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This paper is devoted to the asymptotic analysis of the reinforced elephant random walk (RERW) using a martingale approach. In the diffusive and critical regimes, we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the RERW. The distributional convergences of the RERW to some Gaussian processes are also provided. In the superdiffusive regime, we prove the distributional convergence as well as the mean square convergence of the RERW. All our analysis relies on asymptotic results for multidimensional martingales with matrix normalization.

Introduction

Reinforced random walks have generated much interest in the recent years with the focus being mainly on graphs, edge or vertex reinforced random walk, see for example [START_REF] Kozma | Reinforced random walk[END_REF] or [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF] for a comprehensive and extensive overview on the subject, as well as the recent contribution [START_REF] Baur | On a class of random walks with reinforced memory[END_REF][START_REF] Bertoin | Scaling exponents of step-reinforced random walks[END_REF]. In this paper, we investigate a special case of reinforced random walk in connection with the Elephant Random Walk (ERW), introduced by Sch ütz and Trimper [START_REF] Sch Ütz | Elephants can always remember: Exact long-range memory effects in a non-markovian random walk[END_REF] in the early 2000s. At first, the ERW was used in order to see how long-range memory affects the random walk and induces a crossover from a diffusive to superdiffusive behavior. It was referred to as the ERW in allusion to the traditional saying that elephants can always remember anywhere they have been. The elephant starts at the origin at time zero, S 0 = 0. At time n = 1, the elephant moves in one to the right with probability q and to the left with probability 1q for some q in [0, 1]. Afterwards, at time n + 1, the elephant chooses uniformly at random an integer k among the previous times 1, . . . , n. Then, it moves exactly in the same direction as that of time k with probability p or the oppositve direction with the probability 1p, where the parameter p stands for the memory parameter of the ERW. The position of the elephant at time n + 1 is given by S n+1 = S n + X n+1 (1.1) where X n+1 is the (n + 1)-th increment of the random walk. The ERW shows three differents regimes depending on the location of its memory parameter p with respect to the critical value p c = 3/4. A wide literature is now available on the ERW in dimension d = 1. A strong law of large numbers and a central limit theorem for the position S n , properly normalized, were established in the diffusive regime p < 3/4 and the critical regime p = 3/4, see [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF], [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF], [START_REF] Coletti | A strong invariance principle for the elephant random walk[END_REF], [START_REF] Sch Ütz | Elephants can always remember: Exact long-range memory effects in a non-markovian random walk[END_REF] and the more recent contributions [START_REF] Bercu | Hypergeometric identities arising from the elephant random walk[END_REF], [START_REF] Coletti | Asymptotic analysis of the elephant random walk[END_REF], [START_REF] Fan | Cramér moderate deviations for the elephant random walk[END_REF], [START_REF] Gonz Ález-Navarrete | Multidimensional walks with random tendency[END_REF], [START_REF] Miyazaki | Limit theorems for the 'laziest' minimal random walk model of elephant type[END_REF], [START_REF] Guevara | On the almost sure central limit theorem for the elephant random walk[END_REF]. The superdiffusive regime p > 3/4 turns out to be harder to deal with. Bercu [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] proved that the limit of the position of the ERW is not Gaussian and Kubota and Takei [START_REF] Kubota | Gaussian fluctuation for superdiffusive elephant random walks[END_REF] showed that the fluctuation of the ERW around its limit in the superdiffusive regime is Gaussian. Finally, Bercu and Laulin in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] extended all the results of [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] to the multi-dimensional ERW (MERW) where d ≥ 1 and to its center of mass [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF]. Moreover, functional central limit theorems were also provided via a connection to P ólya-type urns, see [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] for the ERW, [START_REF] Baur | On a class of random walks with reinforced memory[END_REF] for a particular class of random walks with reinforced memory such as the ERW and the Shark Random Swim [START_REF] Businger | The shark random swim (Lévy flight with memory)[END_REF], and more recently [START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF] for the MERW.

The main subjet of this paper is to study the asymptotical behavior of the reinforced Elephant Random Walk (RERW). As it was done in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF], we can write the (n + 1)-th increment X n+1 under the form

X n+1 = α n+1 X β n+1 . (1.2)
In the case of the ERW, we had α n+1 ∼ R(p) and β n+1 ∼ U {1, . . . , n}. The major change for the RERW is that the distribution of β n is no longer uniform.

Very recently, Baur [START_REF] Baur | On a class of random walks with reinforced memory[END_REF] studied the asymptotic behavior of the RERW using a Polya-type urns approach. He established interesting functional limit theorems thanks to the seminal work of Janson [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized P ólya urns[END_REF]. Our strategy is totally different as it relies on a martingale approach. On the one hand, we prove new almost sure convergence results such as strong laws of large numbers, laws of iterated logarithms, as well as quadratic strong laws. On the other hand, we give an alternative method to obtain the functional limit theorems without making use of the results from [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized P ólya urns[END_REF]. The martingale approach we propose fulfills these two objectives. The main strength of our approach is that calculations are totally sefl-contained and rather easy to follow. It should also be noted that using the martingale theory is sufficient on its own to obtain all the results presented in this paper. Moreover, we strongly believe that this could be used to study several variations of the ERW with reinforced memory or more generally reinforced random walks.

