Analysis of temporal patterns in animal movement networks

Cristian Pasquaretta1,*, Thibault Dubois1, Tamara Gomez-Moracho1, Virginie Perilhon Delepoulle2, Guillaume Le Loc’h3, Philipp Heeb4, Mathieu Lihoreau1

1 Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Toulouse III-Paul Sabatier, Toulouse, France.
2 XeriusTracking, Département de la SARL Xerius, Toulouse, France.
3 UMR IHAP, ENV, INRA, Université de Toulouse, 31076 Toulouse, France
4 Laboratoire Evolution et Diversité Biologique, (EDB UMR 5174) Université de Toulouse, CNRS, IRD, 118 route de Narbonne, Bat 4R1, F-31062 Toulouse cedex 9, France.

*Corresponding author: cristian.pasquaretta@univ-tlse3.fr

Running headline: Temporal patterns in movement networks
Abstract

1. Understanding how animal movements change across space and time is a fundamental question in ecology. While classical analyses of trajectories give insightful descriptors of spatial patterns, a satisfying method for assessing the temporal succession of such patterns is lacking.

2. Network analyses are increasingly used to capture properties of complex animal trajectories in simple graphical metrics. Here, building on this approach, we introduce a method that incorporates time into movement network analyses based on temporal sequences of network motifs.

3. We illustrate our method using four example trajectories (bumblebee, black kite, roe deer, wolf) collected with different technologies (harmonic radar, platform terminal transmitter, global positioning system). First, we transformed each trajectory into a spatial network by defining the animal’s coordinates as nodes and movements in between as edges. Second, we extracted temporal sequences of network motifs from each movement network and compare the resulting behavioural profiles to topological features of the original trajectory. Finally, we compared each sequence of motifs with simulated Brownian and Lévy random motions to statistically determine differences between trajectories and classical movement models.

4. Our analysis of the temporal sequences of network motifs in individual movement networks revealed successions of spatial patterns corresponding to changes in behavioural modes that can be attributed to specific spatio-temporal events of each animal trajectory. Future applications of our method to multi-layered movement and social network analysis yield considerable promises for extending the study of complex movement patterns at the population level.

KEYWORDS: animal trajectories, Argos, GPS-tracking, harmonic radar, motifs time-series, movement ecology, spatial networks
1. Introduction

Over the past recent years, the study of animal movements has experienced a rapid growth thanks to the development of new technologies to automatically collect long-term individual data on wild animals (Tomkiewicz et al., 2010; Strandburg-Peshkin et al., 2015; Flack et al., 2018). The acquisition of high resolution data has also required the development of new statistical tools to describe and analyse movements. At the most basic level, it is possible to visualize the sequence of locations visited by the animal by joining those locations with a line, i.e. the animal trajectory. Speed, step length (distance between successive locations), residency (the time an individual remains at a specific location before moving), and turning angle (change of direction between successive steps) are some of the main parameters that can be extracted from such a trajectory (Patterson et al., 2008; Dodge et al., 2008). These parameters tend to be correlated with specific behavioural states (Edelhoff et al., 2016) and can be grouped into patterns dependent of environmental constraints and spatial variability. So far, however, this approach has yielded little information about the temporal dimension of animal trajectories (Jacoby & Freeman, 2016). For many animals, movements can show dramatic changes with time as a result of motivation, experience, social interactions or modifications of the environment (Swingland & Greenwood, 1983). Identifying these changes in complex movement datasets can thus bring critical insights into the fundamental ecology of animals.

Recent attempts to develop a unified spatio-temporal analytical framework of movement data have shown the existence of a relationship between temporal autocorrelations of movement parameters (i.e. step length) and spatial distribution of critical resources (Wittemyer et al., 2008). Others have proposed to analyse the sequence of habitats encountered by an animal to extract behavioural changes in a trajectory (van Toor et al., 2016; de Groeve et al., 2016). Behavioural change point analysis (BCPA) of movement parameters is a powerful tool to estimate the time at which an animal changes its movement patterns and how this corresponds to behavioural states such as resting, foraging or moving (Gurarie et al., 2009; Teimouri et al., 2018). Multiple unsupervised statistical methods have also been used to reduce complex animal trajectories into human understandable format such as the circular standard deviation (Potts et al., 2018), the t-stochastic neighbouring embedding (t-SNE) algorithm (Bartumeus et al., 2016), the recursive multi-frequency segmentation (ReMuS) (Ahearn & Dodge, 2018), or the Fourier and wavelet analysis (Polansky et al., 2010). Despite satisfying the quantitative aspects of spatio-temporal analysis of
animal movement data, these methods often require advanced mathematical knowledge and lack
intuitive tools to help data visualization and interpretation by ecologists.

