focus on the depen-
dency of the constants in the dimension. Here, we consider the first setting and the dependency in γn.
From this point of view, our TV-bounds significantly improve those obtained in [DM17] or [Dal17] (in
Op
?
γnq) and are mostly comparable to the more recent [MFWB19] for constant steps (seemingly up

to a
a

| log γ|-term) but with some very different techniques and under slightly stronger assumptions.
More precisely, in [MFWB19, Theorem 1], the authors show under standard mean-reverting assump-
tions that, the KL-divergence (resp. the TV -distance) between the Euler scheme with constant step γ
and the diffusion at time T isOpγ2T q (resp. Opγ

?
T )). Hence, under exponential convergence to equi-

librium of the diffusion, this leads to a TV-bound between the Euler scheme at time T and the invariant
distribution in Opmaxpγ

?
T , e´λT qq. An optimization of T then induces a bound in Opγ

a

| log γ|q.

2.3 Applications

The assumptions of the above theorems hold under contraction assumptions of the semi-group of the
diffusion. Here, we provide some standard settings where the result applies (proofs are postponed to
Sections 4.4 and 4.5 respectively).

B Uniformly dissipative (or convex) setting. A first classical assumption which ensures contraction
properties is the following:

pCαq ” @x, y P Rd,
`

bpxq ´ bpyq |x´ y
˘

` 1
2}σpxq ´ σpyq}

2 ď ´α|x´ y|2. (2.12)

8



In particular, if b “ ´∇U where U : Rd Ñ R is C2 and σ is constant, this assumption is satisfied as
soon as D2U ě αId where α ą 0 i.e. U is α-convex. This leads to the following result which appears
as a corollary of the above theorems (its proof is postponed in to Subsection 4.4).

Corollary 2.3. Assume pE`qσ2
0

and pSq. Assume pCαq. Then, pHWq is satisfied with ρ “ α. As a
consequence, the conclusions of Theorem 2.1 (resp. Theorem 2.2 when σ is constant) hold true.

Remark 2.5. When σ is constant and pCαq holds true, a 2-Wasserstein bound can be directly deduced
from an iterative study of Er|XΓn ´ X̄Γn |

2s (with XΓn and X̄Γn built with the same Brownian motion)
combined with expansions of the one step error similar to the ones which lead to the control of the
Lp-error in finite horizon for the Milstein scheme (which coincides with the Euler-Maruyama scheme
when σ is constant), see e.g. [Pag18, Corollary 7.2].

B Non uniformly dissipative settings. In fact, our main results are adapted to some settings where
the contraction holds only outside a compact set. The following result is a fairly simple consequence
of [Wan20] and of our main theorems (see Section 4.5 for a detailed proof).

Corollary 2.4. Assume pE`qσ2
0

and pSq (in particular σ is bounded). Assume that b is Lipschitz con-
tinuous and that some positive α and R ą 0 exist such that for all

@x, y P Bp0, Rqc,
`

bpxq ´ bpyq |x´ y
˘

ď ´α|x´ y|2.

Then, pHWq is satisfied. Hence, the conclusions of Theorem 2.1 (resp. Theorem 2.2 when σ is constant)
hold true.

Remark 2.6. It is clear that Assumption pCαq implies that
`

bpxq ´ bpyq |x ´ y
˘

ď ´α|x ´ y|2 for
all x, y, hence outside any compact set. Thus Corollary 2.4 contains Corollary 2.3. However, the first
result emphasizes that the exponent ρ in Assumption pHWq can be made explicit in the uniformly
dissipative case, opening the way to more precise error bounds.

When σ is constant, one can also deduce pHWq in the non-uniformly dissipative case from [LW16]
or [EGZ19].

2.4 Langevin Monte Carlo and multiplicative SDEs

A significant portion of the paper is devoted to the multiplicative case (In particular, a significant part
of the proof of Theorem 2.1). However, in applications and in particular in the Langevin Monte-
Carlo method (whose principle is recalled below), diffusions with constant σ are more frequently used.
Below, we show that using multiplicative SDEs may be of interest for applications to the Langevin
Monte-Carlo method. Let us recall that for a potential V : Rd Ñ R and its related Gibbs distribution

νV pdxq “ CV e
´V pxq ¨ λdpdxq with C´1

V “

ż

e´V pxq ¨ λdpdxq,

the Langevin Monte-Carlo usually refers to the numerical approximation of νV , viewed as the invariant
distribution of the additive SDE

dXt “ ´σ
2∇V pXtqdt`

?
2σdWt, (2.13)

where σ is a positive constant (usually equal to 1). We can thus note that one has a family of diffusions
sharing the same invariant distribution νV . More generally, we can show (see Theorem 2.5) that for
a given smooth application x ÞÑ σpxq from Rd to Mpd,Rq satisfying pE`qσ2

0
, we can also build an

explicit diffusion having νV as its (unique) invariant distribution.
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For a given Gibbs distribution νV , the existence of this family of diffusions opens the opportunity to
optimization problems. For instance, in the one-dimensional case (see Subsection 2.4.1), we show
on a particular example that some convenient non constant diffusions may compensate some lacks of
mean-reversion. In the same direction, we can also refer to [BJM16] where the authors show that the
optimal constant in one-dimensional weighted Poincaré inequalities can be obtained as the spectral gap
of diffusion operators with non constant σ. This toy-example and the above reference emphasize the
fact that considering non constant σ may help devising procedures whose rate of convergence can be
more precisely controlled. Using non-constant σ, i.e. non-isotropic colored noises in stochastic gradi-
ent procedures frequently appears in the abundant literature on machine learning (see e.g. [MCF15b]
or [LCCC15b] among many others). Nevertheless, investigating this problem in greater depth is be-
yond the scope of the paper and will be the object of future works.

2.4.1 A one-dimensional example

Let us consider the pseudo-Cauchy distribution with exponent κ ą 0 defined by

νκpdxq “
Cκ

p1` x2q1`κ
λpdxq “ Cκe

´V pxqλpdxq with V pxq “ p1` κq logp1` x2q ` 1.

By (2.13), the distribution νκ is the invariant distribution of the one-dimensional Brownian diffusion,

dYt “ ´p1` κq
2Yt

1` Y 2
t

dt`
?

2 dWt.

Let LY denote the infinitesimal generator of this SDE. One has

LY V pyq “ ´pV
1pyqq2 ` V 2pyq “ ´2p1` κq

p2κ` 3qy2 ´ 1

p1` y2q2
„ ´2p1` κqp2κ` 3q

1

y2
.

It is clear that the diffusion is not strongly mean-reverting since

LY V pyq Ñ 0 as |y| Ñ `8.

On the other hand, still owing to Feller’s closed formula (see e.g. [RY99, Chapter 7] [KT81, Chap-
ter 15.7, p.226]), νκ is also the invariant distribution of the Brownian diffusion

dXt “ ´κXtdt`
b

1`X2
t dWt

whose infinitesimal generator LX satisfies, when applied to the function Wαpxq “ p1 ` x2qα ` 1
(αP p0, 1s),

LXWαpxq “ ´α
`

2pκ´αq`1
˘

px2`1qα`2pκ´αqp1`x2qα´1 ď 2pκ´αq`´α
`

2pκ´αq`1
˘

px2`1qα

Hence, one can easily deduce that strong mean-reversion pSq holds for Wα iff α ă κ` 1
2 .

2.4.2 Multiplicative (multidimensional) diffusions and Langevin Monte-Carlo

The proposition below illustrates the fact, already used in various ways in the literature on stochastic
gradient descent, that the distribution CV e

´V can be attained as the invariant distribution of diffusions
with “multiplicative noise” i.e. non constant σ.
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Proposition 2.5. Let V : Rd Ñ R` be a C2 function such that ∇V is Lipschitz continuous and
e´V P L1pλdq. Let σ : Rd Ñ Mpd, q,Rq be a C1, bounded matrix valued field with bounded partial
derivatives and satisfying pE`qσ2

0
. Let pXx

t qtě0 be solution to the SDE

dXt “ bpXtqdt` σpXtqdWt, X0 “ x, (2.14)

(W “ pWtqtě0 standard Brownian motion defined on a probability space pΩ,A,Pq) with drift

bpxq “ ´1
2

˜

pσσ˚q∇V ´
”

d
ÿ

j“1

Bxipσσ
˚qij

ı

i“1:d

¸

.

Then, the distribution
νV pdxq “ CV e

´V pxq ¨ λdpdxq

is the unique invariant distribution of the above Brownian diffusion (2.14).

Proof. We need to check that g “ e´V satisfies the stationary Fokker-Planck equation L˚g “ 0 where
L˚ denotes the adjoint operator of L “ LX reading on C2 test functions g

L˚g “ ´
d
ÿ

i“1

Bxipbigq `
1
2

d
ÿ

i,j“1

B2
xixj

`

pσσ˚qijg
˘

.

Temporarily set a “ σσ˚. For every i, j P t1, . . . , du, elementary computations show that

Bxipbigq “ ´
e´V

2

«

d
ÿ

j“1

aijpBxiV qpBxjV q ´ pBxiaijqpBxjV q ´ aijpB
2
xixjV q ´ pBxiV qpBxjaijq ` B

2
xixjaij

ff

,

B2
xixj paijgq “ e´V

”

B2
xixjaij ´ pBxjaijqpBxiV q ´ pBxiaijqpBxjV q ` aijpBxiV qpBxjV q ´ aijpB

2
xixjV q

ı

.

Using that a is a symmetric matrix, one checks from these identities that L˚g “ 0 Hence νV “

CV e
´V pxq ¨λdpdxq is an invariant distribution for SDE (2.14). Uniqueness of the invariant distribution

follows from uniform ellipticity.

Remark 2.7. It is possible (see e.g. [MCF15a]) by doubling the dimension of the process to introduce
a Hamiltonian term in order to (hopefully) improve the exploration of the state space the Langevin
algorithm.

Outline of the proof. The sequel of the paper is devoted to the proof of the above theorems. The
aim of the next Section 3 is to recall or provide tools used to establish our main results: thus we recall
in Section 3.1, basic confluence properties, the Bismut-Elworthy-Li formula (BEL in what follows),
Then, in Subsection 3.2, we provide a series of strong and weak error bounds for a one-step Euler
scheme which will play a key role to deduce the results (see also Appendix A). Finally, we state
in Subsection 3.3 a general result on weak error expansions for non-smooth functions of the Euler
scheme with decreasing step under an ellipticity assumption which relies on Malliavin calculus. The
proofs of both Theorems 2.1 and 2.2 are divided in several steps and detailed in Section 4, some parts
of the proofs are postponed in the Appendices A, B, C and D (to improve te readability).

3 Toolbox and preliminary results

Throughout the paper we will use the notations

Spxq “ 1` |bpxq| ` }σpxq} and Sp,b,σ,...pxq “ C
p,b,σ,...¨Spxq (3.15)

where Cp,b,σ,... denotes a real constant depending on p, b, σ, etc, that may vary from line to line. These
dependencies will sometimes be (partially) omitted.
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3.1 BEL formula and differentiability of the diffusion semi-group

We now recall the classical Bismut-Elworthy-Li formula (see [Bis84, EL94, Cer00]), referred to as
BEL formula in what follows.

Theorem 3.1 (Bismut-Elworthy-Li formula). Assume b and σ are C1 with bounded first order partial
derivatives. Assume furthermore that pE`qσ2

0
holds. Let f : Rd Ñ R be a bounded Borel function.

Then, denote by σ´1 the right-inverse matrix of σ. Then, for every t ą 0, the mapping x ÞÑ Ptfpxq “
E fpXx

t q is differentiable and

∇xPtfpxq “ E fpXx
t q “ ∇xE

”

fpXx
t q

1

t

ż t

0

`

σpXx
s q
´1Y pxqs

˘˚
dWs

ı

(3.16)

where pY pxqs qsě0 stands for the tangent process at x of the SDE (1.1).
Moreover the above result remains true if f is a Borel function with polynomial growth.

The proof for unbounded f is postponed to Annex A.3.

Proposition 3.2. paq Let f : Rd Ñ R be a bounded Borel function. Let T ą 0. Then for every
k “ 1, 2, 3, there exist a real constant Ck depending on b and σ (and possibly on T ) such that,

@ t P p0, T s, |BxkPtfpxq| ď
Ck

σk0t
k
2

}f}sup. (3.17)

pbq Let f : Rd Ñ R be a Lipschitz continuous function. Let T ą 0. Then for every k “ 1, 2, 3, there
exist a real constant C 1k depending on b and σ (and possibly on T ) such that,

@ t P p0, T s, |BxkPtfpxq| ď
C 1k

σk0t
k´1

2

rf sLipSpxq (3.18)

The proof is postponed to Appendix A.2.

3.2 One step Lp-strong and weak error bounds for the Euler scheme

Strong error.

Lemma 3.3 (One step strong error I). Let p P r1,`8q. Assume b and σ Lipschitz continuous so that
pXx

t qtě0 is well-defined as the unique strong solution of SDE starting from xP Rd. Let pX̄γ,x
t qtPr0,γs

denote the (continuous) one step Euler scheme with step γ ą 0 starting from x at time 0.

paq For every tP r0, γs,

}Xx
t ´ X̄

γ,x
t }p ď rbsLip

ż t

0
}Xx

s ´ x}pds` rσsLip

ˆ
ż t

0
}Xx

s ´ x}
2
pds

˙1{2

.

pbq In particular, if σpxq “ σ is a constant matrix,

}Xx
t ´ X̄

γ,x
t }p ď rbsLip

ż t

0
}Xx

s ´ x}pds.

Lemma 3.4 (One step strong error II). Assume b and σ Lipschitz continuous. Let pP r1,`8q and let
γ̄ ą 0. paq The diffusion process pXx

t qtě0 satisfies for every tP r0, γ̄s

12



}Xx
t ´ x}p ď Sd,p,b,σ,γ̄pxq

?
t (3.19)

where the underlying real constant Cd,p,b,σ,γ̄ dependends on b and σ only through rbsLip, rσsLip. As for
the one step Euler scheme pX̄γ,x

t qtě0 with step γ P p0, γ̄s, we have

@ tP r0, γs, }X̄γ,x
t ´ x}p ď Sd,p,b,σ,γ̄pxq

?
t. (3.20)

pbq The one step strong error satisfies, for every γ P p0, γ̄s and every tP r0, γs,

}Xx
t ´ X̄

γ,x
t }p ď Sd,p,b,σ,γ̄pxq

ˆ

2
3 rbsLip

?
t`

rσsLip
?

2

˙

t. (3.21)

pcq In particular, if σpxq “ σ ą 0 is constant, then, for every γ ą 0 and every tP r0, γs,

}Xx
t ´ X̄

γ,x
t }p ď Sd,p,b,σ,γ̄pxqt

3{2. (3.22)

Both proofs are postponed to the Appendix A.1.

Weak error. We first establish a weak error bound for smooth enough functions (C3, see below)
with a control by its fist three derivatives. Then we apply this to the semigroup Ptf where f is simply
Lipschitz to take advantage of the regularizing effect of the semi-group.

Proposition 3.5 (Weak error for smooth functions). Assume b and σ are C2 with bounded first and
second order derivatives. Let γ̄ ą 0. Let g : Rd Ñ R be a three times differentiable function.

paq There exists a real constant Cd,b,σ,γ̄ ą 0 such that, for every γ P p0, γ̄s,

|E rgpX̄x
γ qs ´ E rgpXx

γ qs| ď Sd,b,σ,γ̄pxq
3γ2Φ1,gpxq (3.23)

where Φ1,gpxq “ max
´

|∇gpxq|, }D2gpxq},
›

›

›
supξPpXx

γ ,X̄
x
γ q
}D2gpξq}

›

›

›

2
,
›

›

›
supξPpx,Xx

γ q
}D3gpξq}

›

›

›

4

¯

.

pbq If σpxq “ σ is constant, the inequality can be refined for every γ P p0, γ̄s as follows

|E rgpX̄x
γ qs ´ E rgpXx

γ qs ´
γ2

2 Tpg, b, σqpxq|

ď γ2Sd,b,σ,γ̄pxq
2|∇gpxq| ` γ5{2Φ2,gpxqSd,b,σ,γ̄pxq

3 (3.24)

where
Tpg, b, σqpxq “

ÿ

1ďi,jďd

B2
xixjgpxq

`

pσσ˚qi¨|∇bj
˘

pxq

and Φ2,gpxq “ max
´

}D2gpxq},
›

›

›
sup

ξPrx,Xx
γ q

}D3gpξq}
›

›

›

4

¯

.

