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Abstract: Achieving a better understanding of the consequences of nutrition to animal fitness
and human health is a major challenge of our century. Nutritional ecology studies increasingly
use nutritional landscapes to map the complex interacting effects of nutrient intake on animal
performances, in a wide range of species and ecological contexts. Here, we argue that opening access
to these hard-to-obtain, yet considerably insightful, data is fundamental to develop a comparative
framework for nutrition research and offer new quantitative means to address open questions about
the ecology and evolution of nutritional processes.
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1. The Multidimensional Nature of Nutrition

The World Health Organisation (WHO) estimates that ca. 2.4 billion adults experience
health-related problems due to malnutrition (https://www.who.int/en/news-room/fact-sheets/detail/
malnutrition). Such alarming numbers have prompted scientists, clinicians, and policy makers to
develop a more integrative nutrition science, by focusing their research on the effects of nutrition across
a wide variety of contexts, spanning from fundamental science involving animal nutrition and the
consequences to animal behaviour and evolution to human disease [1,2].

In recent decades, the conceptual framework known as the geometric framework for nutrition
(GFN; Figure 1) [3] has revolutionized research in nutritional ecology by taking into account how
variation in the quantity and balance of nutrients in foods can affect the development, metabolic health,
reproduction and ageing of animals [2]. The GFN allows for direct experimental assessment of the
effects of multiple nutrients and their calorie intakes on performance traits and ultimately fitness
expression (e.g., Figure 1A,B) [4]. This has brought key insights into the nutritional factors of a wide
variety of physiological and behavioural phenomena across feeding guilds (e.g., herbivores, carnivores,
and omnivores) and taxonomic groups (e.g., slime moulds, insects, fish, birds, and mammals) [2,5].
These progresses in nutrition research also have far reaching implications in various areas of biology,
ecology and evolution, including to our understanding of contemporary diseases affecting human
societies [6]. Here, we argue that making GFN data open access has considerable benefits to advancing
the broad field of nutrition research and tackling open questions on the ecology and evolution of
nutritional processes through quantitative comparative approaches of complex nutritional systems
across ecological contexts and scales of organisations. To do so, we provide an up-to-date summary of
available data and a guideline for the standardized sharing of future data.
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2. The Geometric Framework for Nutrition in a Nutshell

The GFN [2] is a state-space modelling approach that can be used to study the simultaneous
contribution of two or more nutrients to performance traits (e.g., ratios of proteins to carbohydrates [7],
lipids to proteins [8], proteins to lipids and carbohydrates [9,10], and amino acids [11]). Diets with
different nutrient ratios (i.e., ‘nutritional rails’, Figure 1A) determine the ‘width’ of the performance
landscape in the nutritional plane (i.e., ‘nutritional space’, Figure 1A). Diets with the same nutrient ratio
can have different nutrient concentrations, which introduces variance in individual nutrient intake
and determines the ‘length’ of the performance landscape (Figure 1A). Experimentally, the higher the
number of different nutrient ratios, nutrient concentrations and replicates, the higher the resolution of
the landscape (see [2] for a review).
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Figure 1. Overview of the geometric framework for nutrition (GFN). (A) Schematic representation of
the performance landscape plotted in a two-dimensional nutrient space (here defined by protein (P)
and carbohydrate (C) intake). Nutritional rails are diets with varying PC ratios. Red dots represent the
concentrations of the different diets. The ‘width’ of the landscape is determined by the nutritional rails.
The ‘length’ of the landscape is determined both by the concentrations within each rail and the individual
variation in nutrient intake within each rail. (B) Empirical performance landscape (i.e., lifespan) from
a GFN study in Drosophila melanogaster (extracted from [7]). (C) Schematic representation of the
Right-Angle Mixture Triangle (RMT) used to assess diet mixtures primarily in field studies. Note that
the % of carbohydrate in the mixture increases as the axis moves towards the origin (solid arrow) so that
the mixture is constrained within the limits delimited by the dashed isocline. (D) Empirical Right-Angle
Mixture Triangle (i.e., milk composition) from a field study (extracted from [12]). (E) Template for
storing and sharing GFN data. An Excel (.csv) version is provided in Appendix A.
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Higher resolution, and thus confidence in the results, is obtained by a higher coverage of the
nutritional space with more nutritional rails which are also in closer proximity, following:

