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Abstract 17 

1. Understanding how animal movements change across space and time is a fundamental question 18 

in ecology. While classical analyses of trajectories give insightful descriptors of spatial patterns, a 19 

satisfying method for assessing the temporal succession of such patterns is lacking. 20 

 21 

2. Network analyses are increasingly used to capture properties of complex animal trajectories in 22 

simple graphical metrics. Here, building on this approach, we introduce a method that incorporates 23 

time into movement network analyses based on temporal sequences of network motifs. 24 

 25 

3. We illustrate our method using four example trajectories (bumblebee, black kite, roe deer, wolf) 26 

collected with different technologies (harmonic radar, platform terminal transmitter, global 27 

positioning system). First, we transformed each trajectory into a spatial network by defining the 28 

animal’s coordinates as nodes and movements in between as edges. Second, we extracted temporal 29 

sequences of network motifs from each movement network and compare the resulting behavioural 30 

profiles to topological features of the original trajectory. Finally, we compared each sequence of 31 

motifs with simulated Brownian and Lévy random motions to statistically determine differences 32 

between trajectories and classical movement models. 33 

 34 

4. Our analysis of the temporal sequences of network motifs in individual movement networks 35 

revealed successions of spatial patterns corresponding to changes in behavioural modes that can be 36 

attributed to specific spatio-temporal events of each animal trajectory. Future applications of our 37 

method to multi-layered movement and social network analysis yield considerable promises for 38 

extending the study of complex movement patterns at the population level. 39 

 40 

KEYWORDS: animal trajectories, Argos, GPS-tracking, harmonic radar, motifs time-series, 41 

movement ecology, spatial networks 42 

 43 

 44 

 45 

 46 

 47 
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1. Introduction 49 

 50 

Over the past recent years, the study of animal movements has experienced a rapid growth thanks to 51 

the development of new technologies to automatically collect long-term individual data on wild 52 

animals (Tomkiewicz et al., 2010; Strandburg-Peshkin et al., 2015; Flack et al., 2018). The 53 

acquisition of high resolution data has also required the development of new statistical tools to 54 

describe and analyse movements. At the most basic level, it is possible to visualize the sequence of 55 

locations visited by the animal by joining those locations with a line, i.e. the animal trajectory. 56 

Speed, step length (distance between successive locations), residency (the time an individual 57 

remains at a specific location before moving), and turning angle (change of direction between 58 

successive steps) are some of the main parameters that can be extracted from such a trajectory 59 

(Patterson et al., 2008; Dodge et al., 2008). These parameters tend to be correlated with specific 60 

behavioural states (Edelhoff et al., 2016) and can be grouped into patterns dependent of 61 

environmental constraints and spatial variability. So far, however, this approach has yielded little 62 

information about the temporal dimension of animal trajectories (Jacoby & Freeman, 2016). For 63 

many animals, movements can show dramatic changes with time as a result of motivation, 64 

experience, social interactions or modifications of the environment (Swingland & Greenwood, 65 

1983). Identifying these changes in complex movement datasets can thus bring critical insights into 66 

the fundamental ecology of animals. 67 

 Recent attempts to develop a unified spatio-temporal analytical framework of 68 

movement data have shown the existence of a relationship between temporal autocorrelations of 69 

movement parameters (i.e. step length) and spatial distribution of critical resources (Wittemyer et 70 

al., 2008). Others have proposed to analyse the sequence of habitats encountered by an animal to 71 

extract behavioural changes in a trajectory (van Toor et al., 2016; de Groeve et al., 2016). 72 

Behavioural change point analysis (BCPA) of movement parameters is a powerful tool to estimate 73 

the time at which an animal changes its movement patterns and how this corresponds to behavioural 74 

states such as resting, foraging or moving (Gurarie et al., 2009; Teimouri et al., 2018). Multiple 75 

unsupervised statistical methods have also been used to reduce complex animal trajectories into 76 

human understandable format such as the circular standard deviation (Potts et al., 2018), the t-77 

stochastic neighbouring embedding (t-SNE) algorithm (Bartumeus et al., 2016), the recursive multi-78 

frequency segmentation (ReMuS) (Ahearn & Dodge, 2018), or the Fourier and wavelet analysis 79 

(Polansky et al., 2010). Despite satisfying the quantitative aspects of spatio-temporal analysis of 80 
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animal movement data, these methods often require advanced mathematical knowledge and lack 81 

intuitive tools to help data visualization and interpretation by ecologists.    82 

 Network analysis may constitute a simpler, yet powerful, approach for such analyses 83 

(Jacoby & Freeman, 2016; Bastille-Rousseau et al., 2018; Pasquaretta et al., 2017; Pasquaretta et 84 

al., 2019). For example, Bastille-Rousseau et al. (2018) transposed global positioning system (GPS) 85 

locations obtained from three different species (African elephants, giant Galapagos tortoises, Mule 86 

deer) into networks. In such networks, nodes represent spatial locations visited by the animals and 87 

edges animal movements between these locations. The analysis of node-level network metrics 88 

demonstrated that locations with high betweenness centrality scores (frequency at which a node acts 89 

as bridge along the shortest paths passing by two other nodes) was indicative of bridges between 90 

migration areas for tortoises and corridors between foraging sites for elephants (Bastille-Rousseau 91 

et al., 2018). Network analysis of spatial data can thus bring important information for studying 92 

associations of complex behavioural patterns and spatial characteristics. So far, however, this 93 

method relies on a static representation of animal space use and does not consider the temporal 94 

nature of movements (Jacoby & Freeman, 2016; Bastille-Rousseau et al., 2018).  95 