Network analysis may constitute a simpler, yet powerful, approach for such analyses
(Jacoby & Freeman, 2016; Bastille-Rousseau et al., 2018; Pasquaretta et al., 2017; Pasquaretta et
al., 2019). For example, Bastille-Rousseau et al. (2018) transposed global positioning system (GPS)
locations obtained from three different species (African elephants, giant Galapagos tortoises, Mule
deer) into networks. In such networks, nodes represent spatial locations visited by the animals and
edges animal movements between these locations. The analysis of node-level network metrics
demonstrated that locations with high betweenness centrality scores (frequency at which a node acts
as bridge along the shortest paths passing by two other nodes) was indicative of bridges between
migration areas for tortoises and corridors between foraging sites for elephants (Bastille-Rousseau
et al., 2018). Network analysis of spatial data can thus bring important information for studying
associations of complex behavioural patterns and spatial characteristics. So far, however, this
method relies on a static representation of animal space use and does not consider the temporal
nature of movements (Jacoby & Freeman, 2016; Bastille-Rousseau et al., 2018).

Here, we built on this approach to analyse temporal patterns in animal movement
networks. Our method consists in transforming trajectories into movement networks and analysing
the temporal succession of motif patterns (i.e. three-nodes sub-graphs, Wasserman & Faust, 1994)
in these networks. To illustrate the validity of the method, we analysed example datasets of insects
(bumblebee), birds (black kite) and mammals (roe deer, wolf) monitored with different technologies
and at different spatio-temporal scales. We argue that this method, easily accessible to ecologists,
can favour comparative analyses and bring new insights into the movement ecology of a wide range
of species.

2. Materials and Methods

2.1 Movement datasets

We tested our method on animal trajectories obtained from two original datasets (bumblebee, black
kite) provided in Dryad (doi:10.5061/dryad.47d7wm390), and two published datasets (roe deer,
wolf) publicly available on the MoveBank data repository (Wikelski, M., and Kays, R. 2020). The
trajectories were selected to illustrate how the analysis of spatio-temporal behavioural patterns in
movement networks can apply to different types of raw data (harmonic radar, GPS), to animal
species with different locomotion modes (flying, walking), at different spatial scales (region, across
countries), and in different behavioural contexts (search, migration, roaming).
Bumblebee search trajectory

We used a harmonic radar to obtain a search trajectory of a bumblebee worker on 15/04/2018 (1 recording every 3.3s, 364 data points, Fig. S1A). We set up a commercial colony of *Bombus terrestris* (Biobest NV, Westerlo, Belgium) in a flat dry rice farm land in Sevilla (Spain) (Fig. S2). We trained multiple bumblebees to forage on three artificial flowers (i.e. blue platform with 40% (v/v) sucrose solution, see details in Lihoreau et al., 2012) positioned two meters in front of the nest box. Once a regular forager was identified (bumblebee performing several consecutive foraging bouts), we closed the colony entrance and randomly moved the three artificial flowers away in the field. The focal bumblebee was equipped with a transponder (16 mm vertical dipole) upon leaving the nest box and tracked with the harmonic radar until it returned to the colony (Riley et al., 1996). The radar was placed 350 meters away from the colony nest box (Fig. S3) and returned the 2D coordinates of the tagged bumblebee within a range of 700 m.

Black kite long-range migration trajectory

We used GPS to track an adult female black kite (*Milvus migrans*) moving across Spain from 28/05/2019 to 19/08/2019 (1 recording every 6h, 332 data points, Fig. S1B). The bird was caught after an injury and maintained five weeks in an aviary for rehabilitation. We equipped the bird with a Platform Terminal Transmitter (PTT) back-packed (Xerius Tracking, France) and released it in Toulouse (France), where it first moved within a limited area before migrating on its way to Morocco.

Roe deer short-range migration trajectory

This dataset was obtained from the EURODEER collaborative project (E. Mach Foundation, Trento, Italy; http://sites.google.com/site/eurodeerproject) (Cagnacci et al., 2011). It consists of one GPS trajectory of an adult male roe deer (*Capreolus capreolus*) collected from 23/10/2005 to 28/10/2006 (1 recording every 4 h, 1827 data points; Fig. S1C). The roe deer was tracked in the area of Trentino Alto Adige (Italy). Behavioural patterns in this trajectory are dominated by short range migratory movements representing the yearly leave-and-back movements between two winter and summer sites. To compare this trajectory with the other example trajectories, we reduced the number of data points to 457 by resampling the trajectory every 16h.

Wolf roaming trajectory

This dataset was obtained from a study of the Przewalskii horse reintroduction project of the International Takhi Group (ITG) (Kaczensky et al., 2006). It consists of one GPS trajectory of an
adult male wolf (*Canis lupus*) collected from 05/03/2004 to 18/09/2005 (1 recording every 8 h, 1455 data points in total). The wolf was tracked in the mountains of the Goby Desert (Mongolia). Behavioural patterns in this trajectory are dominated by territorial movements around the mountains and one main roaming period (Fig. S1D). To compare this trajectory with the other example trajectories, we reduced the number of data points to 485 by resampling the trajectory each 24h.

