

Analysis of temporal patterns in animal movement networks

Cristian Pasquaretta, Thibault Dubois, Tamara Gomez-Moracho, Virginie P. Delepoulle, Guillaume Le Loc'h, Philipp Heeb, Mathieu Lihoreau

▶ To cite this version:

Cristian Pasquaretta, Thibault Dubois, Tamara Gomez-Moracho, Virginie P. Delepoulle, Guillaume Le Loc'h, et al.. Analysis of temporal patterns in animal movement networks. Methods in Ecology and Evolution, 2021, 12 (1), pp.101-113. 10.1111/2041-210X.13364 . hal-03082242

HAL Id: hal-03082242 https://hal.science/hal-03082242

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Analysis of temporal patterns in animal movement

2 networks

- 3
- 4 Cristian Pasquaretta^{1,*}, Thibault Dubois¹, Tamara Gomez-Moracho¹, Virginie Perilhon Delepoulle²,
- 5 Guillaume Le Loc'h³, Philipp Heeb⁴, Mathieu Lihoreau¹
- 6
- 7 ¹ Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS,
- 8 University Toulouse III-Paul Sabatier, Toulouse, France.
- 9 ²XeriusTracking, Département de la SARL Xerius, Toulouse, France.
- 10 ³UMR IHAP, ENVT, INRA, Université de Toulouse, 31076 Toulouse, France
- ⁴ Laboratoire Evolution et Diversité Biologique, (EDB UMR 5174) Université de Toulouse, CNRS,
- 12 IRD, 118 route de Narbonne, Bat 4R1, F-31062 Toulouse cedex 9, France.
- 13
- 14 *Corresponding author: cristian.pasquaretta@univ-tlse3.fr
- 15
- 16 Running headline: Temporal patterns in movement networks

17 Abstract

18 1. Understanding how animal movements change across space and time is a fundamental question 19 in ecology. While classical analyses of trajectories give insightful descriptors of spatial patterns, a 20 satisfying method for assessing the temporal succession of such patterns is lacking. 21 22 2. Network analyses are increasingly used to capture properties of complex animal trajectories in 23 simple graphical metrics. Here, building on this approach, we introduce a method that incorporates 24 time into movement network analyses based on temporal sequences of network motifs. 25 26 3. We illustrate our method using four example trajectories (bumblebee, black kite, roe deer, wolf) 27 collected with different technologies (harmonic radar, platform terminal transmitter, global 28 positioning system). First, we transformed each trajectory into a spatial network by defining the 29 animal's coordinates as nodes and movements in between as edges. Second, we extracted temporal 30 sequences of network motifs from each movement network and compare the resulting behavioural 31 profiles to topological features of the original trajectory. Finally, we compared each sequence of 32 motifs with simulated Brownian and Lévy random motions to statistically determine differences 33 between trajectories and classical movement models. 34 35 4. Our analysis of the temporal sequences of network motifs in individual movement networks 36 revealed successions of spatial patterns corresponding to changes in behavioural modes that can be 37 attributed to specific spatio-temporal events of each animal trajectory. Future applications of our 38 method to multi-layered movement and social network analysis yield considerable promises for 39 extending the study of complex movement patterns at the population level. 40 KEYWORDS: animal trajectories, Argos, GPS-tracking, harmonic radar, motifs time-series, 41 42 movement ecology, spatial networks 43 44 45 46 47 48

49 1. Introduction

50

51 Over the past recent years, the study of animal movements has experienced a rapid growth thanks to 52 the development of new technologies to automatically collect long-term individual data on wild 53 animals (Tomkiewicz et al., 2010; Strandburg-Peshkin et al., 2015; Flack et al., 2018). The 54 acquisition of high resolution data has also required the development of new statistical tools to 55 describe and analyse movements. At the most basic level, it is possible to visualize the sequence of 56 locations visited by the animal by joining those locations with a line, i.e. the animal trajectory. 57 Speed, step length (distance between successive locations), residency (the time an individual 58 remains at a specific location before moving), and turning angle (change of direction between 59 successive steps) are some of the main parameters that can be extracted from such a trajectory 60 (Patterson et al., 2008; Dodge et al., 2008). These parameters tend to be correlated with specific behavioural states (Edelhoff et al., 2016) and can be grouped into patterns dependent of 61 62 environmental constraints and spatial variability. So far, however, this approach has yielded little information about the temporal dimension of animal trajectories (Jacoby & Freeman, 2016). For 63 64 many animals, movements can show dramatic changes with time as a result of motivation, experience, social interactions or modifications of the environment (Swingland & Greenwood, 65 66 1983). Identifying these changes in complex movement datasets can thus bring critical insights into 67 the fundamental ecology of animals.

68 Recent attempts to develop a unified spatio-temporal analytical framework of 69 movement data have shown the existence of a relationship between temporal autocorrelations of 70 movement parameters (i.e. step length) and spatial distribution of critical resources (Wittemyer et 71 al., 2008). Others have proposed to analyse the sequence of habitats encountered by an animal to 72 extract behavioural changes in a trajectory (van Toor et al., 2016; de Groeve et al., 2016). 73 Behavioural change point analysis (BCPA) of movement parameters is a powerful tool to estimate 74 the time at which an animal changes its movement patterns and how this corresponds to behavioural 75 states such as resting, foraging or moving (Gurarie et al., 2009; Teimouri et al., 2018). Multiple 76 unsupervised statistical methods have also been used to reduce complex animal trajectories into 77 human understandable format such as the circular standard deviation (Potts et al., 2018), the t-78 stochastic neighbouring embedding (t-SNE) algorithm (Bartumeus et al., 2016), the recursive multi-79 frequency segmentation (ReMuS) (Ahearn & Dodge, 2018), or the Fourier and wavelet analysis 80 (Polansky et al., 2010). Despite satisfying the quantitative aspects of spatio-temporal analysis of

animal movement data, these methods often require advanced mathematical knowledge and lack
intuitive tools to help data visualization and interpretation by ecologists.

83 Network analysis may constitute a simpler, yet powerful, approach for such analyses (Jacoby & Freeman, 2016; Bastille-Rousseau et al., 2018; Pasquaretta et al., 2017; Pasquaretta et 84 85 al., 2019). For example, Bastille-Rousseau et al. (2018) transposed global positioning system (GPS) 86 locations obtained from three different species (African elephants, giant Galapagos tortoises, Mule 87 deer) into networks. In such networks, nodes represent spatial locations visited by the animals and 88 edges animal movements between these locations. The analysis of node-level network metrics 89 demonstrated that locations with high betweenness centrality scores (frequency at which a node acts 90 as bridge along the shortest paths passing by two other nodes) was indicative of bridges between 91 migration areas for tortoises and corridors between foraging sites for elephants (Bastille-Rousseau 92 et al., 2018). Network analysis of spatial data can thus bring important information for studying 93 associations of complex behavioural patterns and spatial characteristics. So far, however, this 94 method relies on a static representation of animal space use and does not consider the temporal 95 nature of movements (Jacoby & Freeman, 2016; Bastille-Rousseau et al., 2018).