Proof. paq By the second order Taylor formula, for every y, z P Rd,

gpzq ´ gpyq “ p∇gpyq|z ´ yq `
ż 1

0
p1´ uqD2g

`

uz ` p1´ uqy
˘

dupz ´ yqb2

where, for a dˆ d-matrix A and a vector u P Rd, Aub2 “ pAu|uq. For a given x P Rd, it follows that

gpzq ´ gpyq “ p∇gpxq|z ´ yq ` p∇gpyq ´∇gpxq|z ´ yq `
ż 1

0
p1´ uqD2g

`

uz ` p1´ uqy
˘

pz ´ yqb2du

“ p∇gpxq|z ´ yq `
`

D2gpxqpy ´ xq|z ´ yq

`

ż 1

0
p1´ uqD3gpuy ` p1´ uqxqpy ´ xqb2pz ´ yqdu

`

ż 1

0
p1´ uqD2g

`

uz ` p1´ uqy
˘

dupz ´ yqb2.
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Applying this expansion with y “ Xx
γ and z “ X̄x

γ , this yields:

E rgpX̄x
γ q ´ gpX

x
γ qs “ p∇gpxq|E rX̄x

γ ´X
x
γ sq

looooooooooooomooooooooooooon

“:A1

`E
“

pD2gpxqpXx
γ ´ xq|X̄

x
γ ´X

x
γ q
‰

loooooooooooooooooooomoooooooooooooooooooon

“:A2

` E
„
ż 1

0
p1´ uqD3gpuXx

γ ` p1´ uqxqpX
x
γ ´ xq

b2pX̄x
γ ´X

x
γ qdu



looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

“:A3

`

ż 1

0
p1´ uqE

“

D2g
`

uX̄x
γ ` p1´ uqX

x
γ

˘

pX̄x
γ ´X

x
γ q
b2
‰

du
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

“:A4

.

Let us inspect successively the four terms of the right-hand member.
Term A1. First,

E rpX̄x
γ ´X

x
γ qis “ E

”

ż γ

0

`

bpXsq ´ bpxq
˘

i
ds
ı

“

ż γ

0

ż s

0
E rLbipXx

uqsduds, (3.25)

Since b has bounded partial derivatives, |Lbipxq| ď Cb,σ
`

|bpxq| ` }σpxq}2
˘

so that

|p∇gpxq|E rX̄x
γ ´X

x
γ sq| ď |∇gpxq||E rX̄x

γ ´X
x
γ s| ď Cb,σΨpxq|∇gpxq|γ2

with
Ψpxq “ sup

0ďtďγ̄
E r|bpXx

t q| ` }σpX
x
t q}

2s. (3.26)

Now note that

Ψpxq ď
`

|bpxq| ` 2 }σpxq}2
˘

` rbsLip sup
0ďtďγ̄

}Xx
t ´ x}1 ` 2 rσs2Lip sup

0ďtďγ̄
}Xx

t ´ x}
2
2

ď
`

|bpxq| ` 2}σpxq}2
˘

` rbsLipCd,b,1,σ,γ̄S1pxq ` rσs
2
LipCd,b,2,σ,γ̄Spxq

2

ď Sd,b,σ,γ̄pxq
2 (3.27)

(where real constants Cd,b,p,σ,γ̄ come from Lemma 3.4).
For the sake of simplicity, we omit the dependence in x in the notations of the sequel of the proof.

Term A2. Temporary denoting by u1, . . . , ud the components of a vector u of Rd, we have for every
i, j P t1, . . . , du,

|A2| ď
ÿ

1ďi,jďd

ˇ

ˇBxixjgpxq
ˇ

ˇ

ˇ

ˇE rpXγ ´ xqipXγ ´ X̄γqjs
ˇ

ˇ

with E rpXγ ´ xqipXγ ´ X̄γqjs “ ´E rpXγ ´ X̄γqipXγ ´ X̄γqjs ` E rpX̄γ ´ xqipXγ ´ X̄γqjs.

By Lemma 3.4pcq, we deduce the existence of a positive constant Cb,σ,γ̄ such that

|E rpXγ ´ X̄γqipXγ ´ X̄γqjs| ď E r|Xγ ´ X̄γ |
2s ď Sb,σ,γ̄pxq

2γ2.

On the other hand,

pX̄γ ´ xqipXγ ´ X̄γqj “ pγbpxq ` σpxqWγqi

ˆ
ż γ

0

`

bpXsq ´ bpxq
˘

ds`

ż γ

0

`

σpXsq ´ σpxq
˘

dWs

˙

j

,
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hence (using that the increments of the Brownian Motion are independent and centered),

E
”

pX̄γ ´ xqipXγ ´ X̄γqj

ı

“ γ bipxqE
”

ż γ

0

ż s

0
LbjpXuq

ı

du` E
”

ż γ

0
pσpxqWsqipbpXsq ´ bpxqqjds

ı

` E
„

pσpxqWγqi

´

ż γ

0
pσpXsq ´ σpxqqdWs

¯

j



. (3.28)

By the same argument used to upper-bound A1, we first get

γ
ˇ

ˇ

ˇ
bipxqE

”

ż γ

0

ż s

0
LbjpXuq

ı

du
ˇ

ˇ

ˇ
ď Cb,σΨpxq|bpxq|γ3,

where Ψ is defined by (3.26). Then, it follows from Cauchy-Schwarz inequality and (3.19) that

E r|pσpxqWsqipbpXsq ´ bpxqqj |s ď
›

›

›

ÿ

1ďjďq

σijpxqW
j
s

›

›

›

2
}pbpXsq ´ bpxqqj}2

ď |σi¨pxq|
?
s rbsLip}Xs ´ x}2 ď rbsLip}σpxq}Sd,2,b,σ,γ̄pxqs,

Hence
ˇ

ˇ

ˇ

ˇ

E
„
ż γ

0
pσpxqWsqipbpXsq ´ bpxqqjds

ˇ

ˇ

ˇ

ˇ

ď Cd,2,b,σ,γ̄rbsLip}σpxq}Spxqγ
2.

For the third term in the right hand side of (3.28), we deduce from Itô’s isometry that

E
„

pσpxqWγqi

´

ż γ

0
pσpXsq ´ σpxqqdWs

¯

j



“

d
ÿ

k“1

ż γ

0
E rσi,kpxqpσjkpXsq ´ σjkpxqsds

“

d
ÿ

k“1

σikpxq

ż γ

0

ż s

0
E rLσjkpXuqsduds.

Since the partial derivatives of σ are bounded, we again deduce that this term is boundedC 1b,σ}σpxq}Ψpxqγ
2.

Finally, collecting the above bounds yields

|A2| ď Cb,σ,γ̄max
`

}D2gpxq}, |∇gpxq|
˘

max
`

Spxq,Ψpxq
˘

p1` }σpxq} ` γ|bpxq|qγ2.

Now, we focus on A3:

|A3| ď
1
2E

«

sup
ξPpx,Xx

γ q

}D3gpξq}|Xx
γ ´ x|

2|X̄γ,x
γ ´Xx

γ |

ff

.

By (three fold) Cauchy-Schwarz inequality and Lemma 3.4pbq

|A3| ď
1
2

›

›

›
sup

ξPpx,Xx
γ q

}D3gpξq}
›

›

›

4
}Xx

γ ´ x}
2
4}X̄

γ,x
γ ´Xx

γ }4

ď 1
2

›

›

›
sup

ξPpx,Xx
γ q

}D3gpξq}
›

›

›

4
Cd,4,b,σ,γ̄Spxq

3γ2. (3.29)

Note that the power 3 in b (and σ) comes from this term. To conclude the proof, let consider A4:

|A4| ď
1
2

›

›

›
sup

ξPpXγ,x
γ ,X̄γ,x

γ q

}D2gpξq}
›

›

›

2

›

›X̄γ,x
γ ´Xx

γ

›

›

2

4
ď

C1d,4,b,σ,γ̄
2

›

›

›
sup

ξPpXx
γ ,X̄

x
γ q

}D2gpξq}
›

›

›

2
Spxq2γ2.

pbq First note that the third term in the right hand side of (3.28) vanishes since σ is constant. Secondly,
note that using the improved bound for }X̄γ,x

γ ´Xx
γ }4 (in γ3{2) from Lemma 3.4pcq in that setting, γ2

can be replaced in the above bound for |A4| by γ5{2.
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Let us focus now on the second term in the right hand side of (3.28). We write
ż γ

0
pσWsqi

`

bjpX
x
s q ´ bjpxq

˘

ds “

ż γ

0
pσWsqi

ż s

0
LbjpXx

uqduds

`

ż γ

0
pσWsqip∇bjpxq|σWsqds`

ż γ

0
pσWsqi

ż s

0

`

∇bjpXx
uq ´∇bjpxq|σdWu

˘

ds.

We inspect these three terms. Using that W has independent increments, we get

E
“

ż γ

0
pσWsqi

ż s

0
LbjpXx

uqduds
‰

“

ż γ

0

ż s

0
E
“

pσWuqiLbjpXx
uq
‰

duds

so that, by Cauchy-Schwarz inequality,
ˇ

ˇ

ˇ

ż γ

0

ż s

0
E
“

pσWuqiLbjpXx
uq
‰

duds
ˇ

ˇ

ˇ
ď

ż γ

0

ż s

0
}pσWuqi}2}LbjpXx

uq}2duds

ď C}∇bj}sup,}σ}

`

1` sup
uPp0,γq

}bpXx
uq}2

˘

γ5{2

ď C 1b,}σ}
`

1` |bpxq|
˘

γ5{2.

On the other hand, noting pσσq˚i. “ rpσσq
˚
iks1ďkďd,

E
ż γ

0
pσWsqip∇bjpxq|σWs

˘

ds “
γ2

2

`

pσσ˚qi¨|∇bjq

Finally, using Itô’s isometry and the boundedness of second partial derivatives of b, we get
ˇ

ˇ

ˇ
E
ż γ

0
pσWsqi

ż s

0

`

∇bjpXx
uq ´∇bjpxq|σdWu

˘

ds
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż γ

0
E
”

pσWsqi

ż s

0

`

∇bjpXx
uq ´∇bjpxq|σdWu

˘

ı

ds
ˇ

ˇ

ˇ

ď Cb,σ

ż γ

0

ż s

0
}Xx

u ´ x}2 du ds ď C 1b,σγ
5{2Spxq

which completes the proof. l

Combining the above results with Proposition 3.2pbq and Lemma A.1 yields the following precise
error bound for the one step weak error.

Proposition 3.6 (One step weak error at time t). Assume b is C3 and σ is C4 with bounded existing
partial derivatives and |b|2 ` }σ}2 ď C ¨ V . Assume that pE`qσ2

0
holds. Let T, γ̄ ą 0.

Then, there exists a positive constant C “ Cb,σ,σ0,T,γ̄,V
such that, for every Lipschitz continuous

function f and every tP p0, T s,

@ γ P p0, γ̄s, |E rPtfpX̄γ,x
γ qs ´ E rPtfpXx

γ qs| ď Crf sLipγ
2t´1V 2pxq.

`

1` |bpxq|3 ` }σpxq}3
˘

.

Proof. We apply Proposition 3.5paq to gt “ Ptfpxq with t ą 0. It follows from Proposition 3.2pbq
(see (3.18)) that the function Φ1,g in (3.23) satisfies

Φ1,gtpxq ď Cb,σ,σ0

rf sLip

t
max

´

Spxq,
›

› sup
ξPpXx

γ ,X̄
x
γ q

Spξq
›

›

2
,
›

› sup
ξPpx,Xx

γ q

Spξq
›

›

4

¯

ď Cb,σ,σ0

rf sLip

t
V

1
2 pxq

owing to Lemma A.1 in Appendix A and where we used that S ď Cb,σV
1
2 . Consequently

|E rPtfpX̄γ,x
γ qs ´ E rPtfpXx

γ qs| ď Crf sLipγ
2 p1` |bpxq|3 ` }σpxq}3

˘

V
1
2 pxqt´1

ď Crf sLipγ
2t´1V 2pxq. l
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3.3 Domino-Malliavin for non smooth functions

For the control in variation distance, we will need a weak error estimate for smooth Borel functions of
the one step Euler scheme starting from a “non-degenerate” random variable to produce a “regulariza-
tion form the past”. It mainly relies on a Malliavin calculus approach. In the theorem below phnqně1

denotes a non-increasing step sequence. Set tn “
řn
k“1 hk (and t0 “ 0) in what follows.

Theorem 3.7 (Domino-Malliavin). Assume that σ is bounded, that b has sublinear growth: |bpxq| ď
Cp1 ` |x|q. Assume that b and σ are C6-functions with bounded partial derivatives. Then, for every
ε ą 0, T ą 0 and h̄ ą 0, there exists CT,h̄,ε ą 0 such that for any h1 P p0, h̄q and any n ě 1 satisfying
T
2 ď tn ď T and any bounded Borel function f : Rd Ñ R,

|P̄h1 ˝ ¨ ¨ ¨ ˝ P̄hn´1 ˝ pPhn ´ P̄hnq ˝ fpxq| ď CT,h̄,εp1` |x|
8q}f}suph

2´ε
1 . (3.30)

Remark 3.1. With further technicalities, it seems that we could obtain 1 ` |x|6 instead of 1 ` |x|8.
Nevertheless, since the degree of the polynomial function involved in the result is not fundamental
for our paper, we did not detail this point (more precisely, the improvement could be obtained by
separating drift and diffusion components in the Taylor formula (C.44).

4 Proof of the main theorems

Before proving Theorems 2.1pbq and 2.2pbq, let us make the connection between pHWq and its TV-
counterpart for uniformly elliptic diffusions. Let us introduce the following TV-contraction assumption

pHTVq: There exist ρ ą 0, such that, for every t0ą0, there exists a real constant c “ ct0ą0 satisfying

@ t ě t0, @x, yP Rd, }rXx
t s ´ rX

y
t s}TV ď c|x´ y|e´ρt.

The following proposition show that pHTVq holds true under the assumptions of our main theorems.

Proposition 4.1. Suppose that b and σ are C1 with bounded partial derivatives and that pE`qσ2
0

is in
force. If pHWq holds with some ρ ą 0, then pHTVq with the same ρ as in pHWq.

Proof. Owing to Remark 2.2 (third item), we may assume that pHWq holds starting from t “ 0. Let
t0 ą 0 being fixed. Let t ě t0 and let f : Rd Ñ R be a bounded Borel function. By the Markov
property,

E rfpXx
t q ´ fpX

y
t qs “ E rPt0fpXx

t´t0q ´ Pt0fpX
y
t´t0

qs.

By BEL identity (see Proposition 3.1), for any z1 and z2 P Rd,

Pt0fpz2q ´ Pt0fpz1q “
`

∇Pt0fpξq | z2 ´ z1

˘

“
1

t0
E
„

fpXtq

´

ż t0

0
pσ´1pXξ

s qY
pξq
s q˚dWs | z2 ´ z1

¯



,

where ξ P pz1, z2q (geometric inetrval) and pY pξqs qsě0 denotes the tangent process of pXξ
s q. But since

b and σ have bounded derivatives and pY pxqs qsě0 starts from Id, a Gronwall argument (see [Kun97])
shows that

sup
ξPRd, sPr0,t0s

E
›

›Y pξqs

›

›

2
ă `8.

By a standard martingale argument and the ellipticity condition pE`qσ2
0
, we deduce that x ÞÑ Pt0fpxq

is Lipschitz continuous and that
rPt0f sLip ď C0}f}8.
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Then, it follows from the Kantorovich-Rubinstein representation of the L1-Wasserstein distance and
the definition of total variation distance that

}Xx
t ´X

y
t }TV ď C0W1pX

x
t´t0 , X

y
t´t0

q.

But under pHWq it follows from what precedes, for every t ě t0,

W1pX
x
t´t0 , X

y
t´t0

q ď ce´ρpt´t0q,

for some real constant c ą 0. Hence, there exists a constant C ą 0 such that, for every t ě t0,

}Xx
t ´X

y
t }TV ď C|x´ y|e´ρt. l

The starting point of the proofs of both claims of the main theorem is to decompose the error using
a domino strategy. Let us provide the heuristic by only considering a given function f : Rd Ñ R
(typically, a bounded Borel function when dealing with the total variation distance or a 1-Lipschitz
continuous function if dealing with the L1- Wasserstein distance W1). In this case, we can write:

ˇ

ˇE fpXx
Γnq ´ E fpX̄x

Γnq
ˇ

ˇ ď

n
ÿ

k“1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ.