This paper is organized as follows. The model of reinforced memory is presented in Section 2 while the main results are given in Section 3. We first investigate the diffusive regime and we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the RERW. The functional central limit theorem is also provided. Next, we prove similar results in the critical regime. Finally, we establish a strong limit theorem in the superdiffusive regime. Our martingale approach is described in Section 4. Finally, all technical proofs are postponed to Sections 5-6.

The reinforced elephant random walk

We assume in all the sequel that the memory parameter p = 1/2 since the particular case p = 1/2 reduces to the standard random walk. Let F n = σ (X 1 , . . . , X n , β 1 , . . . , β n ) be the natural σ-algebra up to time n and denote by ρ n (k) the weight of the instant k after n steps.

The ERW is associated with the special case where ρ n (k) = 1 if k ≤ n and 0 elsewise. Adding a reinforcement of weight c, where c is a non-negative real number, implies that the weight ρ n (k) of instant k is modified as follows

ρ n (k) =    0 if k ≥ n + 1, 1 if k = n, ρ n-1 (k) + c1 β n =k if 1 ≤ k < n.
Consequently, it follows from the very definition of ρ n (k) that the conditional distribution of β n+1 is given by, for 1 ≤ k ≤ n,

P(β n+1 = k|F n ) = ρ n (k) ∑ n j=1 ρ n ( j) = ρ n (k) (c + 1)n -c .
The parameter c represents the intensity of the reinforcement. The reader can notice that the case c = 0 corresponds to the traditionnal ERW, and that in this case the distribution of β n+1 is only dependant of the time n. Hereafter, let a = 2p -1, such that -1 ≤ a ≤ 1. We have by the definition of X n ,

E[X n+1 |F n ] = E[α n+1 ]E[X β n+1 |F n ] = aE n ∑ k=1 X k 1 β n+1 =k |F n = a (c + 1)n -c n ∑ k=1 X k ρ n (k).
Then, denote

Y n = n ∑ k=1 X k ρ n (k) (2.1)
such that Y n = S n when c = 0, and

E[X n+1 |F n ] = a (c + 1)n -c Y n . (2.2)
Hence, we immediately get

E[S n+1 |F n ] = S n + E[X n+1 |F n ] = S n + a (c + 1)n -c Y n . (2.3) 
Hereafter, notice that

Y n+1 = n+1 ∑ k=1 X k ρ n+1 (k) = n ∑ k=1 X k ρ n (k) + c1 β n+1 =k + X n+1 = Y n + (α n+1 + c)X β n+1 (2.4)
we obtain

E[Y n+1 |F n ] = 1 + a + c (c + 1)n -c Y n . (2.5) 
Finally, for any n ≥ 1 let

γ n = 1 + a + c (c + 1)n -c = n + aλ n -cλ where λ = 1 c + 1 (2.6)
and which means that (N n ) is also a locally square-integrable martingale adapted to F n . On the other hand, we can rewrite S n as

a n = n-1 ∏ k=1 γ -1 k = Γ(n -cλ)Γ(1 + aλ) Γ(n + aλ)Γ(λ) . ( 2 
S n = N n + a a + c a -1 n M n (2.10)
and equation (2.10) allows us to establish the asymptotic behavior of the RERW via an extensive use of the strong law of large numbers and the functional central limit theorem for multi-dimensional martingales [START_REF] Chaabane | Théorèmes limites avec poids pour les martingales vectorielles[END_REF], [START_REF] Duflo | Random iterative models[END_REF], [START_REF] Hall | Martingale limit theory and its application[END_REF], [START_REF] Touati | Sur la convergence en loi fonctionnelle de suites de semimartingales vers un mélange de mouvements browniens[END_REF].

3 Main results

The diffusive regime

Our first result deals with the strong law of large numbers for the RERW in the diffusive regime where a < (1c)/2. 

The almost sure rate of convergence for RERW is as follows.

Theorem 3.2. We have the quadratic strong law

lim n→∞ 1 log n n ∑ k=1 S 2 k k 2 = 2ac + c -1 2a + c -1 a.s. (3.2) Remark 3.3.
In addition, we could also obtain an upper-bound for the law of iterated logarithm as it was done for the center of mass of the MERW in [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF].

Hereafter, we are interested in the distributional convergence of the RERW, which holds in the Skorokhod space D([0, ∞[) of right-continuous functions with left-hand limits. The following theorem was first obtained by Baur [START_REF] Baur | On a class of random walks with reinforced memory[END_REF]Theorem 3.2] in the case of a memory parameter equal to (p + 1)/2.