 Here, we built on this approach to analyse temporal patterns in animal movement 96 

networks. Our method consists in transforming trajectories into movement networks and analysing 97 

the temporal succession of motif patterns (i.e. three-nodes sub-graphs, Wasserman & Faust, 1994) 98 

in these networks. To illustrate the validity of the method, we analysed example datasets of insects 99 

(bumblebee), birds (black kite) and mammals (roe deer, wolf) monitored with different technologies 100 

and at different spatio-temporal scales. We argue that this method, easily accessible to ecologists, 101 

can favour comparative analyses and bring new insights into the movement ecology of a wide range 102 

of species.  103 

 104 

2. Materials and Methods 105 

2.1 Movement datasets 106 

We tested our method on animal trajectories obtained from two original datasets (bumblebee, black 107 

kite) provided in Dryad (doi:10.5061/dryad.47d7wm390), and two published datasets (roe deer, 108 

wolf) publicly available on the MoveBank data repository (Wikelski, M., and Kays, R. 2020). The 109 

trajectories were selected to illustrate how the analysis of spatio-temporal behavioural patterns in 110 

movement networks can apply to different types of raw data (harmonic radar, GPS), to animal 111 

species with different locomotion modes (flying, walking), at different spatial scales (region, across 112 

countries), and in different behavioural contexts (search, migration, roaming). 113 
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Bumblebee search trajectory 114 

We used a harmonic radar to obtain a search trajectory of a bumblebee worker on 15/04/2018 (1 115 

recording every 3.3s, 364 data points, Fig. S1A). We set up a commercial colony of Bombus 116 

terrestris (Biobest NV, Westerlo, Belgium) in a flat dry rice farm land in Sevilla (Spain) (Fig. S2). 117 

We trained multiple bumblebees to forage on three artificial flowers (i.e. blue platform with 40% 118 

(v/v) sucrose solution, see details in Lihoreau et al., 2012) positioned two meters in front of the nest 119 

box. Once a regular forager was identified (bumblebee performing several consecutive foraging 120 

bouts), we closed the colony entrance and randomly moved the three artificial flowers away in the 121 

field. The focal bumblebee was equipped with a transponder (16 mm vertical dipole) upon leaving 122 

the nest box and tracked with the harmonic radar until it returned to the colony (Riley et al., 1996). 123 

The radar was placed 350 meters away from the colony nest box (Fig. S3) and returned the 2D 124 

coordinates of the tagged bumblebee within a range of 700 m.  125 

 126 

Black kite long-range migration trajectory 127 

We used GPS to track an adult female black kite (Milvus migrans) moving across Spain from 128 

28/05/2019 to 19/08/2019 (1 recording every 6h, 332 data points, Fig. S1B). The bird was caught 129 

after an injury and maintained five weeks in an aviary for rehabilitation. We equipped the bird with 130 

a Platform Terminal Transmitter (PTT) back-packed (Xerius Tracking, France) and released it in 131 

Toulouse (France), where it first moved within a limited area before migrating on its way to 132 

Morocco. 133 

 134 

Roe deer short-range migration trajectory 135 

This dataset was obtained from the EURODEER collaborative project (E. Mach Foundation, 136 

Trento, Italy; http://sites.google.com/site/eurodeerproject) (Cagnacci et al., 2011). It consists of one 137 

GPS trajectory of an adult male roe deer (Capreolus capreolus) collected from 23/10/2005 to 138 

28/10/2006 (1 recording every 4 h, 1827 data points; Fig. S1C). The roe deer was tracked in the 139 

area of Trentino Alto Adige (Italy). Behavioural patterns in this trajectory are dominated by short 140 

range migratory movements representing the yearly leave-and-back movements between two winter 141 

and summer sites. To compare this trajectory with the other example trajectories, we reduced the 142 

number of data points to 457 by resampling the trajectory every 16h. 143 

 144 

Wolf roaming trajectory 145 

This dataset was obtained from a study of the Przewalskii horse reintroduction project of the 146 

International Takhi Group (ITG) (Kaczensky et al., 2006). It consists of one GPS trajectory of an 147 
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adult male wolf (Canis lupus) collected from 05/03/2004 to 18/09/2005 (1 recording every 8 h, 148 

1455 data points in total). The wolf was tracked in the mountains of the Goby Desert (Mongolia). 149 

Behavioural patterns in this trajectory are dominated by territorial movements around the mountains 150 

and one main roaming period (Fig. S1D). To compare this trajectory with the other example 151 

trajectories, we reduced the number of data points to 485 by resampling the trajectory each 24h. 152 