4.1 Proof of Theorem 2.1pbq (Total variation distance)

Let γ̄ “ }γ} “ supně1 γn. Let T ą 2γ̄ be fixed. We may assume without loss of generality (w.l.g.)
that Γn ą 2T (3). Furthermore, under pE`qσ2

0
, pHTVq holds for any t0 ą 0 owing to Proposition 4.1,

so we may set t0 “ γ̄ throughout the proof.
For the TV distance, the idea is then to separate this sum into two partial sums, namely,

ˇ

ˇE fpXx
Γnq ´ E fpX̄x

Γnq
ˇ

ˇ ď

NpΓn´T q
ÿ

k“1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ

`

n
ÿ

k“NpΓn´T q`1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ.

where f : Rd Ñ R is bounded Borel function.
These two terms, say pAq and pBq respectively, correspond to two different types of weak errors:

first the “ergodic term” where the exponential contraction of the semi-group can be exploited and weak
error results for smooth functions (here PΓn´Γk

f with Γn´Γk ě T ) can be used (see Proposition 3.6),
then the second term where the smoothing effect of the operator PΓn´Γk

(Γn´Γk P r0, T s) is no longer
smooth enough leading us to establish a one step weak error expansion for bounded Borel functions
(see Theorem 3.7).
Term pAq. Let kP t1, . . . , NpΓn ´ T qu. Then Γn ´ Γk ą T and

|Pγk ˝ PΓn´Γk
fpxq ´ P̄γk˝PΓn´Γk

fpxq|

“
ˇ

ˇPγk ˝ PT
2
˝ PΓn´Γk´T {2fpxq ´ P̄γk ˝ PT

2
˝ PΓn´Γk´T {2fpxq

ˇ

ˇ

(4.31)

“
ˇ

ˇEPΓn´Γk´T {2f
`

Ξxk
˘

´ EPΓn´Γk´T {2f
`

Ξ̄xk
˘
ˇ

ˇ

ď ce´ρpΓn´Γk´T {2q}f}supE r|X
Ξxk
T
2

´X
Ξ̄xk
T
2

|s (4.32)

3When Γn ď 2T , we can artificially upper-bound
ˇ

ˇE fpXx
Γnq ´ E fpX̄x

Γnq
ˇ

ˇ by 2 }f}supγ
´1
Np2T qγn.
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where we applied pHTVq with t0 “ γ̄ at time t “ Γn ´ Γk ´
T
2 ě

T
2 geγ̄ “ t0, the bounded function

f and Ξ̄xk and Ξxk are any random vectors such that Ξxk
d
“ X

Xx
γk

T
2

and Ξ̄xk
d
“ X

X̄x
γk

T
2

(having in mind that

Xx
t denotes the solution of (SDE) (1.1) starting from x at time t).

Thus, it follows from the definition of the L1-Wasserstein distance that
ˇ

ˇPγk ˝ PΓn´Γk
fpxq ´ P̄γk ˝ PΓn´Γk

fpxq
ˇ

ˇ ď Cρ,T e
´ρpΓn´Γkq}f}supW1

`

Pγk ˝ PT
2
, P̄γk ˝ PT

2

˘

with Cρ,T “ ct0e
ρT {2. On the one hand, the Kantorovich-Rubinstein (see [Vil09]) representation of

the L1-Wasserstein distance says that

W1pPγk ˝ PT
2
, P̄γk ˝ PT

2
q “ sup

rgsLipď1
E
“

g
`

X
Xx
γk

T
2

˘

´ g
`

X
X̄x
γk

T
2

˘‰

“ sup
rgsLipď1

E
“

PT
2
gpXx

γk
q ´ PT

2
gpX̄x

γk

˘‰

Now, it follows from Proposition 3.6 applied with t “ T {2 that

ˇ

ˇE
“

PT
2
gpXx

γk
q ´ PT

2
gpX̄x

γk
q
‰ˇ

ˇ ď rgsLip
2

T
Cb,σ,σ0,T

γ2
kV

2pxq ď C 1b,σ,σ0,T,}γ}
γ2
kV

2pxq

so that W1pPγk ˝ PT
2
, P̄γk ˝ PT

2
q ď C 1b,σ,σ0,T,}γ}

γ2
kV

2pxq. Hence

|Pγk ˝ PΓn´Γk
fpxq ´ P̄γk ˝ PΓn´Γk

fpxq| ď Cb,σ,σ0,T,}γ}
e´ρpΓn´Γkq}f}supγ

2
kV

2pxq. (4.33)

Finally, integrating with respect to P̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
yields

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ ď Cb,σ,σ0,T,}γ}
e´ρpΓn´Γkq}f}supγ

2
k sup
`ě0

EV 2pX̄x
Γ`
q

ď Cb,σ,σ0,T,γ
e´ρpΓn´Γkq}f}supγ

2
kV

2pxq

owing to Proposition D.1paq (and where the constant C... may vary from line to line). As $ ă ρ,
Lemma B.1piq implies the existence of a constant Cγ ą 0 such that

NpΓn´T q
ÿ

k“1

γ2
ke
´ρpΓn´Γkq ď Cγ ¨ γn

so that |pAq| ď C
p4q
b,σ,σ0,T,γ

}f}supγnV
2pxq.

Term pBq. Let us deal now with the the second term, when k P tNpΓn ´ T q ` 1, . . . , nu. We assume
that n is large enough so that Γn ą 2T and temporarily set ϕk “ PΓn´Γk´T {2f . We apply Theorem 3.7
with t` “ ΓNpΓn´2T q`` ´ ΓNpΓn´2T q``, ` ě 1, 2T (instead of T ), h̄ “ γ̄ and ε P p0, 2q. Owing to the
very definition of Nptq and the fact that γ` ď γ̄ for every ` ě 1, one checks that

Γk´ΓNpΓn´2T q`1 ď Γn´pΓn´2T q “ 2T and Γk´ΓNpΓn´2T q`1 ě Γn´T´pΓn´2T`}γ}q ě T´γ̄ ě T {2.

Hence, it follows form (3.30) that
ˇ

ˇP̄γNpΓn´2T q`1
˝ ¨ ¨ ¨ ˝ P̄γk´1

˝ pPγk ´ P̄γkqϕkpxq
ˇ

ˇ ď Cεp1` |x|
8qγ2´ε

NpΓn´2T q`1}ϕk}sup.

As a consequence
ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγkpxq ´ P̄γkqϕkpxq

ˇ

ˇ ď Cε sup
`ě1

Ep1` |X̄x
Γ`
|8qγ2´ε

NpΓn´2T q`1}f}sup.
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Finally as the step sequence satisfies $ ă ρ ă `8 , γNpΓn´2T q`1 “ Opγnq (see Lemma B.1piiq),
one has

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ Pγk´1
˝ pPγk ´ P̄γkqϕkpxq

ˇ

ˇ ď C 1γ,ε sup
`ě1

Ep1` |X̄x
Γ`
|8qγ2´ε

k }f}sup.

If cV,r “ lim inf |x|Ñ`8
V pxq
|x|r ą 0, it follows from Proposition D.1paq that

sup
`ě1

E
`

1` |X̄x
Γ`
|8
˘

ď c1
V,r

sup
`ě1

E
`

1` V 8{rpX̄x
Γ`
q
˘

ď C 1
V,r, γ

`

1` V pxq8{r
˘

. (4.34)

Now, by the definition of NpΓn ´ T q and using again that $ ă ρ, one has

n
ÿ

k“NpΓn´T q`1

γ2´ε
k ď γ1´ε

NpΓn´T q`1

n
ÿ

k“NpΓn´T q`1

γk ď γ1´ε
NpΓn´T q

T ď C 1}γ}T ¨ γ
1´ε
n .

Applying pHTVq, Proposition 4.1 (which allows to choose t0 “ γ1 ą 0) and using that ν has a finite
first moment, we have for the diffusion and for every n ě 1,

dTV prX
x
Γns, νq “

ż

νpdyqdTV prX
x
Γns, rX

y
Γn
sq ď c}γ} νp|x´ ¨|qe

´ρΓn

ď c}γ} νp|x´ ¨|q
`

|x| ` νp| ¨ |q
˘

e´ρΓn

where we used that ν is invariant. Collecting all what precedes, we get for large enough n,

dTV prX̄
x
Γns, νq ď dTV prX

x
Γns, νq ` dTV prX̄

x
Γns, rX

x
Γnsq ď Cb,σ,}γ}ψpxq

`

e´ρΓn ` γ1´ε
n ` γn

˘

ď Cb,σ,}γ}ϑpxqγ
1´ε
n

with ϑpxq “ Cb,σ,}γ}V
8{rpxq (since V 8{r dominates both V 2 and |x|) and where we used Lemma B.1

to control e´ρΓn by γn. As dTV is bounded by 2 this holds for every n by changing the constant
Cb,σ,}γ} if necessary.

If lim inf |x|Ñ`8 V pxq{ logp1 ` |x|q “ `8, it follows from Proposition D.1pbq that 1 ` |x|8 ď

c
V,λ0

eλ0V pxq for any fixed λ0 P p0, λsups and that supně1 E e
λ0V pX̄x

Γn
q
ď Cb,σ,λ0,γe

λ0V pxq so that one
may set ϑpxq “ eλ0V pxq since this function also dominates V pxq and |x|.

4.2 Proof of Theorem 2.1paq (Wasserstein distance)

Let f : Rd Ñ R be a Lipschitz continuous function with coefficient rf sLip. The idea is now to separate
this sum into three parts, namely, for a given T ą 0 (4).

ˇ

ˇE fpXx
Γnq ´ E fpX̄x

Γnq
ˇ

ˇ ď

NpΓn´T q
ÿ

k“1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ

`

n´1
ÿ

k“NpΓn´T q`1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ

`
ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γn´1 ˝ pPγn ´ P̄γnq ˝ fpxq
ˇ

ˇ.

4Once again, we assume w.l.g. that Γn ě T keeping in mind that if n P t1, . . . , NpT qu, |E fpXx
Γnq ´ E fpX̄x

Γnq| can
be artificially controlled (for instance) by Crf sLipγ

´1
NpT qγn with C “ 2

`

1` supně1 Er|X
x
Γn |s ` supně1 Er|X̄

x
Γn |s

˘
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The three terms on the right hand side of the inequality denoted from the left to the right paq, pbq and pcq
respectively, contain three different types of weak errors: respectively, the “ergodic term” paq where
the exponential contraction of the semi-group can be exploited, the “semi-regular weak error term”
pbq, where the smoothing effect of the operator PΓn´Γk

(Γn ´ Γk P rγn, T s) helps us in controlling the
weak error related to the function x ÞÑ PΓn´Γk

fpxq and finally, the “less smooth term” pcq where the
weak error applies directly on f . The control of each term then relies on quite different arguments.

– Term pcq: first, it follows from Lemma 3.4pbq with p “ 2 and γ̄ “ }γ} that
ˇ

ˇPγnfpxq ´ P̄γnfpxq
ˇ

ˇ ď rf sLip}X
x
γn ´ X̄

x
γn}2 ď rf sLipγnΨ1pxq,

where Ψ1pxq “ Cd,b,σ,}γ}p1` |bpxq| ` }σpxq}q ď CV,d,b,σ,}γ} ¨ V pxq with C “ CV,d,b,σ,}γ} ą 0.
Consequently, it follows from Proposition D.1paq

|pcq| ď C rf sLipγnEV pX̄x
Γn´1

q ď C rf sLipγn sup
kě0

EV pX̄x
Γk
q ď C rf sLipγnV pxq

where CV,d,b,σ,γ ą 0 (may vary in the above inequalities).
– Term pbq. Let k P tNpΓn ´ T q ` 1, n ´ 1u. It follows from Proposition 3.6 applied with

t “ Γn ´ Γk and γ̄ “ }γ} so that γk ď γ̄ that

ˇ

ˇPγk ˝ PΓn´Γk
fpxq ´ P̄γk ˝ PΓn´Γk

fpxqq ď Cb,σ,}γ} rf sLip
γ2
k

Γn ´ Γk
V 2pxq

which in turn implies ( up to an update of the real constant Cb,σ,}γ})

|pbq| ď Cb,σ,}γ} V
2pxq

n´1
ÿ

k“NpΓn´T q`1

γ2
k

Γn ´ Γk
.

– Term paq. We adopt a strategy very similar to that of the proof of Theorem 2.1pbq, namely we get a
variant of (4.32) where }f}sup is replaced by rf sLip i.e., for n large enough,

ˇ

ˇPγn ˝ PΓn´Γk
fpxq ´ P̄γn ˝ PΓn´Γk

fpxq
ˇ

ˇ ď ce´ρpΓn´Γk´T {2qrf sLipE
“

X
Ξxk
T
2

´X
Ξ̄xk
T
2

ˇ

ˇ

owing to pHWq applied at time Γn ´ Γk ´ T {2 where Ξxk
d
“ X

Xx
γk

T
2

and Ξ̄xk
d
“ X

X̄x
γk

T
2

. Finally, still

following the lines of the proof of Theorem 2.1pbq, we obtain for a constant Cb,σ,σ0,T,γ
ą 0

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ ď Cb,σ,σ0,T,γ
e´ρpΓn´Γkqrf sLipγ

2
kV

2pxq.

On the other hand, applying pHWq, we have for the diffusion

W1

`

rXx
Γns, ν

˘

“

ż

Rd
νpdyqW1

`

rXx
Γns, rX

y
Γn
s
˘

ď c νp|x´ ¨|qe´ρΓn ď c
`

|x| ` νp| ¨ |q
˘

e´ρΓn

so that we obtain:

W1prX̄
x
Γns, νq ď Cb,σ,V,T,}γ}ϑpxq

¨

˝e´ρΓn `

NpΓn´T q
ÿ

k“1

γ2
ke
´ρpΓn´Γkq `

n´1
ÿ

k“NpΓn´T q`1

γ2
k

Γn ´ Γk
` γn

˛

‚
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with ϑpxq “ p|x| ` 1q_V 2pxq. As $ ă ρ, e´ρΓn `
ř

1ďkďNpΓn´T q
γ2
ke
´ρpΓn´Γkq ď C γn like in the

proof of claim pbq. As for the last sum, one proceeds as follows: still using $ ă `8, one checks that
supně1

γn
γn`1

ă `8 so that, for k ď n´ 1,

Γn ´ Γk´1

Γn ´ Γk
“

Γn ´ Γk ` γk
Γn ´ Γk

“ 1`
γk

Γn ´ Γk
ď 1`

γk
γk`1

ď Cγ .

Consequently (still with Cγ ą 0 a real constant that may vary from line to line),

n´1
ÿ

k“NpΓn´T q`1

γ2
k

Γn ´ Γk
ď Cγ

n´1
ÿ

k“NpΓn´T q`1

γ2
k

Γn ´ Γk´1

ď Cγ ¨ γNpΓn´T q

ż Γn´1

ΓNpΓn´T q

1

Γn ´ t
dt

ď Cγ ¨ γn log
´

Γn´ΓNpΓn´T q
γn

¯

ď Cγγn log
´

T`}γ}8
γn

¯

(4.35)

where we used in the second line that pγnqně1 is non-increasing and a classical comparison argument
between sums and integrals and in the third line Lemma B.1piiq. This completes the proof.

4.3 Proof of Theorem 2.2

We will follow the global structure of the proof of Theorem 2.1paq for both distances. However, taking
advantage of the fact that when σ is constant the distributions of the diffusions and the Euler scheme
on finite horizon T are equivalent, we will replace Theorem 3.7 by a more straightforward and less
technical Pinsker’s inequality, as developed in the next proposition.

Proposition 4.2. If b is Lipschitz continuous, σpxq “ σ P GLpd,Rq is constant (so that it satis-
fies pE`qσ2

0
). Then there exists a real constant κσ ą 0 solution to ueu “ σ0

}σ} and a real constant

C “ Cb,σ such that, for every γ P
`

0, κσ
rbsLip

˘

and every bounded Borel function f : Rd Ñ R,

ˇ

ˇEP fpX
x
γ q ´ EP fpX̄

γ,x
γ q

ˇ

ˇ ď }f}supC ¨ V pxq
1{2γ.

Proof. Set

Qγ “ E
´

´

ż ¨

0
σ´1pbpXx

s q ´ bpxqqdWs

¯

γ
¨ P “ Lγ ¨ P

where E denotes the Doléans exponential.
First we prove that Qγ is a true probability measure.

|Xx
t ´ x| ď

ż t

0
|bpXx

s q ´ bpxq|ds` |bpxqt` σWt|

ď rbsLip

ż t

0
|Xx

s ´ x|ds` |bpxq|t` σW
‹
t ,

where W ‹
t “ sup0ďsďt |Ws|. By Gronwall’s lemma,

|Xx
t ´ x| ď erbsLipt

`

|bpxq|t` σW ‹
t

˘

so that
ż γ

0
|Xx

t ´ x|
2dt ď e2rbsLipγ

ż γ

0

`

|bpxq|t` σW ‹
t

˘2
dt

ď e2rbsLipγ
´

|bpxq|2p1` 1{ηq
γ3

3
` }σ}2p1` ηqγpW ‹

γ q
2
¯

,
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where the second inequality holds for any η ą 0. By Novikov’s criterion (see e.g. [RY99]), it easily
follows that Qγ is a probability measure if for some small enough η ą 0,

E exp
´

1
2

rbs2Lip

σ2
0
e2rbsLipγ}σ}2p1` ηqγpW ‹q2γ

¯

ă `8.

The Brownian motions W 1, ¨ ¨ ¨ ,W d being independent and pW ‹
γ q

2 ď
`

pW 1q‹γ

˘2
` ¨ ¨ ¨ `

`

pW dq‹γ

˘2

it is suffices (in fact equivalent) to show that

E exp
´

1
2 rbs

2
Lipe

2rbsLipγ }σ}
2

σ2
0
p1` ηqγppW 1q‹γq

2
˘

ă `8.

Now, it is classical background that

E eλpW
‹q2t ď E eλpW tq

2
` E eλp´W q

2
t

where Bt “ sup0ďsďtBs. As ´W is a standard Brownian motion and W t
L
„
?
t|B1|, we derive that,

if λt ă 1
2 , then

E eλpW
‹q2t ď 2E eλtB

2
1 “

2
?