Theorem 3.4. The following convergence in distribution in D([0, ∞[) holds S nt √ n , t ≥ 0 =⇒ W t , t ≥ 0 (3.3)
where W t , t ≥ 0 is a real-valued centered Gaussian process starting from the origin with covariance

E[W s W t ] = a(1 -c 2 ) (a + c)(1 -2a -c) s t s λ(a+c) + c(a + 1) a + c s (3.4) for 0 < s ≤ t.
In particular, we have

S n √ n L -→ N 0, 2ac + c -1 2a + c -1 . ( 3.5) 
Remark 3.5. When c = 0 we find again the results from [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] for the ERW

S nt √ n , t ≥ 0 =⇒ W t , t ≥ 0
where W t , t ≥ 0 is a real-valued mean-zero Gaussian process starting from the origin and

E[W s W t ] = 1 1 -2a s t s a .
In particular, we also obtain the asymptotic normality from [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF][START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF] S n

√ n L -→ N 0, 1 1 -2a .
As it was done in [START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF], we also obtain the asymptotic normality for the center of mass of the RERW defined by

G n = 1 n n ∑ k=1 S n .
Corollary 3.6. We have the asymptotic normality

G n √ n L -→ N 0, 2 -c(c + 1 + 3ca + 3a -2a 2 ) 3(2 + c -a)(1 -2a -c) . ( 3 

.6)

Remark 3.7. When c = 0, we find again the asympotic normality established in [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF][START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF] G

n √ n L -→ N 0, 2 3(1 -2a)(2 -a)
. 

The critical regime

Hereafter, we investigate the critical regime where a = (1c)/2.

Theorem 3.8. We have the almost sure convergence

lim n→∞ S n √ n log n = 0 a.s. (3.7)
The almost sure rates of convergence for the RERW are as follows.

Theorem 3.9. We have the quadratic strong law

lim n→∞ 1 log log n n ∑ k=1 S 2 k (k log k) 2 = (c -1) 2 c + 1 a.s. (3.8)
In addition, we also have the law of iterated logarithm

lim sup n→∞ S 2 n 2n log n log log log n = (c -1) 2 c + 1 a.s. (3.9) 
Once again, our next result concerns the functional convergence in distribution for the RERW.

The following theorem was also first obtained by Baur [1, Theorem 3.2].

Theorem 3.10. The following convergence in distribution in D([0, ∞[) holds S n t n t log n , t ≥ 0 =⇒ (c -1) 2 (c + 1) B t , t ≥ 0 (3.10)
where (B t , t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we have

S n n log n L -→ N 0, (c -1) 2 c + 1 . ( 3.11) 
Remark 3.11. When c = 0, we find again the results from [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] for the ERW S nt n t log n , t ≥ 0 =⇒ B t , t ≥ 0 where (B t , t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we find once again the asymptotic normality from [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF][START_REF] Bercu | A martingale approach for the elephant random walk[END_REF][START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF] S n n log n L -→ N (0, 1) . 

The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where a > (1c)/2. The reader can notice that it is the only type of behavior for the RERW that still holds when c > 3 since a ≥ -1. The following convergence in D([0, ∞[) can also be found in [START_REF] Baur | On a class of random walks with reinforced memory[END_REF]Theorem 3.2]. The almost sure and mean-square convergences are new.

Theorem 3.12. We have the following distributional convergence in D([0, ∞[)

S nt n λ(c+a) , t ≥ 0 =⇒ (Λ t , t ≥ 0) (3.12)
where the limiting Λ t = t λ(c+a) L c , L c being some non-denegerate random variable. In particular, we have lim n→∞ S n n (a+c)λ = L c a.s.

(3.13)

Moreover, we also have the mean square convergence

lim n→∞ E S n n (a+c)λ -L c 2 = 0. (3.14) Theorem 3.13. The expected value of L c is E[L c ] = a(2q -1)Γ(λ) (a + c)Γ(1 + aλ) (3.15)
while its variance is given by 

E L 2 c = a 2 (1 + 2ac + c 2 )Γ(λ) (a + c) 2 λ(2a + c -1)Γ((2a + c)λ) . ( 3 
E[L] = 2q -1 Γ(a + 1) and E L 2 = 1 (2a -1)Γ(2a)
.

A two-dimensional martingale approach

In order to investigate the asymptotic behavior of (S n ), we introduce the two-dimensional martingale (M n ) defined by

M n = N n M n (4.1)
where (M n ) and (N n ) are the two locally square-integrable martingales introduced in (2.9). As for the center of mass of the ERW [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF], the main difficulty we face is that the predictable quadratic variation of (M n ) and (N n ) increase to infinity with two different speeds. A matrix normalization will again be necessary to establish the asymptotic behavior of the RERW. We will study (M n ), instead of (M n ) or (N n ).

Let

ε n+1 = Y n+1 -γ n Y n and ξ n = (α n -a)X β n .
We have from equations (2.4), (2.7) and (2.9)

∆M n+1 = M n+1 -M n = S n+1 -S n -a a+c Y n+1 -Y n a n+1 Y n+1 -a n Y n = α n+1 X β n+1 -a a+c (α n+1 + c)X β n+1 a n+1 ε n+1 = a n+1 ε n+1 0 1 + c a + c ξ n+1 1 0 . (4.2)
We also find from (2.4) that

E[ε 2 n+1 |F n ] = E[Y 2 n+1 |F n ] -γ 2 n Y 2 n = Y 2 n + 2(γ n -1)Y 2 n + 1 + 2ac + c 2 -γ 2 n Y 2 n = 1 + 2ac + c 2 -(γ n -1) 2 Y 2 n . (4.3)
In addtion, we obtain once again from (2.4) that

E[ξ 2 n+1 |F n ] = 1 -a 2 (4.4)
and finally

E[ε n+1 ξ n+1 |F n ] = E (1 -γ n )Y n + (α n+1 + c)X β n+1 (α n+1 -a)X β n+1 |F n = E (1 -γ n )(α n+1 -a)Y n X β n+1 + (α n+1 + c)(α n+1 -a)|F n = 1 -a 2 . ( 4.5) 
Hereafter, we deduce from (4.2), (4.3), (4.4) and (4.5) that

E (∆M n+1 )(∆M n+1 ) T |F n = a 2 n+1 1 + 2ac + c 2 -(γ k -1) 2 Y 2 k 0 0 0 1 + a n+1 c a + c (1 -a 2 ) 0 1 1 0 + c a + c 2 (1 -a 2 )
1 0 0 0 .