96 Here, we built on this approach to analyse temporal patterns in animal movement 97 networks. Our method consists in transforming trajectories into movement networks and analysing 98 the temporal succession of motif patterns (i.e. three-nodes sub-graphs, Wasserman & Faust, 1994) 99 in these networks. To illustrate the validity of the method, we analysed example datasets of insects 100 (bumblebee), birds (black kite) and mammals (roe deer, wolf) monitored with different technologies 101 and at different spatio-temporal scales. We argue that this method, easily accessible to ecologists, 102 can favour comparative analyses and bring new insights into the movement ecology of a wide range 103 of species.

104

105 2. Materials and Methods

106 2.1 Movement datasets

We tested our method on animal trajectories obtained from two original datasets (bumblebee, black kite) provided in Dryad (doi:10.5061/dryad.47d7wm390), and two published datasets (roe deer, wolf) publicly available on the MoveBank data repository (Wikelski, M., and Kays, R. 2020). The trajectories were selected to illustrate how the analysis of spatio-temporal behavioural patterns in movement networks can apply to different types of raw data (harmonic radar, GPS), to animal species with different locomotion modes (flying, walking), at different spatial scales (region, across countries), and in different behavioural contexts (search, migration, roaming).

- 114 Bumblebee search trajectory
- 115 We used a harmonic radar to obtain a search trajectory of a bumblebee worker on 15/04/2018 (1
- 116 recording every 3.3s, 364 data points, Fig. S1A). We set up a commercial colony of *Bombus*
- 117 terrestris (Biobest NV, Westerlo, Belgium) in a flat dry rice farm land in Sevilla (Spain) (Fig. S2).
- 118 We trained multiple bumblebees to forage on three artificial flowers (i.e. blue platform with 40%
- 119 (v/v) sucrose solution, see details in Lihoreau et al., 2012) positioned two meters in front of the nest
- box. Once a regular forager was identified (bumblebee performing several consecutive foraging
- bouts), we closed the colony entrance and randomly moved the three artificial flowers away in the
- 122 field. The focal bumblebee was equipped with a transponder (16 mm vertical dipole) upon leaving
- 123 the nest box and tracked with the harmonic radar until it returned to the colony (Riley et al., 1996).
- 124 The radar was placed 350 meters away from the colony nest box (Fig. S3) and returned the 2D
- 125 coordinates of the tagged bumblebee within a range of 700 m.
- 126

127 Black kite long-range migration trajectory

We used GPS to track an adult female black kite (*Milvus migrans*) moving across Spain from
28/05/2019 to 19/08/2019 (1 recording every 6h, 332 data points, Fig. S1B). The bird was caught
after an injury and maintained five weeks in an aviary for rehabilitation. We equipped the bird with

131 a Platform Terminal Transmitter (PTT) back-packed (Xerius Tracking, France) and released it in

- 132 Toulouse (France), where it first moved within a limited area before migrating on its way to
- 133 Morocco.
- 134

135 Roe deer short-range migration trajectory

- 136 This dataset was obtained from the EURODEER collaborative project (E. Mach Foundation,
- 137 Trento, Italy; <u>http://sites.google.com/site/eurodeerproject</u>) (Cagnacci et al., 2011). It consists of one
- 138 GPS trajectory of an adult male roe deer (*Capreolus capreolus*) collected from 23/10/2005 to
- 139 28/10/2006 (1 recording every 4 h, 1827 data points; Fig. S1C). The roe deer was tracked in the
- 140 area of Trentino Alto Adige (Italy). Behavioural patterns in this trajectory are dominated by short
- 141 range migratory movements representing the yearly leave-and-back movements between two winter
- 142 and summer sites. To compare this trajectory with the other example trajectories, we reduced the
- 143 number of data points to 457 by resampling the trajectory every 16h.
- 144
- 145 Wolf roaming trajectory
- 146 This dataset was obtained from a study of the Przewalskii horse reintroduction project of the
- 147 International Takhi Group (ITG) (Kaczensky et al., 2006). It consists of one GPS trajectory of an

- adult male wolf (Canis lupus) collected from 05/03/2004 to 18/09/2005 (1 recording every 8 h,
- 149 1455 data points in total). The wolf was tracked in the mountains of the Goby Desert (Mongolia).
- 150 Behavioural patterns in this trajectory are dominated by territorial movements around the mountains
- 151 and one main roaming period (Fig. S1D). To compare this trajectory with the other example
- trajectories, we reduced the number of data points to 485 by resampling the trajectory each 24h.
- 153

154 **2.2 Method overview**

155 We analysed all the trajectories following four major steps. First, we transformed the raw spatial 156 coordinates into movement networks built using different spatial resolutions (grid sizes). Second, 157 we extracted the temporal sequence of network motifs obtained from these different networks and 158 compared them to define an optimal grid size for further analyses. Third, we used the selected 159 temporal sequence of network motifs to highlight spatio-temporal locations showing complex 160 behaviours in the original trajectory. Fourth, we extracted the non-random temporal transitions 161 between consecutive motifs in the experimental datasets and compared them with the non-random 162 transitions of simulated data from classical movement models. The complete R code is available in 163 Dryad (doi:10.5061/dryad.47d7wm390) with description in Supplementary Text S1.

164

165 <u>Transform spatial coordinates into a temporal movement network</u>

The first step consisted in transforming the raw movement data into a format that can be automatically analysed with network metrics. To do so, we rasterized the animal coordinates on a spatial grid. Because different grid resolutions affect the topological structure of the resulting network (Bastille-Rousseau et al., 2018), we built a range of networks with different grid resolutions.

171 Building a movement network from an animal trajectory has the risk of 172 oversimplifying the information depending on grid resolution (Fig. 1). Effects vary from large grid 173 size, where the entire trajectory can be summarized into movement loops starting and ending at a 174 single location, to small grid size, where each location of the raw trajectory corresponds to different 175 grid cell. The optimal grid resolution capturing biologically relevant behavioural patterns is 176 expected to lay somewhere in the middle. Previous studies have used the median of the step length 177 distribution as grid size, based on the fact that this value leads to robust results under the 178 assumption of Brownian movements (Bastille-Rousseau et al., 2018). However, many animal 179 trajectories show more complex patterns. To address this issue, for each trajectory we tested nine 180 grid resolutions. Each grid resolution corresponded to one specific quantile of the step length 181 distribution of the trajectory (i.e. p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The animal

182 coordinates were thus transformed into nodes and movements between them into directed edges 183 (see Fig. 1B). We attributed the same node identity to each coordinate falling into the same grid 184 cell. Empty cells were considered as non-visited cells at this stage. We then transformed the spatial 185 network into a temporal edge list by associating a time to each movement of the sequence.