 153 

2.2 Method overview  154 

We analysed all the trajectories following four major steps. First, we transformed the raw spatial 155 

coordinates into movement networks built using different spatial resolutions (grid sizes). Second, 156 

we extracted the temporal sequence of network motifs obtained from these different networks and 157 

compared them to define an optimal grid size for further analyses. Third, we used the selected 158 

temporal sequence of network motifs to highlight spatio-temporal locations showing complex 159 

behaviours in the original trajectory. Fourth, we extracted the non-random temporal transitions 160 

between consecutive motifs in the experimental datasets and compared them with the non-random 161 

transitions of simulated data from classical movement models. The complete R code is available in 162 

Dryad (doi:10.5061/dryad.47d7wm390) with description in Supplementary Text S1. 163 

 164 

Transform spatial coordinates into a temporal movement network 165 

The first step consisted in transforming the raw movement data into a format that can be 166 

automatically analysed with network metrics. To do so, we rasterized the animal coordinates on a 167 

spatial grid. Because different grid resolutions affect the topological structure of the resulting 168 

network (Bastille-Rousseau et al., 2018), we built a range of networks with different grid 169 

resolutions.  170 

 Building a movement network from an animal trajectory has the risk of 171 

oversimplifying the information depending on grid resolution (Fig. 1). Effects vary from large grid 172 

size, where the entire trajectory can be summarized into movement loops starting and ending at a 173 

single location, to small grid size, where each location of the raw trajectory corresponds to different 174 

grid cell. The optimal grid resolution capturing biologically relevant behavioural patterns is 175 

expected to lay somewhere in the middle. Previous studies have used the median of the step length 176 

distribution as grid size, based on the fact that this value leads to robust results under the 177 

assumption of Brownian movements (Bastille-Rousseau et al., 2018). However, many animal 178 

trajectories show more complex patterns. To address this issue, for each trajectory we tested nine 179 

grid resolutions. Each grid resolution corresponded to one specific quantile of the step length 180 

distribution of the trajectory (i.e. p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The animal 181 
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coordinates were thus transformed into nodes and movements between them into directed edges 182 

(see Fig. 1B). We attributed the same node identity to each coordinate falling into the same grid 183 

cell. Empty cells were considered as non-visited cells at this stage. We then transformed the spatial 184 

network into a temporal edge list by associating a time to each movement of the sequence. 185 

 186 

 187 

 188 

 189 

FIGURE 1. Transformation of an animal movement data into a temporal movement network: the problem of grid 190 

resolution. A hypothetical trajectory is transformed using three different cell sizes: large, medium and small. A) 191 

Original trajectory embedded in each grid resolution. Orange dots represents the coordinates of the animal. B) Resulting 192 

movement network built by assigning a single node identity to each of the coordinates that fall into the same cell. The 193 

trajectory is thus transformed into a movement network in which spatial coordinates are nodes (orange dots) and 194 
movements between them are directed edges (light blue arrows). Directed edges associated to a specific time produce a 195 

temporal movement network. Shannon diversity index used to select the optimal grid size given the data (see 196 

adjustment of grid resolution paragraph below) 197 

 198 

Extract temporal sequence of network motifs from movement networks 199 

Treating animal trajectories as behavioural sequences provides a description of topological 200 

movement structures and can reveal the processes by which these patterns appear and are 201 

maintained in the sequences (De Groeve et al., 2016). For each trajectory, we extracted temporal 202 

sequences of motif patterns between three nodes from the edge list of each movement network. In 203 
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the context of movement networks, these sequences refer to sub-graphs that describe spatio-204 

temporal movements (Pasquaretta et al., 2017) and can be used to understand non-random 205 

successions of patterns in a complex behavioural sequence (Patel et al., 2003).  206 

 Among the 13 possible different motifs between three nodes, five are irrelevant for 207 

movement data (Fig. S4, see details in Wasserman & Faust, 1994). Four of the eight remaining 208 

motifs belong to the family of “loosely connected motifs”, i.e. sub-graphs missing one edge 209 

between two out of three nodes (Juszczyszyn, 2014; Fig. 2A). The four other motifs belong to the 210 

family of “closely connected motifs”, i.e. sub-graphs with edges between all nodes. In the context 211 

of movement data, the loosely connected motif M3 indicates movements across locations without 212 

any revisit to any location. All other motifs indicate more complex movement patterns characterised 213 

by at least one revisit to a location. 214 

 Temporal sequences of network motifs can be extracted by dividing the edge list into 215 

specific motif windows including at least three different connected nodes (Paranjape et al., 2017). 216 

Here we built sliding windows containing a maximum of three nodes, allowing us to create a 217 

temporal sequence of successive motifs based on the utilisation of three consecutive locations. To 218 

do so, we started from the first node of the network and iteratively analysed the entire sequence to 219 

create sub-sequences of three nodes. Each node in this subsequence can be visited only once (e.g. 220 

M3) or several times (e.g. M13). Once the first sub-sequence was created, we applied the same 221 

iterative algorithm to find all the successive motifs using the last node of the previous sub-graph as 222 

starting point for the next one (Fig. 2B).      223 

 224 

 225 

 226 
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FIGURE 2. Possible three-nodes motifs in movement networks and extraction of their temporal sequence. A) Eight out 227 

of 13 possible motifs were retained. These included four loosely connected motifs (M3, M4, M5, M6), i.e. sub-graphs 228 

missing one edge between two out of three nodes, and four closely connected motifs (M8, M10, M12, M13), i.e. sub-229 

graphs with at least one edge between each node. B) Hypothetical directed movement network (left) represented as a 230 

node sequence (right). Horizontal red bars refer to the subsequence of three nodes used to extract each motif. 231 