We are now able to compute the quadratic variation of M n , that is

M n = n-1 ∑ k=0 a 2 k+1 1 + 2ac + c 2 -(γ k -1) 2 Y 2 k 0 0 0 1 + n-1 ∑ k=0 a k+1 c a + c (1 -a 2 ) 0 1 1 0 + n c a + c 2 (1 -a 2 )
1 0 0 0 .

Consequently,

M n = v n (1 + 2ac + c 2 ) 0 0 0 1 + w n c a + c (1 -a 2 ) 0 1 1 0 + n c a + c 2 (1 -a 2 ) 1 0 0 0 -R n 0 0 0 1 (4.6)
where

v n = n ∑ k=1 a 2 k , w n = n ∑ k=1 a k and R n = n-1 ∑ k=0 a 2 k+1 (γ k -1) 2 Y 2 k .
Hereafter, we immediately deduce from (4.6) that

M n = (1 + 2ac + c 2 ) n ∑ k=1 a 2 k -R n (4.7)
and that

N n = c a + c 2 (1 -a 2 )n. (4.8)
The asympotic behavior of M n is closely related to the one of (v n ) as one can observe that we always have

M n ≤ (1 + 2ac + c 2 )v n and thus M n = O(v n ).
Consequently to the definition of (a n ), we have three regimes of behavior for (M n ). In the diffusive regime where a < (1c)/2,

lim n→∞ v n n 1-2(a+c)λ = where = 1 1 -2(a + c)λ Γ(1 + aλ) Γ(λ) 2 .
(4.9)

In the critical regime where a = (1c)/2,

lim n→∞ v n log n = Γ( c+3 2(c+1) ) Γ( 1 c+1 ) 2 .
(4.10)

In the superdiffusive regime where a > (1c)/2, Let (V n ) be the sequence of positive definite diagonal matrices of order 2 given by

lim n→∞ v n = ∞ ∑ n=1 Γ(n -cλ)Γ(1 + aλ) Γ(n + aλ)Γ(λ) 2 . ( 4 
V n = 1 √ n 1 0 0 a a + c a -1 n . (5.1)
Then, the quadratric variation of M n satisfies in the diffusive regime where a < (1c)/2,

lim n→∞ V n M n V n = V a.s. (5.2)
where the matrix V is given by

V = 1 (a + c) 2    c 2 (1 -a 2 ) ac(c + 1)(1 + a) ac(c + 1)(1 + a) a 2 (1 + 2ac + c 2 )(c + 1) 1 -c -2a    . (5.3) Remark 5.2.
Following the same steps as in the proof of Lemma 5.1, we find that in the critical regime a = (1c)/2, the sequence of normalization matrices (V n ) has to be replaced by

W n = 1 n log n   1 0 0 a a + c a -1 n   .
(5.4)

The limit matrix V also need to be replaced by

W = (c -1) 2 c + 1 0 0 0 1 . ( 5.5) 
Proof of Lemma 5.1. We immediately obtain from Theorem 3.1 and (2.8), (4.6), (4.9) that

lim n→∞ V n M n V T n = a a + c 2 1 1 -2λ(a + c) (1 + 2ac + c 2 ) 0 0 0 1 + 1 1 -λ (1 -a 2 ) ac (a + c) 2 0 1 1 0 + (1 -a 2 ) c a + c 2 1 0 0 0 = 1 (a + c) 2    c 2 (1 -a 2 ) ac(c + 1)(1 + a) ac(c + 1)(1 + a) a 2 (1 + 2ac + c 2 )(c + 1) 1 -c -2a   
which is exactly what we wanted to prove.

The diffusive regime

Proof of Theorem 3.1. We shall make extensive use of the strong law of large numbers for martingales given, e.g. by theorem 1.3.24 of [START_REF] Duflo | Random iterative models[END_REF]. First, we have for M n that for any γ > 0,

M 2 n = O (log v n ) 1+γ v n a.s.
Then, by definition of M n and as a n is asymptotically equivalent to n -(a+c)λ and v n is asymptotically equivalent to n 1-2(a+c)λ , it ensures We now focus our attention on N n . By the same token as before, we have that for any γ > 0,

Y 2 n n 2 = O (log n) 1+γ n 1-2(a+c)λ n 2(
N 2 n = O (log n) 1+γ n a.s.
which by definition of N n gives us

S n -a a+c Y n 2 n 2 = O (log n) 1+γ n a.s.
and we conclude lim

n→∞ S n n - a a + c Y n n = 0 a.s. (5.7)
This achieves the proof of Theorem 3.1 as the convergences (5.6) and (5.7) hold almost surely.