- 186
- 187

188 189

190 FIGURE 1. Transformation of an animal movement data into a temporal movement network: the problem of grid 191 resolution. A hypothetical trajectory is transformed using three different cell sizes: large, medium and small. A) 192 Original trajectory embedded in each grid resolution. Orange dots represents the coordinates of the animal. B) Resulting 193 movement network built by assigning a single node identity to each of the coordinates that fall into the same cell. The 194 trajectory is thus transformed into a movement network in which spatial coordinates are nodes (orange dots) and 195 movements between them are directed edges (light blue arrows). Directed edges associated to a specific time produce a 196 temporal movement network. Shannon diversity index used to select the optimal grid size given the data (see 197 adjustment of grid resolution paragraph below)

198

199 Extract temporal sequence of network motifs from movement networks

200 Treating animal trajectories as behavioural sequences provides a description of topological

- 201 movement structures and can reveal the processes by which these patterns appear and are
- 202 maintained in the sequences (De Groeve et al., 2016). For each trajectory, we extracted temporal
- 203 sequences of motif patterns between three nodes from the edge list of each movement network. In

the context of movement networks, these sequences refer to sub-graphs that describe spatiotemporal movements (Pasquaretta et al., 2017) and can be used to understand non-random
successions of patterns in a complex behavioural sequence (Patel et al., 2003).

207 Among the 13 possible different motifs between three nodes, five are irrelevant for 208 movement data (Fig. S4, see details in Wasserman & Faust, 1994). Four of the eight remaining 209 motifs belong to the family of "loosely connected motifs", i.e. sub-graphs missing one edge 210 between two out of three nodes (Juszczyszyn, 2014; Fig. 2A). The four other motifs belong to the 211 family of "closely connected motifs", i.e. sub-graphs with edges between all nodes. In the context 212 of movement data, the loosely connected motif M3 indicates movements across locations without 213 any revisit to any location. All other motifs indicate more complex movement patterns characterised 214 by at least one revisit to a location.

215 Temporal sequences of network motifs can be extracted by dividing the edge list into 216 specific motif windows including at least three different connected nodes (Paranjape et al., 2017). 217 Here we built sliding windows containing a maximum of three nodes, allowing us to create a 218 temporal sequence of successive motifs based on the utilisation of three consecutive locations. To 219 do so, we started from the first node of the network and iteratively analysed the entire sequence to 220 create sub-sequences of three nodes. Each node in this subsequence can be visited only once (e.g. 221 M3) or several times (e.g. M13). Once the first sub-sequence was created, we applied the same 222 iterative algorithm to find all the successive motifs using the last node of the previous sub-graph as 223 starting point for the next one (Fig. 2B).

224

A) Motif patterns

225

FIGURE 2. Possible three-nodes motifs in movement networks and extraction of their temporal sequence. A) Eight out of 13 possible motifs were retained. These included four loosely connected motifs (M3, M4, M5, M6), i.e. sub-graphs missing one edge between two out of three nodes, and four closely connected motifs (M8, M10, M12, M13), i.e. sub-graphs with at least one edge between each node. B) Hypothetical directed movement network (left) represented as a node sequence (right). Horizontal red bars refer to the subsequence of three nodes used to extract each motif.

232

233 Adjustment of grid resolution

We applied the Dynamic Time Warping (DTW) algorithm (Sakoe & Chiba, 1978) to compare temporal sequences of motifs built with different grid resolutions and select the most suitable grid resolution given the data. The DTW compares two, or more, time series and returns the number of steps needed to transform one reference time series into another. Each step corresponds to the minimum number of changes needed to transform one query series into its reference series (see details in Giorgino 2009).

240 We used this approach to create matrices of similarity between motif time series. From these data, we finally selected the most suitable motif time series characterised by: 1) the 241 242 largest number of different motifs (abundance) and 2) the most equal proportion of each motif 243 (evenness). To do so, we created a list of temporal sequences of network motifs obtained from 244 different grid resolutions (i.e. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and calculated a similarity matrix 245 using the DTW distance between them with the function "dist" of the R package stats (R Core 246 Team, 2018). We applied the Shannon Diversity Index (Shannon, 1948), using the R package vegan 247 (Oksanen et al., 2018), to select the optimal time series. Specifically, we used as optimal grid size the step length corresponding to the highest value of Shannon Diversity Index (to illustrate the 248 249 robustness of the method, results from the second highest value are presented in Supplementary 250 Text S2). With this procedure, we ensured an objective way to select the best grid resolution value 251 returning the time series with the largest number of motifs which proportions were also more 252 equally represented. For each dataset, we identified the best grid resolution to analyse complex 253 movement patterns using sequences of behavioural patterns instead of the trajectory parameters 254 themselves (e.g. median step length, mean turning angle). We evaluated whether the proportion of 255 motifs differed across datasets with a Chi-square (2) test, applied to a table with rows and columns 256 corresponding to motif counts and animals, using the "chisq.test" function in R.

257

258 <u>Visualization of temporal behavioural patterns</u>

To illustrate that our method can be used to identify spatio-temporal behavioural patterns from complex animal trajectories we represented the evolution of motifs through time. Here, we focused only on the seven motifs identified as indicative of complex movements: characterised by at least

- 262 one revisit to a node. We extracted the geographic locations involved in the construction of these 263 motifs and represented them in the network to describe spatio-temporal patterns of complex 264 behaviours. Loops (movements starting and ending at the same location) are structurally removed 265 when analysing network motifs (Wasserman & Faust, 1994). To account for such behavioural 266 patterns we first extracted the number of loops observed inside each motif and we later applied a 267 generalized linear model (GLM) for count data (Poisson error distribution) to estimate the 268 relationship between motif complexity and the number of loops performed using the glm function of 269 the R package stats (R Core Team, 2018). We also tested different temporal windows by 270 resampling the roe deer and wolf dataset (see supplementary Text S3).
- 271

272 Evaluation of temporal motifs with a null model

273 The evaluation of motif counts of a static network is typically presented in terms of difference from 274 a null model (Milo et al., 2002). The null model is usually a randomized version of the empirical 275 network constrained by some of the network characteristics such as the degree sequence (node 276 randomization) or the strength of the relationship between nodes (edge randomization) or both 277 (Farine & Whitehead, 2015). If the count of a specific motif significantly exceeds that of the null 278 model, the motif is considered to be structurally significant. However, if the null model is far from 279 having realistic features, the differences observed (even if statistically significant) do not tell 280 anything insightful about the nature of each motif (Artzy-Randrup et al., 2004).