 232 

Adjustment of grid resolution 233 

We applied the Dynamic Time Warping (DTW) algorithm (Sakoe & Chiba, 1978) to compare 234 

temporal sequences of motifs built with different grid resolutions and select the most suitable grid 235 

resolution given the data. The DTW compares two, or more, time series and returns the number of 236 

steps needed to transform one reference time series into another. Each step corresponds to the 237 

minimum number of changes needed to transform one query series into its reference series (see 238 

details in Giorgino 2009).  239 

We used this approach to create matrices of similarity between motif time series. 240 

From these data, we finally selected the most suitable motif time series characterised by: 1) the 241 

largest number of different motifs (abundance) and 2) the most equal proportion of each motif 242 

(evenness). To do so, we created a list of temporal sequences of network motifs obtained from 243 

different grid resolutions (i.e. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and calculated a similarity matrix 244 

using the DTW distance between them with the function “dist” of the R package stats (R Core 245 

Team, 2018). We applied the Shannon Diversity Index (Shannon, 1948), using the R package vegan 246 

(Oksanen et al., 2018), to select the optimal time series. Specifically, we used as optimal grid size 247 

the step length corresponding to the highest value of Shannon Diversity Index (to illustrate the 248 

robustness of the method, results from the second highest value are presented in Supplementary 249 

Text S2). With this procedure, we ensured an objective way to select the best grid resolution value 250 

returning the time series with the largest number of motifs which proportions were also more 251 

equally represented. For each dataset, we identified the best grid resolution to analyse complex 252 

movement patterns using sequences of behavioural patterns instead of the trajectory parameters 253 

themselves (e.g. median step length, mean turning angle). We evaluated whether the proportion of 254 

motifs differed across datasets with a Chi-square (�2) test, applied to a table with rows and columns 255 

corresponding to motif counts and animals, using the “chisq.test” function in R. 256 

 257 

Visualization of temporal behavioural patterns 258 

To illustrate that our method can be used to identify spatio-temporal behavioural patterns from 259 

complex animal trajectories we represented the evolution of motifs through time. Here, we focused 260 

only on the seven motifs identified as indicative of complex movements: characterised by at least 261 
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one revisit to a node. We extracted the geographic locations involved in the construction of these 262 

motifs and represented them in the network to describe spatio-temporal patterns of complex 263 

behaviours. Loops (movements starting and ending at the same location) are structurally removed 264 

when analysing network motifs (Wasserman & Faust, 1994). To account for such behavioural 265 

patterns we first extracted the number of loops observed inside each motif and we later applied a 266 

generalized linear model (GLM) for count data (Poisson error distribution) to estimate the 267 

relationship between motif complexity and the number of loops performed using the glm function of 268 

the R package stats (R Core Team, 2018).  We also tested different temporal windows by 269 

resampling the roe deer and wolf dataset (see supplementary Text S3).   270 

 271 

Evaluation of temporal motifs with a null model 272 

The evaluation of motif counts of a static network is typically presented in terms of difference from 273 

a null model (Milo et al., 2002). The null model is usually a randomized version of the empirical 274 

network constrained by some of the network characteristics such as the degree sequence (node 275 

randomization) or the strength of the relationship between nodes (edge randomization) or both 276 

(Farine & Whitehead, 2015). If the count of a specific motif significantly exceeds that of the null 277 

model, the motif is considered to be structurally significant. However, if the null model is far from 278 

having realistic features, the differences observed (even if statistically significant) do not tell 279 

anything insightful about the nature of each motif (Artzy-Randrup et al., 2004).  280 

In temporal directed networks, where a temporal correlation between successive 281 

motifs can be expected, an effective way to compare the experimental sequence with a randomized 282 

sequence is by time-shuffling, that is randomly sample motifs in a sequence and change their 283 

temporal position. The focus is then made on the structure of the motif sequence itself and on the 284 

probability of temporal co-occurrence (conditional probability) of specific motif associations. Here 285 

we used the conditional probabilities between each pair of motif to reveal the existence of non-286 

random transitions between specific behavioural patterns. We first calculated the probability matrix 287 

to move from each motif to the next (8x8 matrix) and compared this matrix with 100 probability 288 

matrices obtained from time-shuffled time series. For each pair of temporal patterns, we calculated 289 

the 95% CIs and compared the probabilities from the original motifs time series to the 290 

corresponding probabilities obtained from time-shuffled motifs time series. We used a one-tail 291 

analysis and consider probabilities falling outside of the upper 95% confidence interval (CI) as 292 

significant. The obtained resulting binary matrix thus assigns 1 to all the positive non-random 293 

conditional probabilities and 0 to the others.  294 

Comparing non-random probabilities with Brownian motion and Lévy walk 295 
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Brownian motion and Lévy walks are two main theoretical random movement patterns used to 296 

describe trajectories observed in nature (Turchin, 1998; Fig. 3). Pure Brownian random walks have 297 

been introduced to describe animal search strategies when no information is available. Brownian 298 

motions are determined by successive steps in random directions whose step lengths and turning 299 

angles are randomly drawn from a normal distribution (Bartumeus et al., 2002). Lévy walks are 300 

defined by movements patterns following a power-law distribution (Shlesinger & Klafter, 1986; 301 