Proof of Theorem 3.2. We need to check that all the hypotheses of Theorem A.2 in [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF] are satisfied. Thanks to Lemma 5.1, hypothesis (H.1) holds almost surely. In order to verify that Lindeberg's condition (H.2) is satisfied, we have from (2.9) together with (4.1) and V n given by (5.1) that for all 1 ≤ k ≤ n

V n ∆M k = 1 (a + c) √ n cξ n+1 aa -1 n a k ε k which implies that V n ∆M k 2 = 1 (a + c) 2 n c 2 + a 2 a -2 n a 2 k ε 2 k (5.8) and V n ∆M k 4 = 1 (a + c) 4 n 2 c 4 + 2a 2 c 2 a -2 n a 2 k ε 2 k + a -4 n a 4 k ε 4 k .
(5.9)

Consequently, we obtain that for all ε > 0,

n ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} F k-1 ≤ 1 ε 2 n ∑ k=1 E V n ∆M k 4 F k-1 .
(5.10)

It follows from (2.8) that a -2 n n ∑ k=1 a 2 k = O(n) and a -4 n n ∑ k=1 a 4 k = O(n).
Hence, using that the sequence (ε n ) is uniformly bounded we find that

n ∑ k=1 E V n ∆M k 4 F k-1 = O 1 n a.s.
which ensures that Lindeberg's condition (H.2) holds almost surely, that is for all ε > 0,

lim n→∞ n ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} F k-1 = 0 a.s.
(5.12)

Hereafter, we need to verify (H.3) is satisfied in the special case β = 2 that is

∞ ∑ n=1 1 log(det V -1 n ) 2 2 E V n ∆M n 4 F n-1 < ∞ a.s.
We immediately have from (5.1)

det V -1 n = a + c a √ na n . (5.13)
Hence, we obtain from (2.8) and (5.13) that

lim n→∞ log(det V -1 n ) 2 log n = 1 -2(a + c)λ. (5.14)
Therefore, we can replace log(det V -1 n ) 2 by log n in (5.1). Hereafter, we obtain from (5.9) and (5.11) that

∞ ∑ n=2 1 (log n) 2 E V n ∆M n 4 F n-1 = O ∞ ∑ n=1 1 (n log n) 2 .
(5.15)

Thus, (5.15) guarentees that (H.3) is verified. We are now going to apply the quadratic strong law given by Theorem A.2 in [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF]. We get from equation (5.14) that

lim n→∞ 1 log n n ∑ k=1 (det V k ) 2 -(det V k+1 ) 2 (det V k ) 2 V k M k M T k V T k = (1 -2(a + c)λ)V a.s. (5.16)
However, we obtain from (2.8) and (5.13) that

lim n→∞ n (det V n ) 2 -(det V n+1 ) 2 (det V n ) 2 = 1 -2(a + c)λ.
(5.17)

Finally, let u = 1, 1 T we have u T V n M n = S n √ n (5.18)
and we deduce from (5.16), (5.17) and (5.18) that

lim n→∞ 1 log n n ∑ k=1 S 2 k k 2 = (1 -2(a + c)λ)v T Vv a.s. (5.19)
which, together with

u T Vu = 2ac + c -1 2a + c -1 (5.20)
completes the proof of Theorem 3.2.

The critical regime

Proof of Theorem 3.8. Again, we shall make use of the strong law of large numbers for martingales given, e.g. by theorem 1.3.24 of [START_REF] Duflo | Random iterative models[END_REF]. First, we have for M n that for any γ > 0,

M 2 n = O (log v n ) 1+γ v n a.s.
which by definition of M n and as a n is asymptotically equivalent to n -1/2 and v n is asymptotically equivalent to log n ensures that In addition, we still have that for any γ > 0,

Y 2 n ( √ n log n) 2 = O (log log n) 1+γ log n (log n) 2 a.
N 2 n = O (log n) 1+γ n a.s.
which by definition of N n gives us

S n -a a+c Y n 2 ( √ n log n) 2 = O (log n) γ-1 a.s.
Taking e.g. γ = 1 2 we can conclude that

lim n→∞ S n √ n log n - a a + c Y n √ n log n = 0 a.s. (5.22)
This achieves the proof of Theorem 3.8 as the convergences (5.21) and (5.22) hold almost surely.

Proof of Theorem 3.9. The proof of the quadratic strong law (3.8) is left to the reader as it follows essentially the same lines as that of (3.2). The only minor change is that the matrix V n has to be replaced by the matrix W n defined in (5.4). We shall now proceed to the proof of the law of iterated logarithm given by (3.9). On the one hand, it follows from (2.8) and (4.9) that 

+∞ ∑ n=1 a 4 n v 2 n < ∞. ( 5 
= c a + c 2 (1 -a 2 ) a.s.
Consequently, we deduce from the law of iterated logarithm for martingales due to Stout [START_REF] Stout | Maximal inequalities and the law of the iterated logarithm[END_REF], see also Corollary 6.4.25 in [START_REF] Duflo | Random iterative models[END_REF], that (M n ) satisfies when a = (1

-c)/2 lim sup n→∞ M n (2v n log log v n ) 1/2 = -lim inf n→∞ M n (2v n log log v n ) 1/2 = √ 1 + c a.s.
However, as

a n v -1/2 n is asymptotically equivalent to (n log n) -1/2 , we immediately obtain from (4.10) that lim sup n→∞ Y n (2n log n log log log n) 1/2 = -lim inf n→∞ Y n (2n log n log log log n) 1/2 = √ 1 + c a.s. ( 5.24) 
The law of iterated logarithm for martingales also allow us to find that

(N n ) satisfies lim sup n→∞ N n (2n log log n) 1/2 = -lim inf n→∞ N n (2n log log n) 1/2 = 2c c + 1 (1 -a 2 ) a.s.
which ensures that lim sup n→∞ N n (2n log n log log log n) 1/2 = 0 a.s.