2.2 Method overview

We analysed all the trajectories following four major steps. First, we transformed the raw spatial coordinates into movement networks built using different spatial resolutions (grid sizes). Second, we extracted the temporal sequence of network motifs obtained from these different networks and compared them to define an optimal grid size for further analyses. Third, we used the selected temporal sequence of network motifs to highlight spatio-temporal locations showing complex behaviours in the original trajectory. Fourth, we extracted the non-random temporal transitions between consecutive motifs in the experimental datasets and compared them with the non-random transitions of simulated data from classical movement models. The complete R code is available in Dryad (doi:10.5061/dryad.47d7wm390) with description in Supplementary Text S1.

Transform spatial coordinates into a temporal movement network

The first step consisted in transforming the raw movement data into a format that can be automatically analysed with network metrics. To do so, we rasterized the animal coordinates on a spatial grid. Because different grid resolutions affect the topological structure of the resulting network (Bastille-Rousseau et al., 2018), we built a range of networks with different grid resolutions. Building a movement network from an animal trajectory has the risk of oversimplifying the information depending on grid resolution (Fig. 1). Effects vary from large grid size, where the entire trajectory can be summarized into movement loops starting and ending at a single location, to small grid size, where each location of the raw trajectory corresponds to different grid cell. The optimal grid resolution capturing biologically relevant behavioural patterns is expected to lay somewhere in the middle. Previous studies have used the median of the step length distribution as grid size, based on the fact that this value leads to robust results under the assumption of Brownian movements (Bastille-Rousseau et al., 2018). However, many animal trajectories show more complex patterns. To address this issue, for each trajectory we tested nine grid resolutions. Each grid resolution corresponded to one specific quantile of the step length distribution of the trajectory (i.e. $p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9$). The animal
coordinates were thus transformed into nodes and movements between them into directed edges (see Fig. 1B). We attributed the same node identity to each coordinate falling into the same grid cell. Empty cells were considered as non-visited cells at this stage. We then transformed the spatial network into a temporal edge list by associating a time to each movement of the sequence.

FIGURE 1. Transformation of an animal movement data into a temporal movement network: the problem of grid resolution. A hypothetical trajectory is transformed using three different cell sizes: large, medium and small. A) Original trajectory embedded in each grid resolution. Orange dots represents the coordinates of the animal. B) Resulting movement network built by assigning a single node identity to each of the coordinates that fall into the same cell. The trajectory is thus transformed into a movement network in which spatial coordinates are nodes (orange dots) and movements between them are directed edges (light blue arrows). Directed edges associated to a specific time produce a temporal movement network. Shannon diversity index used to select the optimal grid size given the data (see adjustment of grid resolution paragraph below).

Extract temporal sequence of network motifs from movement networks

Treating animal trajectories as behavioural sequences provides a description of topological movement structures and can reveal the processes by which these patterns appear and are maintained in the sequences (De Groeve et al., 2016). For each trajectory, we extracted temporal sequences of motif patterns between three nodes from the edge list of each movement network. In
the context of movement networks, these sequences refer to sub-graphs that describe spatio-temporal movements (Pasquaretta et al., 2017) and can be used to understand non-random successions of patterns in a complex behavioural sequence (Patel et al., 2003).

Among the 13 possible different motifs between three nodes, five are irrelevant for movement data (Fig. S4, see details in Wasserman & Faust, 1994). Four of the eight remaining motifs belong to the family of “loosely connected motifs”, i.e. sub-graphs missing one edge between two out of three nodes (Juszczyszyn, 2014; Fig. 2A). The four other motifs belong to the family of “closely connected motifs”, i.e. sub-graphs with edges between all nodes. In the context of movement data, the loosely connected motif M3 indicates movements across locations without any revisit to any location. All other motifs indicate more complex movement patterns characterised by at least one revisit to a location.

Temporal sequences of network motifs can be extracted by dividing the edge list into specific motif windows including at least three different connected nodes (Paranjape et al., 2017). Here we built sliding windows containing a maximum of three nodes, allowing us to create a temporal sequence of successive motifs based on the utilisation of three consecutive locations. To do so, we started from the first node of the network and iteratively analysed the entire sequence to create sub-sequences of three nodes. Each node in this subsequence can be visited only once (e.g. M3) or several times (e.g. M13). Once the first sub-sequence was created, we applied the same iterative algorithm to find all the successive motifs using the last node of the previous sub-graph as starting point for the next one (Fig. 2B).

A) Motif patterns

<table>
<thead>
<tr>
<th>loosely connected motifs</th>
<th>closely connected motifs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) Temporal sequence of motif patterns

![Node sequence](image9)
FIGURE 2. Possible three-nodes motifs in movement networks and extraction of their temporal sequence. A) Eight out of 13 possible motifs were retained. These included four loosely connected motifs (M3, M4, M5, M6), i.e. sub-graphs missing one edge between two out of three nodes, and four closely connected motifs (M8, M10, M12, M13), i.e. sub-graphs with at least one edge between each node. B) Hypothetical directed movement network (left) represented as a node sequence (right). Horizontal red bars refer to the subsequence of three nodes used to extract each motif.