281 In temporal directed networks, where a temporal correlation between successive 282 motifs can be expected, an effective way to compare the experimental sequence with a randomized 283 sequence is by time-shuffling, that is randomly sample motifs in a sequence and change their 284 temporal position. The focus is then made on the structure of the motif sequence itself and on the 285 probability of temporal co-occurrence (conditional probability) of specific motif associations. Here 286 we used the conditional probabilities between each pair of motif to reveal the existence of non-287 random transitions between specific behavioural patterns. We first calculated the probability matrix 288 to move from each motif to the next (8x8 matrix) and compared this matrix with 100 probability 289 matrices obtained from time-shuffled time series. For each pair of temporal patterns, we calculated 290 the 95% CIs and compared the probabilities from the original motifs time series to the 291 corresponding probabilities obtained from time-shuffled motifs time series. We used a one-tail 292 analysis and consider probabilities falling outside of the upper 95% confidence interval (CI) as 293 significant. The obtained resulting binary matrix thus assigns 1 to all the positive non-random 294 conditional probabilities and 0 to the others.

295 <u>Comparing non-random probabilities with Brownian motion and Lévy walk</u>

Brownian motion and Lévy walks are two main theoretical random movement patterns used to describe trajectories observed in nature (Turchin, 1998; Fig. 3). Pure Brownian random walks have been introduced to describe animal search strategies when no information is available. Brownian motions are determined by successive steps in random directions whose step lengths and turning angles are randomly drawn from a normal distribution (Bartumeus et al., 2002). Lévy walks are defined by movements patterns following a power-law distribution (Shlesinger & Klafter, 1986; Viswanathan et al., 1996; Reynolds, 2018). To estimate the degree by which the four original trajectories differed from Brownian and Lévy random movements we compared the binary matrices of transition between motifs obtained for each of the four animal trajectories with 100 probability matrices obtained from both simulated Brownian and Lévy trajectories by calculating the Jaccard index of similarity using the function birewire.similarity in the R package "BiRewire" (Gobbi et al., 2017). We thus obtained four distributions of Jaccard indices (one for each dataset) and compared them using t-statistic. We adjusted the value using the sequential Bonferroni correction (Rice, 1989).

318

FIGURE 3. Examples of simulated random movements. Brownian motion is characterised by a stationary behaviour
 throughout the entire trajectory whereas Lévy walk shows an alternance of local stationarity and ballistic movements.

321

322 **3. Results**

323 **3.1 Identification of optimal grid size**

324 The crucial step in transforming an animal trajectory into a movement network involves the 325 selection of an optimal grid resolution that is small enough to obtain a suitable number of nodes to 326 create a network, and large enough to provide insightful details on the animal movement patterns. 327 For each dataset, we extracted the step length values of the nine quantiles of the step lengths 328 distribution of the trajectory, and removed any quantiles with step length value close to zero (i.e. 329 values lower than 10⁻⁶). We obtained seven possible quantile values for the black kite, and nine quantile values for the bumblebee, the roe deer and the wolf (Table S1). We used these quantile 330 331 values as cell size to build spatial grids and generate movement networks. From these networks, we 332 extracted temporal sequences of network motifs and compared them using the DTW distance to 333 select the optimal grid resolution given the data. We then applied the Shannon Diversity Index to 334 select the motif time series for each dataset as candidate sequence for subsequent analyses. The 335 Shannon Diversity Index retained the motif time series 5, 5, 7 and 8, corresponding to a cell size of step length value of 11.209 (i.e. quantile 0.5) for the bumblebee, 0.0075 (i.e. quantile 0.7) for the 336 337 black kite, 0.0037 (i.e. quantile 0.7) for the roe deer and 0.2642 (i.e. quantile 0.8) for the wolf (Fig.

4; see Table S1 for the values of all quantiles). Thus, the optimal grid size selected for the temporal

analyses of network motifs varied across the four datasets.

341

FIGURE 4. Motif time series selection. The Shannon Diversity Index was applied to motif time-series for each dataset:
A) bumblebee, B) black kite, C) roe deer, D) wolf. The highest Shannon Diversity Index value, used to select the most
suitable motif time series for each dataset, is highlighted in red.

345

346 **3.2 Analysis of behavioural patterns**

- 347 The proportion of motifs was different across the four datasets (Chi-squared = 56.77, df = 21, p-
- 348 value < 0.001). The dominant motif was the motif M3 (Fig. 5) that characterises unidirectional

349 movements across three nodes without revisits. This motif has different biological meanings

- 350 depending on the species under consideration. In the black kite and the roe deer, a succession of M3
- 351 motifs are characteristic of migratory movements patterns. In the wolf, however, this temporal
- 352 pattern is characteristic of movements towards familiar locations in a home range, such as hunting
- areas. In the bumblebee, the succession of M3 motif is indicative of search flights.
- 354

FIGURE 5. Proportion of network motifs in each dataset. For each species, the proportion of motifs has been divided
 into two main categories: a motif describing a unidirectional movement (orange) and seven motifs describing more
 complex bidirectional patterns (blue).

The seven other motifs characterise bidirectional movements with at least one revisit to the same node, indicating a temporal re-use of specific areas. The different proportions of such motifs in the movements may have different biological meanings in the different species and, once identified, are open to study.

364 To further explore and interpret the succession of temporal motifs, we constructed 365 simplified trajectories highlighting the spatial locations of the simple (unidirectional) motif and the 366 more complex (bidirectional) motifs in the original data. Because motif analysis does not allow to 367 include loops (self-edges), we also constructed simplified trajectories highlighting the spatial 368 locations of each loop (Fig. 6). The number of loops on the same location increased with the 369 complexity of network motifs indicating that for all four trajectories more complex behavioural 370 patterns represent areas of temporal interest in animals (GLM for count data - bumblebee: estimate 371 = 0.243, SE = 0.058, z-value = 4.175, p < 0.001; black kite: estimate = 0.203, SE = 0.025, z-372 value = 8.252, p < 0.001; roe deer: estimate = 0.122, SE = 0.019, z-value = 6.296, p < 0.001;

- 373 wolf: estimate = 0.275, SE = 0.014, z-value = 19.698, p < 0.001). In the bumblebee trajectory, 374 bidirectional motifs occurred when the individual was in the nest area and near flowers, indicating 375 an association between complex behavioural patterns and familiar locations, while loops tended to 376 be concentrated around the nest only, a behavioural pattern reminiscent of orientation flights 377 (Osborne et al. 2013) (Fig. 6A). In the black kite trajectory, more complex bidirectional motifs 378 occurred in areas around the release point and few locations after the start of the migration and they also correspond to single locations of intensive use (loops; Fig. 6B). In the roe deer trajectory, 379 380 complex motifs occurred intensely in two different areas while loops gathered around specific 381 smaller areas (Fig. 6C). In the wolf trajectory, complex bidirectional motifs were observed in two 382 spatially differentiated areas, while loops were only observed in one of them (Fig. 6D). 383
- 303