Hence, we deduce from (2.10) and (5.24) that lim sup

n→∞ S n (2n log n log log log n) 1/2 = lim sup n→∞ N n + 1-c 1+c a -1 n M n (2n log n log log log n) 1/2 = lim sup n→∞ 1 -c 1 + c Y n (2n log n log log log n) 1/2 = -lim inf n→∞ 1 -c 1 + c Y n (2n log n log log log n) 1/2 = -lim inf n→∞ S n (2n log n log log log n) 1/2 .
Hence, we obtain that

lim sup n→∞ S 2 n 2n log n log log log n = lim sup n→∞ 1 -c 1 + c 2 Y 2 n 2n log n log log log n = (1 -c) 2 1 + c
which immediately leads to (3.9), thus completing the proof of Theorem 3.9.

Superdiffusive regime

Proof of Theorem 3.12. Hereafter, we shall again make extensive use of the strong law of large numbers for martingales given, e.g. by theorem 1.3.24 of [START_REF] Duflo | Random iterative models[END_REF] in order to prove (3.13).

When a > (1c)/2, we have from (4.11) that v n converges. Hence, as M n ≤ (1 + 2ac + c 2 )v n , we clealy have that M ∞ < ∞ almost surely and we can conclude that

lim n→∞ M n = M a.s. where M = ∞ ∑ k=1 a k ε k
which by definition of M n and as a n is asymptotically equivalent to

Γ(1+aλ) Γ(λ) n -(a+c)λ ensures that lim n→∞ Y n n (a+c)λ = Y a.s. where Y = Γ(λ) Γ(1 + aλ) M. (5.25) 
Moreover, we still have that for any γ > 0,

N 2 n = O (log n) 1+γ n a.s.
which by definition of N n gives us for all t ≥ 0

S n -a a+c Y n 2 n 2(a+c)λ = O (log n) 1+γ n 2(a+c)λ-1 a.s.
As a > (1c)/2 in the superdiffusive regime, we obtain thanks to (5.6) that for all t ≥ 0

lim n→∞ S nt nt (a+c)λ - a a + c Y nt nt (a+c)λ = 0 a.s.
(5.26)

The convergences (5.25) and (5.26) hold almost surely and nt is asymptotically equivalent to nt which implies lim n→∞ S nt n (a+c)λ = t (a+c)λ L c a.s.

(5.27)

Finally, the fact that (5.27) holds almost surely ensures that it also holds for the finite-dimensional distributions, and we obtain (3.12) with Λ t = t (a+c)λ L c and L c = a a+c Y. We shall now proceed to the proof of the mean square convergence (3.14). On the one hand, as M 0 = 0 we have from (4.7) that

E M 2 n = E M n ≤ (1 + 2ac + c 2 )v n .
Hence, we obtain from (4.11) that

sup n≥1 E M 2 n < ∞
which ensures that the martingale (M n ) is bounded in L 2 . Therefore, we have the mean square convergence lim

n→∞ E M n -M 2 = 0 which implies that lim n→∞ E Y n n (a+c)λ -Y 2 = 0.
(5.28)

On the other hand, for any n ≥ 0, the martingale (N n ) satisfies (5.29)

E N 2 n = E N n ≤ (1 -a 2 ) c a + c
Finally, we obtain the mean square convergence (3.14) from (5.28) and (5.29) and we achieve the proof of Theorem 3.12.

Proof of Theorem 3.13. We start by the calculation of the expectation (3.15). We immediately have from (2.5) that

E[Y n+1 ] = γ n E[Y n ] = n + aλ n -cλ E[Y n ] which leads to E[Y n ] = n-1 ∏ k=1 k + aλ k -cλ E[Y 1 ] = n-1 ∏ k=1 k + aλ k -cλ E[X 1 ] = (2q -1)a -1 n .
(5.30)

Hence, we immediately get equation (3.15) from (5.30), that is

E[L c ] = aΓ(λ) (a + c)Γ(1 + aλ) E[M] = aΓ(λ) (a + c)Γ(1 + aλ) E[M n ] = a(2q -1)Γ(λ) (a + c)Γ(1 + aλ)
.