90◦

Nrails
= ∅

where Nrails is the number of nutritional rails in the experimental design and ∅ is the average distance
between rails. However, an increase in the number of nutrient ratios in arithmetic scale also results in
an increase in sample size in the geometric scale, following:

N f inal = NR×C×R

where Nfinal is the final sample size of the experiment, NR is the number of nutrient ratios, C is the
number of nutrient concentrations, and R is the number of replicates per concentration per ratio.
This relationship constrains experimental designs that can grow rapidly and compromises their
feasibility. For example, GFN experiments tend to adopt a design of at least five replicates of five
nutrient ratios with three concentrations each (75 replicates) [2]. For an experiment with no more than
six nutrient ratios, the sample size increases from 75 to 90 replicates (6 × 3 × 5) for an increase of ~17%
in the landscape resolution (15◦ between nutritional rails). Data collection is therefore a bottleneck for
the quality and resolution of fitness landscape and represents a trade-off between feasibility (i.e., the
rapid increase in sample size) and resolution (i.e., higher coverage of the nutritional space).

For field studies, when this approach can be tedious and all required information may not be
available, a derivative of the GFN known as the Right-Angle Mixture Triangle (RMT) [13] can be used
to transform diet contents into relative percentages of each specific nutrient of interest. The percentage
of each nutrient in the diet is represented in the axes of RMT (Figure 1C), which depicts the nutrient
mixture in percentage of the diet. For example, a recent study analysed the macronutrient composition
of mammalian milk, revealing that, overall, primate milk is lower in protein concentration relative to
the milk of other mammals (Figure 1D) [12]. Since nutrient mixtures are represented by percentages,
the concentration of the nutrients is not incorporated into the graphical representation which instead
offers a graphical overview of the diet mixture (see Figure 1A). Nonetheless, in theory, RMT can be
used to derive multidimensional performance landscapes and compare broader nutritional ecology
patterns between populations in different environments or between species occupying the same
environment [13]. Here, data collection is also a bottleneck for data resolution and statistical inferences
in comparative studies, meaning that this approach also experiences a trade-off on quality (and costs)
and resolution.

For the remainder of this paper, we will use the GFN to refer to both the more general GFN
(described above) and the derivative RMT. All concepts proposed here are therefore applicable to and
will benefit both frameworks.

3. Raw Data Availability: Why Does It Matter?

Performance landscapes are often drawn using extrapolation methods such as thin-plate
splines (TPSs) [14]. TPSs uses information from the collected data in each nutrient ratio and
concentration to extrapolate the values for the areas of the nutritional space where experimental data
is lacking. This allows for the construction of a continuous landscape from discrete experimental data.
This approach is widespread to study morphological, behavioural, physiological and reproductive
adaptations in species, spanning from insects to mammals [6,7], including humans [15]. However, while
the extrapolation method solves the data collection conundrum, it generates a new problem—TPSs
often mask the information from the raw (empirical) data, making it virtually impossible to infer and/or
extract these data (see, e.g., Figure 1B). As a result, each GFN study becomes an ‘island’ of information
inaccessible to researchers. This limitation strongly limits the possibility to perform meta-analyses,



Insects 2020, 11, 236 4 of 6

and discover broad-scale patterns through comparative studies, which is essentially developing the
GFN from a descriptive to an analytical method.

4. More Data for A Bigger Picture

GFN studies are increasingly published with nutritional response landscapes in a variety of
organisms (see summary in Data S1) [2]. The data for each population and species are time consuming
(and often costly) to obtain but extremely insightful for the community. For example, Lee et al. [7]
ran experiments with 1008 fruit flies (28 diets, 36 replicates) to build three landscapes showing for
the first time that nutrient balance, and not caloric restriction, was responsible for extending lifespan
in insects (Figure 1B). Similar conclusions were later obtained in mammals by Solon-Biet et al. [9],
who ran experiments with 858 mice (25 diets). This fast-growing amount of empirical data thus
offers the new fascinating possibility to compare traits between populations and species. To date,
however, performance surface data have not been provided in more than 60% of the GFN studies (see
meta-analysis in Data S1). We believe that making such raw GFN data open access and published
alongside studies (irrespective of the journal’s policy) will allow for the development of a truly
integrated and collaborative community of nutritional ecologists with accessible datasets from which
quantitative analyses can be performed and new methods for data analysis can be designed and
tested [16,17].