Adjustment of grid resolution

We applied the Dynamic Time Warping (DTW) algorithm (Sakoe & Chiba, 1978) to compare temporal sequences of motifs built with different grid resolutions and select the most suitable grid resolution given the data. The DTW compares two, or more, time series and returns the number of steps needed to transform one reference time series into another. Each step corresponds to the minimum number of changes needed to transform one query series into its reference series (see details in Giorgino 2009).

We used this approach to create matrices of similarity between motif time series. From these data, we finally selected the most suitable motif time series characterised by: 1) the largest number of different motifs (abundance) and 2) the most equal proportion of each motif (evenness). To do so, we created a list of temporal sequences of network motifs obtained from different grid resolutions (i.e. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and calculated a similarity matrix using the DTW distance between them with the function “dist” of the R package stats (R Core Team, 2018). We applied the Shannon Diversity Index (Shannon, 1948), using the R package vegan (Oksanen et al., 2018), to select the optimal time series. Specifically, we used as optimal grid size the step length corresponding to the highest value of Shannon Diversity Index (to illustrate the robustness of the method, results from the second highest value are presented in Supplementary Text S2). With this procedure, we ensured an objective way to select the best grid resolution value returning the time series with the largest number of motifs which proportions were also more equally represented. For each dataset, we identified the best grid resolution to analyse complex movement patterns using sequences of behavioural patterns instead of the trajectory parameters themselves (e.g. median step length, mean turning angle). We evaluated whether the proportion of motifs differed across datasets with a Chi-square (2) test, applied to a table with rows and columns corresponding to motif counts and animals, using the “chisq.test” function in R.

Visualization of temporal behavioural patterns

To illustrate that our method can be used to identify spatio-temporal behavioural patterns from complex animal trajectories we represented the evolution of motifs through time. Here, we focused only on the seven motifs identified as indicative of complex movements: characterised by at least
one revisit to a node. We extracted the geographic locations involved in the construction of these motifs and represented them in the network to describe spatio-temporal patterns of complex behaviours. Loops (movements starting and ending at the same location) are structurally removed when analysing network motifs (Wasserman & Faust, 1994). To account for such behavioural patterns we first extracted the number of loops observed inside each motif and we later applied a generalized linear model (GLM) for count data (Poisson error distribution) to estimate the relationship between motif complexity and the number of loops performed using the glm function of the R package stats (R Core Team, 2018). We also tested different temporal windows by resampling the roe deer and wolf dataset (see supplementary Text S3).

Evaluation of temporal motifs with a null model

The evaluation of motif counts of a static network is typically presented in terms of difference from a null model (Milo et al., 2002). The null model is usually a randomized version of the empirical network constrained by some of the network characteristics such as the degree sequence (node randomization) or the strength of the relationship between nodes (edge randomization) or both (Farine & Whitehead, 2015). If the count of a specific motif significantly exceeds that of the null model, the motif is considered to be structurally significant. However, if the null model is far from having realistic features, the differences observed (even if statistically significant) do not tell anything insightful about the nature of each motif (Artzy-Randrup et al., 2004).

In temporal directed networks, where a temporal correlation between successive motifs can be expected, an effective way to compare the experimental sequence with a randomized sequence is by time-shuffling, that is randomly sample motifs in a sequence and change their temporal position. The focus is then made on the structure of the motif sequence itself and on the probability of temporal co-occurrence (conditional probability) of specific motif associations. Here we used the conditional probabilities between each pair of motif to reveal the existence of non-random transitions between specific behavioural patterns. We first calculated the probability matrix to move from each motif to the next (8x8 matrix) and compared this matrix with 100 probability matrices obtained from time-shuffled time series. For each pair of temporal patterns, we calculated the 95% CIs and compared the probabilities from the original motifs time series to the corresponding probabilities obtained from time-shuffled motifs time series. We used a one-tail analysis and consider probabilities falling outside of the upper 95% confidence interval (CI) as significant. The obtained resulting binary matrix thus assigns 1 to all the positive non-random conditional probabilities and 0 to the others.