Hereafter, we obtain from (4.3) by taking expectation on both sides that

E[Y 2 n+1 ] = 1 + 2ac + c 2 + (2γ n -1)E[Y 2 n ] = 1 + 2ac + c 2 + n + (2a + c)λ n -cλ E[Y 2 n ]
and thanks to well-kown recursive relation solutions and Lemma B.1 in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF], we get

E[Y 2 n ] = (1 + 2ac + c 2 ) n-1 ∏ k=0 k + (2a + c)λ k -cλ n-1 ∑ k=0 k ∏ i=0 i -cλ i + (2a + c)λ = (1 + 2ac + c 2 )Γ(n + (2a + c)λ)Γ(λ) Γ(n -cλ)Γ(1 + (2a + c)λ) n-1 ∑ k=0 Γ(k + λ)Γ(1 + (2a + c)λ) Γ(k + 1 + (2a + c)λ)Γ(λ) = (1 + 2ac + c 2 )Γ(n + (2a + c)λ) Γ(n -cλ) n ∑ k=1 Γ(k + λ -1) Γ(k + (2a + c)λ) = (1 + 2ac + c 2 )Γ(n + (2a + c)λ) λ(2a + c -1)Γ(n -cλ) Γ(λ) Γ((2a + c)λ) - Γ(n + λ) Γ(n + (2a + c)λ)
.

Hence, we obtain from (2.8), (2.9) and (5.28) that (H.1) We have from (5.2) and the fact that a nt is asymtotically equivalent to t -(a+c)λ a n that

E[Y 2 ] = lim n→∞ E[Y 2 n ] n 2(a+c)λ = (1 + 2ac + c 2 )Γ(λ) λ(2a + c -1)Γ((2a + c)λ) . ( 5 
V n M nt V T n -→ n→∞ V t a.s.
where

V t = 1 (a + c) 2    c 2 (1 -a 2 )t ac(c + 1)(1 + a)t 1-(a+c)λ ac(c + 1)(1 + a)t 1-(a+c)λ a 2 (1 + 2ac + c 2 )(c + 1) 1 -c -2a t 1-2(a+c)λ    .
(H.2) We also get that Lindeberg's condition is satisfied as we already know from (5.12) that for all ε > 0 lim

n→∞ n ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} F k-1 = 0 a.s.
which implies from (5.9) and the fact that

V n V -1 nt converges lim n→∞ nt ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} F k-1 ≤ lim n→∞ nt ∑ k=1 E V n ∆M k 4 ≤ lim n→∞ nt ∑ k=1 E (V n V -1 nt )V nt ∆M k 4 = 0 a.s.
(H.3) In this particular case, we have

V t = tK 1 + t α 2 K 2 + t α 3 K 3 where α 2 = 1 -(a + c)λ > 0 and α 3 = 1 -2(a + c)λ > 0 as a ≤ (1 -c)/2
, and the matrix are symmetric

K 1 = c 2 (1 -a 2 ) (a + c) 2 1 0 0 0 , K 2 = ac(c + 1)(a + 1) (a + c) 2 0 1 1 0 , K 3 = a 2 (1 + 2ac + c 2 )(c + 1) (1 -2a -c)(a + c) 2 0 0 0 1 .
Consequently, we obtain that

V n M nt , t ≥ 0 =⇒ B t , t ≥ 0
where B is defined as in (A.1). Finally, using the fact that S nt is asymptotically equivalent to N nt + t (a+c)λ a a+c a -1 n M nt and multiplying u t = 

≤ s ≤ t E W s W t = u T s E B s B T t u t = u T s V s u t = u T s sK 1 + s 1-(a+c)λ K 2 + s 1-2(a+c)λ K 3 )u t = c 2 (1 -a 2 ) (a + c) 2 s + ac(c + 1)(a + 1) (a + c) 2 s 1-(a+c)λ (s (a+c)λ + t (a+c)λ ) + a 2 (1 + 2ac + c 2 )(c + 1) (1 -2a -c)(a + c) 2 s 1-2(a+c)λ (st) (a+c)λ = c 2 (1 -a 2 ) (a + c) 2 + ac(c + 1)(a + 1) (a + c) 2 s + ac(c + 1)(a + 1) (a + c) 2 + a 2 (1 + 2ac + c 2 )(c + 1) (1 -2a -c)(a + c) 2 s t s (a+c)λ = c(a + 1) a + c s + a(1 -c 2 ) (a + c)(1 -2a -c) s t s (a+c)λ
.

Proof of Corollary 3.6. As for Corollary 4.1 from [START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF], we observe that ]). Hence, the functional distribution from Theorem 3.4 gives us that

G n √ n = 1 0 S nt √ n dt. Consquently, G n / √ n is a continuous function of S nt / √ n in D([0, 1 
G n √ n = 1 0 S nt √ n dt L -→ 1 0 W t dt.
The process W t , t ≥ 0 is a continuous real-valued and centered Gaussian process starting from the origin, which implies that 1 0 W t dt is also one. Its covariance is given by

E 1 0 W s ds 1 0 W t dt = 2 1 0 t 0 E W s W t dsdt = 2 a(1 -c 2 ) (a + c)(1 -2a -c) 1 0 t 0 s t s λ(a+c) dsdt + 2 c(a + 1) a + c 1 0 t 0 sdsdt = 2a(1 -c 2 )(c + 1) 3(2 + c -a)(a + c)(1 -2a -c) + c(a + 1) 3(a + c) = 2 -c(c + 1 + 3ca + 3a -2a 2 ) 3(2 + c -a)(1 -2a -c
) .