FIGURE 6. Spatio-temporal sequence of behavioural patterns. *Evolution of motifs*: temporal sequence of network motifs for each dataset. Blue: bidirectional motifs (M4, M5, M6, M8, M12, M13). Red: unidirectional motif (M3). *Complex motifs*: temporal motifs mapped on original trajectories. Blue gradient encodes the temporal sequence of the more complex bidirectional motifs. *Loops*: movements starting and ending at the same location mapped on original trajectories. Blue gradient encodes the temporal sequence of loops. A) Bumblebee data: bidirectional motifs are observed around the location of the nest and the artificial flowers (F1-F3) while loops are disproportionally observed

around the nest location. B) Black kite data: bidirectional motifs are observed before migration and at stopover

- 393 locations along the migration route and loop behaviours tend to correspond to those locations. C) Roe deer data:
- 394 bidirectional motifs are observed in both winter and summer territories while loops evidence some specific sub-areas of
- repeated intensive use. D) Wolf data: bidirectional motifs are observed in two territories (main and roaming areas)
- 396 during specific periods of the year as well as some small area of temporary use sparse along the animal path. Loops here
- are observed only for the summer territory of the wolf (Kaczensky et al., 2006).
- 398

399 <u>Comparison with Brownian and Lévy walks</u>

400 We studied the degree by which the four experimental dataset differed from Brownian and Lévy

- 401 random movements. We calculated probability matrices of temporal co-occurrence (conditional
- 402 probability) of specific motif associations from original trajectories and from simulated ones. We
- 403 extracted the Jaccard index of similarity between each original matrix and 100 Brownian motions
- 404 and 100 Lévy walks thus obtaining two distributions of 100 values for each trajectory. We
- 405 compared the obtained distributions between them using a t-test with Bonferroni correction.
- 406 Between each pair of distributions the one having higher mean resembles more to the selected
- 407 theoretical model than the other one. The trajectories of the bumblebee and the roe deer tend to be
- 408 equally similar to Brownian motion and to differ from both the black kite and wolf trajectories
- 409 (Table 1: Brownian motion). The bumblebee trajectory resembles more to a Lévy random walk than
- 410 the other trajectories (Table 1: Lévy walk).
- 411
- 412 **Table 1:** Students t-statistics between distributions of 100 Jaccard indices calculated from the comparison of each
- 413 binary non-random motif conditional probabilities with 100 simulated matrices obtained from a Brownian and a Lévy
- 414 random movement model. We applied a Bonferroni correction for 6 multiple comparison (new reference = 0.008).

Brownian motion	Lévy walk
Bumblebee – Black kite (t = 5.97 ; p < 0.001)	Bumblebee – Black kite (t = 6.68 ; p < 0.001)
Bumblebee – Roe deer ($t = 2.59$; $p = 0.009$) ns	Bumblebee – Roe deer (t = 8.97 ; p < 0.001)
Bumblebee – Wolf (t = 9.31 ; p < 0.001)	Bumblebee – Wolf (t = 5.24 ; p < 0.001)
Wolf – Black kite (t = -2.58 ; $p = 0.009$) ns	Wolf – Black kite (t = -1.14 ; p = 0.255) ns
Roe deer – Black kite (t = 3.75 ; p < 0.001)	Roe deer – Black kite (t = 1.40 ; p = 0.162) ns
Roe deer – Wolf (t = 7.32 ; p < 0.001)	Roe deer – Wolf (t = 2.55 ; p = 0.010) ns

415

- 417
- 418

419 4. Discussion

420 Network analyses are powerful tools to statistically describe and compare the spatial structures of 421 animal movements (Jacoby & Freeman, 2016). So far, however, these approaches do not take into 422 account the temporal dimension of movements, which is essential to interpret complex behavioural 423 patterns and their dynamics (ontogeny, repetition, changes). Here we introduced a method to 424 automatically extract motif patterns from animal tracking data and analyse their succession over 425 time.

426 Our approach builds on the utilisation of movement networks to analyse patterns of 427 space use by animals (Jacoby & Freeman, 2016; Pasquaretta et al., 2017; Bastille-Rousseau et al., 428 2018). Starting from the proposition of Bastille-Rousseau et al. (2018) to isolate areas of intensive 429 use from static spatial network representations of animal movements, we propose to keep trace of 430 temporal information and create behavioural time series embedded in space. Our method is simple 431 to operate and thus expected to be embraced by a large community of ecologists. First the animal 432 trajectory is transformed into a spatial movement network in which nodes are geographic locations 433 and edges are movements between these locations. Next, the step length distribution of the 434 trajectory is used to calculate multiple movement networks, extract their motif time series and compare them to estimate the optimal grid size providing the most diverse sequence of motifs. This 435 436 selection is used to objectively determine the most suitable resolution for the spatio-temporal 437 analysis of animal trajectories given the data. The temporal exploration of movement trajectories 438 from four case studies demonstrates that our approach is functional and insightful. The analysis of 439 movement patterns matched very well with our knowledge of the ecological context in which the 440 data were recorded, allowing us to identify simple behavioural patterns associated with search 441 routines and migration (unidirectional motifs), and more complex patterns (bidirectional motifs) 442 correlated with the exploitation of familiar areas (migration sites, home range), revisits to specific 443 locations (nest, flowers), resting phases during migrations (stopovers, sparse area of temporary use).

444 In the bumblebee dataset, complex motifs occurred when the individual was near to 445 biologically relevant locations (nest and flowers). These results are consistent with the well-446 described observations that bumblebees searching for nectar resources often return to their nest and 447 previously discovered flowers (Lihoreau et al., 2012; Osborne et al., 2013), possibly to explore new 448 areas from known reference spatial locations (Lihoreau et al., 2016). Additionally, the loop analysis 449 revealed a strong tendency of the bumblebee to remain around the nest before flying longer 450 distances. This finding is in accordance with previous works demonstrating that bumblebees use 451 learning flights, in the form of loops around the nest, to learn and memorize the location of the nest

452 in the environment (Osborne et al., 2013). In the black kite dataset, complex movement patterns and 453 loops overlap almost perfectly, which likely indicates the existence of stopover sites along the 454 migratory route of the bird. The spatio-temporal analysis of the roe deer dataset highlighted the existence of two successive migratory events during which similar use of spatially distinct home 455 456 ranges occurs. Interestingly, loops were concentrated around specific areas which might correspond 457 to areas of core usage (i.e. 50% of the time is spent in these specific areas) of the home range of the 458 animal during both summer and winter season. The wolf dataset presents complex bidirectional 459 motifs across a summer and a winter territory (Kaczensky et al., 2006). Sparse areas of temporary 460 use are also revealed along the trajectory suggesting possible resting areas during the roaming 461 process. In this case, interestingly, loop behaviours were only observed in the summer territory, 462 suggesting the possible existence of valuable resources in this area.