1´ 2λt
ă `8

Consequently, the above measure Qγ is a probability if

rbs2Lipγ
2e2rbsLipγ ă

´ σ0

}σ}

¯2
,

which is equivalent to
0 ă γ ă

κσ
rbsLip

,

where κσ is the unique solution to u eu “ σ0
}σ} . By Girsanov’s Theorem

Bt “Wt `

ż t

0
σ´1

`

bpXx
s q ´ bpxq

˘

ds is a Qγ-M.B.S.

so that, under Qγ ,
Xx
t “ bpxqt` σBt, tP r0, γs.

Hence, for every bounded Borel function f : Rd Ñ R,

EP fpX
x
γ q “ EQγL

´1
γ fpx` γbpxq ` σBγq and EP fpX̄

γ,x
γ q “ EQγfpx` γbpxq ` σBγq.

It follows from Pinsker’s inequality (see [CBL06]) that

dTV pP,Qγq
2 ď 2

ż

Ω
log

`

L´1
γ

˘

L´1
γ dQγ “ ´2

ż

Ω
logLγdP

“ 2E
„
ż γ

0

`

σ´1pbpXx
s q ´ bpxqq|dWs

˘

`

ż γ

0

ˇ

ˇσ´1pbpXx
s q ´ bpxqq

ˇ

ˇ

2
ds



ď
rbs2Lip

σ2
0

ż γ

0
EP|X

x
s ´ x|

2ds.

It follows from Lemma 3.4 paq (see (3.20)) and the fact that S2pxq “ p1 ` |bpxq| ` }σ}q that for
sP p0, κσ{rbsLipq

EP |X
x
s ´ x|

2 ď C 1b,}σ}sup

´

|bpxq|2 ` 1
¯

s.
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Hence

dTV pP,Qγq
2 ď C 1b,}σ}sup

rbs2Lip

σ2
0

`

|bpxq|2 ` 1
˘γ2

2

so that, for γ P p0, κσ{rbsLipq,

dV T pP,Qγq ď Cσ0,b,}σ}sup,V V pxq
1{2γ

Finally, for a bounded Borel function f
ˇ

ˇEP fpX
x
γ q ´ EP fpX̄

γ,x
γ q

ˇ

ˇ ď }f}supdTV pP,Qγq ď }f}supC
2
σ0,b,}σ}sup,V

V pxq1{2γ. l

Remark 4.1. In fact we could avoid to call upon Pinsker’s inequality by noting that

EQγ |L
´1
γ ´1| “ EP|Lγ´1| “ E

ˇ

ˇ

ˇ

ż γ

0
Lsσ

´1
`

bpXx
s q´bpxq

˘

dWs

ˇ

ˇ

ˇ
ď
rbsLip

σ0

ˆ
ż γ

0
}Ls}

2
4}X

x
s ´ x}

2
4ds

˙1{2

.

Then the conclusion follows from Lemma 3.4 applied with p “ 4 (after having classically controlled
sup0ďsď κσ

rbsLip

}Ls}4). The resulting constants are (probably) less sharp.

Proof of Theorem 2.2. (Wasserstein distance). Let T ą 0 be fixed and let n be such that Γn ą T .
Like in the proof of Theorem 2.1paq (see the footnote), we may assume that n is large enough so that
Γn ą T . Then we write for a Lipschitz continuous function f : Rd Ñ R

ˇ

ˇE fpXx
Γnq ´ E fpX̄x

Γnq
ˇ

ˇ ď

NpΓn´T q
ÿ

k“1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ

`
ˇ

ˇP̄γ1˝¨ ¨ ¨˝P̄γNpΓn´T q˝
`

PΓn´ΓNpΓn´T q
´ P̄γNpΓn´T q`1

˝¨ ¨ ¨˝P̄γn
˘

fpxq
˘ˇ

ˇ.

STEP 1. First we note that
ˇ

ˇ

ˇ
P̄γ1˝¨ ¨ ¨˝P̄γNpΓn´T q˝

`

PΓn´ΓNpΓn´T q
´ P̄γNpΓn´T q`1

˝¨ ¨ ¨˝P̄Γn´Γn´1

˘

fpxq
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
E
”

f
´

X
X̄x

ΓNpΓn´T q

Γn´ΓNpΓn´T q

¯

´ f
´

X̄
X̄x

ΓNpΓn´T q

Γn´ΓNpΓn´T q

¯ı
ˇ

ˇ

ˇ

ď rf sLip

ż

ˇ

ˇXξ
Γn´ΓNpΓn´T q

´ X̄ξ
Γn´ΓNpΓn´T q

ˇ

ˇPX̄x
Γn´ΓNpΓn´T q

pdξq

ď rf sLipCT`}γ}sup
γΓNpΓn´T q`1

ż

V 1{2
`

ξqPX̄x
Γn´ΓNpΓn´T q

pdξq

ď rf sLipCT`}γ}sup
γΓNpΓn´T q

EV 1{2
`

X̄x
ΓNpΓn´T q

˘

ď rf sLipCT`}γ}sup ,γ
¨ γΓNpΓn´T q

V 1{2
`

x
˘

,

where we used Proposition D.1 paq in the last inequality and, in the second one, the fact that the
Euler scheme with decreasing step is of order 1 when σ is constant. This expected result follows by
mimicking the proof of the convergence rate of the Euler scheme with decreasing step from in [PP14]
adapted by taking advantage of the one step strong error from Lemma 3.4pcq with p “ 2 (5). We know
from Lemma B.1piiq that lim supn

γΓNpΓn´T q`1

γn
ď lim supn

γΓNpΓn´T q

γn
ă `8 so that finally

ˇ

ˇP̄γ1˝¨ ¨ ¨˝P̄γNpΓn´T q˝
`

PΓn´ΓNpΓn´T q
fpxq´P̄γNpΓn´T q`1

˝¨ ¨ ¨˝P̄Γn´Γn´1fpxq
˘ˇ

ˇ ď rf sLipCT,γγnV
1{2

`

x
˘

.

5Thus, one shows for the Euler scheme with decreasing step, say δn with tn :“ δ1 ` ¨ ¨ ¨ ` δn Ñ `8, that for every
T ą 0, there exists a real constant (not depending on pδnq) such that

›

›

›
max
k:tkďT

|Xx
tk ´ X̄

x
tk |

›

›

›

2
ď Cb,σ,T p1` |bpxq| ` }σpxq}qδ1 ď Cb,σ,TV

1{2
pxqδ1.
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STEP 2. Let k P t1, . . . , NpΓn ´ T qu. We still have, for f : Rd Ñ R Lipschitz continuous (see the
proof of Theorem 2.1pbq), using that Γn ´ Γk ě T ,

ˇ

ˇPγn ˝ PΓn´Γk
fpxq ´ P̄γn ˝ PΓn´Γk

fpxqq ď C rf sLip
γ2
n

Γn ´ Γk
V 2pxq ď

C

T
rf sLipγ

2
nV

2pxq.

Thus, it follows from the Kantorovich-Rubinstein representation of the W1-distance

W1prX̄
x
Γns, νq ď Cb,σ,T,γ ¨ ϑpxq

¨

˝e´ρΓn ` γn `

NpΓn´T q
ÿ

k“1

γ2
ke
´ρpΓn´Γkq

˛

‚

with ϑpxq “
`

V 2pxq _ p|x| ` 1q
˘

and one concludes that, since ρ ă $,

W1prX̄
x
Γns, νq ď Cb,σ,T,γ ¨ γnϑpxq.

Proof of Theorem 2.2 (TV distance, first TV-bound). First note that pE`qσ2
0

is satisfied so that pHTVq

holds by Proposition 4.1. Then, we will use (3.24) from Proposition 3.5 in its less sharp form

|E rgpX̄x
γ qs ´ E rgpXx

γ qs| ď γ2 max
`

}∇g}8 _ }D2g}8
˘

Sd,b,σ,γ̄pxq
2

` γ5{2 max
`

}D2g}sup, }D
3g}sup

˘

Sd,b,σ,γ̄pxq
3.

We rely again on the three-fold decomposition used for the proof of Theorem 2.1paq, this time with
f : Rd Ñ R a bounded Borel function.

We still consider T ą γ̄ with γ̄ “ }γ}. First, we may assume w.l.g. that n is large enough so that
Γn ą T and γn ď κσ

2rbsLip
(coming from the above Proposition 4.2) since for n ď NpT q _ n0 (with

γn0`1 ď
κσ

2rbsLip
ă γn0), we may artificially bound |E fpXx

Γn
q ´ E fpX̄x

Γn
q| by 2}f}supγ

´1
Nptq_n0

γn.
Then we may apply Proposition 4.2 and Lemma 3.4 respectively with steps γn.

Term paq. Let k P t1, . . . , NpΓn ´ T u. The proof used in Theorem 2.1pbq with σ non constant for
term pAq still works here without modification (see in particular (4.33)): it follows from pHWq (which
implies pHTVq with t0 “ γ1 by Proposition 4.1) that

ˇ

ˇPγk ˝ PΓn´Γk
fpxq ´ P̄γk ˝ PΓn´Γk

fpxq
ˇ

ˇ ď Cb,σ,T }f}supγ
2
n e
´ρpΓn´ΓkqV 2pxq

and, as $ ă ρ, one still has
ř

1ďkďNpΓn´T q
γ2
ke
´ρpΓn´Γkq ď Cγ ¨ γn which yields

|paq| ď Cb,σ,T,γγn}f}supV
2pxq.

Term pbq. Let kP tNpΓn´ T q ` 1, . . . , n´ 1u. Applying Proposition 3.5pbq to g “ PΓn´Γk
f with the

help of BEL identity and the resulting inequalities yields

ˇ

ˇPγk ˝PΓn´Γk
fpxq´ P̄γk ˝PΓn´Γk

fpxq
ˇ

ˇ ď Cd,b,σ,γ̄ ¨ }f}sup

´

V pxq
γ2
k

Γn ´ Γk
`V 3{2pxq

γ
5{2
k

pΓn ´ Γkq3{2

¯

.

Now, as in the proof of Theorem 2.1paq, still using that $ ă ρ,

n´1
ÿ

k“NpΓn´T q`1

γ2
k

Γn ´ Γk
ď Cγ ¨ γn log

´

T`}γ}
γn

¯

and, proceeding likewise

n´1
ÿ

k“NpΓn´T q`1

γ
5{2
k

pΓn ´ Γkq3{2
ď Cγ ¨ γ

3{2
NpΓn´T q

ż Γn´1

ΓNpΓn´T q

dt

pΓn ´ tq3{2
ď Cγγ

3{2
NpΓn´T q

γ´1{2
n .
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It follows from Lemma B.1piiq that γ3{2
NpΓn´T q`1 ď Cγ,T ¨ γ

3{2
n so that, still using Proposition D.1paq,

|pbq| ď Cb,σ,γ,T ¨ γn.

Term pcq. It follows from the former Proposition 4.2 that

ˇ

ˇPγnfpxq ´ P̄γnfpxq
ˇ

ˇ “
ˇ

ˇE fpXx
γnq ´ E fpX̄x

γnq
ˇ

ˇ ď Cb,σ}f}supγnV
1{2pxq.

One concludes as in the multiplicative setting.

Proof of Theorem 2.2 (TV distance, second TV-bound). Assume now that T ą 2γ̄ (still with γ̄ “
}γ}). In addition to the former constraints on γn, we may assume w.l.g. in this specific setting that
n ě n0 where γNpΓn0´2T q ă

1
2d}∇b}8 . We rely now on a four fold decomposition

ˇ

ˇE fpXx
Γnq ´ E fpX̄x

Γnq
ˇ

ˇ ď

NpΓn´T q
ÿ

k“1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝ pPγk ´ P̄γkq ˝ PΓn´Γk

fpxq
ˇ

ˇ

`

n´1
ÿ

k“NpΓn´T q`1

ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1
˝

´

pPγk ´ P̄γkq˝PΓn´Γk
fpxq ´

γ2
k
2 TpPΓn´Γk

f, b, σq
¯

ˇ

ˇ

` 1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“NpΓn´T q`1

γ2
kP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γk´1

TpPΓn´Γk
f, b, σqpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇP̄γ1 ˝ ¨ ¨ ¨ ˝ P̄γn´1 ˝ pPγn ´ P̄γnq ˝ fpxq
ˇ

ˇ.

Let us call the second and third term of the decomposition pbq and pb1q respectively, the treatment
of other terms being unchanged.
Term pbq. Now using the sharp form of (3.24) and using the same tools (inequalities derived from BEL
identities), we can upper bound this “corrected ” term by

Cd,b,σ,γ̄ ¨ }f}sup

˜

V pxq
γ2
k

pΓn ´ Γkq1{2
` V 3{2pxq

γ
5{2
k

pΓn ´ Γkq3{2

¸

and we check that by the usual arguments that

n´1
ÿ

k“NpΓn´T q`1

γ2
k

pΓn ´ Γkq1{2
ď C

}γ}
γn

ż Γn´1

ΓNpΓn´T q

dt

pΓn ´ tq1{2
ď C}γ}γn. (4.36)

Term pb1q. First, remark that, for every k P tNpΓn ´ T q ` 1, . . . , n´ 1u,

P̄γ1˝ ¨ ¨ ¨ ˝ P̄γk´1
TpPΓn´Γk

f, b, σqpxq “
ÿ

1ďi,jďd

E rB2
xixjPΓn´Γk

fpX̄x
Γk´1

q
`

pσσ˚qi¨|∇bjpX̄x
Γk´1

q
˘

s

“
ÿ

1ďi,j,`ďd

pσσ˚qi`E rΥi,j,`,kpX̄
x
ΓNpΓn´2T q

qs with Υi,j,`,kpxq “ ExrBxifjpX̄
γ̃,x
tk´1

qB`bjpX̄
γ̃,x
tk´1

qs,

where γ̃` “ ΓNpΓn´2T q`` ´ ΓNpΓn´2T q, ` ě 1, X̄ γ̃,x is the Euler scheme with time step sequence
γ̃, tk´1 “ Γk´1 ´ ΓNpΓn´2T q “

rΓk´1´NpΓn´2T q and fj “ BxjPΓn´Γk
f . Next step is to perform an

integration by parts using Malliavin calculus for X̄ γ̃,x using the “toolbox” developed in Appendix C
for the TV -convergence with varying σ, but taking into account that now the tangent process of the
scheme is GLdpRq-valued without any truncation. More precisely, with the notations of Proposition
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C.3, the tangent process pȲtqtě0 of the (continuous-time version of) X̄ γ̃,x reads Ỹ pxq0 “ Id and Ỹ pxqt “

pId`pt´rΓ`´1q∇bpX̄ γ̃,x
rΓ`´1

qqỸ
pxq
t`´1

for any t P rrΓ`´1, rΓ`s. Hence, as γ̃1 ď γNpΓn0´2T q ă
1

2d}∇b}8 , for any

Θ ą 0, infxPRd,tPr0,Θs detpȲ
pxq
t q is lower-bounded by a positive deterministic constant. Applying this

with Θ “ 2T ` γ̄ and noting that T {2 ď tk ď 2T ` γ̄ for every k P tNpΓn ´ T q ` 1, . . . , n´ 1u for
large enough n, one checks that the (determinant of the) Malliavin covariance of X̄ γ̃,x

tk´1
(see Proposition

C.3 for similar computations) is bounded from below by a positive constant κb,σ only depending on
}∇b}sup, σ2

0 and T . This allows us to apply (C.58) (which comes from Lemma 2.4piq of [BCP20])
with f “ fj , F̄ “ X̄ γ̃,x

tk´1
, G “ B`bjpX̄

γ̃,x
tk´1

q and |α| “ 1. With the notations introduced in Section C.2,
this leads to
ˇ

ˇExrBxifjpX̄
γ̃,x
tk´1

qB`bjpX̄
γ̃,x
tk´1

qs
ˇ

ˇ ď C}fj}8

ˇ

ˇ

ˇ
E
”

p1` X̄ γ̃,x
tk´1

|
4d´2
1,2 qp|X̄x

tk
|1,2 ` |LX̄

γ̃,x
tk´1

|1q|B`bjpX̄
γ̃,x
tk´1

q|1

ı ˇ

ˇ

ˇ
.

By Proposition 3.2paq, }fj}8 ď CpΓn´Γkq
´ 1

2 }f}sup. By (C.56) and Proposition C.3piiq, E r|X̄ γ̃,x
tk´1

|
p
1,2s ď

Cp,T for any p ą 0, where Cp,T does not depend on x and k. As well, using that B`bj is bounded with
bounded partial derivatives, }B`bjpX̄

γ̃,x
tk´1

q|1,p ď Cp,T where Cp,T is again a constant independent of x
and k. Finally, by (C.56) and the fact that b is C3, one checks that for any p ą 0,

}LX̄ γ̃,x
tk´1

}1,p ď Cp,T p1` Er|X̄ γ̃,x
tk´1

|ps
1
p q ď Cp,T p1` |x|q,

where in the second line, we used a Gronwall argument. Finally, using Hölder inequality, we deduce
that a constant Cp,T exists such that

ˇ

ˇExrBxifjpX̄
γ̃,x
tk´1

qB`bjpX̄
γ̃,x
tk´1

qs
ˇ

ˇ ď
Cp,T

?
Γn ´ Γk

p1` |x|q.