5. How to Share GFN Data?

Although the value of open data has been widely recognized to explore broader patterns and
processes across species, space and time, few fields of biological and ecological sciences have fully
embraced this practice, and so the landscape of open data remains largely scattered and complex to
navigate [18]. To facilitate access to and reuse of GFN data by the community, we encourage authors to
adopt a simple common guideline.

1. Provide raw data used to construct landscapes in a standardized and accessible format (see
example in Figure 1E; see template file (.csv) in Appendix A).

2. If publishing in an open-access journal, authors are likely (although not always) to be required
to deposit the raw data in a public data repository (e.g., Dryad). If publishing in a subscription
journal, we encourage authors to make raw data available as Supplementary Material. In both
cases, it is important that the data format is also standardised (Figure 1C) and any additional
information needed for the understanding of the dataset is also provided (e.g., README file).
These steps will benefit the visibility and citations of the original paper.

3. Include ‘geometric framework for nutrition’ and ‘performance landscapes’ as keywords in
publications to increase exposure on search engines.

4. If the study is already published but the data are not available, we encourage authors to deposit
the raw data in a public data repository.

6. Towards Quantitative and Comparative Nutrition Research

Open data have the potential to transform biological and ecological sciences with a new depth
of information that can facilitate advances across disciplines and explore broader-scale patterns [19].
Nutritional ecology is not an exception and will assuredly greatly benefit from this practice, since
good quality data are particularly hard to obtain. Just like the adoption of performance landscapes
has brought new fundamental insights into the ecology and evolution of nutrition [4,6,7,17], formally
comparing large quantities of landscapes based on data sharing will allow for new kinds of quantitative
analyses characterizing the responses of individuals to nutritional conditions from different life-stages,
populations and species. Recent studies have already demonstrated the potential for new theoretical
and comparatives avenues of research with open data in nutritional ecology [16,17]. For instance,
we developed a quantitative approach to compare GFN performance landscapes within and between
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species, and revealed major differences in the reproductive responses of Drosophila melanogaster (data
from [7]) and the tephritid Bactrocera tryoni (data from [20]), whereby the species-specific reproductive
responses are driven by differences in protein (but not carbohydrate) intake [17]. Likewise, comparative
studies on the relative composition of diets using the RMT have provided key insights into the
nutritional ecology of higher vertebrates in the wild including marine predators [21] as well as primates
(including humans [22,23]; see above). Beyond nutrition research, strictly speaking, these data could
be used to study a broad range of biological interactions mediated by food and quantitatively address
general problems in ecology and evolution. Are there nutritional adaptations required for sociality?
How do nutritional interactions mediate host–parasite evolution? To what extinct do nutritional
adaptations shape species assemblages? How do nutritional constraints associated with trophic levels
determine evolutionary trade-offs? Many of these questions could be addressed through meta-analyses
of open nutritional data.

7. Conclusions

Nutritional ecology studies increasingly use nutritional landscapes to map the complex interacting
effects of nutrient intake on animal performances, in a wide range of species and ecological contexts.
Here we encourage authors to adopt a common guideline to share their raw data. Opening access
to these hard-to-obtain, yet considerably insightful data is fundamental to develop a comparative
framework for nutrition research and offer new quantitative means to address open questions about
the ecology and evolution of nutritional processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/4/236/s1,
Data S1: List of publications using the GFN. The list was collated using two search engines (Web of Science and
Google Scholar; search on 15 January 2020) with queries for ‘geometric framework’ and ‘nutrition’. In total, 68
studies fitted the criteria (i.e., data articles displaying multidimensional performance landscapes)—of which, 27
provided the raw data along with the publication or in a data repository (~39%).

Author Contributions: M.L. conceived the ideas; J.M. collected the data; M.L. and J.M. analysed the data; M.L.
and J.M. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval
for publication. All authors have read and agreed to the published version of the manuscript.
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(ANR-16-CE02-0002-01).
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Appendix A

Table A1. Excel (.csv) template for sharing GFN raw data.

Species Protein Carb. Fat Day Trait
Value Trait_ID Replicate Nutrient

Source
Feeding
Guild

Type of
Experiment Season Additional_Info

Sp_A intake intake intake 1 150 Number_eggs 1 Brand_A Herbivores Lab NA Diet_recipe

Sp_B % % % 1 130 Body_mass 2 Prey_X Predator Field Spring Sampling_method
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