463 Comparing the four trajectories with simulated random movement indicated that some 464 trajectories resemble more to a Brownian motion or Lévy walk than others. The bumblebee 465 trajectory, for example, resembles more to a Lévy walk than the other trajectories, thus confirming 466 previous studies suggesting the existence of Lévy flights as optimal search strategy in bumblebees 467 (Reynolds et al., 2007; Reynolds, 2008; Lihoreau et al., 2016). The black kite and the wolf trajectories appeared different from both Brownian and Lévy motions thus suggesting the 468 469 possibility to study these movements using more complex behavioural models. Indeed, Brownian 470 motion often underestimates long range movements while pure Lévy walk often overestimates them 471 (Vallaeys et al., 2017). More realistic motions might also be tested in the future (e.g. correlated 472 random walks; Bovet & Benhamou, 1988) to compare trajectories between them and against 473 specific hypothesis.

474 Future quantitative analyses using multiple trajectories from more individuals will be 475 essential to develop fruitful research on the movement ecology of species. Studies of animal 476 movement are generally based on high resolution data from a few individuals, partly because 477 obtaining long-term data in the field is not an easy task. However, with the fast development of 478 automated tracking systems, analyses of rich movement datasets based on large numbers of 479 trajectories from many individuals are becoming possible (Cagnacci et al., 2010). Our automated 480 analysis has the main advantages of capturing the temporal properties of complex movement 481 patterns into synthetic and standardized network metrics that facilitate comparative analyses. The 482 metrics obtained are comparable through time for the same individual (e.g. if we are interested in 483 learning and memory) or across individuals (e.g. to assess inter-individual variability in a 484 population, between populations or between species). This approach may therefore facilitate the

485 development of a truly comparative movement ecology based on statistics on standard network486 metrics.

487 Our utilisation of networks metrics could be adjusted depending on the type of data 488 collected and the question addressed. Interestingly, it is possible to study motifs with more than 489 three nodes to compare multiple spatio-temporal level of behavioural complexity that might not 490 emerge from the study of low order motifs. For instance, a four-nodes sequence such as A-B-C-D-A 491 provides a description of a large area of interest for an animal while the three-nodes equivalent A-492 B-C plus C-D-A only provides description of two unidirectional movements between locations 493 without any evidence of spatio-temporal clusters. Note however, the limitation of computational 494 capabilities tend to restrict operational motif size for this type of analysis and debate on how to 495 extract subgraphs with more than three nodes is still open (Williams et al., 2014; Ning et al., 2018; 496 Agasse-Duval & Lawford, 2018).

497 Importantly, our method enables to compare the spatio-temporal structure of 498 behavioural patterns to known theoretical movement models. In the future, a functional motif 499 analysis could be implemented to highlight cluster of functional roles (McDonnell et al., 2014). 500 Functional motifs could help describe potential changes in behavioural patterns. The utilization of 501 network motifs to analyse animal movements offers a detailed representation of behavioural 502 patterns which is certainly complementary to more classical descriptors of animal movements (e.g. 503 step length, turning angle) and other methods used to obtain behavioural modes (e.g. t-SNE). For 504 instance, the t-SNE method is a procedure to cluster spatial data based on their similarity in various 505 quantitative traits (e.g. straightness, net displacement, mean velocity, see Bartumeus et al., 2016). It 506 enables to describe animal movements as behavioural patterns thus transforming a raw animal 507 trajectory into smaller spatial segments representing diverse behavioural modes. The t-SNE method 508 relies on the interpretation of these behavioural modes. Our spatio-temporal network method, by 509 associating motifs to the specific segments obtained from the t-SNE, could be used to improve their 510 interpretation by the use of direct visualization. Analysis of large movement datasets with our 511 method will also provide the opportunity to develop time-series analyses of network motifs using 512 Markov chains. This approach would be a powerful means to move from describing and comparing 513 to predicting temporal sequences of animal movements.

As illustrated above, another major advantage of our method is that it is broadly applicable and can suit different types of movement data collected with different technologies (GPS, PTT, harmonic radar), at different spatial scales (local territories, countries) and temporal scales (minutes, years), on animals with different locomotion modes (walking, flying) and in different ecological contexts (exploration, exploitation, migration). In principle, temporal analyses of spatial network can be used to study virtually all type of animal movement data in which individual animals are regularly re-located. If trajectories are incomplete, for instance because the signal of the animal is lost for some period of time, linear interpolation can be used to fill gaps (Strandburg-Peshkin et al., 2015; Strandburg-Peshkin et al., 2017). For any species, however, the main limiting factor is the length of the trajectory (i.e. number of data points). If the trajectory has too few data points, there is a high risk that simplification into a movement network does not provide enough motifs to allow for an insightful exploration of the data.

526 We have shown that network analyses can be used to investigate the temporal 527 dimension of animal movements and get insights into how the animals interact with their ecological 528 environment (exploitation of known resources, migration routes, stopover sites, territories and 529 roaming areas). Since most animals (including those studied here) frequently interact with social partners or competitors, a major challenge for future studies is to analyse the temporal behavioural 530 531 movement patterns of interacting animals. Important steps have been made to develop new methods 532 to extract social network from animal trajectories and future directions have been pointed towards 533 using social-telemetry data to identify preferred habitats for entire groups (Robitaille Webber & 534 Vander Wal, 2019). Our method can help analyse these data by allowing the characterization of complex behavioural patterns of space use by multiple interacting individuals. For examples, a 535 536 preliminary analysis of the trajectories of two wolves (male and female) inhabiting the same area of 537 the Mongolia desert shows that the looping behaviours of both animals occur in separate zones. 538 Specifically, the male repeatedly used locations surrounding the female's territory and performed 539 the highest density of loops in an area facing the area where the female exhibited the highest density 540 of loops (blue locations in Fig. 7).

544 FIGURE 7: Spatio-temporal sequence of loops of female and male wolves. A) Male vs Female visualisation. Red:
545 locations in which the male did no loop. Blue: locations where the male did at least one loop. Green: locations where
546 the female was observed. B) Female vs male visualisation. Green: locations in which the female did no loop. Blue:
547 locations where the female did at least one loop. Red: locations where the male was observed. Blue gradient encodes the
548 temporal sequence of the loops in both graphs. Locations with the same gradient of blue were collected on the same
549 day.

550

551 From this type of data, it is possible to construct temporal proximity matrices between 552 individuals and apply classic social network approaches to study interactions among individuals 553 (not showed here). The temporal dimension of our networks can thus inform about non-random 554 associations between behavioural patterns expressed by the individuals. For instance, specific 555 sequences of complex motifs (M8, M10, M12, M13) or loops may reveal behavioural patterns 556 characteristic of mating, territory formation and maintenance, or dispersal following social 557 interactions. More generally, our work is part of a rapidly growing research domain aiming at 558 developing multi-layered network methods to study social, spatial and temporal dimensions of 559 animal movement (Silk et al. 2018; Finn et al., 2019; Mourier, Ledee & Jacoby, 2019). By 560 including motifs as an attribute of each node in each layer, it will be possible to integrate the 561 temporal, social and spatial dimensions of movements into a single analytical framework and open 562 new promising grounds for extending the analysis of complex movement patterns at the population 563 level.