Viswanathan et al., 1996; Reynolds, 2018). To estimate the degree by which the four original 302 

trajectories differed from Brownian and Lévy random movements we compared the binary matrices 303 

of transition between motifs obtained for each of the four animal trajectories with 100 probability 304 

matrices obtained from both simulated Brownian and Lévy trajectories by calculating the Jaccard 305 

index of similarity using the function birewire.similarity in the R package “BiRewire” (Gobbi et al., 306 

2017). We thus obtained four distributions of Jaccard indices (one for each dataset) and compared 307 

them using t-statistic. We adjusted the � value using the sequential Bonferroni correction (Rice, 308 

1989). 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 
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 317 

 318 

FIGURE 3. Examples of simulated random movements. Brownian motion is characterised by a stationary behaviour 319 

throughout the entire trajectory whereas Lévy walk shows an alternance of local stationarity and ballistic movements.  320 

 321 

3. Results 322 

3.1 Identification of optimal grid size 323 

The crucial step in transforming an animal trajectory into a movement network involves the 324 

selection of an optimal grid resolution that is small enough to obtain a suitable number of nodes to 325 

create a network, and large enough to provide insightful details on the animal movement patterns. 326 

For each dataset, we extracted the step length values of the nine quantiles of the step lengths 327 

distribution of the trajectory, and removed any quantiles with step length value close to zero (i.e. 328 

values lower than 10-6). We obtained seven possible quantile values for the black kite, and nine 329 

quantile values for the bumblebee, the roe deer and the wolf (Table S1). We used these quantile 330 

values as cell size to build spatial grids and generate movement networks. From these networks, we 331 

extracted temporal sequences of network motifs and compared them using the DTW distance to 332 

select the optimal grid resolution given the data. We then applied the Shannon Diversity Index to 333 

select the motif time series for each dataset as candidate sequence for subsequent analyses. The 334 

Shannon Diversity Index retained the motif time series 5, 5, 7 and 8, corresponding to a cell size of 335 

step length value of 11.209 (i.e. quantile 0.5) for the bumblebee, 0.0075 (i.e. quantile 0.7) for the 336 

black kite, 0.0037 (i.e. quantile 0.7) for the roe deer and 0.2642 (i.e. quantile 0.8) for the wolf (Fig. 337 
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4; see Table S1 for the values of all quantiles). Thus, the optimal grid size selected for the temporal 338 

analyses of network motifs varied across the four datasets. 339 

 340 

 341 

FIGURE 4. Motif time series selection. The Shannon Diversity Index was applied to motif time-series for each dataset: 342 

A) bumblebee, B) black kite, C) roe deer, D) wolf. The highest Shannon Diversity Index value, used to select the most 343 

suitable motif time series for each dataset, is highlighted in red.  344 

 345 

3.2 Analysis of behavioural patterns 346 

The proportion of motifs was different across the four datasets (Chi-squared = 56.77, df = 21, p-347 

value < 0.001). The dominant motif was the motif M3 (Fig. 5) that characterises unidirectional 348 

movements across three nodes without revisits. This motif has different biological meanings 349 

depending on the species under consideration. In the black kite and the roe deer, a succession of M3 350 

motifs are characteristic of migratory movements patterns. In the wolf, however, this temporal 351 

pattern is characteristic of movements towards familiar locations in a home range, such as hunting 352 

areas. In the bumblebee, the succession of M3 motif is indicative of search flights.  353 

 354 
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 355 

FIGURE 5. Proportion of network motifs in each dataset. For each species, the proportion of motifs has been divided 356 

into two main categories: a motif describing a unidirectional movement (orange) and seven motifs describing more 357 

complex bidirectional patterns (blue). 358 

 359 

 The seven other motifs characterise bidirectional movements with at least one revisit 360 

to the same node, indicating a temporal re-use of specific areas. The different proportions of such 361 

motifs in the movements may have different biological meanings in the different species and, once 362 

identified, are open to study.  363 

 To further explore and interpret the succession of temporal motifs, we constructed 364 

simplified trajectories highlighting the spatial locations of the simple (unidirectional) motif and the 365 

more complex (bidirectional) motifs in the original data. Because motif analysis does not allow to 366 

include loops (self-edges), we also constructed simplified trajectories highlighting the spatial 367 

locations of each loop (Fig. 6). The number of loops on the same location increased with the 368 

complexity of network motifs indicating that for all four trajectories more complex behavioural 369 

patterns represent areas of temporal interest in animals (GLM for count data - bumblebee: estimate 370 

= 0.243 , SE = 0.058 , z-value = 4.175 , p < 0.001 ;  black kite: estimate = 0.203 , SE = 0.025 , z-371 

value = 8.252 , p < 0.001 ;  roe deer: estimate = 0.122 , SE = 0.019 , z-value = 6.296 , p < 0.001 ;  372 
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wolf: estimate = 0.275 , SE = 0.014 , z-value = 19.698 , p < 0.001). In the bumblebee trajectory, 373 

bidirectional motifs occurred when the individual was in the nest area and near flowers, indicating 374 

an association between complex behavioural patterns and familiar locations, while loops tended to 375 

be concentrated around the nest only, a behavioural pattern reminiscent of orientation flights 376 