Comparing non-random probabilities with Brownian motion and Lévy walk
Brownian motion and Lévy walks are two main theoretical random movement patterns used to
describe trajectories observed in nature (Turchin, 1998; Fig. 3). Pure Brownian random walks have
been introduced to describe animal search strategies when no information is available. Brownian
motions are determined by successive steps in random directions whose step lengths and turning
angles are randomly drawn from a normal distribution (Bartumeus et al., 2002). Lévy walks are
defined by movements patterns following a power-law distribution (Shlesinger & Klafter, 1986;
Viswanathan et al., 1996; Reynolds, 2018). To estimate the degree by which the four original
trajectories differed from Brownian and Lévy random movements we compared the binary matrices
of transition between motifs obtained for each of the four animal trajectories with 100 probability
matrices obtained from both simulated Brownian and Lévy trajectories by calculating the Jaccard
index of similarity using the function `birewire.similarity` in the R package “BiRewire” (Gobbi et al.,
2017). We thus obtained four distributions of Jaccard indices (one for each dataset) and compared
them using t-statistic. We adjusted the value using the sequential Bonferroni correction (Rice,
1989).
3. Results

3.1 Identification of optimal grid size

The crucial step in transforming an animal trajectory into a movement network involves the selection of an optimal grid resolution that is small enough to obtain a suitable number of nodes to create a network, and large enough to provide insightful details on the animal movement patterns. For each dataset, we extracted the step length values of the nine quantiles of the step lengths distribution of the trajectory, and removed any quantiles with step length value close to zero (i.e. values lower than 10^{-6}). We obtained seven possible quantile values for the black kite, and nine quantile values for the bumblebee, the roe deer and the wolf (Table S1). We used these quantile values as cell size to build spatial grids and generate movement networks. From these networks, we extracted temporal sequences of network motifs and compared them using the DTW distance to select the optimal grid resolution given the data. We then applied the Shannon Diversity Index to select the motif time series for each dataset as candidate sequence for subsequent analyses. The Shannon Diversity Index retained the motif time series 5, 5, 7 and 8, corresponding to a cell size of step length value of 11.209 (i.e. quantile 0.5) for the bumblebee, 0.0075 (i.e. quantile 0.7) for the black kite, 0.0037 (i.e. quantile 0.7) for the roe deer and 0.2642 (i.e. quantile 0.8) for the wolf (Fig. 3).
analyses of network motifs varied across the four datasets.

FIGURE 4. Motif time series selection. The Shannon Diversity Index was applied to motif time-series for each dataset: A) bumblebee, B) black kite, C) roe deer, D) wolf. The highest Shannon Diversity Index value, used to select the most suitable motif time series for each dataset, is highlighted in red.

3.2 Analysis of behavioural patterns

The proportion of motifs was different across the four datasets (Chi-squared = 56.77, df = 21, p-value < 0.001). The dominant motif was the motif M3 (Fig. 5) that characterises unidirectional movements across three nodes without revisits. This motif has different biological meanings depending on the species under consideration. In the black kite and the roe deer, a succession of M3 motifs are characteristic of migratory movements patterns. In the wolf, however, this temporal pattern is characteristic of movements towards familiar locations in a home range, such as hunting areas. In the bumblebee, the succession of M3 motif is indicative of search flights.
FIGURE 5. Proportion of network motifs in each dataset. For each species, the proportion of motifs has been divided into two main categories: a motif describing a unidirectional movement (orange) and seven motifs describing more complex bidirectional patterns (blue).

The seven other motifs characterise bidirectional movements with at least one revisit to the same node, indicating a temporal re-use of specific areas. The different proportions of such motifs in the movements may have different biological meanings in the different species and, once identified, are open to study.

To further explore and interpret the succession of temporal motifs, we constructed simplified trajectories highlighting the spatial locations of the simple (unidirectional) motif and the more complex (bidirectional) motifs in the original data. Because motif analysis does not allow to include loops (self-edges), we also constructed simplified trajectories highlighting the spatial locations of each loop (Fig. 6). The number of loops on the same location increased with the complexity of network motifs indicating that for all four trajectories more complex behavioural patterns represent areas of temporal interest in animals (GLM for count data - bumblebee: estimate = 0.243, SE = 0.058, z-value = 4.175, p < 0.001; black kite: estimate = 0.203, SE = 0.025, z-value = 8.252, p < 0.001; roe deer: estimate = 0.122, SE = 0.019, z-value = 6.296, p < 0.001;
wolf: estimate = 0.275, SE = 0.014, z-value = 19.698, p < 0.001). In the bumblebee trajectory, bidirectional motifs occurred when the individual was in the nest area and near flowers, indicating an association between complex behavioural patterns and familiar locations, while loops tended to be concentrated around the nest only, a behavioural pattern reminiscent of orientation flights (Osborne et al. 2013) (Fig. 6A). In the black kite trajectory, more complex bidirectional motifs occurred in areas around the release point and few locations after the start of the migration and they also correspond to single locations of intensive use (loops; Fig. 6B). In the roe deer trajectory, complex motifs occurred intensely in two different areas while loops gathered around specific smaller areas (Fig. 6C). In the wolf trajectory, complex bidirectional motifs were observed in two spatially differentiated areas, while loops were only observed in one of them (Fig. 6D).
FIGURE 6. Spatio-temporal sequence of behavioural patterns. *Evolution of motifs*: temporal sequence of network motifs for each dataset. Blue: bidirectional motifs (M4, M5, M6, M8, M12, M13). Red: unidirectional motif (M3). *Complex motifs*: temporal motifs mapped on original trajectories. Blue gradient encodes the temporal sequence of the more complex bidirectional motifs. *Loops*: movements starting and ending at the same location mapped on original trajectories. Blue gradient encodes the temporal sequence of loops. A) Bumblebee data: bidirectional motifs are observed around the location of the nest and the artificial flowers (F1-F3) while loops are disproportionally observed.
around the nest location. B) Black kite data: bidirectional motifs are observed before migration and at stopover
locations along the migration route and loop behaviours tend to correspond to those locations. C) Roe deer data:
bidirectional motifs are observed in both winter and summer territories while loops evidence some specific sub-areas of
repeated intensive use. D) Wolf data: bidirectional motifs are observed in two territories (main and roaming areas)
during specific periods of the year as well as some small area of temporary use sparse along the animal path. Loops here
are observed only for the summer territory of the wolf (Kaczensky et al., 2006).