565 Acknowledgements

566 This work was funded by the CNRS, a grant from the Agence Nationale de la Recherche to ML

567 (ANR-16-CE02-0002-01), and the Laboratoire d'Excellence (LABEX) TULIP (ANR-10-LABX-41).

568 We acknowledge Prof. Lars Chittka and Dr. Joe Woodgate for providing access to the harmonic radar

- 569 (bumblebee trajectory) and XeriusTracking for the GPS data (black kite trajectory). We declare no
- 570 conflict of interest. We thank two anonymous reviewers, the associate editor and Dr. David Jacoby
- 571 for comments that have helped improve the manuscript.
- 572

573 Authors' contributions

574 CP and ML conceived the ideas and designed the methodology. CP, TD, TGM, and ML collected

575 the bumblebee data. VP provided the black kite data. CP analysed the data. CP and ML led the

- writing of the manuscript. All authors contributed critically to the drafts and gave final approval forpublication.
- 578

579 Data availability

580 We implemented our method in R. We provide the codes and the bumblebee and black kite datasets

581 in Dryad, DOI:10.5061/dryad.47d7wm390. The roe deer dataset was obtained from MOVEBANK

582 (Wikelski, M., and Kays, R. 2020). Animal Identifier: Sandro (M06), from Cagnacci et al. (2011).

583 The wolf dataset was obtained from MOVEBANK (Wikelski, M., and Kays, R. 2020), Animal

584 identifier: Zimzik, from Kaczensky et al. (2006).

585

586 **References**

- Agasse-Duval, M., & Lawford, S. (2018). Subgraphs and motifs in a dynamic airline network. *arXiv preprint arXiv:1807.02585*.
- Ahearn, S. C., & Dodge, S. (2018). Recursive multifrequency segmentation of movement trajectories (ReMuS). *Methods in Ecology and Evolution*, *9*(4), 1075-1087.
- Bartumeus, F., Campos, D., Ryu, W. S., Lloret Cabot, R., Méndez, V., & Catalan, J. (2016). Foraging success under uncertainty: search tradeoffs and optimal space use. *Ecology letters*, *19*(11), 1299-1313.
- Bastille-Rousseau, G., Douglas-Hamilton, I., Blake, S., Northrup, J. M., & Wittemyer, G. (2018). Applying network theory to animal movements to identify properties of landscape space use. *Ecological applications*, *28*(3), 854-864.

- Bartumeus, F., Catalan, J., Fulco, U. L., Lyra, M. L., & Viswanathan, G. M. (2002).
 Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies.
 Physical Review Letters, 88(9), 097901.
- Bovet, P., & Benhamou, S. (1988). Spatial analysis of animals' movements using a correlated random walk model. *Journal of Theoretical Biology*, *131*(4), 419-433.
- Cagnacci, F., Boitani, L., Powell, R. A., & Boyce, M. S. (2010). Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. *Philosophical Transaction of the Royal Society B, 365*(1550), 2157-2162.
- Cagnacci, F., Focardi, S., Heurich, M., Stache, A., Hewison, A. M., Morellet, N., ... & Delucchi, L. (2011). Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. *Oikos*, *120*(12), 1790-1802.
- De Groeve, J., Van de Weghe, N., Ranc, N., Neutens, T., Ometto, L., Rota-Stabelli, O., & Cagnacci, F. (2016). Extracting spatio-temporal patterns in animal trajectories: An ecological application of sequence analysis methods. *Methods in Ecology and Evolution*, 7(3), 369-379.
- Dodge, S., Weibel, R., & Lautenschütz, A. K. (2008). Towards a taxonomy of movement
 patterns. *Information visualization*, 7(3-4), 240-252.
- Edelhoff, H., Signer, J., & Balkenhol, N. (2016). Path segmentation for beginners: an
 overview of current methods for detecting changes in animal movement patterns. *Movement ecology*, 4(1), 21.
 - Finn, K. R., Silk, M. J., Porter, M. A., & Pinter-Wollman, N. (2019). The use of multilayer network analysis in animal behaviour. *Animal behaviour*, *149*, 7-22.
 - Flack, A., Nagy, M., Fiedler, W., Couzin, I. D., & Wikelski, M. (2018). From local collective behavior to global migratory patterns in white storks. *Science*, *360*(6391), 911-914.
- Getz, W. M., & Saltz, D. (2008). A framework for generating and analyzing movement
 paths on ecological landscapes. *Proceedings of the National Academy of Sciences of the United States of America*, 105(49), 19066-19071.
 - Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: the dtw package. *Journal of statistical Software*, *31*(7), 1-24.
- Gobbi A, Iorio F, Albanese D, Jurman G, Saez-Rodriguez J (2017). _BiRewire: High performing routines for the randomization of a bipartite graph (or a binary event matrix),

- 597 undirected and directed signed graph preserving degree distribution (or marginal totals) . R 598 package version 3.18.0
 - Gurarie, E., Andrews, R. D., & Laidre, K. L. (2009). A novel method for identifying behavioural changes in animal movement data. *Ecology letters*, 12(5), 395-408.
 - Jacoby, D. M., & Freeman, R. (2016). Emerging network-based tools in movement ecology. • Trends in Ecology & Evolution, 31(4), 301-314.
 - Janmaat, K. R., Byrne, R. W., & Zuberbühler, K. (2006). Evidence for a spatial memory of fruiting states of rainforest trees in wild mangabeys. Animal Behaviour, 72(4), 797-807.
 - Juszczyszyn K. (2014). Motif Analysis. In: Alhajj R., Rokne J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY
- 599 • Kaczensky, P., Ganbaatar, O., Enksaikhaan, N. and Walzer, C. (2006). Wolves in Great Gobi B SPAGPS tracking study 2003-2005 dataset. Movebank Data Repository (www.movebank.org).
 - Kembro, J. M., Lihoreau, M., Garriga, J., Raposo, E. P., & Bartumeus, F. (2019). Bumblebees learn foraging routes through exploitation-exploration cycles. *Journal of the* Royal Society Interface, 16(156), 20190103.
 - Lihoreau, M., Chittka, L., & Raine, N. E. (2010). Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. The American Naturalist, 176(6), 744-757.
 - Lihoreau, M., Raine, N. E., Reynolds, A. M., Stelzer, R. J., Lim, K. S., Smith, A. D., ... & Chittka, L. (2012). Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales. PLoS Biology, 10(9), e1001392.
 - Lihoreau, M., Ings, T. C., Chittka, L., & Reynolds, A. M. (2016). Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees. Scientific reports, 6, 30401.
 - McDonnell, M. D., Yavero Iu, Ö. N., Schmerl, B. A., Iannella, N., & Ward, L. M. (2014). Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks. PloS one, 9(12), e114503.
 - Milner-Gulland, E. J., Fryxell, J. M., & Sinclair, A. R. (Eds.). (2011). Animal migration: a synthesis. Oxford University Press.
 - Mourier, J., Ledee, E. J., & Jacoby, D. M. (2019). A multilayer perspective for inferring spatial and social functioning in animal movement networks. *bioRxiv*, 749085.