(Osborne et al. 2013) (Fig. 6A). In the black kite trajectory, more complex bidirectional motifs 377 

occurred in areas around the release point and few locations after the start of the migration and they 378 

also correspond to single locations of intensive use (loops; Fig. 6B). In the roe deer trajectory, 379 

complex motifs occurred intensely in two different areas while loops gathered around specific 380 

smaller areas (Fig. 6C). In the wolf trajectory, complex bidirectional motifs were observed in two 381 

spatially differentiated areas, while loops were only observed in one of them (Fig. 6D).  382 

 383 

 384 
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 385 

FIGURE 6. Spatio-temporal sequence of behavioural patterns. Evolution of motifs: temporal sequence of network 386 

motifs for each dataset. Blue: bidirectional motifs (M4, M5, M6, M8, M12, M13). Red: unidirectional motif (M3). 387 

Complex motifs: temporal motifs mapped on original trajectories. Blue gradient encodes the temporal sequence of the 388 

more complex bidirectional motifs. Loops: movements starting and ending at the same location mapped on original 389 

trajectories. Blue gradient encodes the temporal sequence of loops. A) Bumblebee data: bidirectional motifs are 390 

observed around the location of the nest and the artificial flowers (F1-F3) while loops are disproportionally observed 391 
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around the nest location. B) Black kite data: bidirectional motifs are observed before migration and at stopover 392 

locations along the migration route and loop behaviours tend to correspond to those locations. C) Roe deer data: 393 

bidirectional motifs are observed in both winter and summer territories while loops evidence some specific sub-areas of 394 

repeated intensive use. D) Wolf data: bidirectional motifs are observed in two territories (main and roaming areas) 395 

during specific periods of the year as well as some small area of temporary use sparse along the animal path. Loops here 396 

are observed only for the summer territory of the wolf (Kaczensky et al., 2006). 397 

 398 

Comparison with Brownian and Lévy walks 399 

We studied the degree by which the four experimental dataset differed from Brownian and Lévy 400 

random movements. We calculated probability matrices of temporal co-occurrence (conditional 401 

probability) of specific motif associations from original trajectories and from simulated ones. We 402 

extracted the Jaccard index of similarity between each original matrix and 100 Brownian motions 403 

and 100 Lévy walks thus obtaining two distributions of 100 values for each trajectory. We 404 

compared the obtained distributions between them using a t-test with Bonferroni correction. 405 

Between each pair of distributions the one having higher mean resembles more to the selected 406 

theoretical model than the other one. The trajectories of the bumblebee and the roe deer tend to be 407 

equally similar to Brownian motion and to differ from both the black kite and wolf trajectories 408 

(Table 1: Brownian motion).The bumblebee trajectory resembles more to a Lévy random walk than 409 

the other trajectories (Table 1: Lévy walk).  410 

 411 

Table 1: Students t-statistics between distributions of 100 Jaccard indices calculated from the comparison of each 412 

binary non-random motif conditional probabilities with 100 simulated matrices obtained from a Brownian and a Lévy 413 

random movement model. We applied a Bonferroni correction for 6 multiple comparison (new reference � = 0.008).   414 

Brownian motion Lévy walk 

Bumblebee – Black kite (t = 5.97 ; p < 0.001) Bumblebee – Black kite (t = 6.68 ; p < 0.001) 

Bumblebee – Roe deer (t = 2.59 ; p =0.009) ns Bumblebee – Roe deer (t = 8.97 ; p < 0.001) 

Bumblebee – Wolf (t = 9.31 ; p < 0.001) Bumblebee – Wolf (t = 5.24 ; p < 0.001) 

Wolf – Black kite (t = -2.58 ; p = 0.009) ns Wolf – Black kite (t = -1.14 ; p = 0.255) ns 

Roe deer – Black kite (t = 3.75 ; p < 0.001) Roe deer – Black kite (t = 1.40 ; p = 0.162) ns 

Roe deer – Wolf (t = 7.32 ; p < 0.001) Roe deer – Wolf (t = 2.55 ; p = 0.010) ns 

 415 

 416 

 417 

 418 
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4. Discussion 419 

Network analyses are powerful tools to statistically describe and compare the spatial structures of 420 

animal movements (Jacoby & Freeman, 2016). So far, however, these approaches do not take into 421 

account the temporal dimension of movements, which is essential to interpret complex behavioural 422 

patterns and their dynamics (ontogeny, repetition, changes). Here we introduced a method to 423 

automatically extract motif patterns from animal tracking data and analyse their succession over 424 

time.  425 

 Our approach builds on the utilisation of movement networks to analyse patterns of 426 

space use by animals (Jacoby & Freeman, 2016; Pasquaretta et al., 2017; Bastille-Rousseau et al., 427 