If lim inf
|x|Ñ`8

V pxq{|x|r ą 0, we deduce from Proposition D.1paq and (4.36), that

|pb1q| ď Cp,T

n´1
ÿ

k“NpΓn´T q`1

γ2
k?

Γn ´ Γk
sup
kě0

ErV
1
r pX̄x

Γk
qs

ď Cp,T

n´1
ÿ

k“NpΓn´T q`1

γ2
k?

Γn ´ Γk
V

1
r pxq ď Cp,T,γ,V γnV

1
r pxq.

The alternative growth assumption on V can be treated likewise owing to Proposition D.1pbq. l

4.4 Proof of Corollary 2.3

The result is a consequence of the following lemma.

Lemma 4.3. Assumption pCαq implies that pHWq holds with ρ “ α. To be more precise, one has

@x, yP Rd, @ t ě 0, E|Xx
t ´X

y
t |

2 ď e´2αt|x´ y|

so that W1prX
x
t s, rX

y
t sq ďW2prX

x
t s, rX

y
t sq ď e´αt|x´ y|.

Proof. It follows from Itô’s formula applied to e2αt|Xx
t ´Xy

t |
2 that this process is a supermartingale

starting from |x´ y|2 owing to pCαq.
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4.5 Proof of Corollary 2.4

By Proposition 4.1, it is enough to show that pHWq holds true. When σ is constant, this is a direct
consequence of [LW16]. In the multiplicative case, we rely on [Wan20, Theorem 2.6]. Since σ is
bounded, we remark that Assumption p2.17q of [Wan20] is true as soon as there exist positive constants
K1, K2 and R0 such that for every x, y P Rd,

pbpxq ´ bpyq|x´ yq ď K11t|x´y|ďR0u ´K2|x´ y|
2. (4.37)

But it is easy to check that this assumption is equivalent to the existence of some α, R ą 0 such that

@px, yq P Bp0, Rqc, pbpxq ´ bpyq|x´ yq ď ´α|x´ y|2. (4.38)

Actually, the direct implication is obvious by setting R “ R0 and α “ K2.

In order to prove the converse, set R0 “ 4R
´

1 `
rbsLip

α

¯

. Let x, y P Rd be such that |x ´ y| ě

R0. If both x and y lie outside Bp0, Rq (closed Euclidean ball centered at 0 with radius R), then
pbpxq ´ bpyq |x ´ yq ď ´α|x ´ y|2. Otherwise, one may assume w.l.g. that x P Bp0, Rq and
y R Bp0, Rq since R0 ą 2R. Then let rx “ λx ` p1 ´ λqy be such that |x̃| “ R (i.e the point of the
segment rx, ys which intersects the boundary of the ball Bp0, Rq). It is clear that λP p0, 1s and that

x´ y “
x̃´ y

λ
and 1´ λ “

|x´ x̃|

|x´ ys
ď

2R

R0
“

α

2pα` rbsLipq
.

Consequently

`

bpxq ´ bpyq |x´ y
˘

ď
`

bpxq ´ bpx̃q |x´ y
˘

`

`

bpx̃q ´ bpyq | x̃´ y
˘

λ
ď rbsLip|x´ x̃||x´ y| ´

α
λ |x̃´ y|

2

“ ´

´

αλ´ rbsLipp1´ λq
¯

|x´ y|2

“ ´

´

α´ p1´ λqpα` rbsLipq

¯

|x´ y|2 ď ´α
2 |x´ y|

2.

Finally, (4.37) holds with R0 defined above, K1 “ rbsLipR
2
0 and K2 “ ´

α
2 .

4.6 Explicit bounds for the Ornstein-Uhlenbeck process

Let us consider the α-confluent centered Ornstein-Uhlenbeck process defined by

dXt “ ´αXtdt` σdWt, X0 “ 0,

where σ ą 0. It satisfies pHWq and pSq with ρ “ α. As Xt “ e´αt
şt
0 e

αsdWs, one checks that

VarpXtq “ σ2e´2αt

ż t

0
e2αsds “

σ2

2α

`

1´ e´2αt
˘

and its (unique) invariant distribution is given by ν “ N
´

0, σ
2

2α

¯

.

Now, let us consider the Euler scheme with a decreasing step pγnqně1 such that $ ă α and
ř

n γ
2
n ă

`8. It reads
X̄Γn`1 “ X̄Γnp1´ αγn`1q ` σ

`

WΓn`1 ´WΓn

˘

, X0 “ 0.
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The scheme is centered and its variance σ2
n “ VarpX̄Γnq at time Γn satisfies σ2 “ 0 and

σ2
n`1 “ σ2

np1´ αγn`1q
2 ` σ2γn`1, n ě 0.

Elementary computations show that,

σ2
n ´

σ2

2α
“
σ2

2
α

«

n
ź

k“1

p1´ αγkq
2

ff

n
ÿ

k“1

γ2
k

ś

1ď`ďkp1´ αγ`q
2

—

ż Γn

0
e´2αpΓn´sqγNpsqds ě

ż Γn

0
e´2αpΓn´sq γNpΓnq “

1´ e´2αΓn

2α
γn „

1

2α
γn

where, for two sequences panq and pbnq, an — bn means an “ Opbnq and bn “ Opanq as nÑ `8.
Hence, one checks that, as σn Ñ σ,

W1

`

rX̄Γns, ν
˘

“ |σn ´ σ{
?

2α|E |Z| — γn.

As for the total variation distance we rely on the lower bound from [DMR18] for two one dimensional
Gaussian distributions (sharing the same mean)

›

›rX̄Γns ´ ν
›

›

TV
ě

1

200
min

´

1,
ˇ

ˇ

ˇ
1´

σ2
n

σ2{p2αq

ˇ

ˇ

ˇ

¯

ě cαγn

for large enough n where cα ą 0 so that
›

›rX̄Γns ´ ν
›

›

TV
— γn.
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A One step Euler scheme: proofs of technical lemmas (and more)

A.1 Strong Lp-errors for the one-step Euler scheme (proofs of Lemmas 3.3 and 3.4)

Proof of Lemma 3.3. paq It follows from the generalized Minkowski inequality and the B.D.G. inequality that

}Xx
t ´ X̄

γ,x
t |}p ď

›

›

›

ż t

0

`

bpXsq ´ bpxq
˘

ds
›

›

›

p
`

›

›

›

ż t

0

`

σpXsq ´ σpxq
˘

dWs

›

›

›

p

ď rbsLip

ż t

0

}Xx
s ´ x}pds` C

BDG
p rσsLip

ˆ

›

›

›

ż t

0

|Xx
s ´ x|

2ds
›

›

›

p
2

˙1{2

ď rbsLip

ż t

0

}Xx
s ´ x}pds` C

BDG
p rσsLip

ˆ
ż t

0

}Xx
s ´ x}

2
pds

˙1{2

where rσsLip should be understood with respect to the Frobenius norm. l

Proof of Lemma 3.4 paq One has by the general Minkowski inequality and BDG inequality

}Xx
t ´ x}p ď

ż t

0

}bpXx
s q}pds`

›

›

›

›

ż t

0

σpXx
s qdWs

›

›

›

›

p

ď t|bpxq| `
?
t}W1}p}σpxq} `

ż t

0

}bpXx
s q ´ bpxq}pds`

›

›

›

›

ż t

0

pσpXx
s q ´ σpxqqdWs

›

›

›

›

p

ď t|bpxq| `
?
t}W1}p}σpxq} ` rbsLip

ż t

0

}Xx
s ´ x}pds` C

BDG
d,p

›

›

›

›

ż t

0

}σpXx
s q ´ σpxq}

2ds

›

›

›

›

1{2

p
2

ď t|bpxq| `
?
t}W1}p}σpxq} ` rbsLip

ż t

0

}Xx
s ´ x}pds` rσsLipC

BDG
d,p

ˆ
ż t

0

}Xx
s ´ x}

2
pds

˙1{2

.
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Set ϕptq “ sup0ďsďt }X
x
s ´ x}p and ψptq “ t|bpxq| `

?
t}W1}p}σpxq}. Both functions are nondecreasing so

that one derives from the above inequality that

ϕptq ď ψptq ` rbsLip

ż t

0

ϕpsqds` rσsLipC
BDG
d,p

ˆ
ż t

0

ϕpsq2ds

˙1{2

.

Now using that ϕ is non-decreasing, we derive for every a ą 0,

ˆ
ż t

0

ϕpsq2ds

˙1{2

ď
a

ϕptq

d

ż t

0

ϕpsqds ď a
2ϕptq `

1
2a

ż t

0

ϕpsqds.

As a consequence, setting a “ 1
rσsLipCBDGd,p

, yields

ϕptq ď 2ψptq `
´

2rbsLip ` pC
BDG
d,p rσsLipq

2
¯

ż t

0

ϕpsqds.

It follows from Gronwall’s Lemma that, for every tP r0, γ̄s

ϕptq ď 2 ep2rbsLip`rσs
2
LipC

BDG
d,p γ̄ψptq

which completes the proof.

pbq-pcq It follows from Lemma 3.3 that

}Xx
t ´ X̄

γ,x
t }p ď Sppxq

ˆ

rbsLip

ż t

0

?
sds` rσsLip

´

ż t

0

sds
¯1{2

˙

“ Sppxq

ˆ

2
3 rbsLip

?
t`

rσsLip
?

2

˙

t. l

Lemma A.1. paq Let Φ : Rd Ñ pE, | ¨ |q be a Borel function with values in a normed vector space E and let
V : Rd Ñ p0,`8q be a function such that

?
V is Lipschitz continuous. If

|Φ| ď C ¨ V r for some C, r ą 0,

then, for any LppPq-integrable Rd-valued random vectors Y, Z, pP r1,`8q,
›

›

›
sup

ξPpY,Zq

|Φpξq|
›

›

›

p
ď CΦ,V,r

´

›

›V pY q ^ V pZq
›

›

›

r

rp
` }Y ´ Z}2r2rp

¯

.

pbq Assume that the diffusion coefficients b and σ are Lipschitz continuous and satisfy |b|2 ` }σ}2 ď C.V where?
V is Lipschitz. Then, there exists a real constant for every CΦ,V,b,σ,p,γ̄ such that, for every γ P p0, γ̄q,

›

›

›
sup

ξPpx,Xxγ q

|bpξq|
›

›

›

p
`

›

›

›
sup

ξPpXxγ ,X̄
x
γ q

|σpξq|
›

›

›

p
ď CΦ,V,b,σ,p,γ̄V

1{2pxq. (A.39)

Proof. paq This follows from the fact that
?
V is Lipschitz continuous owing to assumption pSq so that, for every

ξ P pY,Zq, ?
V pξq ´

?
V pZq ď r

?
V sLip|ξ ´ Z| ď r

?
V sLip|Y ´ Z|

and in turn
V pξqr ď 2p2r´1q`

`

V pZqr ` r
?
V s2rLip|Y ´ Z|

2r
˘

.

One concludes using Lp-Minkowski’s inequality.

pbq Note that by Lemma 3.4paq, }Xx
γ ´ x}rp ď γ̄

1
2Srp,b,σpxq ď γ̄

1
2V 1{2pxq which yields the bound for the first

term on the left hand side. As for the second term, one proceeds likewise using Lemma 3.4pbq.
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A.2 Proof of Proposition 3.2

paq Start from

BxPtfpxq “
1

t
E
„

fpXx
t q

ż t

0

pσ´1pXx
uqY

pxq
u q˚dWu



“ BxPt´sPsfpxq “
1

t´ s
E
„

PsfpX
x
t´sq

ż t´s

0

pσ´1pXx
uqY

pxq
u q˚dWu



so that, using that sup
xPRd

sup
sPr0,T s

E
“

|Y pxqs |2
‰

ď C ă `8 since b and σ have bounded first partial derivatives,

|BxPtfpxq| ď
C1

σ0

?
t
}f}sup

and (with s “ t
2 )

B2
x2Ptfpxq “

2

t
BxE

«

P t
2
fpXx

t
2
q

ż t
2

0

pσ´1pXx
uqY

pxq
u q˚dWu

ff

(A.40)

“
2

t
E

«

BxP t
2
fpXx

t
2
q

ż t
2

0

pσ´1pXx
uqY

pxq
u q˚dWu

ff

`
2

t
E

«

P t
2
fpXx

t
2
q

ż t
2

0

Bxpσ
´1pXx

uqY
pxq
u q˚dWu

ff

.

Let us denote pAq and pBq the two terms on the right hand side of the above equation. Using the above upper-
bound for the first derivative, we obtain (with real constants varying from line to line denoted by capital letter C
depending on b and σ and T )

ˇ

ˇpAq
ˇ

ˇ ď
2

t

C

σ2
0

?
t
}f}supC

1
?
t “

C 1

σ2
0t
}f}sup.

As for the second term
ˇ

ˇpBq
ˇ

ˇ ď
2

t
}f}sup

«

ż t
2

0

E
ˇ

ˇBxpσ
´1pXx

uqY
pxq
u

˘

|2du

ff
1
2

.

Using that b an σ have bounded existing partial derivatives, we derive by standard computations that
supxPRd E

“

supsPr0,T s |BxY
pxq
s |2

‰

ď C ă `8 so that (still using the σ2
0-ellipticity of σσ˚)

ż t
2

0

E
ˇ

ˇBxpσ
´1pXx

uqY
pxq
u

˘

|2du ď
C2t

σ4
0

which finally implies that

|B2
x2Ptfpxq| ď

C2

σ2
0t
}f}sup.

One shows likewise with similar arguments that

|B3
x3Ptfpxq| ď

C3

σ3
0t

3
2

}f}sup.

pbq If f is Lipschitz continuous, note that

BxPtfpxq “
1

t
E
„

´

fpXx
t q ´ fpxq

¯

ż t

0

pσ´1pXx
uqY

pxq
u q˚dWu



so that

|BxPtfpxq| ď
C

σ0

?
t
rf sLip}X

x
t ´ x}2 ď

C 11
σ0

rf sLipS2pxq.
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For the second differentiation, we still rely on (A.40) and its decomposition into two terms pAq and pBq.
Using the above bound for the first derivative, we derive like above that

ˇ

ˇpAq
ˇ

ˇ ď
C 1

σ2
0

?
t
S2pxq.

As for pBq we first note that

pBq “
2

t
E

«

´

P t
2
fpXx

t
2
q ´ fpxq

¯

ż t
2

0

Bxpσ
´1pXx

uqY
pxq
u q˚dWu

ff

.

Now
ˇ

ˇP t
2
fpXx

t
2
q ´ fpxq

ˇ

ˇ ď
ˇ

ˇE
“

fpXx
t q ´ fpxq |X

x
t
2

‰
ˇ

ˇ ď rf sLipE
“

|Xx
t ´ x| |X

x
t
2

‰

so that, using Cauchy-Schwarz inequality, the L2-contraction property of conditional expectation and the above
bound for the stochastic integral yields

ˇ

ˇpBq
ˇ

ˇ ď
2

t
rf sLip

›

›Xx
t
2
´ x

›

›

2

«

ż t
2

0

E
ˇ

ˇBxpσ
´1pXx

uqY
pxq
u

˘

|2du

ff
1
2

ď
2

t
rf sLipS2pxq

?
t

d

C2t

σ4
0

ď Crf sLipS2pxq.

More generally, if k “ 1, 2, 3, there exist real constants C 1k such that

|BkxkPtfpxq| ď
C 1k

σk0t
k´1

2

rf sLipS2pxq.

A.3 Proof of extended BEL identity (Theorem 3.1)

Let M ą 0 and fM pxq “ fpxq1t|fpxq|ďMu. Set φM pxq “ PtfM pxq. First, since fpXx
t q belongs to L1 for

any x since f has polynomial growth and b and σ are Lipschitz continuous. We deduce from the dominated
convergence theorem that φM converges simply to φ “ Ptf . Furthermore, as fM is bounded,

φ1M pxq “ E
”

fM pX
x
t q

1

t

ż t

0

pσpXsq
´1Y pxqs q˚dWs

ı

.

We wish to prove that φ1M converge uniformly on compact set K i.e.

sup
xPK

E
”

ˇ

ˇfpXx
t q
ˇ

ˇ1t|fpXxt q|ąMu

ˇ

ˇ

ˇ

ˇ

ż t

0

pσpXsq
´1Y pxqs q˚dWs

ˇ

ˇ

ˇ

ˇ

ı

MÑ`8
ÝÝÝÝÝÑ 0.