Comparison with Brownian and Lévy walks

We studied the degree by which the four experimental dataset differed from Brownian and Lévy
random movements. We calculated probability matrices of temporal co-occurrence (conditional
probability) of specific motif associations from original trajectories and from simulated ones. We
extracted the Jaccard index of similarity between each original matrix and 100 Brownian motions
and 100 Lévy walks thus obtaining two distributions of 100 values for each trajectory. We
compared the obtained distributions between them using a t-test with Bonferroni correction.
Between each pair of distributions the one having higher mean resembles more to the selected
theoretical model than the other one. The trajectories of the bumblebee and the roe deer tend to be
equally similar to Brownian motion and to differ from both the black kite and wolf trajectories
(Table 1: Brownian motion). The bumblebee trajectory resembles more to a Lévy random walk than
the other trajectories (Table 1: Lévy walk).

Table 1: Students t-statistics between distributions of 100 Jaccard indices calculated from the comparison of each
binary non-random motif conditional probabilities with 100 simulated matrices obtained from a Brownian and a Lévy
random movement model. We applied a Bonferroni correction for 6 multiple comparison (new reference = 0.008).

<table>
<thead>
<tr>
<th>Brownian motion</th>
<th>Lévy walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumblebee – Black kite (t = 5.97 ; p < 0.001)</td>
<td>Bumblebee – Black kite (t = 6.68 ; p < 0.001)</td>
</tr>
<tr>
<td>Bumblebee – Roe deer (t = 2.59 ; p = 0.009) ns</td>
<td>Bumblebee – Roe deer (t = 8.97 ; p < 0.001)</td>
</tr>
<tr>
<td>Bumblebee – Wolf (t = 9.31 ; p < 0.001)</td>
<td>Bumblebee – Wolf (t = 5.24 ; p < 0.001)</td>
</tr>
<tr>
<td>Wolf – Black kite (t = -2.58 ; p = 0.009) ns</td>
<td>Wolf – Black kite (t = -1.14 ; p = 0.255) ns</td>
</tr>
<tr>
<td>Roe deer – Black kite (t = 3.75 ; p < 0.001)</td>
<td>Roe deer – Black kite (t = 1.40 ; p = 0.162) ns</td>
</tr>
<tr>
<td>Roe deer – Wolf (t = 7.32 ; p < 0.001)</td>
<td>Roe deer – Wolf (t = 2.55 ; p = 0.010) ns</td>
</tr>
</tbody>
</table>
4. Discussion

Network analyses are powerful tools to statistically describe and compare the spatial structures of animal movements (Jacoby & Freeman, 2016). So far, however, these approaches do not take into account the temporal dimension of movements, which is essential to interpret complex behavioural patterns and their dynamics (ontogeny, repetition, changes). Here we introduced a method to automatically extract motif patterns from animal tracking data and analyse their succession over time.

Our approach builds on the utilisation of movement networks to analyse patterns of space use by animals (Jacoby & Freeman, 2016; Pasquaretta et al., 2017; Bastille-Rousseau et al., 2018). Starting from the proposition of Bastille-Rousseau et al. (2018) to isolate areas of intensive use from static spatial network representations of animal movements, we propose to keep trace of temporal information and create behavioural time series embedded in space. Our method is simple to operate and thus expected to be embraced by a large community of ecologists. First the animal trajectory is transformed into a spatial movement network in which nodes are geographic locations and edges are movements between these locations. Next, the step length distribution of the trajectory is used to calculate multiple movement networks, extract their motif time series and compare them to estimate the optimal grid size providing the most diverse sequence of motifs. This selection is used to objectively determine the most suitable resolution for the spatio-temporal analysis of animal trajectories given the data. The temporal exploration of movement trajectories from four case studies demonstrates that our approach is functional and insightful. The analysis of movement patterns matched very well with our knowledge of the ecological context in which the data were recorded, allowing us to identify simple behavioural patterns associated with search routines and migration (unidirectional motifs), and more complex patterns (bidirectional motifs) correlated with the exploitation of familiar areas (migration sites, home range), revisits to specific locations (nest, flowers), resting phases during migrations (stopovers, sparse area of temporary use).