2018). Starting from the proposition of Bastille-Rousseau et al. (2018) to isolate areas of intensive 428 

use from static spatial network representations of animal movements, we propose to keep trace of 429 

temporal information and create behavioural time series embedded in space. Our method is simple 430 

to operate and thus expected to be embraced by a large community of ecologists. First the animal 431 

trajectory is transformed into a spatial movement network in which nodes are geographic locations 432 

and edges are movements between these locations. Next, the step length distribution of the 433 

trajectory is used to calculate multiple movement networks, extract their motif time series and 434 

compare them to estimate the optimal grid size providing the most diverse sequence of motifs. This 435 

selection is used to objectively determine the most suitable resolution for the spatio-temporal 436 

analysis of animal trajectories given the data. The temporal exploration of movement trajectories 437 

from four case studies demonstrates that our approach is functional and insightful. The analysis of 438 

movement patterns matched very well with our knowledge of the ecological context in which the 439 

data were recorded, allowing us to identify simple behavioural patterns associated with search 440 

routines and migration (unidirectional motifs), and more complex patterns (bidirectional motifs) 441 

correlated with the exploitation of familiar areas (migration sites, home range), revisits to specific 442 

locations (nest, flowers), resting phases during migrations (stopovers, sparse area of temporary use).  443 

In the bumblebee dataset, complex motifs occurred when the individual was near to 444 

biologically relevant locations (nest and flowers). These results are consistent with the well-445 

described observations that bumblebees searching for nectar resources often return to their nest and 446 

previously discovered flowers (Lihoreau et al., 2012; Osborne et al., 2013), possibly to explore new 447 

areas from known reference spatial locations (Lihoreau et al., 2016). Additionally, the loop analysis 448 

revealed a strong tendency of the bumblebee to remain around the nest before flying longer 449 

distances. This finding is in accordance with previous works demonstrating that bumblebees use 450 

learning flights, in the form of loops around the nest, to learn and memorize the location of the nest 451 
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in the environment (Osborne et al., 2013). In the black kite dataset, complex movement patterns and 452 

loops overlap almost perfectly, which likely indicates the existence of stopover sites along the 453 

migratory route of the bird. The spatio-temporal analysis of the roe deer dataset highlighted the 454 

existence of two successive migratory events during which similar use of spatially distinct home 455 

ranges occurs. Interestingly, loops were concentrated around specific areas which might correspond 456 

to areas of core usage (i.e. 50% of the time is spent in these specific areas) of the home range of the 457 

animal during both summer and winter season. The wolf dataset presents complex bidirectional 458 

motifs across a summer and a winter territory (Kaczensky et al., 2006). Sparse areas of temporary 459 

use are also revealed along the trajectory suggesting possible resting areas during the roaming 460 

process. In this case, interestingly, loop behaviours were only observed in the summer territory, 461 

suggesting the possible existence of valuable resources in this area.  462 

Comparing the four trajectories with simulated random movement indicated that some 463 

trajectories resemble more to a Brownian motion or Lévy walk than others. The bumblebee 464 

trajectory, for example, resembles more to a Lévy walk than the other trajectories, thus confirming 465 

previous studies suggesting the existence of Lévy flights as optimal search strategy in bumblebees 466 

(Reynolds et al., 2007; Reynolds, 2008; Lihoreau et al., 2016). The black kite and the wolf 467 

trajectories appeared different from both Brownian and Lévy motions thus suggesting the 468 

possibility to study these movements using more complex behavioural models. Indeed, Brownian 469 

motion often underestimates long range movements while pure Lévy walk often overestimates them 470 

(Vallaeys et al., 2017). More realistic motions might also be tested in the future (e.g. correlated 471 

random walks; Bovet & Benhamou, 1988) to compare trajectories between them and against 472 

specific hypothesis.   473 

Future quantitative analyses using multiple trajectories from more individuals will be 474 

essential to develop fruitful research on the movement ecology of species. Studies of animal 475 

movement are generally based on high resolution data from a few individuals, partly because 476 

obtaining long-term data in the field is not an easy task. However, with the fast development of 477 

automated tracking systems, analyses of rich movement datasets based on large numbers of 478 

trajectories from many individuals are becoming possible (Cagnacci et al., 2010). Our automated 479 

analysis has the main advantages of capturing the temporal properties of complex movement 480 

patterns into synthetic and standardized network metrics that facilitate comparative analyses. The 481 

metrics obtained are comparable through time for the same individual (e.g. if we are interested in 482 

learning and memory) or across individuals (e.g. to assess inter-individual variability in a 483 

population, between populations or between species). This approach may therefore facilitate the 484 



20 

development of a truly comparative movement ecology based on statistics on standard network 485 

metrics. 486 

 Our utilisation of networks metrics could be adjusted depending on the type of data 487 

collected and the question addressed. Interestingly, it is possible to study motifs with more than 488 

three nodes to compare multiple spatio-temporal level of behavioural complexity that might not 489 

emerge from the study of low order motifs. For instance, a four-nodes sequence such as A-B-C-D-A 490 

provides a description of a large area of interest for an animal while the three-nodes equivalent A-491 

B-C plus C-D-A only provides description of two unidirectional movements between locations 492 

without any evidence of spatio-temporal clusters. Note however, the limitation of computational 493 

capabilities tend to restrict operational motif size for this type of analysis and debate on how to 494 

extract subgraphs with more than three nodes is still open (Williams et al., 2014; Ning et al., 2018; 495 