It follows from Cauchy-Schwarz inequality that

E
„

ˇ

ˇfpXx
t q
ˇ

ˇ1t|fpXxt q|ąMu

ˇ

ˇ

ˇ

ˇ

ż t

0

pσpXx
s q
´1Y pxqs q˚dWs

ˇ

ˇ

ˇ

ˇ



ď

”

E |fpXx
t q|

21t|fpXxt q|ąMu
ı

1
2
”

E
ż t

0

ˇ

ˇ

ˇ
σpXx

s q
´1Y pxqs

ˇ

ˇ

ˇ

2

ds
ı

1
2

ď
1
?
M

”

E |fpXx
t q|

3
ı

1
2
”

ż t

0

E
ˇ

ˇ

ˇ
σpXx

s q
´1Y pxqs

ˇ

ˇ

ˇ

2

ds
ı

1
2

ď
1

σ0

?
M

”

1` CfE |Xx
t |

3r
ı

1
2
”

ż t

0

E
ˇ

ˇY pxqs

ˇ

ˇ

2
ds
ı

1
2

where |fpξq|3 ď Cf p1` |ξ|
3rq. Now, as b and σ have bounded partial derivatives (hence Lipschitz continuous),

it is classical background that E |Xx
t |

3r ď Cr,tp1 ` |x|
3q and supxPRd,sPr0,ts E

ˇ

ˇY
pxq
s

ˇ

ˇ

2
ă `8. This shows that

the right hand side goes to 0 as M Ñ `8 uniformly on compact sets of Rd.
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B Technical lemmas on the steps

Lemma B.1. Let pγnqně1 be a non-increasing positive sequence such that

$ “ lim sup
n

γn ´ γn`1

γ2
n`1

ă `8.

piq Let ρ ą $ and let punqně0 be the sequence defined by u0 “ 0 and, for every n ě 1, by

un “
n
ÿ

k“1

γ2
ke
´ρpΓn´Γkq.

Then, lim sup
n

un
γn
ă `8.

piiq For every T ą 0, we have

lim sup
n

γNpΓn´T q

γn
ă `8

(where Nptq is defined in (1.5)).

piiiq Let aP p0, 1q. For every ρ ą a$,

e´ρΓn “ opγanq as nÑ `8.

Proof. piq Set vn “ un
γn

, n ě 1. We have:

vn`1 “ vnθn ` γn`1 with θn “
γn
γn`1

e´ργn`1 . (B.41)

Under the assumption, there exists cP p$, ρq and n0 P N such that for all n ě n0,

γn
γn`1

ď 1` cγn`1 ď ecγn`1 . (B.42)

Thus, for n ě n0, θn ď epc´ρqγn`1 so that plugging this inequality into (B.41), we deduce

vn`1 ď vne
pc´ρqγn`1 ` γn`1

or, equivalently,
epρ´cqΓn`1vn`1 ď epρ´cqΓnvn ` C

1epρ´cqΓnγn`1

where C 1 “ supkě1 e
pρ´cqγk . Hence, by induction

epρ´cqΓnvn ď epρ´cqΓn0 vn0
` C 1

ż Γn

Γn0

epρ´cqudu ď epρ´cqΓn0 vn0
`

C 1

ρ´ c
epρ´cqΓn

which clearly implies the announced boundedness.

piiq By (B.42), for large enough n,

γNpΓn´T q

γn
“

n´1
ź

k“NpΓn´T q

γk
γk`1

ď ecpΓn´pΓNpΓn´T qqq ď ecpT`}γ}q.

piiiq Set wn “ e´ργn{γan. Let c Pp$, ρq. Note that, for n ě n0,

wn`1 “ wne
´ργn`1

´ γn
γn`1

¯a

ď wne
pac´ρqγn`1 ď w1e

pac´ρqpΓn`1´Γ1q.

Hence, limn wn “ 0 since
ř

kě1 γk “ `8.
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C Proof of Domino-Malliavin Theorem

The aim of this section is to prove Theorem 3.7. The proof is achieved in Subsection C.1 but strongly relies on
a series of Malliavin bounds established in Subsection C.2. Note that w.l.g., we may only prove the result for h̄
small enough. Actually, since the left-hand side of the inequality is bounded by 2, we can always extend to h̃
larger than h̄ by artificially bounding the left-hand side by 2h̄ε´2h2´ε

1 for any h1 greater than h̄.

C.1 Proof of Theorem 3.7

By classical density arguments, it is enough to prove the result for a smooth function f : Rd Ñ R with bounded
derivatives as soon as the constant C of Inequality (3.30) only depends on }f}8. Throughout the proof, f :
Rd Ñ R is thus assumed to be C8, bounded with bounded derivatives.

Step 1 (Expansion of pPh ´ P̄hqfpξqq. Let ξ P Rd and let h ą 0. We have

Phfpξq “ EfpXξ
hq “ fpξq `

ż h

0

Erp∇fpXξ
s q|bpX

ξ
s qqsds`

1

2

ż h

0

E rTrpD2fpXξ
s qσσ

˚pXξ
s qqsds.

Again by Itô formula, for every i P t1, . . . , du,

ErBifpXξ
s qbipX

ξ
s qqs “ Bifpξqbipξq `

ż s

0

E rp∇pBifbiqpXξ
uq|bpX

ξ
uqq `

1

2
TrpD2pBifbiqσσ

˚qpXξ
uqsdu,

and for every i, j P t1, . . . , du,

E rpD2fpXξ
s qσσ˚qiipX

ξ
s qs “ pD

2fσσ˚qiipξq `

ż s

0

E rLppD2fσσ˚qiiqpX
ξ
uqsdu.

Thus,

Phfpξq “ EfpXξ
hq “ fpξq ` hLfpξq `

ż h

0

ż s

0

4
ÿ

k“1

ÿ

|α|“k

E rBαfpXξ
uqφαpX

ξ
uqqsds, (C.43)

where for any k, the functions φα are polynomial functions (which may be made explicit) of b, σ and their partial
derivatives up, respectively, to order 2. Now, for the Euler scheme, let us introduce, for a positive M , a smooth
and radial function TM : Rd Ñ R` equal to 1 on Bp0,Mq and 0 on Bp0, 2Mqc and such that the derivatives of
TM are uniformly bounded. Then,

P̄hfpξq “ E rfpX̄ξ
hqTM pWhqs ` rh,M pfq, with |rh,M pfq| ď }f}8Pp|Wh| ąMq.

Note that the rotation-invariance combined with the independence of the coordinates of the Brownian motion
implies that for any pa1, . . . , adq P Nd with at least one odd integer, E rpW 1

h q
a1 . . . pW d

h q
adTM pWhqs “ 0.

Setting Byb` “
ř

i1,...,i`
pBi1,...,i`qyi1 . . . y` for a an element B of pRdq`, we deduce that

E rD2fpξqpσpξqWhq
b2TM pWhqs “ apM,hqTrpD2fσσ˚qpξq and E rD3fpξqpσpξqWhq

b3TM pWhqs “ 0,

where
apM,hq “ E rpW 1

h q
2TM pWhqs.

Then, it follows from the Taylor formula applied to fpX̄ξ
hq that

E rfpX̄ξ
hqTM pWhqs “ ETM pWhq

`

fpξq ` hp∇fpξq|bpξqq
˘

` apM,hqTrpD2fσσ˚qpξq (C.44)

` h2E rTM pWhqs

´

ϕ
p1q
h pξq

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

2
pD2fpξqbpξq|bpξqq ` h

1

6

3
ÿ

i,j,k

B3
i,j,kfpξq pbipbjbk ` pσσ

˚qjkqq pξq
¯

`
1

24

ż 1

0

E
“

D4f pξ ` θphbpξq ` σpξqWhqq phbpξq ` σpξqWhq
b4TM pWhq

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

ϕ
p2q
h,M pξ,θ,Whq

‰

dθ.
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Thus, noting that 1´ E rTM pWhqs ď Pp|Wh| ąMq, we deduce from what precedes and from (C.43), we get

E rfpXξ
hqs ´ E rfpX̄ξ

hqs “ ϕh,M pξq

where ϕh,M pξq “ rh,M pfq `OphPp|Wh| ąMqqp∇fpξq|bpξqq

`
1

2
ph´ apM,hqqTrpD2fσσ˚qpξq ´ h2E rTM pWhqsϕ

p1q
h pξq

`

ż h

0

ż s

0

4
ÿ

k“1

ÿ

|α|“k

E rBkαfpXξ
uqφαpX

ξ
uqqsds´

1

24

ż 1

0

E rϕp2qh,M pξ, θ,Whqsdθ.

Step 2: Assume now that ξ “ X̄tn´1 , the Euler scheme at time tn´1 related to the step sequence phn :“
tn ´ tn´1qně1 starting from x P Rd. Let σX̄tn´1

denote the Malliavin matrix of X̄tn´1
(whose definition is

recalled in Equation (C.52)). For η P p0, 1s, let Ψη denote a smooth function on R such that Ψηpxq “ 0 on
p´8, η{2q and 1 on pη,`8q. We can furthermore assume that for every integer `, }Ψp`qη }8 ď Cη´` where C is
a universal constant. Using that Wtn ´Wtn´1 is independent from X̄tn´1 and that 0 ď 1´Ψηpuq ď 1tuďηu,

|P̄h1
˝ ¨ ¨ ¨ ˝ P̄hn´1

˝ pPhn ´ P̄hnq ˝ fpxq| ď 2}f}8P
`

detσX̄tn´1
ď η

˘

`

ˇ

ˇ

ˇ
E
”

ϕhn,M pX̄tn´1
qΨηpdetσX̄tn´1

q

ı
ˇ

ˇ

ˇ
.

Let us denote the unique solution at time u starting from x of (1.1) by Xpu, xq (pu, xq ÞÑ Xpu, xq is the stochastic
flow related to (1.1)). Note that Pp|Wh| ąMq “ Ope´

M2

4h q and that

0 ď h´ apM,hq “ E rpW 1
h q

2p1´ TM pWhqs ď E rpW 1
h q

21|Wh|ąM s ď Che´
M2

8h ,

by Cauchy-Schwarz and (exponential) Markov inequalities. Then, using the expansion of ϕh,M obtained at the
end of Step 1, we get,

ˇ

ˇ

ˇ
P̄h1

˝ ¨ ¨ ¨ ˝P̄hn´1
˝ pPhn ´ P̄hnq ˝ fpxq

ˇ

ˇ

ˇ
ď 2}f}8

´

e´
M2

4hn ` PpdetσX̄tn´1
ď ηq

¯

(C.45)

`O
`

hne
´ M2

4hn q

ˇ

ˇ

ˇ
E rp∇f |bqpX̄tn´1qΨηpdetσX̄tn´1

qs

ˇ

ˇ

ˇ
(C.46)

`O
`

hne
´ M2

8hn

˘

ˇ

ˇ

ˇ
E rTrpD2fσσ˚qpX̄tn´1

qΨηpdetσX̄tn´1
qs

ˇ

ˇ

ˇ
(C.47)

`Oph2
n

˘

ˇ

ˇ

ˇ
E rϕp1qhn pX̄tn´1

qΨηpdetσX̄tn´1
qs

ˇ

ˇ

ˇ
(C.48)

`

ż h

0

ż s

0

4
ÿ

k“1

ÿ

|α|“k

ˇ

ˇ

ˇ
E rBαfpXpu, X̄tn´1qqφαpXpu, X̄tn´1qqΨηpdetσX̄tn´1

qs

ˇ

ˇ

ˇ
ds (C.49)

`
1

24

ż 1

0

ˇ

ˇ

ˇ
E rϕp2qhn,M pX̄tn´1

, θ,Wtn ´Wtn´1
qΨηpdetσX̄tn´1

qs

ˇ

ˇ

ˇ
dθ. (C.50)

Let us now consider all the above terms separately. We begin by the first term related to the probability of
“degeneracy” of σX̄tn´1

. By Proposition C.3piq applied with r “ 2 a given positive T , we know that if T {2 ď
tn´1 ď T , we have for every p ą 0,

|(C.45)| ď C}f}8

´

e´
M2

4hn ` h2
1 ` η

p
¯

ď C}f}8
`

h2
1 ` η

p
˘

,

where in the second inequality, we used that e´
M2

x ď CMx
2 for x P p0, 1s. For (C.46) and (C.47), we use

Lemma C.2piq with F “ X̄tn´1
. First, note that, owing to Proposition C.3piiq and to the fact that b and σ

are C6, Assumption (C.55) of this lemma holds true with k ď 4. Then, one remarks that it is enough to apply
Lemma C.2piq with |α| “ 1 and G “ bipF q (i “ 1, . . . , d) for (C.46), and, |α| “ 2 and G “ σi,jσk,ipF q,
pi, kq P t1, . . . , du for (C.47). Since bi has linear growth and bounded derivatives, it follows from Proposi-
tion C.3piiq that }bipX̄tn´1

q}1,3 ď Cp1 ` E r|X̄tn´1
|3s

1
3 q whereas, since σ and its derivatives are bounded,

}σi,jσk,ipX̄tn´1
q}2,3 ď C, where C does not depend on n. By Lemma C.2piq and a Gronwall argument, it

follows that a constant C exists (depending on T ) such that

|(C.46)| ` |(C.47)| ď Chne
´ M2

8hn }f}8η
´4p1` Exr|X̄tn´1

|6s
1
3 qp1` Exr|X̄tn´1

|3s
1
3 q.

ď Ch2
1}f}8η

´4p1` |x|3q.

37



For (C.48), this is a direct application of Lemma C.2piiq combined with Proposition C.3 piiq. This leads to

|(C.48)| ď Ch2
nη
´6p1` Exr|X̄tn´1 |

9s
2
3 q ď Ch2

1η
´6p1` |x|6q.

For any α involved in (C.49), we can apply Lemma C.2piiiq with F “ X̄tn´1
and φ “ φα. Looking carefully

into the definition of φα, one can check that for any α, for any ` P t0, . . . , |α|u, |φp`qα pxq| ď Cp1` |x|2q. Thus,
taking the worst case |α| “ 4 in Lemma C.2piiiq, we get:

|(C.49)| ď Ch2
n}f}8η

´12
`

1` E r|X̄tn´1 |
24s

˘
1
6
`

1` E r|X̄tn´1 |
24s

˘
1
12 ď Ch2

1}f}8η
´12p1` |x|6q.

Finally, the control of (C.50) relies on Lemma C.2pivq with F “ X̄tn´1
. Once again, this statement holds true

by Proposition C.3piiq. We have

|(C.50)| ď C}f}8h
2
nη
´12p1` Exr|X̄tn´1

|24sq
1
3 ď C}f}8h

2
1η
´12p1` |x|8q

by using again that E r|X̄tn´1
|ps ď Cp1` |x|pq.

Combining all the above controls, we deduce that there exists h̄ ą 0 and T ą 0 such that if T {2 ď tn´1 ď T ,
then,

ˇ

ˇ

ˇ
P̄h1

˝ ¨ ¨ ¨ ˝ P̄hn´1
˝ pPhn ´ P̄hnq ˝ fpxq

ˇ

ˇ

ˇ
ď C}f}8pη

p ` h2
1η
´12p1` |x|8qq.

For a given ε ą 0, it is now enough to fix η “ h
ε
12
1 and p “ 24ε´1 to conclude the proof.

C.2 Malliavin bounds

In this section, we detail the arguments which lead to the controls of the terms (C.45) to (C.50) involved in the
decomposition of

ˇ

ˇ

ˇ
P̄h1

˝ ¨ ¨ ¨ ˝ P̄hn´1
˝ pPhn ´ P̄hnq ˝ fpxq

ˇ

ˇ

ˇ
. All these terms are managed with the help of

Malliavin-type arguments.

Without going into the details (for this, see e.g. [Nua06]), let us recall some basic notations of Malliavin calculus
on Wiener space. We set H “ L2pR`,Rdq and denote by W “ tW phq, h P Hu, an isonormal Gaussian process
on H which is assumed to be defined on a complete filtered probability space pΩ,F ,Pq, and that F is generated
by W . We also denote by pFtqtě0 the completed natural filtration of pWtqtě0.

The Malliavin operator is denoted by D and its domain by D1,p for a given p ą 1 (closure of S, space
of smooth random variables, in LppΩq for the norm } . }1,p defined in (C.51)). For a (F-measurable) random
variable F in Dp,1, DF is a random variable with values in H such that E r}DF }pHs ă `8. For every multi-
index α P t1, . . . , duku, the iterated derivative DαF is defined on Hbk. The space Dk,p denotes the closure of
S in LppΩq for the norm } . }k,p defined for a given real-valued random variable F by

}F }k,p “ E r|F |pks
1
p with |F |k “ |F | ` |F |kz0, where |F |kz0 “

k
ÿ

`“1

}Dp`qF }Hb`, (C.51)

and for every ` ě 1,

}Dp`qF }2Hb` :“
ÿ

|α|“`

ż

r0,`8q`
|Dα

s1...s`
F |2ds1 . . . ds`.

For a random variableF “ pF 1, . . . , Fmq, |F |kz0 “
řm
i“1 |Fi|kz0, F |k “

řm
i“1 |Fi| and }F }pk,p “

řm
i“1 E r|Fi|

p
ks.

Furthermore, for such Rm-valued Malliavin-differentiable random variable F , the Malliavin matrix, denoted by
σF , is defined by

σF “ pxDF
i, DF jyHq1ďi,jďm. (C.52)

For any element A of Rm``1

, we will denote by } . } the L2-norm defined by

}A} “

d

ÿ

1ďi1,...i``1ďd

|Ai1,...,i``1
|2. (C.53)

Note that when ` “ 1, this corresponds to the Frobenius norm on the space of mˆm matrices.
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C.2.1 Bounds for a general random variable F

In this subsection, we consider an Ft-measurable random variable F and establish some useful bounds under
appropriate Malliavin assumptions. Then, since in the proof of Theorem 3.7, we will use them with F “ X̄tn´1

,
we will prove in the next subsection that the assumptions of the results of this section hold true.