- Ning, Z., Liu, L., Yu, S., & Xia, F. (2017, November). Detection of Four-Node Motif in Complex Networks. In *International Conference on Complex Networks and their Applications* (pp. 453-462). Springer, Cham.
- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Stevens, M. H. H. (2018). vegan: Community Ecology Package. R version 3.4.4 (2018-03-15).
- Osborne, J. L., Smith, A., Clark, S. J., Reynolds, D. R., Barron, M. C., Lim, K. S., & Reynolds, A. M. (2013). The ontogeny of bumblebee flight trajectories: from naïve explorers to experienced foragers. *Plos one*, 8(11), e78681.
- Paranjape, A., Benson, A. R., & Leskovec, J. (2017). Motifs in temporal networks. In Proc. 10th ACM International Conference on Web Search and Data Mining 601–610
- Pasquaretta, C., Jeanson, R., Andalo, C., Chittka, L., & Lihoreau, M. (2017). Analysing plant–pollinator interactions with spatial movement networks. *Ecological Entomology*, *42*(1), 4-17.
- Pasquaretta, C., Jeanson, R., Pansanel, J., Raine, N. E., Chittka, L., & Lihoreau, M. (2019).
 A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage. *Movement ecology*, 7(1), 4.
- Patel, P., Keogh, E., Lin, J., & Lonardi, S. (2002, December). Mining motifs in massive time series databases. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 370-377). IEEE.
- Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008).
 State–space models of individual animal movement. *Trends in Ecology & Evolution*, 23(2), 87-94.
- Polansky, L., Wittemyer, G., Cross, P. C., Tambling, C. J., & Getz, W. M. (2010). From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. *Ecology*, *91*(5), 1506-1518.
- Potts, J. R., Börger, L., Scantlebury, D. M., Bennett, N. C., Alagaili, A., & Wilson, R. P. (2018). Finding turning-points in ultra-high-resolution animal movement data. *Methods in Ecology and Evolution*, 9(10), 2091-2101.
- R Core Team (2018). R: A language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.

- Reynolds, A. M., Smith, A. D., Reynolds, D. R., Carreck, N. L., & Osborne, J. L. (2007).
 Honeybees perform optimal scale-free searching flights when attempting to locate a food
 source. *Journal of Experimental Biology*, *210*(21), 3763-3770.
- Reynolds, A. M. (2008). Optimal random Lévy-loop searching: New insights into the
 searching behaviours of central-place foragers. *EPL (Europhysics Letters)*, 82(2), 20001.
- Reynolds, A. M. (2018). Current status and future directions of Lévy walk research. *Biology open*, 7(1), bio030106.
- Rice, W. R. (1989). Analyzing tables of statistical tests. *Evolution*, 43(1), 223-225.
 - Riley, J. R., Smith, A. D., Reynolds, D. R., Edwards, A. S., Osborne, J. L., Williams, I. H., ... & Poppy, G. M. (1996). Tracking bees with harmonic radar. *Nature*, *379*(6560), 29.
 - Robitaille, A. L., Webber, Q. M., & Vander Wal, E. (2019). Conducting social network analysis with animal telemetry data: applications and methods using spatsoc. *Methods in Ecology and Evolution*, 10 (8), 1203–1211.
 - Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. *IEEE transactions on acoustics, speech, and signal processing*, 26(1), 43-49.
- Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A., Conde, D. A., ... &
 Clark, J. S. (2008). Understanding movement data and movement processes: current and
 emerging directions. *Ecology Letters*, *11*(12), 1338-1350.
 - Shannon, C. E. (1948). A mathematical theory of communication. *Bell system technical journal*, *27*(3), 379-423.
- 615 Shlesinger, M. F., & Klafter, J. (1986). Lévy walks versus Lévy flights. In *On growth and* 616 *form* (pp. 279-283). Springer, Dordrecht.
- 617 Silk, M. J., Finn, K. R., Porter, M. A., & Pinter-Wollman, N. (2018). Can multilayer
 618 networks advance animal behavior research?. *Trends in Ecology & Evolution*, *33*(6), 376619 378.
 - Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D., & Crofoot, M. C. (2015). Shared decision-making drives collective movement in wild baboons. *Science*, *348*(6241), 1358-1361.
 - Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C., & Couzin, I. D. (2017). Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. *Elife*, *6*, e19505.

- Swingland, I. R., & Greenwood, P. J. (1983). *Ecology of animal movement*. Clarendon Press. Oxford. pp. 7-31
- Teimouri, M., Indahl, U., Sickel, H., & Tveite, H. (2018). Deriving animal movement behaviors using movement parameters extracted from location data. *ISPRS International Journal of Geo-Information*, 7(2), 78.
- Tomkiewicz, S. M., Fuller, M. R., Kie, J. G., & Bates, K. K. (2010). Global positioning system and associated technologies in animal behaviour and ecological research. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1550), 2163-2176.
- Turchin, P. (1998). *Quantitative analysis of movement*. Sinauer Associates, Inc. Publishers,
 Sunderland, MA, USA.
- Vallaeys, V., Tyson, R. C., Lane, W. D., Deleersnijder, E., & Hanert, E. (2017). A Lévy flight diffusion model to predict transgenic pollen dispersal. *Journal of the Royal Society Interface*, *14*(126), 20160889.
 - Van Moorter, B., Visscher, D., Benhamou, S., Börger, L., Boyce, M. S., & Gaillard, J. M. (2009). Memory keeps you at home: a mechanistic model for home range emergence. *Oikos*, *118*(5), 641-652.
 - van Toor, M. L., Newman, S. H., Takekawa, J. Y., Wegmann, M., & Safi, K. (2016). Temporal segmentation of animal trajectories informed by habitat use. *Ecosphere*, 7(10), e01498.
 - Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. *Nature*, *381*(6581), 413.
 - Wasserman, S., & Faust, K. (1994). *Social network analysis: Methods and applications* (Vol. 8). Cambridge university press.
 - Wikelski, M., & Kays, R. (2020). Movebank: archive, analysis and sharing of animal movement data. World Wide Web electronic publication. http://www.movebank.org, accessed on July 2019.
 - Williams, V. V., Wang, J. R., Williams, R., & Yu, H. (2014, December). Finding four-node subgraphs in triangle time. In *Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms* (pp. 1671-1680). Society for Industrial and Applied Mathematics.

- Wittemyer, G., Polansky, L., Douglas-Hamilton, I., & Getz, W. M. (2008). Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses. *Proceedings of the National Academy of Sciences*, 105(49), 19108-19113.
- Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M., & Chittka, L. (2017). Continuous radar tracking illustrates the development of multi-destination routes of bumblebees. *Scientific reports*, 7(1), 17323.