In the bumblebee dataset, complex motifs occurred when the individual was near to biologically relevant locations (nest and flowers). These results are consistent with the well-described observations that bumblebees searching for nectar resources often return to their nest and previously discovered flowers (Lihoreau et al., 2012; Osborne et al., 2013), possibly to explore new areas from known reference spatial locations (Lihoreau et al., 2016). Additionally, the loop analysis revealed a strong tendency of the bumblebee to remain around the nest before flying longer distances. This finding is in accordance with previous works demonstrating that bumblebees use learning flights, in the form of loops around the nest, to learn and memorize the location of the nest.
in the environment (Osborne et al., 2013). In the black kite dataset, complex movement patterns and
loops overlap almost perfectly, which likely indicates the existence of stopover sites along the
migratory route of the bird. The spatio-temporal analysis of the roe deer dataset highlighted the
existence of two successive migratory events during which similar use of spatially distinct home
ranges occurs. Interestingly, loops were concentrated around specific areas which might correspond
to areas of core usage (i.e. 50% of the time is spent in these specific areas) of the home range of the
animal during both summer and winter season. The wolf dataset presents complex bidirectional
motifs across a summer and a winter territory (Kaczensky et al., 2006). Sparse areas of temporary
use are also revealed along the trajectory suggesting possible resting areas during the roaming
process. In this case, interestingly, loop behaviours were only observed in the summer territory,
suggesting the possible existence of valuable resources in this area.

Comparing the four trajectories with simulated random movement indicated that some
trajectories resemble more to a Brownian motion or Lévy walk than others. The bumblebee
trajectory, for example, resembles more to a Lévy walk than the other trajectories, thus confirming
previous studies suggesting the existence of Lévy flights as optimal search strategy in bumblebees
(Reynolds et al., 2007; Reynolds, 2008; Lihoreau et al., 2016). The black kite and the wolf
trajectories appeared different from both Brownian and Lévy motions thus suggesting the
possibility to study these movements using more complex behavioural models. Indeed, Brownian
motion often underestimates long range movements while pure Lévy walk often overestimates them
(Vallaeys et al., 2017). More realistic motions might also be tested in the future (e.g. correlated
random walks; Bovet & Benhamou, 1988) to compare trajectories between them and against
specific hypothesis.

Future quantitative analyses using multiple trajectories from more individuals will be
essential to develop fruitful research on the movement ecology of species. Studies of animal
movement are generally based on high resolution data from a few individuals, partly because
obtaining long-term data in the field is not an easy task. However, with the fast development of
automated tracking systems, analyses of rich movement datasets based on large numbers of
trajectories from many individuals are becoming possible (Cagnacci et al., 2010). Our automated
analysis has the main advantages of capturing the temporal properties of complex movement
patterns into synthetic and standardized network metrics that facilitate comparative analyses. The
metrics obtained are comparable through time for the same individual (e.g. if we are interested in
learning and memory) or across individuals (e.g. to assess inter-individual variability in a
population, between populations or between species). This approach may therefore facilitate the
Our utilisation of networks metrics could be adjusted depending on the type of data collected and the question addressed. Interestingly, it is possible to study motifs with more than three nodes to compare multiple spatio-temporal level of behavioural complexity that might not emerge from the study of low order motifs. For instance, a four-nodes sequence such as A-B-C-D-A provides a description of a large area of interest for an animal while the three-nodes equivalent A-B-C plus C-D-A only provides description of two unidirectional movements between locations without any evidence of spatio-temporal clusters. Note however, the limitation of computational capabilities tend to restrict operational motif size for this type of analysis and debate on how to extract subgraphs with more than three nodes is still open (Williams et al., 2014; Ning et al., 2018; Agasse-Duval & Lawford, 2018).

Importantly, our method enables to compare the spatio-temporal structure of behavioural patterns to known theoretical movement models. In the future, a functional motif analysis could be implemented to highlight cluster of functional roles (McDonnell et al., 2014). Functional motifs could help describe potential changes in behavioural patterns. The utilization of network motifs to analyse animal movements offers a detailed representation of behavioural patterns which is certainly complementary to more classical descriptors of animal movements (e.g. step length, turning angle) and other methods used to obtain behavioural modes (e.g. t-SNE). For instance, the t-SNE method is a procedure to cluster spatial data based on their similarity in various quantitative traits (e.g. straightness, net displacement, mean velocity, see Bartumeus et al., 2016). It enables to describe animal movements as behavioural patterns thus transforming a raw animal trajectory into smaller spatial segments representing diverse behavioural modes. The t-SNE method relies on the interpretation of these behavioural modes. Our spatio-temporal network method, by associating motifs to the specific segments obtained from the t-SNE, could be used to improve their interpretation by the use of direct visualization. Analysis of large movement datasets with our method will also provide the opportunity to develop time-series analyses of network motifs using Markov chains. This approach would be a powerful means to move from describing and comparing to predicting temporal sequences of animal movements.