In the following lemma, we recall that Xpu, xq is the unique solution at time u starting from x (more precisely,
pu, xq ÞÑ Xpu, xq is the stochastic flow related to (1.1)). Furthermore, we implicitly assume that if F is an
Ft-measurable random variable, Xpu, xq is built with the increments of Wt`. ´Wt. In particular, Xpu, xq is
viewed as an Ft`u random variable.

Lemma C.1. Let t ą 0 Let F denote an Rd-valued Ft-measurable Malliavin-differentiable random variable.
Assume b and σ have bounded first partial derivatives. Then,

piq For every p ě 1 and η ą 0, a constant C exists (which does not depend on F ) such that

sup
uPr0,1s

E r|detpσXpu,F qq|
´p1tdetσFěηus ď Cη´p.

piiq Set X̄θpu, xq “ x ` θ
`

ubpxq ` σpxqpWt`u ´Wtq
˘

. Then, some positive M , h̄ and C exist such that for
every u P p0, h̄s and θ P p0, 1s,

E r|detpσX̄θpu,F qq|
´p1tdetσFěη,|Wt`u´Wt|ďMus ď Cη´p.

Remark C.1. In piq, we state that on the set where σF is not degenerated, nor is Xpu, F q (with a non-degeneracy
which is quantified along the parameter η). In piiq, we show that for the Euler scheme, this property is still true
but up to a truncation of the Brownian increments (by M ). Here, one retrieves that unfortunately, the Malliavin
matrix of the Euler scheme is not invertible everywhere (see Proposition C.3piq for a control of the lack of
invertibility of σX̄tn ).

Proof. piq As mentioned before the lemma, we implicitly assume that Xpu, xq is built with the increments of
Wt`. ´Wt. Thus Xpu, F q is a functional of pWs, 0 ď s ď T ` uq. Then, owing to the chain rule for Malliavin
calculus, we remark that for any s P r0, T s, for any i and j P t1, . . . , du,

Dj
sXipu, F q “

d
ÿ

`“1

Y i`,Fu Dj
sF

`, (C.54)

where we recall that Y i`,xu “ Bx`X
i,x
u (where Xi,x stands for the ith coordinate of Xx

u ). It follows that

σXpu,F q “

ż tn

0

YuDsF pYuDsF q
˚ds`

ż u

tn

DsXpu, F qpDsXpu, F qq
˚ds.

Since for two symmetric positive matrices A and B, detpA`Bq ě maxpdetA,detBq, we deduce that

detσXpu,F q ě |detpY Fu q|
2det

ˆ
ż tn

0

DsF pDsF q
˚ds

˙

“ |detpY Fu q|
2detpσF q.

Thus,
E rdetσXpu,F q1tdetσFěηus ď η´pE r|detpY Fu q|

´2ps ď Cpη
´p,

where Cp “ supxPRd,uPr0,1s E r|detpY xu q|
´2ps ă `8 (the fact that Y x0 “ Id and that ∇b and ∇σ are bounded

implies that Cp is finite, with the help of a Gronwall argument, similar to the one used in piiiq).

piiiq The map x ÞÑ X̄θpu, xq is differentiable on Rd. Then, owing to the chain rule for Malliavin calculus, for
every j P t1, . . . , du,

Dj
sX̄θpu, F q “ ∇xX̄θpu, F q ˝D

j
sF,

and with the same arguments as in piq,

detσX̄θpu,F q ě |detp∇xX̄θpu, F qq|
2pdetσF q.
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Now,
∇xX̄θpu, xq “ Id ` θpu∇bpxq `∇σpxqpWt`u ´Wtqq,

and one checks that

}θpu∇bpxq `∇σpxqpWt`u ´Wtqq}F ď ud}∇b}8 ` d}∇σ}8|Wt`u ´Wt|.

Thus, setting

M “
1

4dp}∇σ}8 ^ 1q
and h̄ “

1

4d}∇b}8
,

we conclude the proof by noting that, on the event
 

detσF ě η
(

,

inf
hPp0,h̄s

detσX̄θpu,F q ě 2´2dη.

Lemma C.2. Let k be a positive integer. Assume that |bpxq| ď Cp1 ` |x|q and that σ is bounded. Let t ą 0.
Let F be an Rd-valued Ft-measurable random variable, Malliavin-differentiable up to order k ` 2, such that
for every p ě 1,

sup
1ď`ďk`2

sup
|α|“`

sup
s1,...,s`Pr0,ts

`

E r}Dα
s1,...,s`

F }ps
˘

1
p “: d

pk`2q
p,t ă `8. (C.55)

Let Ψη denote a smooth function on R such that Ψηpxq “ 0 on p´8, η{2q and 1 on pη,`8q. Then, some
positive C and M exist such that for any η ą 0

piq For any α P t1, . . . , duk with |α| “ k, for any G in Dk,3,

|E rBαfpF qGΨηpdetσF qs| ď C}f}8η
´2k

`

1` E r|F |3ks
1
3

˘

}G}k,3.

piiq Assume that b and σ are C3 with bounded existing partial derivatives.
ˇ

ˇ

ˇ
E rϕp1qh pF qΨηpdetσF qs

ˇ

ˇ

ˇ
ď Cη´6

`

1` E r|F |9s
2
3

˘

where C depends on b, σ, T and d
p3q
p,t for a given p (which could be made explicit).

piiiq Assume that b and σ are Ck`2 with bounded existing partial derivatives. Let φ : Rd ÞÑ R denote a
Ck-function such that |φpxq| `

řk
`“1 }∇p`qφpxq} ď Cp1` |x|2q. Then, for any α P t1, . . . , duk,

sup
uPr0,τs

|E rBαfpXpu, F qqφpXpu, F qqΨηpdetσF qs| ď C}f}8η
´3k

`

1` E r|F |6ks
1
6

˘`

1` E r|F |24s
˘

1
12 .

pivq Let Z be a N p0, Idq-random variable independent of F . For any θ P r0, 1s,
ˇ

ˇ

ˇ
E rϕp2qh,M pF, θ,

?
hZqΨηpdetσF qs

ˇ

ˇ

ˇ
ď C}f}8h

2η´12
`

1` E r|F |24s
˘

1
3 .

Proof. The proof strongly relies on [BCP20, Lemmas 2.3, 2.4].
(i) Let α denote a multi-index. By Lemmas 2.3 and 2.4piiq of [BCP20] (applied with k “ 0 and n “ |α|),

E rBαfpF qGΨηpdetσF qs “ E rfpF qHαpF,GΨηpdetσF qqs,

where for some random variables F and G in D|α|,p,

|HαpF,GΨηpdetσF qq| ď Cη´2|α|
`

|F |p|α|`1qz0 ` |LF ||α|
˘|α|

p1` |F |p|α|`1qz0q
4d|α||G||α|.

where |F |kz0 is defined in (C.51) and L denotes the Ornstein-Uhlenbeck operator. Thus, using Hölder inequality,
we deduce that

E r|HαpF,GΨηpdetσF qq|s ď Cη´2|α|E r
`

|F |p|α|`1qz0 ` |LF ||α|
˘3|α|

s
1
3E rp1` |F |p|α|`1qz0q

12d|α|s
1
3 }G}|α|,3.
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Now, on the one hand, by the definition of |F |kz0 and Assumption (C.55), one easily checks that for every
positive integer k and positive p ě 1,

E r|F |pkz0s
1
p ď Cp,td

pkq
p,t . (C.56)

On the other hand, the term involving the Ornstein-Uhlenbeck operator L can be classically controlled by Meyer
inequalities (see e.g. [Nua06, Theorem 1.5.1] or [BC19, Section 2.4]), which ensures for every integer m and
positive p, the existence of a constant Cm,p such that

}LF }m,p ď Cm,p}F }m`2,p ď Cm,p,t

´

E r|F |ps
1
p ` d

pm`2q
p,t

¯

. (C.57)

where } , }k,p is defined by (C.51). Thus, by the Minkowski inequality, we deduce that a constant C exists
depending on T , |α| and d

p|α|`2q
12d|α|,t such that,

E r|HαpF,GΨηpdetσF qq|s ď Cη´2|α|
`

1` E r|F |3|α|s
1
3

˘

}G}|α|,3.

piiqWe have to apply piq for some multi-indices α with |α| “ 2 or |α| “ 3. More precisely, on the one hand, the
first term of ϕp1qh pF q can be written as follows:

pD2fpF qbpF q|bpF qq “
ÿ

i,j

B2
i,jfpF qGi,j with Gi,j “ bipF qbjpF q.

Thus, since |bpxq| ď Cp1 ` |x|q and b has bounded derivatives, one checks (using the chain rule for Malliavin
calculus and (C.56)) that,

}Gi,j}2,3 ď Cp1` E r|F |6s
1
3 q,

where C depends on T and d
p4q
p,t with p “ 6. Thus, it follows from piq (applied with |α| “ 2) that

ˇ

ˇE rpD2fpF qbpF q|bpF qqΨηpdetσF qs
ˇ

ˇ ď C}f}8η
´4p1` E r|F |6s

2
3 q

where C depends on T and d
p|α|`2q
p,t with p “ 24d. On the other hand, the second term of ϕp1qh pF q has the

following form:
1

6

3
ÿ

i,j,k

B3
i,j,kfpF qGi,j,k with Gi,j,k “ pbipbjbk ` pσσ

˚qjkqq pF q.

Using the assumptions on b and σ, one checks (using the chain rule for Malliavin calculus and (C.56)) that,

}Gi,j,k}3,3 ď Cp1` E r|F |9s
1
3 q,

where C depends on T and d
p5q
p,t with p “ 9. Thus, it follows from piiq (applied with |α| “ 3) that for every

pi, j, kq P t1, . . . , du3,

E rB3
i,j,kfpF qGi,j,kΨηpdetσF qs ď Cη´6p1` E r|F |9s

2
3 q,

where, once again, C depends on T and d
p|α|`2q
p,t for a given value of p (p “ 36d). The result follows.

piiiq For this statement and the following, we use Lemma 2.4piq of [BCP20], which states that for some random
variables F̄ and G in D|α|,p,

E rBαfpF̄ qGs “ E rfpF̄ qHαpF̄ , Gqs, (C.58)

where, on the set detσF̄ ą 0,

|HαpF̄ , Gq| ď C

¨

˝

|F̄ |
2pd´1q
p|α|`1qz0p|F̄ |p|α|`1qz0 ` |LF̄ ||α|q

detσF̄

˛

‚

|α|

ˆ
ÿ

p1`p2ď|α|

|G|p2

˜

1`
|F̄ |2d

p|α|`1qz0

detσF̄

¸p1

.

It follows that on the set tdetσF̄ ą 0u,

|HαpF̄ , Gq| ď C

ΥαpF̄ q
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

´

1` detσF̄ ` |F̄ |
2d
p|α|`1qz0

¯|α|
`

p|F̄ |p|α|`1qz0 ` |LF̄ ||α|q
˘|α|

|G||α|

´

1` pdetσF̄ q
´2|α|

¯

.
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By Hölder inequality, we deduce that

|E rBαfpF̄ qGs| ď E rΥαpF̄ q
3s

1
3 }G}|α|,3E

„

´

1` pdetσF̄ q
´2|α|

¯3

1|G|ą0


1
3

. (C.59)

Let us upper-bound E rΥαpF̄ q
3s

1
3 by a simpler quantity. First, denoting the largest eigenvalue of a symmetric

matrix A by λ̄A, we remark that
|detσF̄ | ď λ̄dσF̄ ď C}σF̄ }

d

where } . } stands for the Frobenius norm and where the second inequality follows from the equivalence of norms
in finite dimension. But, one easily checks that

}σF̄ }
2 ď C|F̄ |21,1

so that
1` detσF̄ ` |F̄ |

2d
p|α|`1qz0 ď Cp1` |F̄ |2dp|α|`1qz0q.

Thus, by the elementary inequality |u` v||α| ď 2|α|´1p|u||α| ` |v||α|q, we get:

ΥαpF̄ q ď C
”

p1` |F̄ |
p2d`1q|α|
p|α|`1qz0 q ` p1` |F̄ |

2d
p|α|`1qz0q|LF̄ |

|α|
|α|

ı

.

Thus, using (C.57) (Meyer inequality) and Cauchy-Schwarz inequality, we deduce that

E rΥαpF̄ q
3s ď C

´

E r1` |F̄ |3p2d`1q|α|
p|α|`1qz0 s ` E r1` |F̄ |12d|α|

p|α|`1qz0s
1
2E r|F̄ |6|α|

|α|`2s
1
2

¯

and, hence, if

E rΥαpF̄ q
3s

1
3 ď CE rp1` |F̄ |p|α|`1qz0q

12d|α|s
1
3 p1` E r|F̄ |6|α|

|α|`2s
1
6 q.

Thus, we get the following inequality (where as usual, C denotes a constant which may change from line to
line):

|E rBαfpF̄ qGs| ď Cp1`E r|F̄ |12d|α|
p|α|`1qz0s

1
3 qp1`E r|F̄ |6|α|

|α|`2s
1
6 q}G}|α|,3p1`E rpdetσF̄ q

´6|α|1|G|ą0s
1
3 q. (C.60)

We now want to apply Inequality (C.60) with F̄ “ Xpu, F q and G “ φpXpu, F qqΨηpdetσF q. Note that as in
Lemma C.1, we implicitly assume that Xpu, F q is an FT`u-measurable random variable. On the one hand,

E rpdetσF̄ q
´6|α|1|G|ą0s

1
3 ď E r

`

detσXpu,F q
˘´6|α|

1detσFě
η
2
s

1
3 ď Cη´2|α|, (C.61)

by Lemma C.1piq. Now, since x ÞÑ Xpu, xq is Ck`2 (since b and σ are Ck`2), one derives that if F is Malliavin-
differentiable up to order k, then Xpu, F q so is. Furthermore, since b and σ have bounded derivatives, one can
check that for every multi-index β such that 1 ď |β| ď |α|, for every p ą 0, for every τ ą 0,

sup
xPRd

sup
uPr0,τs

E r}BβxXpu, xq}ps ă `8. (C.62)

Then, using Assumption (C.55), the boundedness of σ and the Hölder inequality, a tedious computation of the
Malliavin derivatives of Xpu, F q shows that for every p ą 0,

sup
uPr0,τs

E r|Xpu, F q|p
p|α|`2qz0s ď Cp ă `8. (C.63)

Thus, in view of (C.60), we deduce that a constant C exists (which does only depend on τ ) such that

E r|Xpu, F q|12d|α|
p|α|`1qz0s ď C and E r|Xpu, F q|6|α|

|α|`2s ď Cp1` E r|Xpu, F q|6|α|sq.

Now, by a classical Gronwall argument, for every τ ą 0, for every p ą 0,

E r|Xpu, xq|ps ď Cp1` |x|pq, (C.64)
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so that
E r|Xpu, F q|6|α|s ď Cp1` E r|F |6|α|sq. (C.65)

At this stage, we thus deduce from (C.60),

|E rBαfpXpu, F qqφpXpu, F qqΨηpdetσF qs| ď Cη´2|α|p1` E r|F |6|α|s
1
6 q}φpXpu, F qqΨηpdetσF q}|α|,3.

(C.66)
It thus remains to bound the last right-hand term. We again use chain rule for Malliavin calculus. In view of
the application of the Leibniz formula (for the derivative of the product of functions), we study the Malliavin
derivatives of φpXpu, F qq and ΨηpdetσF q separately. For φpXpu, F qq, we choose to write the arguments in
the one-dimensional case (the extension to multidimensional case involves technicalities but leads to the same
conclusion (C.68) below). In this case, Dp`qφpXpu, F qq takes the form:

Dp`qφpXpu, F qq “
ÿ̀

r“1

φprqpXpu, F qqQprqpDXpu, F q, . . . , Dp`qXpu, F qq, (C.67)

whereQprq denotes a multivariate polynomial function (with degree lower than r). Since |φprqpxq| ď Cp1`|x|2q,
it follows from a Gronwall argument that for every p ą 0, for every τ ą 0, a constant C exists such that

sup
uPr0,τs

E r|φprqpXpu, F qq|ps ď Cp1` E r|F |2psq.

On the other hand, by (C.63) and Assumption (C.55), one deduces that for every positive p and τ , a constant C
exists such that

sup
uPr0,τs

sup
s1,s2,...,s`Pr0,t`τs

E r|Qprqs1,...,s`pDXpu, F q, . . . , Dp`qXpu, F qq|ps ă `8.