Agasse-Duval & Lawford, 2018).   496 

 Importantly, our method enables to compare the spatio-temporal structure of 497 

behavioural patterns to known theoretical movement models. In the future, a functional motif 498 

analysis could be implemented to highlight cluster of functional roles (McDonnell et al., 2014). 499 

Functional motifs could help describe potential changes in behavioural patterns. The utilization of 500 

network motifs to analyse animal movements offers a detailed representation of behavioural 501 

patterns which is certainly complementary to more classical descriptors of animal movements (e.g. 502 

step length, turning angle) and other methods used to obtain behavioural modes (e.g. t-SNE). For 503 

instance, the t-SNE method is a procedure to cluster spatial data based on their similarity in various 504 

quantitative traits (e.g. straightness, net displacement, mean velocity, see Bartumeus et al., 2016). It 505 

enables to describe animal movements as behavioural patterns thus transforming a raw animal 506 

trajectory into smaller spatial segments representing diverse behavioural modes. The t-SNE method 507 

relies on the interpretation of these behavioural modes. Our spatio-temporal network method, by 508 

associating motifs to the specific segments obtained from the t-SNE, could be used to improve their 509 

interpretation by the use of direct visualization. Analysis of large movement datasets with our 510 

method will also provide the opportunity to develop time-series analyses of network motifs using 511 

Markov chains. This approach would be a powerful means to move from describing and comparing 512 

to predicting temporal sequences of animal movements.  513 

As illustrated above, another major advantage of our method is that it is broadly 514 

applicable and can suit different types of movement data collected with different technologies 515 

(GPS, PTT, harmonic radar), at different spatial scales (local territories, countries) and temporal 516 

scales (minutes, years), on animals with different locomotion modes (walking, flying) and in 517 

different ecological contexts (exploration, exploitation, migration). In principle, temporal analyses 518 
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of spatial network can be used to study virtually all type of animal movement data in which 519 

individual animals are regularly re-located. If trajectories are incomplete, for instance because the 520 

signal of the animal is lost for some period of time, linear interpolation can be used to fill gaps 521 

(Strandburg-Peshkin et al., 2015; Strandburg-Peshkin et al., 2017). For any species, however, the 522 

main limiting factor is the length of the trajectory (i.e. number of data points). If the trajectory has 523 

too few data points, there is a high risk that simplification into a movement network does not 524 

provide enough motifs to allow for an insightful exploration of the data.  525 

We have shown that network analyses can be used to investigate the temporal 526 

dimension of animal movements and get insights into how the animals interact with their ecological 527 

environment (exploitation of known resources, migration routes, stopover sites, territories and 528 

roaming areas). Since most animals (including those studied here) frequently interact with social 529 

partners or competitors, a major challenge for future studies is to analyse the temporal behavioural 530 

movement patterns of interacting animals. Important steps have been made to develop new methods 531 

to extract social network from animal trajectories and future directions have been pointed towards 532 

using social-telemetry data to identify preferred habitats for entire groups (Robitaille Webber & 533 

Vander Wal, 2019). Our method can help analyse these data by allowing the characterization of 534 

complex behavioural patterns of space use by multiple interacting individuals. For examples, a 535 

preliminary analysis of the trajectories of two wolves (male and female) inhabiting the same area of 536 

the Mongolia desert shows that the looping behaviours of both animals occur in separate zones. 537 

Specifically, the male repeatedly used locations surrounding the female’s territory and performed 538 

the highest density of loops in an area facing the area where the female exhibited the highest density 539 

of loops (blue locations in Fig. 7).  540 

 541 
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 542 

 543 

FIGURE 7: Spatio-temporal sequence of loops of female and male wolves. A) Male vs Female visualisation. Red: 544 

locations in which the male did no loop. Blue: locations where the male did at least one loop. Green: locations where 545 

the female was observed. B) Female vs male visualisation. Green: locations in which the female did no loop. Blue: 546 

locations where the female did at least one loop. Red: locations where the male was observed. Blue gradient encodes the 547 

temporal sequence of the loops in both graphs. Locations with the same gradient of blue were collected on the same 548 

day.  549 

 550 

From this type of data, it is possible to construct temporal proximity matrices between 551 

individuals and apply classic social network approaches to study interactions among individuals 552 

(not showed here). The temporal dimension of our networks can thus inform about non-random 553 

associations between behavioural patterns expressed by the individuals. For instance, specific 554 

sequences of complex motifs (M8, M10, M12, M13) or loops may reveal behavioural patterns 555 

characteristic of mating, territory formation and maintenance, or dispersal following social 556 

interactions. More generally, our work is part of a rapidly growing research domain aiming at 557 

developing multi-layered network methods to study social, spatial and temporal dimensions of 558 

animal movement (Silk et al. 2018; Finn et al., 2019; Mourier, Ledee & Jacoby, 2019). By 559 

including motifs as an attribute of each node in each layer, it will be possible to integrate the 560 

temporal, social and spatial dimensions of movements into a single analytical framework and open 561 

new promising grounds for extending the analysis of complex movement patterns at the population 562 

level.  563 

 564 
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