As illustrated above, another major advantage of our method is that it is broadly applicable and can suit different types of movement data collected with different technologies (GPS, PTT, harmonic radar), at different spatial scales (local territories, countries) and temporal scales (minutes, years), on animals with different locomotion modes (walking, flying) and in different ecological contexts (exploration, exploitation, migration). In principle, temporal analyses
of spatial network can be used to study virtually all type of animal movement data in which individual animals are regularly re-located. If trajectories are incomplete, for instance because the signal of the animal is lost for some period of time, linear interpolation can be used to fill gaps (Strandburg-Peshkin et al., 2015; Strandburg-Peshkin et al., 2017). For any species, however, the main limiting factor is the length of the trajectory (i.e. number of data points). If the trajectory has too few data points, there is a high risk that simplification into a movement network does not provide enough motifs to allow for an insightful exploration of the data.

We have shown that network analyses can be used to investigate the temporal dimension of animal movements and get insights into how the animals interact with their ecological environment (exploitation of known resources, migration routes, stopover sites, territories and roaming areas). Since most animals (including those studied here) frequently interact with social partners or competitors, a major challenge for future studies is to analyse the temporal behavioural movement patterns of interacting animals. Important steps have been made to develop new methods to extract social network from animal trajectories and future directions have been pointed towards using social-telemetry data to identify preferred habitats for entire groups (Robitaille Webber & Vander Wal, 2019). Our method can help analyse these data by allowing the characterization of complex behavioural patterns of space use by multiple interacting individuals. For examples, a preliminary analysis of the trajectories of two wolves (male and female) inhabiting the same area of the Mongolia desert shows that the looping behaviours of both animals occur in separate zones. Specifically, the male repeatedly used locations surrounding the female’s territory and performed the highest density of loops in an area facing the area where the female exhibited the highest density of loops (blue locations in Fig. 7).
FIGURE 7: Spatio-temporal sequence of loops of female and male wolves. A) Male vs Female visualisation. Red: locations in which the male did no loop. Blue: locations where the male did at least one loop. Green: locations where the female was observed. B) Female vs male visualisation. Green: locations in which the female did no loop. Blue: locations where the female did at least one loop. Red: locations where the male was observed. Blue gradient encodes the temporal sequence of the loops in both graphs. Locations with the same gradient of blue were collected on the same day.

From this type of data, it is possible to construct temporal proximity matrices between individuals and apply classic social network approaches to study interactions among individuals (not showed here). The temporal dimension of our networks can thus inform about non-random associations between behavioural patterns expressed by the individuals. For instance, specific sequences of complex motifs (M8, M10, M12, M13) or loops may reveal behavioural patterns characteristic of mating, territory formation and maintenance, or dispersal following social interactions. More generally, our work is part of a rapidly growing research domain aiming at developing multi-layered network methods to study social, spatial and temporal dimensions of animal movement (Silk et al. 2018; Finn et al., 2019; Mourier, Ledee & Jacoby, 2019). By including motifs as an attribute of each node in each layer, it will be possible to integrate the temporal, social and spatial dimensions of movements into a single analytical framework and open new promising grounds for extending the analysis of complex movement patterns at the population level.
Acknowledgements
This work was funded by the CNRS, a grant from the Agence Nationale de la Recherche to ML (ANR-16-CE02-0002-01), and the Laboratoire d’Excellence (LABEX) TULIP (ANR-10-LABX-41). We acknowledge Prof. Lars Chittka and Dr. Joe Woodgate for providing access to the harmonic radar (bumblebee trajectory) and XeriusTracking for the GPS data (black kite trajectory). We declare no conflict of interest. We thank two anonymous reviewers, the associate editor and Dr. David Jacoby for comments that have helped improve the manuscript.

Authors’ contributions
CP and ML conceived the ideas and designed the methodology. CP, TD, TGM, and ML collected the bumblebee data. VP provided the black kite data. CP analysed the data. CP and ML led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Data availability
We implemented our method in R. We provide the codes and the bumblebee and black kite datasets in Dryad, DOI:10.5061/dryad.47d7wm390. The roe deer dataset was obtained from MOVEBANK (Wikelski, M., and Kays, R. 2020). Animal Identifier: Sandro (M06), from Cagnacci et al. (2011). The wolf dataset was obtained from MOVEBANK (Wikelski, M., and Kays, R. 2020), Animal identifier: Zimzik, from Kaczensky et al. (2006).

References

• Gobbi A, Iorio F, Albanese D, Jurman G, Saez-Rodriguez J (2017). _BiRewire_: High-performing routines for the randomization of a bipartite graph (or a binary event matrix),
undirected and directed signed graph preserving degree distribution (or marginal totals). R package version 3.18.0

Honeybees perform optimal scale-free searching flights when attempting to locate a food source. *Journal of Experimental Biology, 210*(21), 3763-3770.