By Cauchy-Schwarz inequality, one deduces that for every positive t, τ and p

sup
uPr0,τs

sup
ps1,s2,...,s`qPr0,t`τs

E r}Dp`qs1,...,s`φpXpu, F qq}
ps

1
p ď Cp1` E r|F |4ps

1
2p q. (C.68)

Let us now consider ΨηpdetσF q. We have }Ψp`qη }8 ď Cη´`. Then, using that det is a polynomial function and
Assumption (C.55), one can deduce that

sup
ps1,s2,...,s`qPr0,ts

E r}Dp`qs1,...,s`ΨηpdetσF q}
ps

1
p ď Cη´`. (C.69)

Then, by Leibniz formula and Cauchy-Schwarz inequality, we deduce from (C.68) and (C.69) (applied with
p “ 6) that for every ` P t1, . . . , |α|u,

sup
uPr0,τs

sup
ps1,s2,...,s`qPr0,t`τs

E r}Dp`qs1,...,s` pφpXpu, F qqΨηpdetσF qq }
3s

1
3 ď Cη´`p1` E r|F |24s

1
12 q.

Now, since Ψη is bounded, one easily checks that

sup
uPr0,τs

E r|φpXpu, F qqΨηpdetσF q|
ps ď Cp1` E r|F |2psq.

It follows from the two previous inequalities that

sup
uPr0,τs

}φpXpu, F qqΨηpdetσF q}|α|,3 ď Cη´|α|p1` E r|F |24s
1
12 q.

Plugging this inequality into (C.67), the result follows.

pivqWe have:
E rϕp2qh,M pF, θ,

?
hZqΨηpdetσF qs “

ÿ

α,|α|“4

E rBαfpX̄θph, F qqGαs
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where for a given α “ pα1, . . . , α4q

Gα “
4
ź

i“1

phbαipF q ` σαi,.pF qpWt`h ´WtqqTM pWt`h ´WtqΨηpdetσF q.

The strategy is then quite similar to piiiq. More precisely, for any α “ pα1, . . . , α4q, we start by applying (C.58)
with F̄ “ X̄θph, F q and G “ Gα, which leads to the inequality (C.60). Then, as in piiiq, it remains to control
each term of the right-hand side of (C.60). Let us begin by the last one. Noting that (with the definition of TM ),

t|Gα| ą 0u Ă tdetσF ě
η

2
, |Wt`h ´Wt| ď 2Mu,

we deduce from Lemma C.1piiq that

E rdetσ
´6|α|

X̄θph,F q
1|Gα|ą0s

1
3 ď Cη´6|α|.

Then, since x ÞÑ X̄θph, xq admits similar bounds as x ÞÑ Xpu, xq (in particular (C.62) and (C.64)), some
arguments similar to piiiq lead to an inequality similar to (C.66) (with |α| “ 4): @α “ pα1, . . . , α4q,

|E rBαfpX̄θph, F qqGαs| ď Cη´8p1` E r|F |24sq
1
6 }Gα}4,3.

It remains to control }Gα}4,3. The strategy of proof follows the lines of the ones for the control of }G}|α|,3
in piiiq. Once again, a tedious computation using that b has sublinear growth and the fact TM is smooth with
bounded derivatives leads to:

}Gα}4,3 ď Ch2η´4p1` E r|F |24sq
1
6 .

The result follows.

C.2.2 Bounds of Malliavin derivatives and Semi-nondegeneracy for the Euler scheme

Proposition C.3. Let pX̄tnq denote a Euler scheme starting from x with non-increasing step sequence phn :“
tn ´ tn´1qně1. Let ` ě 1 and assume b and σ are C` with bounded partial derivatives.

piq Let the smoothness assumption hold with ` “ 1. Then, for any p ą 0, there exists a real constant h̄ ą 0 such
that, for any T, r ą 0, there is areal constant C “ CpT, p, h̄, rq ą 0 satisfying: if h1 ď h̄, for any η ą 0 and
any n such that T {2 ď tn ď T,

PpdetσX̄tn ď ηq ď Cphr1 ` η
pq.

piiq Furthermore, if it holds for ` ě 1,

sup
tnPr0,T s,ps1,...,s`qPr0,tns`

E r}Dp`qs1...s`X̄tn}
2ps ď dp,T,` ă `8,

where dp,T,` is a finite positive constant.

Proof. piq Let s P r0, T q. Using the chain rule for Malliavin derivatives, one checks that DsX̄s`. formally
satisfies for any u ě 0:

DsX̄s`u “

#

σpX̄sq if u ď s̄´ s

σpX̄sq `
şs`u

s̄
∇bpX̄vqDsX̄vdv `

şs`u

s̄
∇σpX̄vqDsX̄vdWv if u ą s̄´ s.

(C.70)

By “formally”, we mean that we do not detail the rules for the operations between tensors. With some more
precise notations, this yields in the case u ą s̄´ s: for every ` and i P t1, . . . , du,

D`
sX̄

i
s`u “ σi,`pX̄sq `

d
ÿ

k“1

ż s`u

s̄

BkbipX̄vqD
`
sX̄

k
v dv `

d
ÿ

k,j“1

ż s`u

s̄

Bkσi,jpX̄vqD
`
sX̄

k
v dW

j
v .

For the sake of readability, we keep such formal notations in the sequel of the proof. Let us denote by pȲtqtě0

the “pseudo-tangent” process: Ȳt “ pBxj X̄
i
tq1ďi,jďd where pX̄tqtě0 is the continuous-time Euler scheme defined

by (1.3). One checks that pȲtqtě0 is recursively defined by: Ȳ0 “ Id and for any t ě 0:

Ȳt “ pId `AttqȲt,
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where
Att “ pt´ tq∇bpX̄tq `∇σpX̄tqpWt ´Wtq.

Set

Ωζ :“
n´1
č

k“0

!

sup
uPrtk,tk`1q

}Auu} ă ζ
)

, ζ P p0, 1s, (C.71)

where } ¨ } stands for the Fröbenius norm and ζ will be specified later (see (C.74)) as a constant only depending
on d. On Ωζ , Ȳs is invertible (as a product of invertible matrices), for every s P r0, tns, and one checks that

DsX̄t “ Ȳt_s̄Ȳ
´1
s̄ σpX̄sq.

Let tn P p0, T s and let Fn “ X̄tn . The Malliavin matrix σFn of Fn is given by:

σFn “

ż tn

0

DsFnDsF
˚
n ds,

which, after classical computations yields:

σFn “ ȲtnŪtn Ȳ
˚
tn with Ūtn “

ż tn

0

Ȳ ´1
s̄ pσσ˚qpX̄sqpȲ

´1
s̄ q˚ds.

For any η ą 0 and p ą 0,
PpdetσFn ď ηq ď PpΩcζq ` ηpE rdetσ´pFn 1Ωζ s. (C.72)

On the one hand, using that the partial derivatives of b and σ are bounded, we remark that

sup
tPrtk´1,tkq

}Att} ď C
`

hk ` sup
tPrtk´1,tks

|Wt ´Wtk´1
|
˘

,

where C “ Cb,σ,d ą 0 is a real constant depending on d, }∇b}8 and }∇σ}8. Hence, owing to the independence
and the stationarity of the increments of the Brownian motion, we get

PpΩζq ě
n
ź

k“1

´

1´ P
`

sup
tPr0,hks

|Wt| ě ζC´1 ´ hk
˘

¯

.

Moreover, if B denotes a standard one-dimensional Brownian motion, one has for every h and u ą 0,

P
´

sup
tPr0,hs

|Wt| ě u
¯

ď q P
´

sup
tPr0,hs

|Bt| ě
u
q

¯

ď 2q P
´

sup
tPr0,hs

Bt ě
u
q

¯

“ 2q P
´

sup
tPr0,1s

Bt ě
u
q
?
h

¯

,

where we used thatB d
“ ´B, |x| “ maxpx,´xq in the second inequality and the scaling property in the equality.

Now suptPr0,1sBt
d
“ |Z| with Z d

“ N p0; 1q and Pp|Z| ě zq ď e´
z2

2 for every z ě 0 and we deduce that

P
`

Ωζq ě
n
ź

k“1

´

1´ 2qe
´
pζC´1´hkq

2

2q2hk

¯

ě

n
ź

k“1

´

1´ κ0e
´

ζ2

2C2q2hk

¯

where κ0 “ 2qe
´

ζ

Cq2 and κ1 “
ζ2

2C2q2 only depend on q, d, b and σ. For h1 P p0, h̄s with h̄ small enough (and

ď T ) so that that κ0e
´
κ1
h1 ď 1

2 , we have κ0e
´
κ1
hk ď 1

2 for every k ě 1 since phkqk is non-increasing. Thus,
combining this with the elementary inequalities logp1`uq ě 2u on r´1{2, 0s and 1´ e´u ď u on r0,`8q, we
deduce that

PpΩcζq ď 1´ exp
´

´ 2κ0

n
ÿ

k“1

e
´
κ1
hk

¯

ď 2κ0

n
ÿ

k“1

e
´
κ1
hk .

Now, for any r ą 0, there exists a constant C such that e´
κ1
x ď Crx

r`1 for any x P r0, h̄s. Thus,

PpΩcζq ď 2κ0 Cr

n
ÿ

k“1

hr`1
k ď 2κ0 Crtnh

r
1 ď CT,r,ζ,b,σ,d,q ¨ h

r
1.
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Let us now turn to the second term of (C.72). Recall that det is log-concave on S`̀ pd,Rq, hence M ÞÑ

det´ppMq is convex on S`̀ pd,Rq for any p ą 0. Thus, by Jensen’s inequality, we get

E
“

detσ´pFn 1Ω

‰

ď t´pd´1
n

ż tn

0

E
“

det´p
`

Ȳtn Ȳ
´1
s̄ pσσ˚qpX̄sqpȲ

´1
s̄ q˚Ȳ ˚tn

˘

1Ω

‰

ds. (C.73)

Using that σσ‹ ě ε2
0Id and det is also non-decreasing on S`̀ pd,Rq, we get

E
“

detσ´pFn 1Ω

‰

ď ε´2pd
0 t´pdn sup

sPr0,tns

E r|detpȲtn Ȳ
´1
s̄ q|´2p1Ωs

ď ε´2pd
0 t´pdn E r|detpȲ ´1

tn q|
4p1Ωs

1
2 sup
sPr0,T s

E r|detpȲs̄q|
4ps

1
2

ď CT ε
´2pd
0 t´pdn E r|detpȲtnq|

´4p1Ωs
1
2 ,

where in the last line we used that supsPr0,T s E r|detpȲs̄q|
4ps ď CT (using that the moments of Ȳt can be

uniformly bounded on r0, T swith the help of a Gronwall argument). Then, having in mind that the Trace operator
is the differential of the determinant at Id, yields a constant C such that, for M PM “ tM PMpd,Rq : }M} ď
1{2u,

detpId `Mq ě 1` TrpMq ´ C}M}2.

Furthermore, one can choose ζ “ ζd ą 0 small enough in such a way that

}M} ď ζd ùñ 1` TrpMq ´ C}M}2 ě 1{2. (C.74)

Thus, taking such a ζ in (C.71) and using again that logp1` xq ě 2x on r´1{2, 0s, we obtain:

E
“

detσ´pFn 1Ω

‰

ď CT ε
´2pd
0 t´pdn E

n
ź

k“1

p1` TrpAtk´1tkq ´ C}Atk´1tk}
2q´p

ď CT ε
´2pd
0 t´pdn E exp

´

´ 2p
n
ÿ

k“1

´

TrpAtk´1tkq ´ C}Atk´1tk}
2
¯¯

ď CT ε
´2pd
0 t´pdn E exp

´

Cp
´

1´ Tr
´

ż tn

0

∇σpX̄tqdWt

¯

` }∇σ}8
n
ÿ

k“1

|Wtk ´Wtk´1
|2
¯¯

,

where in the last line, we used that ∇b is a bounded function. Now, using that for all pu, vq P R2 such that

v ă 1{2, EZ„N p0,1q
“

euZ`vZ
2‰

“ p1 ´ 2vq´
1
2 e

u2

2p1´2vq , we deduce from a chain rule of towered expectations
that if Cp}∇σ}8h1 ď 1{4,

E
“

detσ´pFn 1Ω

‰

ď CT ε
´2pd
0 t´pdn exp

”

C̃p,T }∇σ}28tn
ı´

n
ź

k“1

`

1´ 2Cp}∇σ}8ptk ´ tk´1q
˘

¯´q{2

ď Cp,T ε
´2pd
0 t´pdn exp

`

2Cpq}∇σ}8
n
ÿ

k“1

hk
˘

ď Cp,T ε
´2pd
0 t´pdn exp

`

2Cpq}∇σ}8T
˘

,

where in the penultimate inequality, we again used that logp1 ` xq ě 2x on r´1{2, 0s (and where as usual, the
constants may have changed from line to line). Hence, taking tn P rT {2, T s yields

E
“

detσ´pFn 1Ω

‰

ď Cp,q,T ε
´2pd
0 pT {2q´pd,

where Cp,T stands for a finite constant depending on p, q and T . The statement follows.
piiq For the sake of simplicity, we only prove the result in the one-dimensional case. For ` “ 1, we start with the
formula (C.70) which implies, for any s P r0, tns and any p ą 0,

|DsX̄tn |
p “

´

σ2pX̄sq

n´1
ź

k“Npsq`1

`

1` ptk`1 ´ tkqb
1pX̄vq ` σ

1pX̄tkqpWtk`1
´Wtkq

˘2
¯

p
2
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with Npsq “ maxtk, tk ď su and the convention
ś

H “ 1. Thus, using the elementary inequality log
`

p1 `

xq2
˘

“ logp1` 2x` x2q ď 2x` x2 on R (with the convention logp0q “ ´8), we get for any p ą 0,

E r|DsX̄tn |
ps ď }σ}p8E exp

¨

˝

p

2

n´1
ÿ

k“Npsq`1

p2Atktk`1
` |Atktk`1

|2q

˛

‚

with Atktk`1
“ ptk`1 ´ tkqb

1pX̄vq ` σ
1pX̄tkqpWtk`1

´Wtkq. Then,

E r|DsX̄tn |
ps ď }σ}p8 exp

´pT

2
}b1}8 `

p2T

4
}σ1}28

¯

owing to standard estimates for exponential of stochastic integrals.
When ` ě 1, the idea is to iterate the Malliavin differentiation in (C.70). We give the main ideas when ` “ 2

but do not detail the general case. When ` “ 2, one can deduce from the chain rule and (C.70) that for any t ě 0
and ps, vq P r0, ts2,

D2
vsX̄t “ DvpDsX̄tq “

$

’

&

’

%

σ1pX̄tqDvX̄t if v ă t ď s ă t,
σ1pX̄sqDvX̄s `

şt

s̄
DvX̄uDsX̄upb

2pX̄uqdu` σ
2pX̄uqdWuq

`
şt

s̄
D2
vsX̄upb

1pX̄uqdu` σ
1pX̄uqdWuq if 0 ď s, v ă t.

Thus, applying Itô formula to |D2
vsX̄t|

p with p ě 2, we easily deduce from martingale arguments and the
boundedness of the derivatives that if s, v ă t

E r|D2
vsX̄t|

ps ď E r|σ1pX̄sqDvX̄s|
ps ` cp

ż t

s̄

E r|D2
vsX̄u|

p´1|DvX̄uDsX̄u|sdu

` cp

ż t

s̄

E r|D2
vsX̄u|

p´1|D2
vsX̄u|sdu` cp

ż t

s̄

E r|D2
vsX̄u|

p´2
`

1` |DvX̄uDsX̄u|
2sdu

˘

.

Then, by the Young inequality and the control of the moments of D.X̄u previously established, we get by setting
St “ supvPr0,ts |D

2
vsX̄v|

p,

E rSts ď Cp `

ż t

s̄

p1` E rSusqdu.

The result then follows from Gronwall’s inequality.

D Useful properties of Euler scheme with decreasing step

Proposition D.1. Assume pSq and pΓq.

paq For every a ą 0 such that there exist a real constant κb,σ,a ą 0 such that, for any invariant distribution ν,
one has

ν
`

V a
˘

ď κb,σ,a

Furthermore, there exist real constants Cb,σ,a ą and C̄b,σ,a,γ ą 0 such that, for every xP Rd,

sup
tě0

EV apXx
t q ď Cb,σ,aV

apxq and sup
ně0

EV apX̄x
Γnq ď C̄b,σ,a,γV

apxq. (D.75)

pbq There exists λsup ą 0 such that, for any invariant distribution ν, for every x P Rd and @λ P p0, λsupq,
ν
`

eλV
˘

ă `8.
Furthermore, there exists real constants Cb,σ,λ ą 0 and Cb,σ,λ,γ ą 0 such that, for every xP Rd,

sup
tě0

E eλV pX
x
t q ď Cb,σ,λe

λV pxq and sup
ně0

E eλV pX̄
x
Γn
q ď Cb,σ,λ,γe

λV pxq. (D.76)

The bounds in paq are straightforward consequences of (the proof of) Lemma 2 in [LP02] (established in
more general setting where σ is possibly unbounded). The bounds in pbq are established in [Lem05, Theorem
II.1] for the diffusion and [Lem05, Corollary III.1] for the Euler scheme (see also [GPP20, Lemma D.5 and D.6]
for sharper exponential bounds in the additive setting).
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