The critical regime

Proof of Theorem 

Appendix. A non-standard result on martingales

The proofs of our main results rely on the non-standard functional central limit theorem and quadratic strong law for multi-dimensional martingales as for the center of mass of the elephant random walk [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF]. A simplified version of Theorem 1 part 2) of Touati [START_REF] Touati | Sur la convergence en loi fonctionnelle de suites de semimartingales vers un mélange de mouvements browniens[END_REF] is as follows.

Theorem A.1. Let (M n ) be a locally square-integrable martingale of R δ adapted to a filtration (F n ), with predictable quadratic variation M n . Let (V n ) be a sequence of non-random square matrices of order δ such that V n decreases to 0 as n goes to infinity. Moreover let τ : R + → R + be a nondecreasing function going to infinty at infinity. Assume that there exists a symmetric and positive semi-definite matrix V t that is deterministic and such that for all t ≥ 0 (H.1)

V n M τ (nt) V T n P -→ n→∞ V t .
Moreover, assume that Lindeberg's condition is satisfied, that is for all t ≥ 0 and ε > 0, (H.2)

τ (nt) ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} F k-1 P -→ n→∞ 0
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 31 We have the almost sure convergence lim

Figure 1 :

 1 Figure 1: Asymptotic normality for the RERW in the diffusive regime, when p = 0.35 and c = 1.

Figure 2 :

 2 Figure 2: Asymptotic normality for the RERW in the critical regime, when c = 2 (ie. p = 0.25).
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 16314 Remark When c = 0, we find once again the moments of L established in[START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] 
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 34 In order to apply Theorem A.1 in the Appendix, we must verify that (H.1), (H.2) and (H.3) are satisfied.

  On the one hand, the behavior of position S n is closely related to the one of the sequences (M n ) and (N n ) defined for all n ≥ 0 by M n = a n Y n and N n = S n -

	We immediately get from (2.5) and (2.7) that (M n ) is a locally square-integrable martingale
	adapted to F n . Moreover, we have from (2.2),(2.3) and (2.5) that
	E S n+1 -	a a + c	Y n+1 |F n = S n -	a a + c	Y n
						.7)
	It follows from standard calculations on the Gamma function that
	lim n→∞	n (a+c)λ a n =	Γ(1 + aλ) Γ(λ)	.	(2.8)
	Our strategy for proving asymptotic results for the reinforced elephant random walk is as
	follows. a a + c	Y n .	(2.9)

  Hereafter, in order to apply Theorem A.1 to the one-dimensional martingale (M n ), we must once again verify that (H.1), (H.2) and (H.3) are satisfied. Let w n = v -1 n , we have from (4.7), Remark 5.2 and the fact that a n t is asymtotically equivalent to n -t/2 that w n M n t w n -→ We also get that Lindeberg's condition is satisfied as v n is increasing as log n and we have for all ε > 0 as a n is asymptotically equivalent to n -1/2 , we can conclude that {|∆M k |>ε √ v n } F k-1 = 0 a.s. In this particular case, we have w t = t(c + 1). Hence, we obtain thatw n M n t , t ≥ 0 =⇒ W t , t ≥ 0where W is defined as in Theorem A.1. Moreover, when a = (1c)/2 we obtain from (2.9), (6.2) and the fact that (a n t v n ) -1 is asymptotically equivalent to n t log n W t , t ≥ 0 .Consequently, using that W is a centered Brownian motion with variance (c + 1), we can conclude that S n t n t log n , t ≥ 0 =⇒ (1c) 2 c + 1 B t , t ≥ 0 and this achieves the proof of Theorem 3.10.

	Moreover, we have from the very definition of M n that
					n ∑	E ∆M 4 k = O	n ∑	a 4 k	a.s.
					k=1				k=1
	lim n→∞ k 1 (H.3) -1 that 1 v n n t ∑ k=1 E ∆M 2
				S n t n t log n	-	N n t n t log n	, t ≥ 0 =⇒	1 -c c + 1
						N n t n t log n	-→ 0 a.s.
	which implies from Theorem 1.3.24 of [14] that
						N n t n t log n	-→ 0 a.s.	(6.2)
	lim n→∞	1 v n	n t ∑ k=1	E ∆M 2 k 1 {|∆M k |>ε	√ v n } F k-1 ≤ lim n→∞	1 ε 2 v 2 n	n t k=1 ∑	E ∆M 4 k
									≤ lim n→∞	v n t v n	2	1 ε 2 v 2 n t	n t k=1 ∑	E ∆M 4 k
									≤ lim n→∞	t 2 ε 2 (log n t ) 2	n t k=1 ∑	E ∆M 4 k .

3.10. First, we have from (4.8) that for all t ≥ 0 (H.1) n→∞ t(c + 1) a.s. (H.2) and

where ∆M n = M n -M n-1 . Finally, assume that

where α j > 0 and K j is a symmetric matrix, for some q ∈ N * . Then, we have the distributional convergence in the Skorokhod space D([0, ∞[) of right-continuous functions with left-hand limits,

where W = W t , t ≥ 0 is a continuous R d -valued centered Gaussian process starting at 0 with covariance, for 0 ≤ s ≤ t, E[W s W T t ] = V s . (A.2)